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Abstract

In this paper, an unified point of view that include the most of one-point Newton-type
iterative methods for solving nonlinear equations is introduced. A simple idea to design iter-
ative methods with quadratic or cubic convergence is also described. This idea is extended to
construct one-point iterative methods of order four. In addition, several numerical examples
are given to illustrate and compare different known methods and some ones introduced by
using this unifying idea.
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1 Introduction

Solving nonlinear equations is a classical problem which has interesting applications in several
branches of sciences and engineering. Many optimization problems such as searching for a local
minimizer of function [1], the potential equations in the transonic regime of dense gases in
gasdynamics [2] and the boundary value problems encountered in kinetic theory of gases [3],
elasticity [4] and problems in other applied areas can be reduced to nonlinear equations. In
general, to compute their roots we must drawn on to iterative methods.

This paper is concerned with iterative methods to find a simple root α of a nonlinear equation
f(x) = 0, where f is a real function f : I ⊆ R −→ R, defined in an open interval I. There
are many iterative methods such as Newton’s method, Halley’ and super-Halley’s schemes,
Chebyshev’s method, etc. and their variants (see [5] and the references therein). In the following,
some basics concepts are introduced, that can be found in [1, 5]. Newton’s method is the best
known and probably the most used algorithm for solving f(x) = 0. It is given by

xk+1 = xk −
f(xk)

f ′(xk)
, k = 0, 1, . . .

which converges quadratically in some neighborhood of α, that is, there exists a positive constant

C such that limk→∞
|xk+1−α|
|xk−α|2

= C. More generally, for the sequence {xk}∞k=0 generated by an
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iterative method, if there exist positive constants C and p such that

lim
k→∞

|xk+1 − α|
|xk − α|p

= C,

then the method is said to converge to α with the local order of convergence p.
Commonly, the efficiency of an iterative method is measured by the efficiency index, defined

by Ostrowski [6] as p1/d, where p is the order of convergence and d is the number of functional
evaluations per iteration. Kung and Traub conjectured in [7] that the order of convergence of
any iterative method, without memory, can not exceed the bound 2d−1, called the optimal order.
Let us recall that an iterative method without memory is an scheme whose its (k+1)th iteration
is obtained by using only the previous kth iteration. The efficiency index of Newton’s method
is 1.414, as it uses two functional evaluations (one of f and another one of f ′) and its order of
convergence is two. So, it is an optimal scheme.

The construction of numerical methods for solving nonlinear equations is an interesting
task, which has attracted the attention of many authors for more than three centuries. These
schemes can be classified in two big families: one-point and multipoint schemes, depending on if
(k+1)th iteration is obtained by using functional evaluations only of iteration k or also functional
evaluations in other intermediate points, respectively. The classical methods mentioned before
are one-point schemes. During the last years, numerous papers devoted to design one-point
iterative methods for solving nonlinear equations, f(x) = 0, have appeared. These methods are
developed from the classical algorithms by using Taylor interpolating polynomials, quadrature
rules or some other techniques. However, due to the limitations and restrictions of the one-
point iterative schemes, multipoint methods appeared in the literature. A good survey of these
multipoint schemes can be found in [8].

In this work, a systematic treatment of the one-point iterative methods by using the weight
function procedure is provided. We can include, under this unified point of view, all the one-point
known methods, as far as we know, of order two and three.

The rest of the paper is organized as follows: in Section 2, many known one-point methods
or classes of schemes of order two are shown, giving a general expression of them by using a real
weight function H, that depends on a particular variable, and we analyze the conditions that
function H must satisfy in order to obtain iterative methods of order two. Section 3 is devoted
to the same idea as Section 2 but for iterative schemes of order three. In Section 4, the procedure
carried out in the previous section for increasing the order of convergence is generalized. Several
numerical examples are given in Section 5 to illustrate and compare the efficiency of the methods
considered in the paper.

2 One-point methods of second order

In this section we are going to show some of the classical and more recent methods or families
of schemes for finding a root of the equation f(x) = 0, with second order of convergence. Their
iterative expressions will be described as a modified Newton’s method with a weight function
H, depending on variable u(x) = f(x)

f ′(x) .

Kanwar and Tomar proposed in [9] the following parametric family of second order iterative
methods

xk+1 = xk −
f(xk)

f ′(xk) + βf(xk)
= xk −

f ′(xk)

f ′(xk) + βf(xk)

f(xk)

f ′(xk)
= xk −

1

1 + βu(xk)

f(xk)

f ′(xk)
, (1)
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where β is a parameter, derived by expanding a particular function in Taylor series. Let us
observe that for β = 0 we obtain Newton’s scheme.

From this idea, Kou and Li in [10] described the bi-parametric family of methods of order
two

xk+1 = xk −
(

1 +
λh(xk)

1 + βh(xk)

)
h(xk),

where λ, β are parameters and h(xk) = f(xk)
f ′(xk)+βf(xk)

. We can transform this iterative expression
in

xk+1 = xk −
(

1 +
λu(xk)

(1 + βu(xk))(1 + 2βu(xk))

)
f(xk)

f ′(xk)
. (2)

In [11], Noor presented the following method with quadratic convergence:

xk+1 = xk −
2f(xk)

f ′(xk) +
√
f ′(xk)2 + 4β3f(xk)3

= xk −
2

1 +
√

1 + 4β3f(xk)3/f ′(xk)2
f(xk)

f ′(xk)

= xk −
2

1 +
√

1 + 4β3f(xk)u(xk)2
f(xk)

f ′(xk)
(3)

obtained by using Taylor polynomials along with an auxiliary equation.
All these methods are optimal in the sense of Kung-Traub’s conjecture, since they have

order two and use two functional evaluations per step. So, their efficiency index is the same, but
not the number of floating point operations, which depends on the complexity of the iterative
expression. We can observe that these methods have the general iterative expression

xk+1 = xk −H(u(xk))
f(xk)

f ′(xk)
, (4)

where H(u) is a function of variable u(x) = f(x)/f ′(x). For iterative methods described in the
form (4) we can establish the following result.

Theorem 1 Let f : I ⊆ R −→ R be a real function with second derivative in I. Let α ∈ I
a simple root of f(x) = 0. If we choose an initial guess close enough to α and a sufficiently
differentiable function H(u) such that H(0) = 1, then the methods described by (4) converge to
α with quadratic order of convergence, being their error equation

ek+1 = (−H ′(0) + c2)e
2
k +O(e3k),

where cj = 1
j!
f (j)(α)
f ′(α) , j = 2, 3, . . . and ek = xk − α.

Proof: By using Taylor’s expansion about α, we obtain

f(xk) = f ′(α)
[
ek + c2e

2
k + c3e

3
k

]
+O(e4k),

f ′(xk) = f ′(α)
[
1 + 2c2ek + 3c3e

2
k

]
+O(e3k).

From these expressions
u(xk) = −c2e2k + (2c22 − 2c3)e

3
k +O(e4k).

Then, we estimate function H(u) about 0, since u(xk) tends to 0 when k tends to ∞.

H(u(xk)) ≈ H(0) +H ′(0)u(xk) = H(0) +H ′(0)ek −H ′(0)c2e
2
k +H ′(0)

(
2c22 − 2c3

)
e3k +O(e4k).
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By using these expansions, we obtain the error equation

ek+1 = (1−H(0))ek + (H(0)c2 −H ′(0))e2k +O(e3k).

By assuming H(0) = 1, the error equation is

ek+1 = (−H ′(0) + c2)e
2
k +O(e3k)

and the proof is finished. 2

In Table 1 we describe the function H(u) that guarantees the quadratic convergence of the
methods described in this section.

Method Function H(u)

Newton H(u) = 1

Kanwar-Tomar (1) H(u) =
1

1 + βu
, β parameter

Kou-Li (2) H(u) = 1 +
λu

(1 + βu)(1 + 2βu)
, λ, β parameters

Noor (3) H(x) =
2

1 +
√

1 + 4β3f(x)x2
, β parameter

Table 1: Weight functions H(u) that express different quadratic methods

3 One-point methods of third order

In a similar way as in the previous section, we are going to give a general expression of many
one-point iterative schemes of order three. In this case, this expression will be described as a

modified Newton’s method with a weight function G, depending on variable w(x) =
f(x)f ′′(x)

f ′(x)2
,

which is called degree of logarithmic convexity.
In the literature, there are a lot of methods, or families of schemes, for solving a nonlinear

equation f(x) = 0, with third order of convergence requiring the evaluation of the second
derivative of function f . The most of the well-known one-point cubically convergent methods
belong to the one-parameter class, called Chebyshev-Halley family

xk+1 = xk −
(

1 +
1

2

f(xk)f
′′(xk)

f ′(xk)2 − βf(xk)f ′′(xk)

)
f(xk)

f ′(xk)
= xk −

(
1 +

1

2

w(xk)

1− βw(xk)

)
f(xk)

f ′(xk)
. (5)

This family includes Chebyshev’s method for β = 0, Halley’s scheme for β = 1/2, super-Halley’s
method for β = 1 and Newton’s method when β tends to ±∞.

Fang et al. [12] obtained the third order method

xk+1 = xk −
2f(xk)

f ′(xk) +
√
f ′(xk)2 − 2f(xk)f ′′(xk)

= xk −
2

1 +
√

1− 2w(xk)

f(xk)

f ′(xk)
, (6)

by expanding function f in Taylor series about the origin, dropping the third and higher order
terms, and solving the obtained quadratic equation.
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Abbasbandy [13] and Chun [14] proposed and studied several one-step iterative methods by
using the decomposition technique of Adomian. Specifically, Abbasbandy rediscovered with this
technique the third order Chebyshev’s method, which was also obtained by Noor et al. [15]
with another decomposition technique which does not involve the derivative of the Adomian
polynomials. They designed the following predictor-corrector method with cubic convergence:
Predictor-step

yk = xk −
f(xk)

f ′(xk)
.

Corrector-step

xk+1 = xk −
f(xk)

f ′(xk)
− (yk − xk)2

2f ′(xk)
f ′′(xk)−

(yk + zk − xk)2

2f ′(xk)
f ′′(xk),

where zk = −(yk − xk)2

2f ′(xk)
f ′′(xk).

By algebraic manipulations, this method can be rewritten in the following form

xk+1 = xk −
f(xk)

f ′(xk)

(
1 +

1

2

f(xk)f
′′(xk)

f ′(xk)2

(
1 +

f(xk)f
′′(xk)

f ′(xk)2
+
f(xk)

2f ′′(xk)
2

2f ′(xk)4

))
= xk −

(
1 +

1

2
w(xk) +

1

2
w(xk)

2 +
1

4
w(xk)

3

)
f(xk)

f ′(xk)
. (7)

In [16], Hansen and Patrick presented a parametric family of iterative methods, with order
of convergence three, whose iterative expression is

xk+1 = xk −
(λ+ 1)f(xk)

λf ′(xk) +
√
f ′(xk)2 − (λ+ 1)f(xk)f ′′(xk)

= xk −
λ+ 1

λ+
√

1− (λ+ 1)w(xk)

f(xk)

f ′(xk)
.

(8)
In particular, if λ = 0, we obtain the iterative method

xk+1 = xk ±
1√

1− w(xk)

f(xk)

f ′(xk)
, (9)

studied by Ostrowski in [6]. On the other hand, if λ = 1 we obtain the known Euler’s method.
More recently, Chun and Kim, by using a geometric approach based on the circle of curvature,

constructed in [17] a new iterative method of order three, whose expression is

xk+1 = xk −
f ′(xk)f(xk)(f

′′(xk)f(xk) + 2 + 2f ′(xk)
2)

2f ′(xk)2(1 + f ′(xk)2)f(xk)f ′′(xk)
.

Algebraic manipulations allow us again to transform this iterative expression in

xk+1 = xk −
w(xk) + 2s(xk)

2s(xk)− w(xk)/f ′(xk)2
f(xk)

f ′(xk)
, (10)

where s(xk) = 1 + 1
f ′(xk)2

.

Finally, we present the parametric family developed by Neta and Scott in [18], whose iterative
formula is

xk+1 = xk −
f(xk)

f ′(xk)
− f(xk)

2f ′′(xk)

2f ′(xk)3 −Af(xk)f ′′(xk)
= xk −

(
1 +

w(xk)

2−Aw(xk)

)
f(xk)

f ′(xk)
, (11)
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where A is a parameter. Upon choosing A = 1 we have Halley’s method. The choice A = 0
yields the well known Chebyshev’s method. This latter scheme is also a special case of Hansen
and Patrick’s family (8) with λ = 1. The choice A = 2 gives the BSC method described by
Basto et al. in [19].

As we have said, all these methods have order of convergence three and none of them is
optimal in the sense of Kung-Traub’s conjecture, since they use three functional evaluations
per step. Although their efficiency index is I = 3

1
3 , they use different number of floating point

operations, being in general more efficient those that have easier iterative expressions.
We are going to present an unified and simple result for demonstrating the order of conver-

gence of these methods. In fact, as Theorem 1, it is based on weight function procedure and
allows us to establish the order of convergence of all one-point methods published, as far as we
know, when their order is three. In addition, this result provides an easy procedure to design
iterative methods with this order of convergence.

The methods described in this section have the general iterative expression

xk+1 = xk −G(w(xk))
f(xk)

f ′(xk)
, (12)

where G(w) is a function of variable w(x) = f(x)f ′′(x)/f ′(x)2. For iterative methods described
in form (12), we can establish the following result.

Theorem 2 Let us assume that f(x) and G(w) are sufficiently differentiable functions and f(x)
has a simple zero α ∈ I. If the initial estimation x0 is close enough to α and function G(w)
satisfies G(0) = 1 and G′(0) = 1/2, then the methods described by (12) converge to α with cubic
order of convergence, being their error equation

ek+1 = −2((−1 +G′′(0))c22 +
1

2
c3)e

3
k +O(e4k),

where cj = 1
j!
f (j)(α)
f ′(α) , j = 2, 3, . . . and ek = xk − α.

Proof: By using Taylor’s expansion about α, we obtain

f(xk) = f ′(α)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k

]
+O(e5k),

f ′(xk) = f ′(α)
[
1 + 2c2ek + 3c3e

2
k + 4c4e

3
k + 5c5e

4
k

]
+O(e5k),

f ′′(xk) = f ′(α)
[
2c2 + 6c3ek + 12c4e

2
k + 20c5e

3
k

]
+O(e4k).

From these expressions

w(xk) = 2c2ek + (−6c22 + 6c3)e
2
k + 4(4c32 − 7c2c3 + 3c4)e

3
k +O(e4k).

Now, we approximate function G(w) about 0, since w(xk) tends to 0 when xk tends to α.

G(w(xk)) ≈ G(0) +G′(0)w(xk) +
1

2
G′′(0)w(xk)

2

= G(0) + 2G′(0)c2ek + (2G′′(0)c22 +G′(0)(−6c22 + 6c3))e
2
k +O(e3k).

By using these Taylor’s expansions, we have the error equation

ek+1 = (1−G(0))ek+(G(0)−2G′(0))c2e
2
k−2((G(0)−4G′(0)+G′′(0))c22−(G(0)−3G′(0))c3)e

3
k+O(e4k).

By assuming G(0) = 1, the error equation is

ek+1 = (1− 2G′(0))c2e
2
k − 2((1− 4G′(0) +G′′(0))c22 + (−1 + 3G′(0))c3)e

3
k +O(e4k)
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and, if G′(0) = 1/2 we have

ek+1 = −2((1 +G′′(0))c22 +
1

2
c3)e

3
k +O(e4k)

and the proof is finished. 2

From this error equation we can assure that if we also require G′′(0) = 1, then any method
described by (12) has order four for quadratic equations.

Ezquerro et al. studied in [20] the semilocal convergence of a particular family of methods
described by (12), where

G(w(xk)) =
∑
j≥0

Ajw(xk)
j ,

being A0 = 1, A1 = A2 = 1/2 and {Aj}j≥0 a positive non-increasing real sequence such that∑
j≥0Ajt

j < +∞ for |t| < r.

In Table 2 we describe the functions G(w) that guarantee the cubic convergence of the
methods described in this section, since they satisfy the conditions of Theorem 2.

Method Function G(w)

Halley G(w) =
2

2− w
super-Halley G(w) =

w − 2

2(w − 1)

Chebyshev G(w) = 1 +
1

2
w

Fang et al. (6) G(w) =
2

1 +
√

1− w
Noor et al. (7) G(w) = 1 +

1

2
w +

1

2
w2 +

1

4
w3

Hansen-Patrick (8) G(w) =
λ+ 1

λ+
√

1− (λ+ 1)w
, λ parameter

Euler G(w) =
2

1 +
√

1− 2w
,

Ostrowski (9) G(w) =
±1√
1− w

Chun-Kim (10) G(w) =
w + 2s(x)

2s(x)− w/f ′(x)2
, s(x) = 1 + 1

f ′(x)2

Neta-Scott (11) G(w) = 1 +
w

2−Aw
, A parameter

Basto et al. G(w) = 1 +
w

2(1− w)

Table 2: Weight functions G(w) that express different cubic methods

From Theorem 2, it is easy to design iterative methods that converge cubically. It is sufficient
to choose functions G(w) such that G(0) = 1 and G′(0) = 1/2. We can select functions G(w)
more simple than those in Table 2. For example, by taking G(w) = ew/2 we obtain the iterative
method

xk+1 = xk − e
f(xk)f ′′(xk)

2f ′(xk)2
f(xk)

f ′(xk)
(13)
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and with G(w) = w2 + w/2 + 1 we obtain

xk+1 = xk −
(
f(xk)

2f ′′(xk)
2

f ′(xk)4
+
f(xk)f

′′(xk)

2f ′(xk)
+ 1

)
f(xk)

f ′(xk)
. (14)

Both methods have order of convergence three and they are denoted in the numerical section
by M1 and M2 respectively.

4 A new family of order of convergence at least four

If we want to increase the local order of convergence of the one-point methods, we must to have
into account some known restrictions of them. In classical books of Numerical Analysis (see for
example [1] or [5]) the following results can be found, which describe some limitations of the
one-point methods in order to increase the order of convergence.

Theorem 3 Let xk+1 = P (xk) be a one-point iterative method, which use d functional evalua-
tions per step. Then its order of convergence is at most p = d.

Theorem 4 For designing a one-point method of order p, the iterative expression must contain
derivatives of order at least p− 1.

So, for constructing one-point methods of order four we must use the third derivative of
function f . In fact, we consider the following general iterative expression with a weight function
of two variables:

xk+1 = xk −M(w(xk), v(xk))
f(xk)

f ′(xk)
, (15)

where w(x) =
f(x)f ′′(x)

f ′(x)2
and v(x) =

f(x)f ′′′(x)

f ′(x)f ′′(x)
.

For this family of methods the following result can be established.

Theorem 5 Let us suppose that f(x) and M(w, v) are sufficiently differentiable functions and
f(x) has a simple zero α. If the initial guess x0 is close enough to α and function M(w, v)
satisfies M(0, 0) = 1, Mw(0, 0) = 1/2, Mv(0, 0) = 0, Mww(0, 0) = 1, Mvv(0, 0) = 0 and
Mwv(0, 0) = −1/6, then the methods described by (15) converge to α with order four, being
their error equation

ek+1 =

[
(5− 4

3
Mwww(0, 0))c32 − (5 + 6Mwwv(0, 0))c2c3 − 9

c23
c2
Mwvv(0, 0)

−9c33
2c32

Mvvv(0, 0) + c4

]
e4k +O(e5k),

where cj = 1
j!
f (j)(α)
f ′(α) , j = 2, 3, . . . and ek = xk − α.

Proof: By using Taylor’s expansion about α, we obtain

f(xk) = f ′(α)
[
ek + c2e

2
k + c3e

3
k + c4e

4
k

]
+O(e5k),

f ′(xk) = f ′(α)
[
1 + 2c2ek + 3c3e

2
k + 4c4e

3
k + 5c5e

4
k

]
+O(e5k),

f ′′(xk) = f ′(α)
[
2c2 + 6c3ek + 12c4e

2
k + 20c5e

3
k

]
+O(e4k),

f ′′′(xk) = f ′(α)
[
6c3 + 24c4ek + 60c5e

2
k

]
+O(e3k).
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From these expressions, we have

w(xk) = 2c2ek + (−6c22 + 6c3)e
2
k + 4(4c32 − 7c2c3 + 3c4)e

3
k +O(e4k)

and

v(xk) =
3c3
c2
ek +

(
−3c3 −

9c23
c22

+
12c4
c2

)
e2k

+
3(2c42c3 + 9c33 − 4c32c4 − 18c2c3c4 + c22(c

2
3 + 10c5)

c32
e3k +O(e4k).

Now, taking into account that w(xk) and v(xk) tend to zero when xk tends to α, we approximate
function M(w, v) about (0, 0),

M(w(xk), v(xk)) ≈ M(0, 0) +Mw(0, 0)w(xk) +Mv(0, 0)v(xk) +
1

2
Mww(0, 0)w(xk)

2

+
1

2
Mvv(0, 0)v(xk)

2 +Mwv(0, 0)w(xk)v(xk)

+
1

6

(
Mwww(0, 0)w(xk)

3 +Mvvv(0, 0)v(xk)
3

+3Mwvv(0, 0)w(xk)v(xk)
2 + 3Mwwv(0, 0)w(xk)

2v(xk)
)
.

By replacing these Taylor’s expansions in the iterative expression, we get

ek+1 = (1−M(0, 0))ek +

(
(M(0, 0)− 2Mw(0, 0))c2 −

3Mv(0, 0)c3
c2

)
e2k +O(e3k)

and if we assume M(0, 0) = 1, Mw(0, 0) = 1/2 and Mv(0, 0) = 0, we have

ek+1 =

(
−2(−1 +Mww(0, 0))c22 − (1 + 6Mwv(0, 0))c3 −

9Mvv(0, 0)c23
2c22

)
e3k +O(e4k).

Finally, conditions Mww(0, 0) = 1, Mwv(0, 0) = −1/6 and Mvv(0, 0) = 0 give the final expression
of the error equation

ek+1 =

[
(5− 4

3
Mwww(0, 0))c32 − (5 + 6Mwwv(0, 0))c2c3 − 9

c23
c2
Mwvv(0, 0)

−9c33
2c32

Mvvv(0, 0) + c4

]
e4k +O(e5k).

2

The parametric function

M(w, v) =
1 + w/2 + w2

1 + βv3
− 1

6
wv − 1

2
w2,

where β is a real parameter, satisfies the conditions of the previous result. So, it provides a
parametric family of one-point iterative schemes of order four. As a particular case, β = 0, we
obtain the iterative scheme

xk+1 = xk −
(

1 +
1

2
Lf (xk) +

1

2
Lf (xk)

2 − 1

6
Lf ′(xk)Lf (xk)

2

)
f(xk)

f ′(xk)
,

expressed in terms of the degree of logarithmic convexity Lf (xk) = f(xk)f
′′(xk)

f ′(xk)2
.
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5 Numerical results

In this section, numerical examples for testing the effectiveness of some methods introduced
previously, are given. We compare the numerical results obtained by applying the methods of
Newton, Chebyshev, Ostrowski (9) and Chun-Kim, and the schemes denoted by M1 (13) and
M2 (14), on the following test functions:

• f1(x) = cosx− x, α ≈ 0.739085,

• f2(x) = sin2 x− x2 + 1, α ≈ 1.404492,

• f3(x) = xex
2 − sin2 x+ 3 cosx+ 5, α ≈ −1.207648,

• f4(x) = sinx+ x cosx, α = 0,

• f5(x) = x2ex
2 − sin2 x+ x, α = 0,

• f6(x) = (x− 1)3 − 1, α = 2,

• f7(x) = x2−1
x2+1

+ 1, α = 0.

Numerical computations have been carried out using variable precision arithmetic, with
1000 digits, in MATLAB 7.13. The stopping criterion used is |xk+1 − xk|+ |f(xk+1)| < 10−100.
Therefore, we check that the sequence {xk} converges and that its limit is a solution of the
nonlinear equation f(x) = 0. For every method and test function, we calculate the number of
iterations, the value of incr = |f(xk+1)| at the last iteration and the computational order of
convergence ACOC, approximated by (see [21])

p ≈ ACOC =
ln(|xk+1 − xk| / |xk − xk−1|)

ln(|xk − xk−1| / |xk−1 − xk−2|)
. (16)

The value of ACOC that appears in Table 3 is the last coordinate of vector (16) when the
variation between its values is small. In some cases, the approximated order of convergence is
not stable and it is not shown in the table.

Table 3 summarizes several results obtained by using the mentioned methods (Newton,
Chebyshev, Ostrowski, Chun-Kim, M1 and M2) in order to estimate a root of nonlinear functions
from f1 to f7. For every function we specify the initial estimation x0 (chosen far enough from
the solution for showing stability problems), the number of iterations, the value of function f
in the last iteration and the value of ACOC.

It can be observed that, in general, the number of iterations and the value of |f(xk+1)|
for all the methods are in similar ranges, taking into account that Newton’s method has order
two while the rest of the schemes have order three. The computational order of convergence
confirms the theoretical results, but some comments are needed. For function f4(x) Newton’s
method has order of convergence three, like the other methods, since f ′4(α) = 0. In addition, as
f
′′
5 (α) = f

′′′
5 (α) = 0, all convergent methods have order four. For f7(x) all methods converge

linearly since the zero of this function is not simple, it has multiplicity 2.

Remark 1 Let us note that some of the methods described in this work can be adapted for
solving nonlinear systems F (x) = 0. In particular, the iterative expression of method M2 can be

10



Function f1(x) f2(x) f3(x) f4(x) f5(x) f6(x) f7(x)

x0 2.1 2.5 −3 0.5 3 4 0.8

Newton 8 10 17 7 18 11 331
Chebyshev 7 7 12 7 14 8 235

iter Ostrowski 6 7 > 103 6 > 103 7 189
Chun-Kim 7 7 12 6 13 8 211

M1 7 7 11 6 13 8 225
M2 6 7 10 7 11 7 167

Newton 8e-266 6e-383 7e-217 2e-774 9e-504 9e-245 8e-201
Chebyshev 1e-783 2e-551 2e-631 1e-834 0.0 7e-196 6e-201

incr Ostrowski 3e-313 7e-780 - 1e-392 - 4e-595 4e-202
Chun-Kim 2e-806 3e-559 1e-631 1e-301 1e-674 1e-592 7e-202

M1 3e-834 4e-596 1e-443 3e-319 1e-954 3e-720 2e-201
M2 2e-581 7e-652 0.0 1e-716 1e-856 5e-427 6e-202

Newton 2.0 2.0 2.0 3.0 4.0 2.0 1.0
Chebyshev 3.0 3.0 3.0 3.0 4.0 3.0 1.0

ACOC Ostrowski 3.0 3.0 - 3.0 - 3.0 1.0
Chun-Kim 3.0 3.0 3.0 3.0 4.0 3.0 1.0

M1 3.0 3.0 3.0 3.0 4.0 3.0 1.0
M2 3.0 3.0 3.0 3.0 4.0 3.0 1.0

Table 3: Numerical results for different methods and several test functions

rewritten as an iterative scheme for approximating the solution of F (x) = 0. If x(k) denotes the
kth iteration in this context, we have

x(k+1) = x(k) −
(
F ′(x(k))−1F (x(k)) + (1/2)F ′(x(k))−1F ′′(x(k))(F ′(x(k))−1F (x(k)))2

+F ′(x(k))−1F ′′(x(k))(F ′(x(k))−1F (x(k)))(F ′(x(k))−1F ′′(x(k))(F ′(x(k))−1F (x(k)))2)
)
,

where F ′(x(k)) is the Jacobian matrix associated to function F , evaluated in x(k), and F ′′(x(k))
is the bilinear operator that represents the second Fréchet derivative of F .

Acknowledgments: The authors thank to the anonymous referee for his/her valuable com-
ments and for the suggestions to improve the readability of the paper.
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