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Abstract 
From an aesthetical point of view, spatial arch bridges are a consequence of new 
architectural demands for bridges in urban environments. They also arise to meet functional 
requirements when arch structures are the most suitable for supporting horizontally curved 
decks.  
In these cases, in so-called spatial arch bridges, their structural behaviour extends from the 
original vertical plane to a three-dimensional configuration. 
For single arch bridges with only one deck, this spatial behaviour emerges, mainly, in the 
following cases:  

- when arch springing and deck abutment are not at the same location. 
- if arch (or deck) is curved in plan. 
- if arch is out of from the vertical plane of symmetry of a straight deck. 
- in the case of the arch plane is leaning away from the vertical plane or rotated 

around a vertical axis. 
- if the arch axis is an out-of-plane curve. 

Existing bridges where these factors appear have been studied, and parametric and 
theoretical studies (Jorquera [2]) have been carried out.  
Main conclusions are presented, which can be generalized to very complex spatial arch-
deck configurations, including a new method for finding antifunicular three-dimensional 
shapes, even in the most general case of spatial arches with clamped ends.   
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1. Spatial arch bridge composed of a plane arch and a lower deck. 
In these cases, arch shape is a parabola resting in a plane, not necessarily vertical. The deck 
girder is suspended by hangers pinned at both ends and attached to its longitudinal axis. 
Movements of springings of arch and abutments of deck are restrained.  
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1. Arch behaviour in its own plane and in its perpendicular one is uncoupled. The 
same happens to the deck. Arch and deck behave, simultaneously, like an arch in 
its plane and a curved girder (an encastré beam) in perpendicular plane.  

2. For permanent loads, vertical components of hangers’ prestressing loads are equal 
to deck reactions over fixed bearings. 

(a) (b) (c) 

Figure 1: Geometrical parameters: (a) Curved deck, (b) Arch-girder lateral relative 
displacement, (c) Arch leant away from vertical plane. 

2.1. Horizontally curved girder. 
If the deck’s horizontal curvature (Figure 1, case a) increases, hangers lean, and some 
internal forces appear that can’t be found when the deck is straight: vertical axis bending 
and torsional forces appear at both arch and deck, and axial forces appear at deck. 
For dead loads (Fig. 2) the components of hangers’ prestressing loads (NP) are R, vertical 
and depending on deck’s curvature, and H, divided into NPX and NPY along global axes X 
and Y, in horizontal plane. 

 
Figure 2: Horizontally curved girder: dead load.  

NPX, placed in the arch`s plane, modifies classical vertical plane arch behaviour, and NPY 
produces curved girder behaviour. Torsional moments appear because of coupling caused 
by curvature. The deck now behaves as a circular horizontal arch loaded by horizontal 
components of hangers, H. Vertically, is a curved girder over fixed bearings. 

2448



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

Under live loads (Figure 3), these fixed bearings become elastic springs, and their vertical 
stiffness depends specially on the lateral stiffness of the arch, working as a curved girder. 
The deck`s horizontal stiffness is much higher because of its curved shape (a horizontal 
arch) in plan and because it is much wider than the arch due to functional requirements. 

 
Figure 3: Vertical live loads: deformation and associated structural systems.  

2.2 Arch horizontal stiffness. 
So, structural systems that remain inactive in classical plane arches are now ‘activated’ by 
the deck’s curvature (Manterola [3]). Configurations as shown, where all hangers are 
attached on the same side, make the arch sensitive to lateral actions. In these cases, 
horizontal stiffness must be increased and correctly distributed, which means cross sections 
must be horizontally oriented, stiffer (to limit deflections), and wider at springings than at 
the crown, to follow the strong variation of bending moment law. All these requirements 
are simultaneously fulfilled, for instance, in the Gateshead Footbridge (Figure 4). 

 
Figure 4: Gateshead Footbridge (Johnson and Curran [1]). 
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2.3. Effect of arch-deck transversal relative position. 
In this case, the deck’s curvature is kept constant and laterally displaced under a vertical 
plane arch (Figure 1, case b).  
For dead loads, the following considerations can be made:  

1. The components R of hangers are constant, since deck does not change either.  
2. Longitudinal projection of hangers are constant, and so are NPX. 

Therefore, since R and NPX do not change, prestressing hangers’ projection over the arch’s 
plane is independent of transversal relative position between the arch and the deck. 
Behaviour of the arch in its own plane is constant (axial and bending moment), and 
behaviour of the deck as a curved girder is also constant, with coupled bending and 
torsional moments. 
For symetrical live loads, horizontal displacements of the arch are smaller when it is at an 
intermediate position than when the whole arch is at the same side of deck. The arch can 
now be less stiff because loads at each side balance one another. 
Not always can the arch be freely laterally displaced in relation to the deck. But, whenever 
it is possible, it is much better to search for their optimum relative position than simply 
increasing arch’s stiffness. This is more efficient in order to limit horizontal displacements, 
and consequently, internal forces in all the bridge. 
As a preliminary guideline to help find that optimum, let’s say there’s always a specific 
relative arch-deck position in which the horizontal displacement of a given point of the arch 
is zero for a uniform load acting upon the whole deck.  
The range of positions that minimize internal forces in the arch correspond to positions that 
make horizontal displacement at least at one point of the arch to be zero. This is because 
loads have to balance at both sides of arch. Relative position that make spandrels or the 
crown not move when the deck is loaded could be a good starting point (Figure 5).  

        
Figure 5. (Left) Arch-deck transversal relative position, defined by YT. (Right) YT vs. Σ|Mi| 

(surface under vertical axis bending moment law at arch) for dead load and dead load + live 
load. Optimum is near positions where displacement is zero for crown or spandrels. 
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Just shown configurations are as sensitive as classical vertical arch planes to asymmetrical 
live loads.  

2.4. Rotation of arch´s plane around longitudinal axis. 

If arch is rotated at an angle ω (Figure 1, case c), its plane leans away from the vertical. For 
dead loads, this rotation has the following consequences: 

1. Although vertical reactions R are independent of ω, a new horizontal component, 
H, appears. This causes vertical axis bending moment at the deck.  

2. Internal forces in arch’s plane increase since axial forces of hangers do. 
3. Arch works as a curved girder, when the out-of-plane projection of self weight of 

the arch and hangers act upon arch. 

 
Figure 5: Leant arch under dead loads. 

Under live loads, axial forces transferred to arch by hangers increase according to ω. It’s 
necessary to enlarge cross sections of hangers and arch to keep their contribution to staying 
system stiffness.  

Hangers cannot be attached to the axis of a lower deck without widening it (Strasky [4]), 
for example, in Calatrava’s Ondarroa Bridge (Tzonis [6]). To avoid this, this type of bridge 
(for example, many other of Calatrava’s bridges) usually move arch to one edge, 
‘activating’ the deck´s torsional stiffness.  

 

3. Spatial arch with antifunicular out-of-plane shape.  
A new iterative method has been developed in order to find antifunicular spatial shapes of 
arches with clamped ends. Shapes returned by the algorithm are not only highly efficient 
from the structural point of view, but also aesthetically challenging.  

3.1. Description of method. 

The method is based on two main concepts: 
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1. To generalize to three-dimensional shapes the classical methods for plane arches. For 
instance, one well-known way to find the antifunicular shape of a two-hinged arch is to 
calculate its vertical coordinate at a given point, Z, as M/RX, where M is the bending 
moment at that point, and RX  is the longitudinal reaction at springings. It´s very 
important to remark that, in this process, zero-moment points keep their position during 
iterations.  

2. To use fictitious jacks at springings during the form-finding process. An arch with 
clamped ends cannot be antifunicular because of axial shortening when loaded. To 
correct this, hydraulic jacks must act upon the structure to make springings become 
zero-moment points, at least in theory.  

In the method presented, jacks act upon the structure before it is finished, in order to 
make desired points (for example, springings) be zero-moment during iterations. As 
each jack acts biexcentrically, three degrees of freedom are controlled, and not only 
both moments at springings can be countered by jacks, but also, for example, 
longitudinal bending moment at the crown. 

So, even when the arch is clamped, for a specific iteration, both moments are zero at 
springing, and also is longitudinal moments at crown. The original clamped arch 
transforms into a vertical three-hinged arch (in elevation) and a horizontal two-hinged 
arch (in plan). So, next iteration will correct arch`s shape, but will keep positions of 
springings and vertical coordinate Z of crown. 

The antifunicular shape may be determined for dead load plus half of live loads. But the 
problem would not be completely solved if anchorage points at deck had uncontrolled 
deflections for dead load. To solve this, a thermal load (uniform cooling), that simulates 
hanger prestressing, is introduced at each hanger to contrarrest this undesired movements. 

Teherefore, for each iteration, a system of equations must be solved to determine the values 
for: 

- Axial forces and two bending moments at each springing. 

- Value of prestressing force for each hanger. 

If any kind of non-linearity is going to be considered, for example, geometrical non-
linearity, this system turns non-linear. 

Figure 6 shows the process for an iteration, which begins with an initial geometry for the 
arch, shown in (a). The longitudinal and vertical axis moment due to dead load plus half 
live load and the deflected shape due to dead load are shown in (b). To nullify bending 
moments and deflections at desired points load case PRESTR, shown in (c), must act upon 
the structure. It is composed of prestressing loads acting upon hangers and hydraulic jacks 
upon springings. As a result, as shown in (d), a three-hinged arch in elevation and a two-
hinged arch in plan is obtained. Therefore, next iteration will keep position of springings 
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and coordinate Z of crown. Now, geometry can be corrected until difference between two 
consecutive iterations may be neglected.  

  
Figure 6: Antifunicular spatial iterative form-finding process for clamped arches. 

3.2. Correction of geometry. 

To correct geometry, two alternative methods have been developed. Since antifunicular 
shape is unique, results are equal. 

1. Global reactions method, where bending moment increment at a given point is 
assumed to depend only on the change of their relative coordinates in relation to 
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springing point, upon which reactions act. It generalizes the two-hinged arch case 
presented previously. 

2. Local eccentricities method, where the arch must pass through the centre of gravity of 
axial loads. It generalizes the ‘equal resistance arch’ concept by Mörsch. 

Coupled and uncoupled formulations have been developed for both methods. Coupled 
formulations enable us to obtain the antifunicular shape for both bending principal 
directions simultaneously.  
The uncoupled formulation only enable us to find antifunicular shapes for one direction, but 
any other geometrical restriction may be imposed on  the other direction. For example, an 
antifunicular shape for in-plane bending moment can be found for a leant-arch bridge, and 
at the same time, the arch shape can be forced to rest in that plane. 
 

 
Figure 7: Global reactions method: Notation and positive internal forces. 

For the global reactions method, coupled formulation can be written, at any point of the 
arch, as the following system of equations. The unknown solution are ΔY and ΔZ, which are 
the necessary increments of coordinates to balance external bending moment 
Mext=M2,ext+M3,ext. Each equation is obtained projecting along the local axis of cross 
section. 
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Where R (Figure 7) is the reaction upon springing, and n2 y n3 are unitary vectors of frame 
local axis whose components are [n2X n2Y n2Z] and [n3X n3Y n3Z]. 
At a classical plane vertical arch, M2=0, n3=[0 -1 0] and RY=0, and (1) will be reduced to  
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which is the expression for two-hinged plane arches. 
Uncoupled formulation for both local axes is: 
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For local eccentricities method, uncoupled formulation is: 
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where Next is the axial force. 
 
An example of the complete process is shown in Figure 8. In this case, geometrical non-
linearity has been considered. 

 

(a) 

 

(b) 
 

(c)  

 

(d)  
Figure 8: Spatial antifunicular shape: (a) Initial geometry, (b) Antifunicular geometry, an 

out-of-plane curve (c) bending moment, (d) vertical axis bending moment. (Internal forces 
at arch and deck drawn at same scale). 
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3.3. Effect of arch-deck transversal relative position. 
For antifunicular spatial arches, internal forces in the arch can be drawn in a diagram 
similar to the one shown in Figure 5 for plane arches. The form and conclusions are very 
similar, and the smallest internal forces are obtained when live loads balance one another at 
each side of the arch.  
The effect of the relative position is presented at figure 9. The vertical initial arches 
transform into out-of-plane antifunicular curves (upper row, cases YT=5 and YT =8.5). The 
center diagram shows their frontal views (from X axis). Beside it, a third arch is also 
represented (case YT=7.35), where internal forces are minimum. Plan view for the three 
cases is shown at the bottom of the figure. It’s very interesting to notice that, for the 
optimum case YT=7.35, antifunicular shape crosses over the deck, and its plan is S-shaped. 
 

 
Figure 9: Effect of arch-deck transversal relative position. Optimal positions generates S-

shaped antifunicular arches in plan.  

3.4. Spatial arch bridge composed of an antifunicular arch and an upper deck. 
As for plane arches, optimum transversal relative position may force abutment and 
springing to be too far. In these cases, the deck will not be able to tie arch springing and 
bow-string behaviour will not be possible. So, for lower deck bridges, a balanced solution 
must be found. This problem simply disappears in upper deck arch bridges, where optimum 
solutions can be found if the arch can be freely displaced. 
The main differences between lower and upper decks are: 
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1. Tensioned both end pinned hangers now transform into compression rods.  
2. These rods, under the deck, do not interfere with traffic, and can be attached to the 

deck axis, even when are leant. 
Form-finding methods presented are fully applicable for upper deck bridges if rods are 
hinged at their tops. If not, best results are obtained finding antifunicular shapes as if rods 
were hinged at their tops, and clamping them after the process.  
As before, lateral sensitiveness to horizontal actions depends on arch stiffness, but, above 
all, it depends on correct lateral position. 
An example of these spatial arches is shown in Figure 10, where out-of-plane shape of the 
arch reminds us of Ripshorst Footbridge (Schlaich [5]), one of the masterworks of J. 
Schlaich. 

 

 
Figure 10: (Left) Example of spatial arch bridge composed of an antifunicular arch and an 

upper deck (Right) Ripshorst Footbridge, by J. Schlaich.  
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