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Abstract-The paper presents in premiere a simple mapping 
property of the sum of the reflection and transmission parameters 
of reciprocal two port networks. It is proved that although the 
reflection and transmission parameter may have very complicated 
paths on the Smith chart, their sum will be always moving on the 
unit circle if the circuit is symmetric and lossless. Further once 
symmetrical losses at the ports occur their sum path will switch 
on a family of circles through one point. Using inversive geometry 
we construct a new function which maps this family of circles in 
lines on the extended Smith chart. The proposed method for 
checking the symmetry uses just two parameters and avoids 
testing the phase of the corresponding input and output 
parameters. By means of the 3D Smith chart we propose in the 
end an alternative approach to visualize the parameters. 

 

I. INTRODUCTION 

In the recent years it was shown that elements of group 
theory present in geometry may bring to light new tools in 
microwave engineering [1-4] like the 3D Smith chart, while in 
[5-6] it was also lately demonstrated how new circle 
boundaries obtained by ingenious manipulation of different 
functions of the scattering parameters may still help in the 
microwave design. Nevertheless in [3] it was proved that the 
well known unilateral transducer power gain circles are a 
family of Apollonius circles recently introduced too in 
microwave engineering in [7]. In this work we prove that the 
sum of the reflection and transmission coefficient of a 
traditional symmetrical reciprocal two port network with 
symmetrical losses at the input and output ports when 
visualized on the Smith chart, moves on a circular path. The 
presence of symmetrical losses at the ports influences its 
position in the family of circles through one point (unit circle 
when there is no loss). This family of circles may be converted 
by the usage of inversive geometry [8] into lines, thus it will be 
shown that the presence of losses in a circuit or asymmetry 
may be detected by examining the sum of the reflection and 
transmission coefficient at a single port.    

 

II. THE PATH OF THE SUM OF THE TRANSMISSION AND 
REFLECTION SCATTERING PARAMETERS ON THE SMITH CHART 

Based on [9], the relationship between the reflection and 
transmission coefficient S11(ω) and S21(ω) (where ω represents 
the angular frequency) of a  symmetrical two port network may 
be simplified when expressed in terms of the ABCD chain 
parameters as (1)-(2) since (A=D). The sum of them (S(ω)= 
S11(ω)+S21(ω)) may be expressed as (3) considering the 
network reciprocal (AD-BC=1) where Z0 is the characteristic 
impedance of the input and output port. 

                              ଵܵଵሺ߱ሻ ൌ ஻ሺఠሻି஼ሺఠሻ௓బమଶכ஺ሺఠሻ௓బା஻ሺఠሻା஼ሺఠሻ௓బమ                                (1) 

                              ܵଶଵሺ߱ሻ ൌ ଶ௓బଶכ஺ሺఠሻ௓బା஻ሺఠሻା஼ሺఠሻ௓బమ                                (2) 

                       ܵሺ߱ሻ ൌ ܵଶଵሺ߱ሻ ൅ ଵܵଵሺ߱ሻ ൌ ஻ሺఠሻା௓బሺଵି஺ሺఠሻሻ஻ሺఠሻା௓బሺିଵା஺ሺఠሻሻ             (3) 

In the case of a traditional lossless network A(ω) will be 
always real while B(ω) will be always purely imaginary [10] 
thus of form jB1(ω). In this situation it can be seen that the path 
of S(ω) in the reflection coefficient’s plane will be on a the unit 
circle since (4) takes place.              | ܵሺ߱ሻ| ൌ ቚ ஻ሺఠሻା௓బሺଵି஺ሺఠሻሻ஻ሺఠሻା௓బሺିଵା஺ሺఠሻሻቚ ൌ ቚ ௝஻భሺఠሻା௓బሺଵି஺ሺఠሻሻ௝஻భሺఠሻା௓బሺିଵା஺ሺఠሻሻቚ ൌ 1  (4) 

    It may be further proved that (3) always represents a 
family of curves of “coaxal” circles [8] passing through (1,0) 
when symmetrical losses occur at the ports. Actually it may be 
demonstrated that (3) can be written as (5), where F(ω) (5) will 
be of form a+j*b(ω) or a(ω)+j*b thus S(ω) will have always 
the form of a Möbius transformation of the extended line 
a+jb(ω) or a(ω)+j*b ( when symmetrical losses at the ports 
occur) and will map F(ω) in a family of circles [1,8]. 

                       ܵሺ߱ሻ ൌ 1 െ ଶଵାிሺఠሻ ሺ߱ሻܨ           , ൌ ஻ሺఠሻሺ஺ሺఠሻିଵሻ௓బ                  (5) 

 

CIRCUITS EXAMPLES 

Let us consider the case of a third order ideal bandpass filter 
as in Fig.1 with inductors L1=L3=6.506nH, capacitors 
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C1=C3=0.9888pF and with inductor L2=1.391nH while 
capacitor C2=4.625pF. The input and output characteristic 
impedances are considered Z0=50Ω while the resistances 
R1=R2=0 in an ideal case. This will generate a Chebyshev filter 
response with a central frequency of 1.984 GHz, a bandwidth 
of 0.5 GHz and a ripple of 0.001 dB.  
 

 

 
 

 
 
 

                                               (a) 
 
 
              
 
 

 
 
 

 
                                            (b)         

 
Figure 1.(a) A third order bandpass filter topology.(b) Return loss of the filter 
for L1= 6.506nH, C1=C3=0.9888pF L2=1.391nH , C2=4.625pF, R1=0 if (L3= 
6.506nH and R2=0 - dark- ideal response), (L3= 6.3nH and R2=0 - green 
response), (L3= 6.506nH and R2=2Ω - blue). Since |S11|=|S22| in all the cases it 
is impossible to detect the cause of the perfect matching failure without 
visualizing the phase of the S11 and S22 parameters. 

 
In the design of the filter we may fail to achieve the desired 

values, as for example in the Fig.1. 
Let us consider that we design the filter with the preferred 

values but that we don’t succeed to have R1=R2=0. Supposing 
R1=R2=R where 0≤R≤10Ω (with a step of 1Ω). S(ω) for the 
circuit is of form (5) where F(ω) has the form (6) for the circuit 
in Fig.1. It is obvious that (6) is an extended line passing 
through R1 (since it’s real part does not depend of ω) thus S(ω) 
which has form (5) will represent a family of circles through 
(1,0). 

ሺ߱ሻܨ                            ൌ ܴଵ ൅ ݆ షభ಴భି మ಴మାሺ௅భାଶ௅మሻఠమఠ                               (6) 

We may alternatively represent the sum of the transmission 
and reflection parameter (5) or we may consider the 
representation of (7) which will map (5) into a family of lines 
passing through infinity but still perpendicular on the real axes 
of the reflection coefficient’s plane [8]- since each family of 
coaxal circles through one point (1,0) may mapped into a 
family of lines : 

                                             ܵ௅ሺ߱ሻ ൌ ଵௌሺఠሻିଵ                                                (7)         

By inspection of Fig.2 or Fig.3 it can be seen that we have to 
deal with symmetrical circuits with additional symmetrical 
losses at the input and output ports since (5) is represented by a 
coaxial family of circles or (7) by a family of lines. 

Considering now the circuit in Fig.1 with L1=6.506nH, 
C1=C3=0.9888pF, L2=1.391nH, C2=4.625pF while L3=6.3nH 
and R1=R2=0, the sum of the reflection and insertion parameter 
will not have the form (5) anymore (thus not a circle shape) 
since L3 is now slightly different from L1( Fig.4). The failure to 
obtain a symmetrical circuit can be directly detected by 
examining Fig.4, because the sum of the reflection and 
transmission parameter doesn’t have a circular trajectory 
anymore as the frequency changes. 

 
 
 

 

 
 
 
 
 
 
Figure 2. Representation of the sum of the reflection and transmission moves 
on a family of circles for a symmetrical reciprocal two port network passing 
through the point (1,0), the representation is done for the Fig.1 considering 
L1=L3=6.506nH, C1=C3=0.9888pF and with L2=1.391nH while C2=4.625pF 
and R1=R2=R. It is considered that 0≤R≤10. 

 

 

 

 

 
(a)                                                                       (b) 

 
Figure 3. Representation of (7) for a symmetrical reciprocal two port network 
will be always a generalized lines family passing through infinity. The 
representation is done for Fig.1 considering L1=L3=6.506nH, C1=C3=0.9888pF 
and with L2=1.391nH while C2=4.625pF and R1=R2=R. It is considered that 
0≤R≤10 (a) Representation on an extended 2D Smith chart without zooming 
may seem to map all of them in the same line, (b)zooming the representation 
we may see the family of lines. 
 

 
 
 
 
 
 

 
 
Figure 4. Representation of the sum of the reflection and transmission 
coefficient for the circuit in Fig.1 S(ω) when L1= 6.506nH, C1=C3=0.9888pF 
L2=1.391nH, L3=6.3nH, C2=4.625pF and R1=R2=0, the small asymmetry 
generated by L1≠ L3 generates a non circular shape, since it will not have the 
form (5) anymore. 
 

III. CIRCUITS EXAMPLES ON THE 3D SMITH CHART 

The sum of the insertion and return loss parameters or (7) 
may sometimes difficult to be visualized in 2D. S may be in 
cases of symmetric reciprocal active devices with negative 



resistances mapped into a circle outside of the Smith chart, 
while SL (7) which represents an extended line to infinity is 
very difficult to be visualized in 2D, different zooming 
problems occurring as in Fig. 3.  

 

 

 
 
 

 
Figure 5. Representation of (5) for the filter topology in Fig.1 and for the same 
parameters as in Fig.2 with R1=R2=0. 0-10 GHz-symmetrical circuit. 

On the 3D Smith chart these visualization problems never 
occur [1-4]. Mapping the new defined parameters (3) and (7) 
on the 3D Smith chart with the same stereographical projection 
used in [1], ensures that these will be always circles (since 
extended lines are mapped into circles on the Riemann 
sphere).We may actually see that plotting (3) and (7) on the 3D 
Smith chart for the symmetrical circuit presented in Fig. 1 and 
considering (for example R1=R2=0) we can get Fig.5 and Fig.6, 
thus circles on the 3D Smith chart (thus the circuits are 
symmetric. 

 

 

 

 

 

 

 
Figure 6. Representation of SL(7) for the filter topology in Fig.1 and the same 
parameters as in Fig.2- Fig.3 but with R1=R2=0. (the simulation is done in the 
0-10 GHz range). 

In Fig.7 we can see the representation of S(ω) for the circuit 
in Fig.1 for the same values as in Fig.4- the presence of the 
asymmetry may be directly detected on the 3D Smith chart 
where different zooming scales may be used. 

 

 

 

 

 

 

 
 
 
Figure 7. Representation of the sum of the reflection and transmission 
coefficient S(ω) for the circuit in Fig.1 when L1= 6.506nH, C1=C3=0.9888pF 
L2=1.391nH, L3=6.3nH, C2=4.625pF and R1=R2=0, the small asymmetry 

generated by L1≠ L3 generates a non circular shape easy to be seen on the 3D 
Smith chart.(Circuit simulated between 0-10 GHz). 
 
 

IV. CONCLUSION 

It that been shown that the sum of the reflection and 
transmission parameters of a traditional reciprocal symmetrical 
two port network circuit [10] moves always on a family of  
coaxal circles (5) when represented on the Smith chart ( if 
losses are symmetrical at the input and output ports), unit circle 
when lossless. Alternatively a different line checking criteria 
parameter was defined in (7). In order to check the symmetry 
of a circuit it was thus shown that there is no need in testing the 
phase of input and output return loss and compare them, nor 
plotting both input and output return loss on the Smith chart or 
doing even odd mode tests. For a better visualization the 3D 
Smith chart was proposed. The results can help the microwave 
engineer check fast the electromagnetic symmetry of the 
frequency responses of the structures when circuits are lossles 
or when the losses occur at the input and output ports 
symmetrically.  
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