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Abstract: In this paper we study the Hadamard product of inverse-positive matrices. We observe that this class
of matrices is not closed under the Hadamard product, but we show that for a particular sign pattern of the
inverse-positive matrices A and B, the Hadamard product A o B! is again an inverse-positive matrix.
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1 Introduction

In economics as well as other sciences, the inverse-positivity of real square matrices has been an important
topic. A nonsingular real matrix A is said to be inverse-positive if all the elements of its inverse are nonneg-
ative. An inverse-positive matrix being also a Z-matrix is a nonsingular M-matrix, so the class of inverse-
positive matrices contains the nonsingular M-matrices, which have been widely studied and whose appli-
cations, for example, in iterative methods, dynamic systems, economics or mathematical programming are
well known. However, there are inverse-positive matrices that are not M-matrices.

The concept of inverse-positive is preserved by multiplication, left or right positive diagonal multiplica-
tion, positive diagonal similarity and permutation similarity. So we may assume, without loss of generality,
that all diagonal entries are equal to 1 when they are positive.

The Hadamard (or entry-wise) product of two n x n matrices A = (a;;) and B = (b;j) is A o B = (a;jby)).

The class of inverse-positive matrices is not closed under the Hadamard product. It is easy to observe that

matrices
a-( Y 1) anap-| 2 2
-1 2 3 -1

are inverse-positive. However, C = A o B is not an inverse-positive matrix.

Several authors have investigated about the Hadamard product of different types of matrices. For exam-
ple, recently Fallat and Johnson considered in [1] the Hadamard powers of totally positive matrices and Wang
et al. in [6] studied the behaviour of the inverse M-matrices under this product. Fan in [2] noted that if the
sign pattern is properly adjusted the Hadamard product of two M-matrices is again an M-matrix and Johnson
in [3] showed that for any pair A, B of n x n M-matrices, the Hadamard product A o B! is an M-matrix. This
result does not hold in general for inverse-positive matrices. For example, if we take matrices of the previous
example, A o B lisnotan inverse-positive matrix.

In this paper we analyze the Hadamard product and the inverse-positive concept for a particular type of
pattern: the checkerboard pattern.

An n x n real matrix A = (ay) is said to have a checkerboard pattern if a;; = 0 or sign(a;;) = (1),
i,j=1,2,...,n.
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For any n x n matrix A, we denote the submatrix lying in rows a and columns f§, in which a,§ C N =
{1, ..., n}, by Ala|B], and the principal submatrix A[a|a] is denoted by Ala]. Similarly, A(a|B) denotes the
submatrix obtained from A by deleting rows a and columns 8 and A(«|a) is denoted by A(a).

In this papet, we analyze when the Hadamard product, A o B~ or A o A1, is an inverse-positive matrix
for any inverse-positive matrices A, B with checkerboard pattern.

For matrices of size 2 x 2, it is easy to prove the following result.

Proposition 1.1. Let A, B be 2 x 2 inverse-positive matrices with sign(det A) = sign(det B). Then, A o B™! is an
inverse-positive matrix.

Unfortunately, in general this result does not hold for matrices of size nxn, n = 3, so A o B~! is not always an
inverse-positive matrix.

Example 1. The following matrix

-2 1 -1
A= 1 -1 2 |,
-0.5 1 -2

is inverse-positive, but A o A™! is not an inverse-positive matrix.

Example 2. The matrices A and B

2 -2 5 2 -1 1
A=1] -1 1 -2 |, B= -1 1 -2
4 -2 3 1 -1 3

are inverse-positive, but A o B lisnotan inverse-positive matrix.

By embedding the matrices A and B as a principal submatrix and putting 1’s on the main diagonal and zeros
on the remaining positions, we produce inverse-positive matrices, of size nxn, n = 3, with checkerboard pattern,
for which A o B~ (Example 2) or A o A~ (Example 1) are not inverse-positive matrices.

However, for matrices of size 3 x 3 we can establish the following result.

Proposition 1.2. Let A and B be 3 x 3 inverse-positive matrices with checkerboard pattern and detA > 0,
det B > 0. Then, A o B™! is an inverse-positive matrix.

Proof: Consider

ap; —amn ass bi1 -b1 bis
A= —aj az; —dz3 and B = -bx by, -bys
a1 -as;  dss b31 -bs2 b33

where a;; > 0 and b;; > 0. We can assume, without loss of generality, that det A = 1 and det B = 1. We denote

Air -Ay Ay Byy -By1 B3
A'=| -A;, Ay -As |20, B'=| -By, By -Bsy |20
A1z -Axz Az Bi3 -Bx3  Bss

where A;jand By, 1, j = 1, 2, 3, are the determinants of the submatrices A({i}|{j}) and B({i}|{j}), respectively,
and
a;1Bi1  a12Ba1 aisBn
C=AoB™" =| ayBi, a»nBy ax3Bs:
as1Biz  as;By;  as3Bss

We know that a;; = 0, but we can prove that a;; # 0 since in other case we could obtain a contradiction with
det A # 0. With a similar reasoning it is easy to obtain that aj;, bj;, A;;, B;; are greater than zero, fori = 1, 2, 3.
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Now, if we denote by C;; the determinant of the submatrix C {i}{jh), i,j =1, 2, 3, we are going to prove that
C33 > 0. Since b33 = B11B>; — B12B>1, we have

C33 = a11B11a2:B); — a12B21a21B1> = a11a2:b33 + (@11a22 — a12a21)B12B21

ai1a2b33 + A33B13B7, > 0.

An analogous proof allows to assure that C;; > 0,1 =1, 2, 3. So, by applying Gauss elimination we have

1

detC =
ai1Bq,

(C22C33 + C3,C23).

In order to prove det C > O we need to analyze the sign of C3, and C»3. Since —-b,3 = -(-B11 B3> + B12B31), we
have

C32 = a11B11a23B3 — a13B31a21B12 = —a11a23b23 + (a11a23 - a13a,1)B31B1»

= -a11a3by3 — A3;B31B1; < 0.

Analogously, C,3 < 0. Therefore, det C > 0.

Let C! = (d,-]-) be the inverse of C. We are going to prove that d;; > 0, i,j = 1, 2, 3. We know that
d11, dy2, d33 are greater than zero. Taking into account that det C > 0, in order to prove d;, = 0 we only
need that —(0123216133333 - a13B31a32B23) > 0. Since —b12 = By1B33 — B31 B3, we have

ai3B31a32B23 — a12By1a33B33 = ai3asy b1y + (a13a32 — a12a33)B21Bss =

= ai3a32b1y + A»1B71B33 2 0.

Following a similar reasoning we can prove that d; = 0,1,j =1, 2, 3.
In the next section we are going to analyze the Hadamard product of upper (lower) triangular inverse-
positive matrices, with checkerboard pattern.

2 Triangular inverse-positive matrices with checkerboard pattern

In this section we work with upper triangular inverse-positive matrices, with checkerboard pattern. So, we
can assume, without loss of generality, that all diagonal entries are equal to 1.

The following condition is inspired in the PP-condition introduced by Johnson and Smith in [4] for non-
negative matrices.

Definition 2.1. Let A = (a;;) be an n x n upper triangular matrix. A satisfies the P-condition if
aij < a,-kakj, i<k« ]
We need the following technical lemma in order to get the main result of the paper.

Lemma 2.1. Let A be an n x n nonsingular upper triangular matrix, with checkerboard pattern, that satisfies
the P-condition. Thendet A[{i - 1,i,...,n-1}|{i,i+1,...,n}]=0o0r

sign(detA[{i—1,i,...,n-1}|{i,i+1,...,n}]) = (D)™, i=2,3,...,n.

Proof. The proof is by induction on n. For n = 2 the result is trivially satisfied. For n = 3, the matrix A with
ai_1,; < 0and a;_1 ;1 2 0,Vi has the form

1 app as
A= 0 1 ajs
0O O 1



196 —— MariaT. Gass6, Juan R. Torregrosa, and Manuel F. Abad DE GRUYTER OPEN

Fori=3,detA[{2}|{3}] = a3 < 0,andfori = 2,det A[{1, 2}|{2, 3}] = a12a23-a13 = O, from the P-condition.

Suppose that the result holds for (n — 1) x (n — 1) matrices and we are going to prove it for matrices of
size n x n. We assume that n is odd (for n even we proceed in analogous way). For i = n, det A[{n - 1}|{n}] =
apn-1n<0.Fori=n-1,n-2,...,3 weapply the hypothesis of induction for the submatrix A[{2, 3, ..., n}].
Finally, fori = 2,

detA[{1,2,...,n-1}|{2,3,...,n}] =
=ay,detA[{2,3,...,n-1}|{3,4,...,n}]
—-detA[{1,3,...,n-1}|{3,4,...,n}.

By applying the P-condition we can prove that
detA[{1,3,...,n-1}|{3,4,...,n}] <0,

and by the hypothesis of induction applied to submatrix A[{2, 3,...,n}] we have detA[{2,3,...,n -
1}{3,4,...,n}] < 0, (recall that n is an odd number). So, detA[{1,2,...,n - 1}|{2,3,...,n}] = Oor
sign(detA[{1,2,...,n-1}|{2,3,...,n}]) = (-1)"*L. O

Theorem 2.1. Let A be an n x n nonsingular upper triangular matrix with checkerboard pattern, that satisfies
the P-condition. Then, A is an inverse-positive matrix.

Proof. The proof is by induction on n. For n = 2 the result holds since A is an M-matrix. Suppose that the
results holds for (n — 1) x (n — 1) matrices and we are going to prove it for n x n matrices. For n > 3 a matrix of

size n x n can be partitioned as
A, = Ap-1 Vp1 ,
0 1

where A, is the upper triangular submatrix A[{1, 2, ..., n-1}] and v,_; is the submatrix A[{1, 2,...,n-

1}|{n}]. We can observe that
Acl = Aty ARl e
n O 1 ]

where
_A;11Vn—1 =
= [~D™'detA[{1, ..., n - 1}[{2,...,n}],..., (D)2 L detAl{n- 1}{n}]]" .
The hypothesis of induction and Lemma 2.1 allow us to assure that A,* > 0. O

In general, the converse of this result does not hold, but we can establish the following result.

Theorem 2.2. Let A be a 3 x 3 nonsingular upper triangular matrix with checkerboard pattern. Then A satisfies
the P-condition if and only if A is an inverse-positive matrix.

In order to obtain a necessary condition in the general case, we introduce the following notation (see [6]).
Given an n x n matrix A and the positive integers i and k, we denote

Qi i,k = GO det A[{d, i+ 1,.. ., i+ (k= DY{i+1,i+2,...,i+k}]. 1)

.....

We can establish the following preliminary result.

Lemma 2.2. Let A be an n x n nonsingular upper triangular matrix with checkerboard pattern. If A™* = (bij)
then,
bij = -aj j,... j-
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Proof. By definition,
b= (-1)"detA[{1,2,...,j-1,j+1,...,n}[{1,2,...,i-1,i+1,...,n}],

and taking into account that A is upper triangular, we have

detA[{1,2,...,j-1,j+1,...,n}{1,2,...,i-1,i+1,...,n}] =detA[{i,i+1,...,j - 1}{i+1,i+2,...
and by (1)

detA[{i,i+1,...,j-1}[{i+1,i+2,...,j}] = D" a; 41, ;.
Then,

NS
b = ()" (-1)""ay 441, j = ~Qie1,... -

The next result is an immediate consequence of this lemma.

Theorem 2.3. Let A be an n x n nonsingular upper triangular matrix with checkerboard pattern. Then, A is an
inverse-positive matrix if and only if for any positive integers i and k

ajis1,... ivk < 0. @)

Now, we are going to analyze when the class of upper triangular inverse-positive matrices, with checkerboard
pattern, is closed under the Hadamard product of type A o B~L.

In order to prove the main result of this work, we need the following technical result which follows from
Lemma 2.2.

Corollary 2.1. Let A = (a;;) and B = (bj;) be n x n nonsingular upper triangular matrices. If (B){]-1 denotes the
(i, j) entry of B, we have
(B)i' = -biis1,...j» (B)iir1 = —biin (3)
and, being C = A o B* = (cy),
Cij = —ajjb; j11,...j, foralli<j. (@)

Theorem 2.4. Let A, B be n x n upper triangular nonsingular matrices, with checkerboard pattern, satisfying
the P-condition. Then A o B™! is an inverse-positive matrix.

Proof. The proof is by induction on n. For n = 2, A and B are M-matrices and the result is known.
Now, let A, B be upper triangular matrices of size n x n, n = 3. These matrices can be partitioned as,

e A1 anp and B - B bi, .
0 1 0 1

Note that, A1, and By, are nonsingular upper triangular matrices of size (n — 1) x (n - 1), with checkerboard
pattern and 1’s in the main diagonal, satisfying the P-condition.

B} A110Bj} -aip0Biib
C=AoB!-= ( 118 11 a2 Ol nbi ) = (Cij)lsi,isn

and

C71 = ( (A110BI%)_1 [rln: r2n---»rn—1,n]T )
0 1 ’

where, by (3), rj, = (O);7,j=1,2,...,n-1.

jn>
By using the hypothesis of induction, in order to assure that C is inverse-positive we only need to prove

thatrj, 20,j=1,2,...,n-1.

3}
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Forj = n - 1, by (4) we have
'n-1,n = —Cn-1,n = _an—l,n(_bn—l,n) 2 0.

Now,
"n-2,n = —Cn-2,n-1,n = det C[{n -2,n-1}{n-1, n}] = Cn-2,n-1Cn-1,n — Cn-2,n

and by (4)
rn—Z,n = (_an—z,n—lbn—Z,n—l)(_an—l,nbn—l,n) - (_an—Z,nbn—Z,n—l,n)-

By reordering in an adequate form, and taking into account that A and B have checkerboard pattern and
satisfy the P-condition, we obtain

'n-2,n = (an—z,n—lan—l,n - an—z,n)(bn—Z,n—lbn—l,n) + an—z,nbn—z,n > 0.
In a similar way,
Tn-3n =—Cn-3,n-2,n-1,n = —detC[{n-3,n-2,n-1}{n-2,n-1,n}]
=—-Cn-3,n-2"n-2,n * Cn-3,n-1Cn-1,n — Cn-3,n-

Since C has checkerboard pattern, we have

—Cn-3,n-2"-2,n20

and, by using the P-condition and the checkerboard pattern of A and B, we obtain

Cn-3,n-1Cn-1,n ~ Cn-3,n = (an—3,n—1an—1,n - an—3,n)(bn—3,n—2,n—1bn—l,n) + +an—3,n(_bn—3,n—2bn—2,n + bn—3,n) 2 0.

Therefore, r,_3,, = 0. In a similar way, we prove thatrj, 20, forj=n-4,n-5,..., 2. Finally, we are going
to prove that rq, > 0.

rin =(0)1h = ()™t det C[{1,2,...,n-1}|{2,3,...,n}]
=(-1)™" [c12detC[{2,3,...,n - 1}[{3,4,...,n}] —c13detC[{3,4,...,n-1}|{4,5,...,n}]
+ cradet Cl{4, ...,n—1}{5,...,m} ] +++ (1" '¢1 no1Cnotin +(-1)"c1,,} .
By using a similar reasoning as rp_3,», if n is even, we have

in =—Ci2l2n + (C13det C[{3, 4,...,n-1}|{4,5,...,n}]) - (c14detC[{4,...,n - 1}{5,...,n}])
teest (Cl,n—lcn—l,n -C1n) 2 0.

Finally, by using a similar reasoning as ry_»,n, if n is odd, we have

Tin = (C1272n — €13 det C[{3, 4,...,n - 1}[{4,5,...,n}]) + (c1sdet C[{4, ..., n - 1}|{5,...,n}]
-cisdetC[{5,...,n—=1}{6,...,n}])+ -+ +(C1,n-1Cn-1,n — C1,n) 2 O.

We only need to prove in order to assure the previous inequalities that (¢1,n-1Cn-1,n — €1,n) = 0, for all n.
Note that:

C1,n-1Cn-1,n — €1,n =(=a1,n-1b1,2,...n-1)(=An-1,nbn-1,n) + (@1,nb1,2,...n) =
=(a1,n-1an-1,nb1,2,....n-1bn-1,n) + (a1,n)(-1)"det B[{1, 2, ..., n - 1}|{2,3,..., n}]
=(a1,n—1an—1,n - al,n)(bn—l,nbl,z,...,n—l) + (al,n)(_l)zmzbl,Z,...,n—Z,n

=(ai,n-1an-1,n — a1,0)(bn-1,nb1,2,.. .n-1) + ... + A1,nb1,n 2 0,

by using the P-condition and the checkerboard pattern of matrices A and B.
Therefore, C is an inverse-positive matrix. O

The results obtained in this work are straightforward satisfied by lower triangular matrices.



DE GRUYTER OPEN A Hadamard product involving inverse-positive matrices = 199

Acknowledgement: The authors would like to thank the referees for the valuable comments and for the sug-
gestions to improve the readability of the paper.
Research supported by Spanish DGI grant number MTM2014-58159-P.

References

[1]  S.M. Fallat, C.R. Johnson, Hadamard powers and totally positive matrices, Linear Algebra Appl., 423 (2007) 420-427.

[2]1 K. Fan, Inequalities for M-matrices, Nederl. Akad. Wetensch. Proc. Ser. A67 (1964) 602-610.

[3] C.R.Johnson, A Hadamard Product Involving M-matrices, Linear Multilinear Algebra, 4 (1977) 261-264.

[4] C.R.Johnson, R.L. Smith, Path Product matrices, Linear Multilinear Algebra, 46 (1999) 177-191.

[5] Y.Shangjun, C. Qian, On Oppenheim’s inequality, Numerical Mathematics, 14(2) (2005) 97-101.

[6] B.Y.Wang, X. Zhang, F. Zhang, On the Hadamard Product of Inverse M-matrices, Linear Algebra Appl., 305 (2000) 23-31.



	1 Introduction
	2 Triangular inverse-positive matrices with checkerboard pattern

