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Redirection of sound in straight fluid channel with elastic boundaries
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A fluid channel clad between two solid plates is an acoustic waveguide where excitation of elastic waves at the
channel boundaries has been usually neglected. This work develops a rigorous theory of scattering of sound by
a finite-length fluid channel which takes into account excitation of elastic eigenmodes of two plates acoustically
coupled through a fluid channel. The theory predicts an evidently contradictory result that the transmission and
reflection coefficients of a nondissipative channel do not sum up to one. Moreover, they both exhibit deep minima
at the same series of frequencies. It is shown that conservation of acoustic energy occurs due to redirection of
sound, since part of the acoustic flux escapes into the solid plates. This scattering becomes possible because
the uniform flatness of the boundaries of a straight channel is broken by vibrations. Theoretical predictions are
supported by the experiments with ultrasound transmission through a narrow slit obtained between two brass
or aluminum plates submerged in water. Measured transmission spectra exhibit deep minima exactly at the

frequencies where the theory predicts strong redirection of sound.
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I. INTRODUCTION

The existence of elastic waves confined to the superficial
region of an infinite homogeneous solid, first predicted by
Lord Rayleigh [1], plays an important role in various fields
like geophysics, acoustoelectronics, and seismology. It is
shown here that elastic surface waves also have paramount
importance in transmission of ultrasound through narrow fluid
channels formed by two elastic media. Intensive study of
sound transmission through narrow apertures has shown that
this phenomenon is much richer than it was predicted by the
classical theory of diffraction at zero-width ideal rigid screens
[2,3]. Transmission through an aperture in a finite-thickness
rigid wall can differ essentially [4,5]. Fabry-Pérot resonances
which exist for a subwavelength slit of width d in a solid
screen with finite thickness give rise to unexpected increase of
the transmission with the resonant wavelength, T ~ A, /d [6].
A periodic set of subwavelength slits or holes in a rigid screen
may transmit almost 100% of incoming sound at the resonant
frequencies [7]—a phenomenon akin to extraordinary optical
transmission [8]. For both types of waves the extraordinary
transmission is due to coupling between the Fabry-Pérot
cavity mode with two surface waves excited on both faces
of the screen. Acoustic surface wave may be excited at the
interface between a fluid and a rigid screen if the faces of
the screen are periodically corrugated [9]. If the apertures are
arranged periodically along the surface, they themselves serve
as corrugations [6,10]. If there is a single aperture in a screen
(a slit) then the faces of the screen are additionally corrugated.
In the latter case the transmission through this slit exhibits a
sharp resonant peak and also very effective collimation of
sound [11,12]. It is interesting that periodically perforated
thick slab may exhibit ideal reflection, apart from extraordinary
transmission, as it was earlier predicted in Ref. [13].

Recent calculations of the transmissivity through a finite-
thickness aperture are based on expansion of pressure over
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waveguide modes. The modes are the solutions of the wave
equation with rigid-body boundary conditions. This method
was proposed in Ref. [11] for acoustic transmission and in
Refs. [14-16] for transmission of electromagnetic waves. The
rigid-body approximation is usually justified by high contrast
between the impedances of the fluid and the screen. However,
the acoustic coupling between them is strongly enhanced
near the frequency of the Fabry-Pérot resonance, i.e., when a
quasistanding wave is formed inside a fluid channel. Due to the
resonance, even weak coupling may be sufficient for effective
exchange of energy between the fluid and elastic screens.
Synchronized oscillations of the fluid and the screens are
accompanied by deformation of the elastic boundaries of the
channel. While this surface deformation looks similar to prop-
agating Rayleigh wave [17], there are essential differences.
First, the dispersion equation is nonlinear, unlike the one for
the Rayleigh waves. Second, there is a nonzero flux of acoustic
energy from fluid to metal, which does not exist for evanescent
(inside metal) Rayleigh waves. Due to this flux a finite-length
fluid channel serves as a redirecting acoustic antenna. Collec-
tive vibrations of the screens coupled through the fluid and
driven by external wave can be represented as a superposition
of the eigenmodes of the whole system. Deep minima in trans-
mission occur when two eigenmodes propagating in opposite
directions interfere destructively, forming a quasistanding
wave. Deep minima have been reported in Ref. [18] and their
unusual nature has remained unclear. Here we develop a theory
of sound transmission through a slit formed by two elastic solid
plates. We solve the eigenvalue problem for the whole system
which consists of two elastic infinite plates coupled through a
straight fluid channel. The acoustic field is expanded over the
set of eigenfunctions which describe synchronized vibrations
of the whole system. Each eigenfunction is characterized by
complex eigenvector, i.e., these eigenfunctions are inhomoge-
neous plane waves. They form a nonorthogonal basis, like the
well-known Rayleigh-Lamb modes describing vibrations of an
isolated solid elastic plate [19]. Lack of orthogonality presents
certain mathematical difficulties in calculations. Neverthe-
less, the expansion over this nonorthogonal basis converges
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sufficiently fast, providing very good agreement with ex-
perimental results in the whole frequency range. Using the
proposed theory we show that at the frequencies when the
deep minima in transmission are observed the reflection is
also minimal. This occurs due to formation of quasistanding
Rayleigh wave in the whole system. Since the transmission
and reflection are strongly suppressed, the only way for
the accumulated elastic energy to escape is radiation into
metal. This means that the eigenfunctions are leaky modes,
similar to quasisurface waves at solid-fluid interfaces studied
in Refs. [17,20,21]. It was also demonstrated that leaky
(or quasiguided) elastic modes give a resonant contribution
to sound transmission through a glass plate decorated by
periodically arranged polymer spheres [22].

The rate of radiation into metal is relatively high, i.e., a
straight fluid channel serves as redirecting acoustic antenna.
The proposed mechanism is very different from the strong
suppression of sound transmission through a periodic ar-
rangement of holes in a rigid screen [13,23,24]. The latter
is due to destructive interference between the Fabry-Pérot
cavity mode and the Fourier component of the acoustic
field in the fluid with the wavelength equal to the period
of perforation. This Fano-like resonance exists even in the
rigid-body approximation and is manifested as total reflection
of sound wave from the perforated solid plate. Unlike this, the
proposed effect of redirection of sound leads to suppression
of both, transmission and reflection, and it vanishes in the
rigid-body approximation.

II. SCATTERING PROBLEM FOR SOUND WAVE
IMPINGING AT ELASTIC SCREEN WITH STRAIGHT
FLUID CHANNEL

In the experiment a sound wave was generated and detected
by two 1.5 in. transducers immersed in a water tank at equal
distance [ = 8 cm from the plates. A slit between two square
brass or aluminum plates with side L = 12 cm is located in
front of the transducers. A sound wave was incident normally
to the slit and the transmission spectrum was measured
with compensation of the nonflat frequency response of the
piezoelectric transducers. The plate thickness /4 defines the
length of the water channel and its width d (the slit’s aperture)
is maintained by means of a sample holder that fixes both metal
plates. This experimental setup is schematically shown in the
inset to Fig. 1.

To calculate the transmission of a plane sound wave coming
from the left, (po/iwpy)exp(ikox — iwt), we introduce the
potentials of the reflected R(x,z)(x < 0) and transmitted
T(x,z)(x > h) acoustic fields. They define velocity and
pressure in the fluid (e.g., v= VR, p = po+iwpsR for
x < 0). Here ko = w/cy, py is the density, and ¢y is the
speed of sound in the fluid. The potentials of the reflected
and transmitted fields are represented through their Fourier
integrals
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FIG. 1. (Color online) Sound transmission spectra of a water slit
between two aluminum (a),(b) and brass (c),(d) plates. Experimental
results are shown by circles for aluminum and by squares for
brass. Calculated spectra are shown by solid lines. The minima
corresponding to excitation of the slow mode are marked by vertical
arrows. Inset: experimental setup showing the geometrical parameters
of the slit.

Here the longitudinal (along x) component of the wave
vector is defined as (k) = \/k(z) — k? for |k| < ko and B(k) =
i\/k* — k3 for |k| > ko.

In the region 0 < x < & occupied by the fluid channel and

the elastic plates the potentials can be expanded over a set of
eigenfunctions of the corresponding infinite channel

B(x.2) =) (bfe®™ +be P )coskyz,  (3a)

n

L(x.2) =Y _(FeP 41 e7Pmyel, (3b)

n
S(x,z) = Z(sn*e"ﬂ”x — 5 e Pyl (3c)
n

where B is the velocity potential of the fluid [v(x,z) = VB,
|z| < d/2] and the potentials L and S give the displacement
vector in the plates,

u=VL+V xS, |zl >d/2 )

094303-2



REDIRECTION OF SOUND IN STRAIGHT FLUID ...

The transversal parts of the wave vectors in the fluid and in the
plates are defined as

kn= k(z)_ y%’ Unz\/ 3_]([27 nnz\/ﬂg_ktzy

Re(”n,nn) > Oa kl = (,()/Cl, kt = (,()/C[. (5)

¢ (¢;) is the speed of transversal (longitudinal) sound in
the plates. Our final goal is calculation of the reflected and
transmitted acoustic fields in the fluid. Transmitted ¢(k) and
reflected r(k) amplitudes in Eqgs. (1) and (2) are related to
the coefficients b,, [,, and s, in the linear expansions (3).
These linear relations can be obtained through the boundary
conditions at the vertical (x = 0,4) and horizontal (z = £d/2)
surfaces of the structure.

III. DISPERSION OF EIGENMODES IN INFINITE
CHANNEL

The eigenmodes in Eq. (3) are labeled by integer n which
numerates the roots of the dispersion equation 8, = B,(®).
This equation is derived in Appendix A from the continuity of
force and velocity at the boundaries z = £d /2 [18,25]. Since
the system is symmetric with respect to the plane z = 0 the
eigenmodes are either even or odd functions of z. Odd modes
are excited at oblique incidence or if the plates are made of
different metals [26]. In our case only even modes can be
excited. The dispersion equation for these modes is written as
follows:

Q-8 —4/1-¢? 1—6—’252

9
Pr .4 | 1—(ci/cr)?E? wd [c
= Plga [ TRTATET (L L G )
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Here p,, is the density of the elastic plates. Each root &, of
the dispersion equation gives the normalized phase velocity
&, = w/c,By of the coupled quasisurface waves. Since the
coupling between these waves occurs through the fluid,
the right-hand side (RHS) of Eq. (6) is proportional to the
ratio ps/p,. When pr/p,, = 0 the vibrations of the plates
are uncoupled and Eq. (6) is reduced to the well-known
cubic equation with respect to £2. Its unique solution & = &g
defines the velocity of dispersionless surface Rayleigh wave
at the plane interface between vacuum and elastic solid
[17].

The dispersion equation has finite number of real roots
and infinite number of complex roots with Re&, > 0. Due
to the factor /1 — &2 all real roots lie within the interval
0 < & < 1. The real roots are obtained from Eq. (6) with
“4” sign in the right-hand side. Each complex root gives
rise to an inhomogeneous plane wave in the expansions (3).
These terms oscillate and decay with the coordinate z. For
complex roots the decrements v, and 7, acquire imaginary
parts, which must be negative in order for the corresponding
modes to run away from the channel. This scattering condition
is satisfied for the roots with Imé&, < 0, which are obtained
from Eq. (6) with “—” sign in the right-hand side. For
each frequency w all the real roots must be included in the
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expansions (3). The number of complex roots included in
numerical calculations depends on desired accuracy. The roots
are arranged in ascending order of the imaginary part of the
longitudinal wave vector 8, = w/(c;&,)(|[ImB,—1| < [ImpB,|),
since those with smaller |[ImfB| give larger contributions.
For infinitely long channel the complex solutions should be
ignored as they decay exponentially with length, but they play
an essential role in sound transmission through a finite-length
channel.

Solutions of the transcendental equation (6) are obtained
numerically. For channel of width d Eq. (6) gives implicit rela-
tion between the dimensionless phase velocity & and frequency
w. Substituting w = (¢;/d)éq, where g = Bd is dimensionless
wave vector, into the argument of cotangent in Eq. (6), we
obtain an equation which relates the dimensionless phase
velocity £ and wave vector g. This equation is independent
of the channel width d and it leads to the spectrum shown
in Fig. 2. The spectrum consists of two unequal parts. One
is so-called fast mode propagating faster than sound wave in
the fluid, & > c¢/c;. It has an infinite number of branches
(shown in red) which originate from the symmetric waveguide
modes

2 2
w}’l:cf (%) +ﬁ27 n=071327-~' (7)

of a channel with ideally rigid walls, p,,,c; — co. More
detailed analysis of the spectrum in the limit ps/p0, — 0
is given in Appendix A. All the branches of the fast mode
lie between two horizontal lines, ¢y/c; < & < 1. Unlike the
waveguide spectrum (7) where each phase velocity w,/8
diverges at 8 = 0, except the mode with n = 0, in a channel
with elastic boundaries all fast modes start with finite phase
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FIG. 2. (Color online) Dimensionless phase velocity & = Q/q
vs wave vector ¢ = fd for infinite brass channel filled by water.
Fast mode is presented by infinite number of waveguide branches
above the speed of sound in water, c¢y/c; <& < 1 (red curves).
Phase velocity of the slow mode grows very fast (blue line near
the vertical axis) and saturates at the level £ = ¢ /¢, for very small
q = fd =~ 0.2. Inset is the blowup of this narrow region where
the phase velocity behaves as & ~ /qd. Dashed line is asymptotic
dependence obtained from Eq. (9).
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velocity & = 1 at the wave vector
2

\/(Ct/cf)2 -1

[1_ 2
X [nn + arctan (% %) ], (8)

n=20,12,....

Qn = ,Bnd =

Near the point where each branch crosses the level of the
phase velocity of the Rayleigh wave, & = &g, the slope of the
dispersion curve noticeably decreases since for the parameters
used in the plot of Fig. 2 the ratio ps/p, = 0.12 is quite
small.

Another part of the spectrum in Fig. 2 is represented by
a blue line. It is displaced below the level & = cr/c, ie.,
this mode propagates slower than sound in the fluid. The
right-hand side of the dispersion equation (6) remains real,

while the square root _/ (%)2‘52 — 1 is pure imaginary. The

phase velocity of this mode grows extremely fast, starting
from zero and approaching ¢, for g > 5. The growth occurs
in the subwavelength region, where the wavelength A =
2 /B = 2md/q is greater than the channel width, A > 2wd/5.
This narrow subwavelength region is zoomed in the inset
to Fig. 2. Within this region the frequency 2 and wave
vector g are small parameters. Expansion of Eq. (6) leads
to the following nonlinear dispersion in the low-frequency

limit:
Pm < 3/2
Pr <

As shown in Fig. 2, this asymptotics is valid in the region
of very long wavelengths, when A > 100xd. It is this part
of the spectrum which provides penetration of sound through
any narrow slit. Unlike transmission through a channel with
ideally rigid walls where the dispersion is linear [see Eq. (7)
for n = 0], in a real channel the vibrations of the walls result
in nonlinear dispersion (9) with vanishing phase and group
velocities in the low-frequency limit. Analysis of transmission
through a subwavelength acoustic channel will be published
elsewhere. It is noteworthy to mention that transmission
of electromagnetic waves through a deeply subwavelength
metallic slit also exhibits interesting features, which do not
exist for perfectly conducting screens [27,28].

IV. SOLUTION OF THE SCATTERING PROBLEM

The eigenvalue problem which leads to the dispersion
equation (6) also gives the relations between the coefficients
I#, s*, and bE:

k2 k,d
li _ _l (9 (7}2 +‘32) sin _ev,,d/2b:t’
n vna)3 n n > n 10)
2
st = _ Habucy sin @e””dﬂbf.
3 2

These relations are obtained from the linear set (A3). Using
Eq. (10) the coefficients /= and s, which define the fields

in the solid plates, can be eliminated and the unknowns left
are t(k), r(k), and b;—L. These four unknowns are calculated
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from four boundary conditions for velocity and pressure at
two vertical boundaries, x = 0 and x = h:

(po/iwps) + R(x =0,2) = B(x =0,2), |z| <d/2, an
po—iwp R(x = 0,2) = 0,(x = 0,2), |z > d/2,
OR(x,z2) 0B(x,z2)
po + |x:0 = |x=0» |Z| < d/2,
prcyr ox dx
(12)
Po BR(x,z) .
lr=0 = —iwu,(x =0,2), |z| >d/2,
prcr 0x
T(x=h,z)=B(x="h,2), l|z| <d/2, (13)
—lCl),OfT(.x = h,Z) = Gxx(x = h,Z), |Z| > d/za
0T (x,z) 0B(x,2)
x=h — |.)C=/’L7 |Z| < d/za
0x 0x
(14)
0T (x,z) .
P lx=p = —lwuy(x = h,z), |z| >d/2.

Although there are formally eight equations and only four
unknowns, the system is not overdetermined. In fact, each
pair of equations defines one of the physical parameters—
stress/pressure or velocity—at the semiaxis z > 0, which is
divided into two intervals occupied by fluid, 0 < z < d/2,
and metal, d/2 < z < co. Thus the number of independent
equations is four.

Substitution of the explicit expressions (1), (2), and (3) for
the potentials R(x,z), T(x,z), and B(x,z) into Eqgs. (11)—-(14)
leads to a set of linear equations for two unknown continuous
functions, #(k) and r(k), and two discrete unknowns, bf;
see Eqs. (B1)—(B4) in Appendix B. Two functions, r(k) and
t(k), can be eliminated analytically and for the remaining
two unknowns, bf, a set of linear equations is obtained
(B11)—-(B12), which is solved numerically. Derivation of the
set of equations for b given in Appendix B is complicated by
nonorthogonality of the eigenfunctions used in the expansions
(3). It is well known that an eigenvalue problem for elastic
waves in a finite volume leads to a set of nonorthogonal
eigenfunctions. In particular, normal vibrations of elastic plate
(Lamb waves) are not orthogonal over the width of the plate
[29]. While several “orthogonality relations” for Lamb waves
based on the reciprocity relations have been proposed [19,30],
they (or their modification for solid-fluid structure [31]) cannot
help in calculation of b¥. In Appendix B we use a basis
of trigonometric functions for derivation of the linear set of
equations for b. Once the coefficients b are known, then the
Fourier components r(k) and #(k) can be calculated that give
the solution of the scattering problem in the form of integrals

D, 2).

V. TRANSMISSION, REFLECTION, AND
REDIRECTION OF SOUND

The proposed method of calculation of transmitted and
reflected acoustic fields excited by a plane wave is practically
exact. The only physical approximations we used—the linear
Hooke’s Law and inviscid fluid—do not really affect the
accuracy of the obtained results. Indeed, the width of the
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viscous boundary layer /2v/w ~ 10~* cm in water (v =
0.01 cm?/s) is negligible as compared with the apertures used
in our experiments. Therefore, the calculated spectra of direct
transmission

1
Apovoy

Ti(w) = / Iy(x =1,2)dydz
A

1 /Rd
- Ij(x = 1,2),/ R2 — z2dz (15)
7R3 povos J-r, ” d

are in excellent agreement with the experimental spectra, as
shown in Fig. 1. Here A = m R’ is the area of the transducer
antenna, /[ = 8 cm is the coordinate of the receiver, povo,
is the flux in the incident wave, and I} = p(x,z2)vi(x,z) =
iwpsT (x,2)[0T*(x,z)/0x] is parallel to the channel compo-
nent of the transmitted flux of sound energy. Note that no fitting
parameters were used in the plots. The agreement is observed
within a wide range of frequencies, for different metal plates
(aluminum and brass), and for very different geometry of the
slit: short and wide channel, 7 < d, Figs. 1(a) and 1(b), and
long and narrow channel, d < h, Figs. 1(c) and 1(d).

The accuracy of the theoretical spectra depends on the
number of complex roots of Eq. (6) included in the expansions
(3). To plot the transmission spectra in Fig. 1 we numerically
calculated each root as a function of frequency, i.e., each root
generates a trajectory &, (w) in the complex & plane (see Fig. 8).
The convergence of the series (3) is slower for wider channels;
therefore, in calculations of the results shown in Figs. 1(a) and
1(b) the number of complex roots was 11, while the plots in
Figs. 1(c) and 1(d) were obtained with only 7 complex roots.
For all the graphs addition of one more complex root leads
to less than 1% variation. As in any waveguide the number
of real roots (propagating modes) increases with frequency,
i.e., each new real root emerges at cutoff frequency, except
the slow mode which starts from zero frequency. For the
fast mode the cutoff frequencies Q,c;/d are obtained from
Eq. (8). For the frequencies near 1.4 MHz Eq. (6) has 8, 5,
2, and 2 real roots for the channels whose spectra are shown
in Figs. 1(a)-1(d). One of these running modes is always the
slow mode. In the case of brass channel the cutoff frequency
for the second (n = 1) waveguide mode Qc;/d = 2.35 MHz
for the channel with width d = 1 mm. Therefore, it does
not contribute to sound transmission in our experiments. Its
contribution becomes essential for width d > 2 mm.

In order to analyze the physical nature of the deep minima
in Fig. 1, we calculated the reflection spectrum for the slit with
h =3 mm and d = 0.5 mm and plotted it in Fig. 3 together
with the total transmission T through the whole boundary
x = h.

The positions of the minima in the reflection in Fig. 3(a)
coincides with the positions of the minima in the transmission
in Fig. 1(c). Near these minima the sum of forward and
backward scattered flux, 7 + R, is considerably less than 1;
that is a clear indication that this sum does not represent the
total flux scattered by the slit. Since the slit shown in Fig. 1 is
a 2D scattering system, the lack of scattered flux, 1 — 7} — R,
is the energy scattered along axis z. In Fig. 3(b) we plot the
spectrum transmitted from the fluid to the metal through the
horizontal boundary z = d/2. It exhibits maxima exactly at the
frequencies where 7| + R exhibits minima, thus representing
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FIG. 3. (Color online) Calculated transmission and reflection
spectra for two square brass plates with sides of length L =
12 cm separated by a slit with # =3 mm and d =0.5 mm.
The measured transmission spectrum is shown in Fig. 1(c). (a)
Transmission through the whole vertical boundary x = h (solid-
red line), T = Cf()L+d/2 T(h,z)%lk:;l dz. Log scale for T is

displaced on the right. Reflection from thLe )&;?ole vertical boundary
+

x = 0 (long dashed-green line), R = C fO R(O,Z)BRZ#IX:O dz,
and the sum 7 + R (short dashed-blue line). (b) Transmission
T, =C foh B(x,d/ 2)%(2”) |Z:% dx through the horizontal boundary
z = d /2. Inset demonstrates conservation of energy: the deviation of
thesum 7} + T, + R from 1 doesnotexceed 2%. C = ia)p]%c./-/(péL)

is the normalization constant.

the flux, 7, which is lost if the slit is approximated as a
1D scatterer. The total scattered flux 7 + 7 + R, which
fluctuates due to numerical errors, still remains very close
to 1, as shown in the inset to Fig. 3(b).

Vibrations of the metal-fluid boundary z = £d /2 break 1D
symmetry of the system, i.e., these boundaries are not flat
any more. This broken symmetry of the channel boundaries
gives rise to the elastic wave propagating in the metal plates
perpendicular to the incident wave. The flux of energy T,
associated with this redirected wave does not appear in the
model of rigid screen which was accepted in many previous
studies. Therefore, the property of a slit to redirect the
incoming flux into metal is manifested only for elastic screens.
The amount of redirected acoustic energy may reach 12% at
the frequencies near 0.7 MHz, as shown in Fig. 3. This is a
relatively strong effect, taking into account that a brass plate
in water transmits only about 8% (—11 Db) in the minimum
of the Fabry-Pérot resonance.

Enhanced radiation of sound into metal occurs due to large
amplitude of vertical vibrations u, of the plate boundaries
at z = £d/2. Suppressed direct transmission and reflection
originate from low pressure p(x,z) at the channel ends and
also from small amplitude of horizontal vibrations u, of the
plate boundaries x = 0 and x = h. When these two effects
occur at close frequencies they mutually enhance each other,
leading to extraordinarily low transmission. The sharper a
dip in Fig. 1, the more energy is redirected into metal. The
sharpness of a dip depends on how close to zero the pressure
p(x,z) and the displacement u, become at x = 0,h. Being
represented by a sum of plane waves taken over the roots of
the dispersion equation, these quantities become small when
those plane waves that give the principal contribution interfere
almost destructively at the length of the channel %. It may
occur that another pair of eigenmodes with smaller amplitudes
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FIG. 4. (Color online) Frequency dependence of the pressure,
horizontal, and vertical displacement of the plates at the left (a) and
right (b) ends of the same channel as in Fig. 3. Straight vertical lines
mark the positions of the deep minima in the transmission shown in
Fig. 1(c).

also interfere destructively, thus leading to even sharper dip.
It is, however, nearly impossible to predict how the amount of
redirected energy depends on the geometry of the channel and
frequency, since it depends on the values of the roots of the
transcendental equation (6).

In Fig. 4 we plot the pressure and the amplitudes of
horizontal and vertical vibrations at the channel ends (x = 0,4)
vs frequency. It is clearly seen that near the resonant fre-
quencies where minima in the transmission are experimentally
observed (marked by vertical lines) the amplitude of horizontal
vibrations of both faces of the plates is close to zero. The
same is true for the pressure at the ends of the channel. Since
the vibrations of the plates and the fluid are coupled through
the boundary conditions, we conclude that a quasistanding
wave is formed in the whole system due to interference
between two eigenmodes propagating in opposite directions.
At the same resonant frequencies the amplitude of the vertical
vibrations reaches its local maxima that explains strong
radiation into metal. While the graphs in Fig. 4 exhibit many
peaks, strong redirection of sound occurs when minimum in
pressure and displacement u, coincides with maximum in
displacement u.. The depth and width of the minimum in 7
depends on how close to each other these three extrema occur.
For example, the first two minima at 0.32 and 0.71 MHz in
Figs. 1(c) and 3(a) are well pronounced since the frequencies
of all three extrema practically coincide. Unlike this, the third
minimum at 1 MHz is quite broad due to visible shifts in the
positions of the extrema. There are two Fabry-Pérot resonances
at 0.72 and 1.22 MHz in the transmission spectrum in Fig. 1(c).
Here the situation is quite simple and standard—maximum in
transmission coincides with minimum in reflection. This also
can be seen from Fig. 4(b) where the amplitude of longitudinal
vibrations at the right face (x = &) of the plate exceeds that on
the left face (x = 0), especially for the resonance at 1.22 MHz
which is not affected by close proximity of a deep minimum
in transmission.

In Fig. 1(c) two minima at 0.32 and 0.71 MHz in
transmission are associated with appearance of the real roots
of Eq. (6), & = 0.99 and & = 0.715, respectively. The first
root corresponds to excitation of the fast mode, since its phase
velocity ¢;&; exceeds the speed of sound in the fluid ¢ . For
the second root, &, the phase velocity of the corresponding
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eigenmode is less than c; therefore, this minimum is due
to excitation of the slow mode. The minima associated with
excitation of the slow mode are marked by arrows in the
transmission spectra shown in Fig. 1. As a rule, these minima
are sharp and asymmetric, except the minimum at 0.4 MHz
in Fig. 1(d), the structure of which is strongly affected by a
standard Fabry-Pérot resonance.

VI. NUMERICAL MODELING BY FINITE
ELEMENT METHOD

Theoretical and experimental results are also supported by
finite element simulations, which were performed through the
commercially available software Comsol Multiphysics. The
employed model is represented in Fig. 5. It consists of a two-
dimensional domain filled with a fluid having the acoustic
properties of water. Two elastic plates with thickness 4 and
separated by a distance d are displaced forming a fluid channel.
The plates are of the same length of 12 cm as the experimental
samples. At the ends both plates terminate with two additional
absorbing domains [or elastic perfectly matched layers (PML)]
in order to suppress reflection. Normally incident Gaussian
beam is used as impinging wave to provide a more realistic
excitation. The exterior boundaries of the model are configured
with nonreflecting conditions, ensuring that outgoing waves
leave the domain.

A frequency sweep is performed numerically for different
thicknesses i and apertures d of the slit. This process provides

Impinging wave

3 -

FIG. 5. (Color online) Structure of the fluid channel used for
numerical simulations. A Gaussian beam coming from the left
impinges on the slit and the pressure field is obtained behind the
plates. The illustrated pattern corresponds to two brass plates with
h =5mm, d = 1 mm at frequency 0.32 MHz.
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FIG. 6. (Color online) Transmitted pressure at the receiving antenna (in dB) for a slit between two brass plates with 2 = 3 mm (top) and
h =5 mm (bottom) at several apertures and frequencies. Left (right) panels correspond to experimental (simulated) data.

a large amount of data which can be summarized through
maps showing the transmitted pressure as a function of
frequency and aperture. In addition, the same sweep was also
experimentally carried out using an automated setup. In Fig. 6
we compare experimental and numerical data for brass plates
with thicknesses # = 3mmand 4 = 5 mm. The numerical data
are obtained by integrating the pressure field over the length of
the receiving transducer (see Fig. 5). Both maps exhibit regions
of parameters with anomalously low transmission. There is
excellent agreement between the positions of the deep minima
obtained experimentally, theoretically, and numerically. The
deepest minima at 0.32 MHz for 2 = 3 mm and at 0.2 and
0.64 MHz for h = 5 mm appear as bright blue spots in the
maps in Fig. 6. Unlike this, less deeper minima at 0.71 MHz
(h =3 mm) and at 0.4 MHz (h = 5 mm) appear as narrow
yellow lines on red background. This occurs because these
local minima are close to the maxima of the Fabry-Pérot
resonances. These less-deeper minima correspond, as it is
explained in the main text, to excitation of the slow mode.
The minimum at 0.4 MHz (h = 5 mm) has a doublet structure
[see Fig. 1(d)], which is well reproduced in the experimental
map in Fig. 6. It, however, is not resolved in our numerical
simulations. It is worth mentioning that no viscosity effects
were considered in the fluid, thus demonstrating that the
reported effects are not due to viscous phenomena inside the
channel.

The elastic displacements were also obtained from the
simulations, allowing the observation of the wave phenomena
occurring inside the plates. A motion picture showing the
pressure map in the fluid superimposed with the lines of
displacement (either in water or metal) is presented in the
Supplemental Material Movie S1 [32]. Itis calculated for brass
plates with 7 = 3 mm and d = 0.5 mm [the same parameters
as in Fig. 1(c)] at 0.704 MHz. It is shown how the incoming
wave generates elastic vibrations inside the slit and the plates
and how these vibrations propagate. It is easy to see that the
vibrations of the plate which originally are localized near the
channel boundaries become leaky modes, carrying the acoustic
energy away from the channel in a form of vortices. The
vortex structure of the displacement field in metal is due to
nonpotential contribution V x § to the displacement field u.
This movie visualizes the effect of redirection of sound by a
straight fluid channel with elastic boundaries.

VII. SUMMARY

In summary, we reported a comprehensive study of sound
transmission through a finite-length fluid channel with elastic
boundaries. It is experimentally observed and explained
how a straight fluid slit between two metallic screens may
serve as a redirecting acoustic antenna. This previously
unknown property is due to excitation and interference of the
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eigenmodes which describe the synchronized vibrations of the
fluid and metal plates. The proposed method of solution of the
scattering problem for a slit is practically exact and leads to
excellent agreement with the experiment. The proposed ana-
lytical approach may be easily extended to more complicated
geometries, in particular, to a set of periodically arranged slits.
The effect of redirection of sound may find applications in
design of specific devices for manipulation of acoustic energy
and vibration of plates embedded into fluids. The resonant
modes which are responsible for the redirection of sound are
of particular interest for microfluidics since pressure produced
by the vibrating boundaries is comparable with the capillarity
force or the force generated by a micropump.
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APPENDIX A: DERIVATION OF THE
DISPERSION RELATION

Consider a monochromatic sound wave propagating along
an infinite straight fluid channel clad between two elastic
plates. A solution of the wave equation in the fluid and in the
plates can be written as a superposition of the corresponding
eigenmodes Eq. (3). Linear relations between the coefficients
b,, l,, and s, are obtained from the boundary conditions.
Since the channel is infinite we can consider only the
waves propagating in positive direction of axis x and omit
superindices =.

At the fluid-metal interface z = d/2 the stress and the
normal component of the velocity are continuous

O =—p, 0x:=0, U;=v,. (A1)
Here o1 (x,z) is the stress tensor in the elastic plates. Using
Hooke’s Law oy, = Auj; + puy i, the nonzero components
of the stress tensor can be expressed through the potentials

2L 928
—MGL 2 (— - ) ,

GX X

0x2  0x0z
2L 9
= ML +2 A2
Ozz TL+2u < 372 + ax aZ) (A2)
) 32L N 328 32§
Oy = — - — ).
TR Covaz To2 T 022

Here A and p are the Lamé coefficients, u = ,omc‘,2 and A +
2u = ,omclz. Substituting the potentials (3) to Eqgs. (A2) and
(4), the components of o;; and u are expressed through
the unknown constants /, and s,. The velocity v = VB and
the pressure p = iwpB are expressed through b,. Thus all
the dynamical variables are given in terms of three unknowns,
l,s,and b.

The boundary conditions Eq. (A1) written in terms of /, s,
and b (here subindex n can be omitted) lead to the following
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set of linear equations:
(2;1,1)2 — Xklz) e V2]
—2iunp e s +iwpy cos(kd/2)b = 0,
2ivB e V2 4 /2 (ﬂ2 + nz) s =0,
k sin(kd /2)b 4 iwv e %1 + wp e %5 = 0.

(A3)

This set has nontrivial solution if the corresponding determi-
nant vanishes, viz,

,ofa) v kd

(n* + A —dvnp’ = cot - (A4)

om c} k
Here k, v, and 7 are expressed through @ and 8 using Eq. (5).
Dependence on the channel width d can be eliminated if
dimensionless frequency 2 = wd /¢, and wave vector g = d
are introduced:

Q2q° — @ — 44°V > — (e /oL P — 2 (AS)

_ Prg |4 (/e L
T Ve 2y 2t T
m t/Cf q f

Dispersion relation (6) for the phase velocity & is obtained
from Eq. (AS) by substitution ¢ = €2/£. Real and complex
solutions of Eq. (AS5) define the allowed values of the wave
vector g, = ¢,(£2) for each frequency 2.

The structure of the spectrum given by Eq. (A4) is shown
in Fig. 7. The dimensionless frequency is plotted versus kd /2.
Since k is not the wave vector in the direction of propagation,
the slope of the curves is not related to the phase velocity. For
almost all values of kd /2 the right-hand side of Eq. (A4) can

30 imf/4 0 3 kd/2
25
20
% 15
3
T
10
3 10
1) <
0 T 27 3w kd/2
0
in/4 0 7 27 37 kd?2

FIG. 7. Dispersion relation between dimensionless frequency
Q = c,w/d and transverse wave vector kd /2 obtained from Eq. (A4)
for infinite brass channel filled by water, ps/p, = 0.12. Linear
dispersion for the case p;/pn =0 (Rayleigh wave) is shown by
thin line. Inset shows the dispersion of the fast mode for very
weak coupling, ps/p, = 0.01. In this case the waveguide modes
are reduced to almost vertical lines at kd /2 = sn. Dispersion of the
slow mode obtained from Eq. (A4) for pure imaginary values of k is
plotted to the left of the origin.
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FIG. 8. (Color online) Left panel: frequency dependence of the first two real roots of the dispersion equation (A4) for water channel
between two brass plates. Right panel: trajectory of the first complex root for the same system.

be neglected since p¢/p,, < 1. Inthis approximation Eq. (A4)
gives linear dispersion (Rayleigh wave) which serves as
asymptote for the dispersion curves of the fast mode. However,
near the points where kd/2 = n (n = 1,2, ...) the Rayleigh
wave becomes a waveguide mode of a channel with rigid
walls. Here the dispersion curves become practically vertical
lines as a result of quantization condition v, = %—f l=+a2 = 0.
For very small ratio ps/p,, = 0.01 the spectrum exhibits this
quantization condition with high accuracy, as one can see
in the inset to Fig. 7. The slow mode corresponds to pure
imaginary values of k in Eq. (A4). In Fig. 7 these values
are plotted along the negative direction of the horizontal
axis. At kd/2 > 1 the dispersion of the slow mode becomes
linear since coth(kd/2) — 1 and Eq. (A4) is reduced to
a polynomial equation over w/k. The tendency to linear
dispersion is manifested as saturation of the phase velocity in
Fig. 2.

Expansions (3) of the potentials over eigenmodes can be
used if all real roots and sufficient number of complex roots
of the dispersion equation (6) are known. In the general
case each root depends on frequency, &, = &,(w), that shows
frequency dispersion of the corresponding mode. Examples
of frequency dispersion for the lowest two real solutions are
given in the left panel in Fig. 8. The mode which starts at
w = (Qis the slow mode (blue line). It exhibits strong dispersion
in the subwavelength regime and at w > 0.5 MHz the phase
velocity saturates at the level § = cy/c;, i.e., the slow mode
becomes dispersionless sound wave, propagating with speed

J

cy. Red line shows dispersion of the first waveguide mode.
This mode starts at cutoff frequency (c,/d)2;. Frequency
dispersion of a complex root can be visualized as a trajectory
in complex plane. One of such trajectories is shown in the right
panel in Fig. 8. This complex root has very small imaginary
part at low frequencies. Therefore, it gives a contribution to
subwavelength transmission which is comparative with the
contribution of the pure real root which gives rise to the slow
mode.

It is important to stress that the Fabry-Pérot maxima
in transmission are due to the roots which are necessarily
complex. Indeed, these maxima appear when longitudinal
waves interfere constructively at the length 4. Since ¢; >
¢, the roots of the dispersion equation which correspond
to the phase velocities close to ¢; cannot lie within the
interval 0 < & < 1 (where all the real roots lie), i.e., they
are all complex. This complexity reflects an obvious fact
that in a solid plate with a slit pure longitudinal waves
cannot propagate. The channel boundary gives rise to shear
displacements which change the amplitude and phase of the
Fabry-Pérot resonance. Nevertheless, the imaginary part of the
quasilongitudinal solution may be quite small leading only to
slight modification of the Fabry-Pérot resonance. For example,
the complex root shown in Fig. 8 has the real part close to 2
(which is approximately the ratio ¢; /¢, in brass) and negligible
imaginary part in the limits of either zero frequency or zero
channel width. This root corresponds to quasilongitudinal
sound wave propagating in metal.

APPENDIX B: CALCULATION OF THE TRANSMISSION AND REFLECTION COEFFICIENTS

Substitution of the potential expansions (3) into the boundary conditions Egs. (11)—-(14) leads to the following set of linear

equations:

foo 3% (b 4 b)) cosk,z,
Po +/ r()e*dk = : !

iw,of

o0

lz| <d/2,
_ _ —nlz (
oy Lm0 (MG +287) €7 = 200 5702 By + 5,07 2] > 2,

B1)

Po f - (k)pk)e™ dk 2mi 0 = b0y coskiz, 1zl < d/2, (B2)
— r e =
icrpr  J-oo —iw Y (L= L) Bee™ 1 — Y (sF = s mae™ L (2] > d)2,
> ((bretit 4 bem Py coskyz, |z| < d)2,
+00 ) )
/ 1™ dk = | o Lnea (e + 17 e P (A7 +2p7) e (B3)
h — ke I Bu(s P s e Pl 2] > d /2,

094303-9



ANDREY BOZHKO et al. PHYSICAL REVIEW B 91, 094303 (2015)

(B4)

o0

+oo , Yool (bt — b e BB, cosk,z, |z| <d/2,
/ (B e ™ dk = i e
- —iw ) ol (LrePh — [ -em Py ekl — ) 3% (sePrh — s e Prlyp, el Z] > d /2.

The equations (B1)—(B4) form a linear set which, being inhomogeneous, has a unique solution. The inhomogeneous term in the
LHS of Egs. (B1) and (B2) is due to the incoming plane wave with the amplitude po/(iwpy). Using the linear relations (10), the
unknowns [} + and s can be expressed through bﬂt Then, the number of unknowns in Egs. (B1)-(B4) is reduced to four: b, b,
r(k), and t(k)

It is possible to reduce the number of unknowns analytically. This is easy to do since in the LHS of Eqs. (B1)—(B4) the
unknowns r(k) and (k) enter through their Fourier transformations. Applying the inverse Fourier transformation to Egs. (B2)
and (B4) (where [ and s have already been expressed through b¥) we obtain the following formulas:

Z(bJr +b) |:<sin[(k,l + k)d /2] n sin[(k, — k)d/2]>

k =
r() kn+k kn_k

2knc? (nk? +2 + B2

- f’ OOk 4 20B0) 04 Pi) G2 1, costikd /2) — kesinkd /)
V@t vi+k
8uc; kutlnB,
oo ny + k2

sin(k,d /2) [n, cos(kd/2) — k sin(kd/2)]] , (BS)

LS ih e ip [ ((sinlC + K)d /2] sinl(k, — k)d /2]
t(k)_ZZ:(bne +be )[( " + P )

 2kee] (07 +2uB;) (0 + Br)
vwtp v2 + k2
8uc knnuBy
Wpr AR
Equations (BS5) and (B6) give r(k) and #(k) in terms of bf. Substituting (k) and #(k) into the remaining two equations (B1)

and (B3) we come to two equalities for bf where both their sides are functions of the variable z:

2p0 _ + / o0 ﬁn |:Sin[(kn +k)d/2] Sln[(kn_k)d/z]
iwp; Z(b PO Bl kak T ke k

2k, c?(n? + B2 knd kd kd 4n,k,c? k,d kd kd ,
— M sin — (vn cos — — k sin —) + _nfnCy sin — (n,, cos — — k sin —> e dk
v (v +K2) 2 2 2) D +R) T 2 2 2

sin(k,d /2) [v, cos(kd /2) — k sin(kd /2)]

sin(k,d/2) [n, cos(kd/2) — k sin(kd/2)]j| . (B6)

> (b +by)coskyz, |z <d/2,
= XS
_ Zoo ] (b+ 4 b )sm knd I:VI,Hrﬁ ()Lkz + ZMIB ) v (zl-%) _ 4’unn13r%e—n,,(|z\—%):| .zl > d)2,

I‘llw4

B7)

i i(lfre’ﬂ”” _ beiﬂ"h)/Jroo B, | sin[(k, + k)d /2] n sin[(k,, — k)d /2]
e " —w BK) kn + k kn — k
2knct(ny + B7) . knd kd kd 40,k 2 knd kd kd\ |
- M sin — (v,, cos — — k sin —) + B T <nn cos — — k sin —) e®dk
vaw?(v2 + k?) 2 2 2 (2 +k2) " 2 2 2
> 1(b+e"ﬂnh +bye Py cosk,z, |z < d/2,
_ Z‘X’ < (b+ iBuh —{—b‘e"ﬂ"h)sm kud ["n+/3n ()LkZ + 212 ) —u(lzl-9) _ 4“’711:336_”"('2‘_%)] .zl > d)2.

nla)4

(B8)

The right-hand sides of Eqs. (B7) and (B8) are presented in the form of expansions over eigenfunctions of vibrating fluid
channel. These eigenfunctions are defined on the semiaxis z > 0. They are oscillating, cos(k, z), within the channel, 0 < z < d/2,
and evanescent, exp(—n,2), exp(—v,z), inside the metal plates, z > d /2. These eigenfunctions, as well as the displacements
and velocities defined by them, are not orthogonal. The lack of orthogonality is due to the boundary conditions at z = £d/2,
explicitly containing the eigenvector §,, as it was mentioned in Ref. [30] with respect to nonorthogonality of Lamb modes in a
solid plate.

While the nonorthogonal basis does not allow analytical calculation of the unknowns b=, it really does not impose additional
difficulty in numerical calculation. On the contrary, standard orthogonalization of the basis of channel eigenfunctions will require
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more numerical efforts than direct solution of the set of linear equations by the method shown below. Due to the fact that the
size of the set of equations (B7) and (BS) is cut by the number of calculated roots &,(w), n = 1,2, ...,N, the necessary set of
equations for b can, for example, be obtained by equating the first N Fourier coefficients of the both sides of Egs. (B7) and
(B8). We introduce the finite Fourier transform defined on a segment 0 < z < Ry

N-1
F
f(Z)=70+r;chos<%z>, 0<z<Ry, (B9)
F 2 (" f @) (”m )d (B10)
= — z)cos | —z ) dz,
Ry Jo Ry

where R, is a parameter which gives the width of the region along axis z where the acoustic fields are calculated. If we need to
know the fields within the transducer, then R; must be a bit larger than the radius of the transducer antenna. Applying the Fourier
transform (B10) to the both sides of Eqs. (B7) and (B8) the following linear set of equations for bf is obtained:

2 1 & +oo g [ sin[(k, + k)d/2
2p0 Rdsm,o——Zw:—b;)/ Bu_ [ sinlth, +b)d/2) |
iwpys 2 —~ N 109) k, +k

kd An,k,c? k,d kd kd Ra
— |+ B sin — [ 1, cos — — k sin — / ¢'* cos %dz dk
2 wz(n% + k2) 2 2 2 0 Ry

sin[(k, — k)d/2]  2koc?(n?+B2) . k.d
— Sin
ko — k vuw?(v2 + k?) 2

kd
X (vn cos — — k sin
2

N a7 L
- Z(b:{ + b)) [(/ cos k,z €S %dz) _ njt
n=1 0 R vwtp s

d

4 nkn 2.2 knd Ry
4 e Baci (/ e~7=9) g ”};"Zdz)} , m=01.2,....N—1,
d

wps

2

knd Ra 4
(my + B2) (Ak7 +2uB]) sin —— </ e (f=9) cog %dz)
d

/2 d

1 < - s [T B
. b+ iBuh _ p=iPn
w200 e I

kd . kd 417,1k,,c,2 . k,d
X v,,cosT—ksm— + ————sin —

2

N ' . dj2
= Z(b;e’ﬂ”h + b, ey |:(/ cos k,z cos
n=1 0

R 2.2
" (/ " o) sog ﬂmzdz) L Ak el o knd
a2 R

d

(B11)
/2 d
sinl(k +6)d/2] | sinltky —00d/2]  2kac; (1, + Bp) . Jnd
k, +k k., —k vna)z(v,% + kz) 2
kd kd Ra
N, cos — — k sin —> (/ e'* cos %dz> dk
*(n2 +k?) 2 2 2 0 Ry
Tmz kyc? k,d
d _ n-t 2 2 )\’k2 2 2\ o} n
) -
Ry
- (/ ™M= cos @dzﬂ, m=0,12....N-1.
W pf /2 Ry
(B12)

This 2N x 2N set of linear equations is solved numerically. Once b¥ are known, the reflection and transmission coefficients are

calculated directly from Eqgs. (B5) and (B6).
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