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Abstract

Automated planning is a centralized process in which a single planning entity, or

agent, synthesizes a course of action, or plan, that satisfies a desired set of goals

from an initial situation. A Multi-Agent System (MAS) is a distributed system

where a group of autonomous agents pursue their own goals in a reactive, proactive

and social way.

Multi-Agent Planning (MAP) is a novel research field that emerges as the

integration of automated planning in MAS. Agents are endowed with planning

capabilities and their mission is to find a course of action that attains the goals

of the MAP task. MAP generalizes the problem of automated planning in do-

mains where several agents plan and act together by combining their knowledge,

information and capabilities.

In cooperative MAP, agents are assumed to be collaborative and work together

towards the joint construction of a competent plan that solves a set of common

goals. There exist different methods to address this objective, which vary according

to the typology and coordination needs of the MAP task to solve; that is, to which

extent agents are able to make their own local plans without affecting the activities

of the other agents.

The present PhD thesis focuses on the design, development and experimen-

tal evaluation of a general-purpose and domain-independent resolution framework

that solves cooperative MAP tasks of different typology and complexity. More pre-

cisely, our model performs a multi-agent multi-heuristic search over a plan space.

Agents make use of an embedded search engine based on forward-chaining Par-

tial Order Planning to successively build refinement plans starting from an initial

empty plan while they jointly explore a multi-agent search tree. All the reasoning
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processes, algorithms and coordination protocols are fully distributed among the

planning agents and guarantee the preservation of the agents’ private information.

The multi-agent search is guided through the alternation of two state-based

heuristic functions. These heuristic estimators use the global information on the

MAP task instead of the local projections of the task of each agent. The exper-

imental evaluation shows the effectiveness of our multi-heuristic search scheme,

obtaining significant results in a wide variety of cooperative MAP tasks adapted

from the benchmarks of the International Planning Competition.
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Resumen

La planificación automática es un proceso centralizado en el que una única entidad

de planificación, o agente, sintetiza un curso de acción, o plan, que satisface un

conjunto deseado de objetivos a partir de una situación inicial. Un Sistema Multi-

Agente (SMA) es un sistema distribuido en el que un grupo de agentes autónomos

persiguen sus propias metas de forma reactiva, proactiva y social.

La Planificación Multi-Agente (PMA) es un nuevo campo de investigación que

surge de la integración de planificación automática en SMA. Los agentes dispo-

nen de capacidades de planificación y su propósito consiste en generar un curso

de acción que alcance los objetivos de la tarea de PMA. La PMA generaliza el

problema de planificación automática en dominios en los que diversos agentes

planifican y actúan conjuntamente mediante la combinación de sus conocimientos,

información y capacidades.

En PMA cooperativa, se asume que los agentes son colaborativos y trabajan

conjuntamente para la construcción de un plan competente que resuelva una serie

de objetivos comunes. Existen distintos métodos para alcanzar este objetivo que

vaŕıan de acuerdo a la tipoloǵıa y las necesidades de coordinación de la tarea de

PMA a resolver; esto es, hasta qué punto los agentes pueden generar sus propios

planes locales sin afectar a las actividades de otros agentes.

La presente tesis doctoral se centra en el diseño, desarrollo y evaluación ex-

perimental de una herramienta independiente del dominio y de propósito general

para la resolución de tareas de PMA cooperativa de distinta tipoloǵıa y nivel de

complejidad. Particularmente, nuestro modelo realiza una búsqueda multi-agente

y multi-heuŕıstica sobre el espacio de planes. Los agentes hacen uso de un motor de

búsqueda embebido basado en Planificación de Orden Parcial de encadenamiento

progresivo para generar planes refinamiento de forma sucesiva mientras exploran
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conjuntamente el árbol de búsqueda multiagente. Todos los procesos de razon-

amiento, algoritmos y protocolos de coordinación están totalmente distribuidos

entre los agentes y garantizan la preservación de la información privada de los

agentes.

La búsqueda multi-agente se gúıa mediante la alternancia de dos funciones

heuŕısticas basadas en estados. Estos estimadores heuŕısticos utilizan la infor-

mación global de la tarea de PMA en lugar de las proyecciones locales de la tarea

de cada agente. La evaluación experimental muestra la efectividad de nuestro es-

quema de búsqueda multi-heuŕıstico, que obtiene resultados significativos en una

amplia variedad de tareas de PMA cooperativa adaptadas a partir de los bancos

de pruebas de las Competición Internacional de Planificación.
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Resum

La planificació automàtica és un procés centralitzat en el que una única entitat

de planificació, o agent, sintetitza un curs d’acció, o pla, que satisfau un conjunt

desitjat d’objectius a partir d’una situació inicial. Un Sistema Multi-Agent (SMA)

és un sistema distribüıt en el que un grup d’agents autònoms persegueixen les seues

pròpies metes de forma reactiva, proactiva i social.

La Planificació Multi-Agent (PMA) és un nou camp d’investigació que sorgeix

de la integració de planificació automàtica en SMA. Els agents estan dotats de

capacitats de planificació i el seu propòsit consisteix en generar un curs d’acció

que aconseguisca els objectius de la tasca de PMA. La PMA generalitza el prob-

lema de planificació automàtica en dominis en què diversos agents planifiquen i

actúen conjuntament mitjançant la combinació dels seus coneixements, informació

i capacitats.

En PMA cooperativa, s’assumeix que els agents són col·laboratius i treballen

conjuntament per la construcció d’un pla competent que ressolga una sèrie d’objec-

tius comuns. Existeixen diferents mètodes per assolir aquest objectiu que varien

d’acord a la tipologia i les necessitats de coordinació de la tasca de PMA a ressoldre;

és a dir, fins a quin punt els agents poden generar els seus propis plans locals sense

afectar a les activitats d’altres agents.

La present tesi doctoral es centra en el disseny, desenvolupament i avaluació

experimental d’una ferramenta independent del domini i de propòsit general per

la resolució de tasques de PMA cooperativa de diferent tipologia i nivell de com-

plexitat. Particularment, el nostre model realitza una cerca multi-agent i multi-

heuristica sobre l’espai de plans. Els agents fan ús d’un motor de cerca embegut en

base a Planificació d’Ordre Parcial d’encadenament progressiu per generar plans

de refinament de forma successiva mentre exploren conjuntament l’arbre de cerca
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multiagent. Tots els processos de raonament, algoritmes i protocols de coordi-

nació estan totalment distribüıts entre els agents i garanteixen la preservació de

la informació privada dels agents.

La cerca multi-agent es guia mitjançant l’aternança de dues funcions heuŕısti-

ques basades en estats. Aquests estimadors heuŕıstics utilitzen la informació global

de la tasca de PMA en lloc de les projeccions locals de la tasca de cada agent.

L’avaluació experimental mostra l’efectivitat del nostre esquema de cerca multi-

heuŕıstic, que obté resultats significatius en una ampla varietat de tasques de PMA

cooperativa adaptades a partir dels bancs de proves de la Competició Internacional

de Planificació.
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1

Introduction

Automated planning is the art of building control algorithms that synthesize a

course of action to achieve a desired set of goals from an initial situation. Planning

has been traditionally regarded as a centralized process in which a single entity is

in charge of devising a plan that satisfies the problem goals (44).

A multi-agent system (MAS) is a distributed system where a group of au-

tonomous entities known as intelligent agents, either human or software, pursue

their own goals in a reactive, proactive and social way (57). MAS has been pro-

posed as an appropriate modelling approach for domains such as electronic com-

merce (47), multi-robot systems (82), security applications (92), and so on.

In this context, Multi-Agent Planning (MAP) arises as a novel research field

which pursues the integration of planning capabilities in intelligent agents so that a

group of agents can develop a course of action that attains a set of goals. Therefore,

MAP generalizes the problem of automated planning in domains where several

planning entities, or agents, plan and act together by combining their knowledge,

information and capabilities (76).

MAP can entail planning by multiple agents, i.e., distributed planning, or
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1. INTRODUCTION

planning for multiple agents, i.e., planning for multi-agent execution, thus giving

rise to a great variety of tools and techniques. The approach traditionally adopted

by the MAS research community assumes that agents are self-interested and that

there is not a common goal to solve, thus focusing on coordinating the activities

of multiple agents in a shared environment (27). The ultimate objective is to

ensure that the agents’ local objectives (private goals) will be achieved by their

plans and so the emphasis is put on distributed execution, plan synchronization

and collaborative activity at run-time planning (32, 60, 111).

The most common planning-oriented approach, known as cooperative MAP,

assumes agents to be collaborative and focuses on extending planning into a dis-

tributed environment or, more particularly, on the joint construction of a com-

petent plan that addresses a set of common goals. There exist different methods

to address this objective, which vary according to the typology of the MAP task

to solve. In particular, the adoption of one or another strategy depends on the

coordination needs of the task; i.e., to which extent agents are able to make their

own local plans without affecting what the other agents are planning to do.

In loosely-coupled tasks where agents are relatively independent, they carry out

planning individually and coordinate either before or after the planning activity.

Some approaches apply pre-planning coordination or goal allocation, which entails

distributing the task goals among the participants on a pre-planning fashion, en-

suring that the local plans generated by the agents afterwards can be effectively

combined into a sound global solution (11). A wide range of approaches follow a

post-planning coordination or plan merging scheme, i.e., they solve inconsistencies

among local plans that have been constructed separately in order to come up with

a coherent joint plan (28, 80).

In general, plan merging and goal allocation methods are rather inefficient when

solving tightly-coupled tasks with a large amount of coordination points among
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agents (80). In order to tackle this issue, a third group of MAP techniques in-

tertwines the planning and coordination activities, resulting in a unified scheme

that effectively attains complex tightly-coupled tasks. These interleaved methods,

however, do not perform optimally in loosely-coupled tasks because their reasoning

procedures rely strongly on a high degree of interdependency between the agents’

actions.

The preservation of privacy arises as another relevant topic in cooperative MAP

techniques that distribute the planning activity among agents. Despite working

cooperatively in a MAP task, intelligent agents may become competitors in sub-

sequent tasks, and therefore, it is desirable to minimize the exchanged informa-

tion and share only the minimum required amount of data for the decentralized

planning procedures to be successfully carried out. Privacy introduces additional

challenges into the design and development of cooperative MAP methods and is

only managed by the most recent approaches to cooperative MAP (11, 72).

Many of the state-of-the-art techniques resort to heuristic search in order to at-

tain the cooperative MAP problem. Since information on the MAP task is usually

distributed across agents, most methods guide the search for a solution through

local heuristic functions; i.e., each agent estimates the quality of a plan according

to its projection of the MAP task (the local information it possesses). In general,

the accuracy of local heuristics is rather poor, which motivated the development

of global heuristic functions. These estimators make use of the information of

the MAP task as a whole to estimate the quality of the plans, and its develop-

ment constitutes one of the current challenges of cooperative MAP, particularly

in privacy-preserving settings (72, 107).

The present PhD thesis pursues the design and development of computational

techniques that efficiently address the cooperative MAP problem. More precisely,

our focus is on adapting heuristic-based search to a multi-agent context while
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ensuring that the agents’ critical information remains private. Our ultimate goal

is to provide intelligent agents with cooperative planning capabilities, so that they

can collaboratively develop a joint plan for a set of common objectives as a group.

The algorithms and techniques developed over the course of this research are

subject to the following principles:

� Decentralized techniques: We understand cooperative MAP as a task

simultaneously performed by a group of independent planning entities, such

that the information on the task and the planning capabilities are distributed

among agents. For this reason, all the techniques developed during the course

of this research are decentralized and can be directly integrated in intelligent

agents, thus providing them with cooperative MAP capabilities.

� Interleaved search: In our model, cooperative MAP tasks are attained

through an integrated resolution procedure that interleaves the planning and

coordination activities. Our objective is to come up with a general-purpose

solution that effectively solves MAP tasks of any complexity, ranging from

loosely-coupled to complex tightly-coupled tasks.

� Privacy preservation: Privacy is a key aspect of our cooperative MAP

model, and therefore, all the techniques developed in this research are built

ensuring that the agents’ private information is effectively kept.

� Global heuristic functions: Our model attains the cooperative MAP

problem through heuristic search. The heuristic functions we developed es-

timate the quality of the plans according to the global information on the

MAP task while preserving agents’ privacy.
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According to the previous guidelines, the cooperative MAP resolution frame-

work that constitutes the main contribution of this research follows a decentral-

ized heuristic search scheme, interleaving planning and coordination to tackle both

loosely-coupled and tightly-coupled tasks. Privacy is effectively preserved across

all the procedures carried out by the framework, minimizing the amount of in-

formation shared throughout the joint tasks performed by the agents. Finally, in

order to maximize the efficiency of the framework, the search is guided through a

set of accurate global heuristic estimators.

1.1 Objectives

This section presents the precise objectives that guided the development of this

PhD thesis, along with the associated tasks conducted throughout this research

and the resulting contributions:

1. Analysis of the state of the art: This initial objective entails a thorough

revision of the literature regarding the main topics of this research.

Since most approaches to MAP reuse or adapt single-agent planning tech-

niques, we reviewed the state of the art in automated planning, focusing on

the main techniques, paradigms and specification languages, with an em-

phasis on the Partial-Order Planning (POP) paradigm and heuristic search

techniques.

The state of the art in cooperative MAP has also been reviewed. Given the

wide variety of approaches to MAP, we analyzed topics such as information

distribution, underlying planning paradigm, coordination of agents, privacy

or heuristic strategy to properly characterize and classify the existing MAP

methods.
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2. Formalization of the cooperative MAP task: The second objective of

our work implies establishing a theoretical formalization of the cooperative

MAP task. The resulting formal definition tackles three basic aspects: the

main components of a MAP task, such as actions, objects of the world or

agents; the mechanisms to preserve agents’ privacy; and the search scheme

used to attain the MAP tasks.

3. Design of a MAP specification language: In order to solve cooperative

MAP tasks, it is necessary to formally represent them. A definition language

to model MAP tasks is thus one of the basic requirements of this research.

Since the existing languages for single-agent planning do not support the

particular requirements of the cooperative MAP tasks, such as information

distribution and privacy, it was necessary to design a novel specification lan-

guage with enough expressiveness to represent all the elements that compose

a MAP task.

4. Development of a cooperative MAP resolution framework: The

central objective of this work is the design of a resolution framework that ef-

ficiently attains cooperative MAP tasks. This objective was fulfilled through

the continuous development of several iterations of the framework, each of

them introducing several refinements over the previous ones.

The first version of the framework, named MAP-POP, establishes the basics

of our model: agents perform a coordinated exploration of a joint search

tree, where plans are individually generated via the progressive refinement

of the existing nodes of the tree. In order to build these refinement plans,

each agent integrates a search engine based on POP. MAP-POP presents some

limitations addressed in the following iterations of the framework, such as the

lack of some theoretical properties (search completeness is not ensured), and
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some performance issues caused by the use of POP-based heuristic functions

to guide the search.

FMAP, the second iteration of our framework, replaces the embedded back-

ward POP reasoning module by a forward-chaining POP. This change ben-

efits the model by providing two direct improvements: search completeness

is guaranteed since all the plans are now generated, and the forward search

enables the usage of accurate state-based heuristic estimators. FMAP in-

troduces hDTG, a relaxation-based estimator that clearly boosts the overall

performance of the system over MAP-POP.

The final evolution of our framework, MH-FMAP, introduces a multi-heuristic

search scheme, thus enabling the simultaneous application of diverse heuris-

tics to evaluate plans, rather than using a single estimator. The combination

of the existing hDTG heuristic and a novel global landmark-based estima-

tor, hLand, along with several optimizations in the communications among

agents, provide great benefits regarding performance.

The different versions of the framework were systematically evaluated through

an extensive benchmark that includes several MAP domains adapted from

the testbeds of the International Planning Competition. Throughout this re-

search, the performance of the system was compared to other state-of-the-art

approaches to cooperative MAP to qualitatively measure the performance of

the framework.

5. Design of global heuristic functions for MAP: In order to develop our

resolution framework to its full potential, the heuristic guidance of the search

is required to be as accurate as possible. For this reason, one of the basic

objectives of this research entailed the study of single-agent estimators and

its adaptation to a multi-agent context.
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We developed two global, suboptimal and privacy-preserving multi-agent

estimators, hDTG and hLand. This research objective involved the usage

and multi-agent adaptation of several well-known single-agent planning tech-

niques, such as relaxed planning graphs, domain transition graphs and land-

marks.

As previously stated, in order to get the most of this research objective,

the final iteration of the resolution framework, MH-FMAP, allows for the

simultaneous usage of both global estimators, which effectively improves the

overall performance of the system in many cooperative MAP domains.

1.2 Related research activities

This section lists the research activities performed during the development of this

PhD thesis, namely the related scientific publications, research stays and research

projects.

1.2.1 Related publications

The following subsections list all the scientific publications related to this research.

We classify articles according to the type of publication they were included into:

section 1.2.1.1 cites the articles appearing in journals listed in the Science Citation

Index (SCI), while section 1.2.1.2 lists the papers published in the proceedings of

relevant conferences included in the Computing Research and Education Associa-

tion of Australasia (CORE) rankings.

Finally, section 1.2.1.3 lists other relevant scientific articles without an impact

factor or not published in a ranked conference.
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1.2 Related research activities

1.2.1.1 Publications in SCI journals

� A. Torreño, E. Onaindia and Ó. Sapena. FMAP: distributed cooper-

ative multi-agent planning. Applied Intelligence. Volume 41(2), pages

606-626, 2014. Impact Factor (2012): 1,853.

� A. Torreño, E. Onaindia and Ó. Sapena. A flexible coupling approach to

multi-agent Planning under incomplete information. Knowledge and

Information Systems. Volume 38(1), pages 141-178, 2014. Impact Factor

(2014): 1,782.

� Ó. Sapena, E. Onaindia and A. Torreño. FLAP: applying least-com-

mitment in forward-chaining planning. AI Communications. Volume

28(1), pages 5-20, 2014. Impact Factor (2014): 0,547.

1.2.1.2 Publications in CORE conferences

� A. Torreño, E. Onaindia and Ó. Sapena. Global heuristics for dis-

tributed cooperative multi-agent planning. In Proceedings of the 25th

International Conference on Automated Planning and Scheduling. Pages

225-233, 2015. Conference ranking: CORE A*.

� A. Torreño, E. Onaindia and Ó. Sapena. An approach to multi-agent

planning with incomplete information. In Proceedings of the 20th Euro-

pean Conference on Artificial Intelligence. Pages 762-767, 2012. Conference

ranking: CORE A.

� Ó. Sapena, A. Torreño and E. Onaindia. On the construction of joint

plans through argumentation schemes. In Proceedings of the 10th Inter-

national Conference on Autonomous Agents and Multiagent Systems. Pages

1195-1196, 2011. Conference ranking: CORE A*.
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� Ó. Sapena, A. Torreño and E. Onaindia. On the use of argumentation in

multi-agent planning. In Proceedings of the 19th European Conference on

Artificial Intelligence. Pages 1001-1002, 2010. Conference ranking: CORE

A.

� A. Torreño, E. Onaindia and Ó. Sapena. Reaching a common agreement

discourse universe on multi-agent planning. In Proceedings of the 5th

International Conference on Hybrid Artificial Intelligence Systems. Pages

185-192, 2010. Conference ranking: CORE C.

1.2.1.3 Other publications

� A. Torreño, Ó. Sapena and E. Onaindia. MH-FMAP: alternating global

heuristics in multi-agent planning. In Proceedings of the Competition

of Distributed and Multi-Agent Planners. Pages 25-28, 2015.

� A. Torreño, E. Onaindia and Ó. Sapena. Integrating individual prefer-

ences in multi-agent planning. In Proceedings of the 2nd Workshop on

Distributed and Multi-Agent Planning. Pages 79-86, 2014.

� E. Onaindia, Ó. Sapena and A. Torreño. Argumentation-based planning

in multi-agent systems. Book chapter, in Negotiation and Argumentation

in Multi-Agent Systems. Bentham eBooks. Pages 361-398, 2014.

� A. Torreño, E. Onaindia and Ó. Sapena. FMAP: a heuristic approach to

cooperative multi-agent planning. In Proceedings of the 1st Workshop

on Distributed and Multi-Agent Planning. Pages 84-92, 2013.

� Ó. Sapena, E. Onaindia and A. Torreño. Cooperative distributed plan-

ning through argumentation. International Journal of Artificial Intelli-

gence. Volume 4(10), pages 118-136, 2010.
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1.2.2 Scientific research stays

The following research stay was completed during the research period associated

to this PhD thesis:

� 26-05-2015 to 25-08-2015. Czech Technical University in Prague, Czech Re-

public. Research stay supervised by Professor Michal Pěchouček on the adap-

tation of the Merge-and-Shrink family of abstraction heuristics to coopera-

tive MAP.

1.2.3 Research projects

This work has been performed in the context of several research projects that

provided economical funding or technological support to its development:

� “Agreement Technologies” Consolider-INGENIO 2010 under grant

CSD2007-00022. (Main researcher: Carles Sierra, from 2007 to 2012). Agree-

ment technologies is a term coined in the last years to refer to those technolo-

gies that allow computational entities to automatically solve conflicts. This

research was initiated as a work package within this project that pursued

the integration of group planning capabilities in intelligent agents.

� “Magentix2: A Multi-agent Platform for Open Multi-agent Sys-

tems” under grant TIN2008-04446 (Main Researcher: Ana Garcia-Fornes,

from 2008 to 2011). Magentix2 is a multi-agent platform that aims to provide

support for open systems where heterogeneous agents can enter and leave

the system dynamically. The Magentix2 platform provided the infrastruc-

ture used by our framework to implement the communications among the

planning agents.
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� “PlanInteraction: Multi-agent Interaction for Planning” under grant

TIN2011-27652-C03 (Main Researcher: Eva Onaindia, from 2012). This

project aims to develop new agent techniques based on social dynamics for

the design of a MAP platform composed of autonomous and, possibly hetero-

geneous, planning entities. The platform tackles aspects such as multi-agent

execution, cooperative and non-cooperative MAP, plan merging and plan-

ning via argumentation. Our framework was integrated into the PlanInterac-

tion platform as a means to provide PlanInteraction agents with cooperative

MAP capabilities.

Additionally, this work has been supported by the Prometeo projects 2008/051

and II/2013/019 funded by the Valencian Government. Moreover, this research

would not have been possible without a 4-year FPI-UPV research scholarship

granted to the first author by the Universitat Politècnica de València.

1.3 Document structure

This PhD thesis is organized as a compendium of research articles that compile

and synthesize the results of this research work. The remainder of this document

is organized as follows:

� Chapter 2 analyzes the state of the art on automated planning. Whereas

each of the articles in the compendium include some form of summary of

the state of the art, one should note that cooperative MAP is an active and

rapidly evolving research field. For this reason, a comprehensive and updated

analysis of the current state of the art is required to fully understand the

intricacies of this research area.
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Since most approaches to cooperative MAP are built up from pre-existing

single-agent planning techniques, section 2.1 is devoted to the single-agent

approach to planning, discussing the most relevant paradigms, frameworks

and task specification languages.

Section 2.2 focuses on cooperative MAP, characterizing the aspects that dis-

tinguish a MAP task from its single-agent counterparts as well as analyzing

the problem of representing it. Afterwards, we provide an in-depth classi-

fication of the main MAP methods in the literature and present the most

relevant MAS platforms used for the development of decentralized MAP

frameworks.

� Chapter 3 compiles the four main impact articles related to this research

work. The articles are chronologically arranged and provide a comprehensive

view of the evolution of this research work and its results.

Section 3.1 briefly summarizes the contents of each article, indicating the

structure of the publication and the location of its main contributions, while

sections 3.2 to 3.5 present the full text of the four research articles.

� Chapter 4 summarizes and thoroughly discusses the results obtained in this

research, both the scientific contributions and the collected experimental

results. Thus, this chapter serves as a reference guide to the scientific content

provided by the articles of Chapter 3.

Section 4.1 discusses the contributions of this research, describing in detail

each individual contribution and referencing the sections of Chapter 3 where

the related technical content can be found.

Section 4.2 analyzes the experimental results obtained by each version of

our MAP framework. Throughout this research, we compared the different
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evolutions of our framework against other state-of-the-art methods via a

variety of MAP domains. This results constituted the primary source to

detect the strengths and flaws of our approach and define the refinements to

undertake in the subsequent evolutions of the framework.

Finally, section 4.2 summarizes the results obtained by the most recent ver-

sion of our MAP framework, MH-FMAP, in the 2015 Competition of Dis-

tributed and Multi-Agent Planners (CoDMAP), which are not disclosed in

the articles of Chapter 3. We also provide some additional experiments

that justify the performance differences of MH-FMAP in our setting and the

CoDMAP.

� Chapter 5 presents our concluding remarks, putting the focus on the strengths

and weaknesses of our approach to cooperative MAP, and disclosing our fu-

ture lines of research.
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2

State of the art in

automated planning

Automated planning in Artificial Intelligence (AI) can be defined as the art of

building control algorithms for dynamic systems. More precisely, a planning task

is a search problem whose purpose is finding a set of actions that leads the system

to an objective state from a given initial situation. The vast majority of approaches

model planning as a single-agent procedure, in which a single entity carries out

the entire search process, developing the complete course of action to solve the

task at hand.

Recently, an interest in Multi-Agent Planning (MAP) has developed. MAP is

a relatively novel research field that combines technologies, algorithms and tech-

niques developed by the AI planning and multi-agent systems (MAS) communities.

While planning has been traditionally regarded as a centralized process, MAP gen-

eralizes this concept by considering a set of heterogeneous entities, or agents, that

work together to develop a course of action that satisfies the goals of the group.

Therefore, MAP introduces a social approach to planning by which multiple in-

15



2. STATE OF THE ART IN AUTOMATED PLANNING

telligent entities work together to solve planning tasks that they are not able to

solve by themselves, or to at least accomplish them better by cooperating (24).

MAP introduces many challenges that are not present in classical single-agent

planning, such as the distribution of information among agents and the design

of robust communication protocols among the planning entities. Additionally,

many MAP models are designed to guarantee the privacy of the agents’ sensitive

information.

This chapter analyses the state of the art in single and multi-agent planning.

Most approaches to MAP draw upon a wide variety of single-agent techniques.

For this reason, the first part of this chapter discusses single-agent planning: first,

we formalize a single-agent planning task; next, we analyse the representation of

planning tasks and the most relevant task specification languages; and finally, we

discuss the most relevant single-agent planning paradigms in the literature. Partic-

ularly, we put the focus on state-based heuristic search and partial-order planning,

because these approaches constitute the fundamentals in which the present work

is rooted.

The second part of the chapter reviews the state of the art in cooperative MAP,

discussing the main aspects of this research field, analysing the representation of

MAP tasks and classifying the most relevant cooperative MAP approaches.

2.1 Single-agent planning

Single-agent planning is a search process by which a single entity synthesizes a

set of actions or plan to reach a set of objectives from an initial situation (122).

In order to formally define a single-agent planning task, we focus on the classical

planning modelling (44). Classical models introduce various assumptions to reduce

the complexity of the single-agent planning problem:
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� The world is represented through a finite set of situations or states.

� The world is fully observable; that is, the planning entity has complete knowl-

edge of the environment.

� The world is deterministic; that is, the application of an action over a state

leads deterministically to a single other state.

� The world is static; that is, the state of the world does not evolve until an

action is applied.

� The planner handles an explicit and immutable goal state.

� Actions have no duration. Time and numeric reasoning is not considered.

� The planning activity is carried out offline, that is, the planner is not con-

cerned with external changes that occur in the world.

Despite these simplifications, domain-independent single-agent planning is a

complex problem. In particular, single-agent planning in its classical form is a

PSPACE-complete problem (44).

Each state of the world is defined through a finite set of facts or literals that

describe the properties of the world. A literal is an atom composed by a predicate

symbol and a finite set of parameters referred to objects of the world.

Definition 2.1. (State) A state S is a finite set of literals that represents a

situation of the world.

The states of the world evolve through the application of planning actions,

which are defined as follows:

Definition 2.2. (Action) A planning action is a tuple α = PRE(α) →
{ADD(α), DEL(α)}, where PRE(α) is a set of literals describing the precon-

ditions of α, and ADD(α) and DEL(α) are two sets of literals that express the

additive and delete effects of α, respectively.
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l1

l2 l4

t1

l5
rm

f

l3

Figure 2.1: Single-agent planning task example

Given a state S, an action α can be executed if and only if all its preconditions

hold in S, that is, ∀p ∈ PRE(α), p ∈ S. Executing an action α in a world state S

leads to a new state S′ = (S−DEL(α))∪ADD(α); that is, the literals in DEL(α)

are removed from S′ and the literals in ADD(α) are added to S′.

Given the previous definitions, a single-agent planning task is formally defined

as follows:

Definition 2.3. (Single-agent planning task) A single-agent planning task

is a tuple T = 〈I, A,G〉. I is a state that represents the initial situation of the

world. A is a set of actions of the form α = PRE(α)→ {ADD(α), DEL(α)} that

can be applied by the planning agent to solve T . G is the goal state we desire to

reach.

Finally, we define a solution plan Π for a task T as follows:

Definition 2.4. (Solution plan) A solution plan Π for a single-agent planning

task T is a sequence of actions {α0, . . . , αn} whose application over I leads to a

state S, where G ⊆ S.

In order to motivate a single-agent planning task, let us present a brief appli-

cation example:

Example 1. Figure 2.1 shows a single-agent planning task whose goal is to deliver

a package of raw materials rm into a factory f . To do so, a truck t1 must pick up

the package rm, transport it through a network of roads connecting the locations

l1-l5 and f , and deliver it to location f .
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In Example 1, the initial situation of the world is modelled through the literals

(pos t1 l1) and (pos rm l2), which describe the initial location of the objects

involved in the task, as well as a set of immutable or static literals establishing

the connections among the different locations, such as (link l1 l2).

The goal state is defined as G = {(pos rm l2)}. In order to complete the task,

the planning entity can apply actions such as driving the truck between locations,

(drive t1 l1 l2), loading the package in the truck, (load rm t1 l2), and unloading

the package in a specific location, (unload rm t1 f).

2.1.1 Representation in single-agent planning

One of the main challenges addressed by the AI planning community is the repre-

sentation problem. The use of an expressive language to specify planning tasks is

one of the key aspects of an efficient planning process.

Representing a single-agent planning entails modelling its elements (see Defi-

nition 2.3) through a formal language. The representation of a planning task faces

multiple challenges; in particular, it is necessary to overcome the frame problem

(73): in most cases, the number of aspects of the world that remain unchanged

when applying an action α is much higher than the number of aspects actually

modified by α.

One of the first modelling languages, STRIPS (STanford Research Institute

Problem Solver) (36), has widely influenced most of the planning works since

the 1970s. STRIPS proposes a compact and simple model to specify planning

domains, effectively solving the frame problem (73), and supporting divide-and-

conquer strategies (39).

Among the multiple extensions to STRIPS developed over the last years (see

subsection 2.1.1.1), the Planning Domain Definition Language PDDL (43) has
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become not only the most popular one, but also the de facto standard for the

single-agent planning community.

Modelling a single-agent planning task, such as Example 1, through PDDL en-

tails defining two separate blocks: a domain and a problem. The domain describes

the general features of a particular domain, such as the types of objects, the pred-

icates that describe situations of the world and the operators that can be applied

by the planning entity to solve the task. The problem block models the specific

details of the task, such as the actual objects in the world, the initial situation of

the task and the goals that must be achieved in order to solve the planning task.

In order to model the task in Example 1 we first define the type hierarchy (note

that PDDL also supports untyped domain descriptions):

(:types location package - object

truck place - location)

The location and package types directly derive from object, the basic type

for all the objects in a PDDL domain. Both truck and place are defined as

subtypes of location.

Next, we define the predicates that will describe the situations of the world:

(: predicates

(pos ?t - truck ?p - place)

(at ?p - package ?l - location)

(link ?p1 - place ?p2 - place ))

The pos predicate models the position of a truck, while at indicates the place-

ment of a package, and link establishes the connections among places. Literals

of a task are obtained by grounding the predicates, that is, giving actual values

to their parameters via the objects defined in the problem. For instance, a literal

(pos t1 l1) can be inferred from (pos ?t - truck ?l - location) in Example

1.
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The last section of the domain is devoted to the modelling of the planning

operators. This particular task includes the operators drive, load and unload.

For simplicity, we show only the description of the drive operator:

(: action drive

:parameters (?t - truck ?p1 - place ?p2 - place)

:precondition (and (pos ?t ?p1) (link ?p1 ?p2))

:effect (and (not (pos ?t ?p1))(pos ?t ?p2))

)

The drive operator is used to move a truck between two different places.

The :precondition section defines the facts that must hold for the action to be

executed, and :effect describes the changes made to the state after the execution

of the operator. In this case, the preconditions entail the truck ?t being placed in

the initial place ?p1 and a direct connection between ?p1 and ?p2. As an effect

of the operator execution, the truck ?t will be placed in ?p2 instead of ?p1.

Similarly to the literals, the task actions are obtained by grounding the domain

operators. For instance, (drive t1 l1 l2) can be inferred from the drive operator.

Regarding the problem block of the task, we first define the objects that take

part in the task (see Figure 2.1), according to their types:

(: objects

t1 - truck

rm - package

l1 l2 l3 l4 l5 f - place)

Next, we describe the initial state of the world, including the initial location

of the truck t1 and the package rm, as well as the links among places:

(:init

(pos t1 l1)

(at rm l2)

(link l1 l2)(link l2 l1)(link l1 l5)(link l5 l1)(link l2 l5)

(link l5 l2)(link l5 l3)(link l3 l5)(link l5 l4)(link l4 l5)

(link l3 f)(link f l3)(link l4 f)(link f l4))
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Finally, we define the goal of the task; that is, delivering rm into f :

(:goal (at rm f))

2.1.1.1 Planning task specification languages

Despite being one of the most successful and influential works on single-agent

planning representation, STRIPS (36) has some expressive limitations that make

it difficult to describe some real problems (97). As a result, many extensions to

STRIPS have been developed over the past years, enriching its expressiveness and

simplifying the definition of planning domains.

This subsection performs a brief historical summary of the most relevant plan-

ning specification languages and their main features, putting the focus on the most

successful extensions to STRIPS.

ADL. The Action Description Language (ADL) (89) is one of the earlier exten-

sions to STRIPS. ADL uses an algebraic model to define the states of the world,

which increases its expressiveness over STRIPS, allowing the designer to represent

a larger number of situations. ADL also improves STRIPS by incorporating new

features such as types, negated goals and preconditions, equality restrictions and

conditional effects, among others.

PDDL. As previously mentioned, PDDL (43) is the most relevant extension to

STRIPS. PDDL was developed for the 1998 International Planning Competition

(IPC) (74), aiming to provide a common notation for modelling planning tasks and

evaluating the planners’ results. Ever since its introduction, PDDL has become the

reference modelling language for the vast majority of planners. PDDL inherits the

action modelling of STRIPS, introducing a wide set of features, such as conditional

effects, hierarchical actions and domain axioms.
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Extensions to PDDL. One of the key outcomes of the IPC (71) is the intro-

duction of several extensions to PDDL. PDDL2.1 (38), introduced in the 2002

IPC (IPC-3), adds time management and numeric capabilities to PDDL.

After PDDL2.1, PDDL2.2 (33) and PDDL3.0 (41) were presented in subse-

quent editions of the IPC. These extensions add a set of new features on top of

PDDL2.1 : PDDL2.2 introduces derived actions and timed initial literals, while

PDDL3.0 emphasizes the importance of plan quality, introducing preferences, soft

constraints and state trajectory constraints.

Finally, the latest PDDL version, PDDL3.1 (64), enriches the language with

SAS+-like (2) task representations. More precisely, PDDL3.1 introduces object

fluents, which are state variables that are neither binary (true/false) nor numeric

(real-valued), but instead are mapped to a finite domain of objects, a flexible

solution inspired by the Functional Strips formalism (39).

2.1.2 Single-agent planning paradigms

Over the last years, single-agent planning has experienced great advances, specifi-

cally in the development of domain-independent planning techniques. Most single-

agent planning systems are defined as search procedures that can be classified ac-

cording to the search space they explore and the direction of the search (44). This

gives rise to a wide variety of single-agent planning paradigms.

The next subsections describe in detail the single-agent planning paradigms

that have influenced this PhD thesis to some extent, namely state-based and

partial-order planning. We also briefly describe other relevant search paradigms.

2.1.2.1 State-based planning

The simplest single-agent planning methods are state-based search algorithms (44).

As formalized in section 2.1, state-based planners assume that the world can be
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described through a finite number of states (see Definition 2.1), and define a plan

as a sequence of actions whose application over the initial situation of the world

leads to a certain state. Most state-based planners are categorized as forward-

chaining search algorithms, since they develop solution plans departing from the

initial state of the task.

In most cases, state-based search algorithms are guided by a node-selection

heuristic function that ranks the open nodes of the search tree according to their

desirability. One of the most effective mechanisms to devise heuristic functions

in state-based planning focuses on the delete-relaxation of the planning task; that

is, neglecting the DEL(α) effects of the actions α ∈ A. Generally, a heuristic

function estimates the quality of a plan Π by solving the relaxed planning task

from the state that results from the application of the sequence of actions in Π.

Nowadays, state-based planning remains as the most popular search paradigm

in single-agent planning. Many state-based planners are among the most efficient

single-agent planners, thanks to the use of accurate heuristic functions that allow

for a precise and efficient exploration of the state space.

The Heuristic Search Planner (HSP) (9) is one of the first state-based systems

that resort to domain-independent heuristic search. More precisely, HSP uses a

weighted A* search scheme by which a plan Π is evaluated through a function

f(Π) = g(Π) + w ∗ hadd(Π). g(Π) represents the cost of the current plan Π, while

hadd(Π) estimates the cost of reaching the goal state G from Π by means of an

additive heuristic.

The additive delete-relaxation heuristic hadd evaluates a plan Π by indepen-

dently calculating the cost of reaching a goal g, cost(g|Π), for each g ∈ G.

Then, hadd(Π) is obtained by adding up the resulting costs; that is, hadd(Π) =∑
g∈G cost(g|Π).
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The Fast Forward planning system (FF) (54) is one of the most influential

approaches to state-based planning. FF introduces the Enforced Hill Climbing

search algorithm, which searches exhaustively for nodes with a better heuristic

value than the previous best node. Additionally, FF presents hFF , a heuristic

estimator based on the concept of Relaxed Planning Graph (RPG) (8). Given a

plan Π, hFF devises a plan that attains the relaxed planning task departing from

the state associated to Π. hFF constitutes one of the most relevant results in

heuristic planning to date.

The previous planning systems established heuristic search as the most usual

approach to tackle state-based planning. However, most planning systems today

are sophisticated tools that combine heuristic search with additional techniques to

increase the efficiency of the search.

Fast Downward (FD) (50) is a heuristic-based planner that uses a multi-valued

representation for the planning tasks, instead of the more common propositional

representation. FD makes use of SAS+-like (2) state variables to model the facts

that conform states. For each state variable, FD infers its associated Domain

Transition Graph (DTG), a structure that reflects the evolution of the value of

a variable according to the actions of the task. The information of the DTGs

is compiled into the Causal Graph, which displays the dependencies between the

different state variables. FD applies a best-first multi-heuristic search, alternating

in an orthogonal way hFF and hCG, a heuristic estimator calculated by means of

the Causal Graph.

The LAMA planner (95) is one of the first works to apply landmarks in order

to improve the accuracy of the heuristic search. A landmark is a fact that holds at

some point in every solution of a planning task. LAMA is built upon FD and reuses

its multi-heuristic search strategy to alternate a landmark-based estimator and the
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well-known hFF heuristic. LAMA is still one of the top-performing single-agent

planning systems.

2.1.2.2 Partial-Order Planning

State-based planners apply a total-order approach; i.e., the actions in a plan are se-

quentially executed in the same order in which they are obtained. If a state-based

planner chooses a wrong action, it has to introduce another action to undo the

effects of the first one. As opposite to state-based models, the POCL (Partial Or-

der Causal Link) Partial-Order Planning (POP) paradigm (3) introduces a more

flexible approach: POP-based planners work over all the task goals simultane-

ously, maintaining partial-order relations between actions without compromising

a precise order among them until the plan’s own structure determines it. This

mechanism, based on deferring decisions during the planning search, is known as

the least commitment strategy (121).

Instead of performing a state-based search, POP models adopt a plan-based

search approach. That is, a POP system builds a search tree in which each node

represents a different partial plan, rather than managing the notion of planning

state. POP is classified as a backward-chaining search approach since it begins the

search by supporting the problem goals, and builds the solution plan backwards.

Definition 2.5. (Partial-order plan) A partial plan is a tuple Π = 〈∆, OR,
CL〉. ∆ is the set of actions or steps in Π. OR is a set of ordering constraints

(≺) over the steps in ∆. CL is a set of causal links over ∆. A causal link is of

the form α
l→ β, where α ∈ ∆ and β ∈ ∆. α

l→ β indicates that there is a literal l

such that l ∈ ADD(α) and l ∈ PRE(β). α is then said to support the precondition

l ∈ PRE(β) through the causal link α
l→ β.

The set ∆ ∈ Π contains two fictitious steps, αi and αf . The effects of αi model

the initial state I, while the preconditions of αf represent the set of goals G.
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An empty partial plan is defined as Π0 = 〈∆0, OR0, CL0〉, where OR0 and

CL0 are empty sets, and ∆0 contains only the fictitious steps αi and αf .

The introduction of new actions in a partial plan may trigger the appearance

of flaws. On the one hand, the plan may contain open conditions, that is, pre-

conditions that are not yet supported through a causal link. Initially, the open

goals of Π0 are the preconditions of αf , that is, the set of goals G. On the other

hand, the causal links of a partial order plan may become unsafe because of the

appearance of threats.

Definition 2.6. (Threat) A threat over a causal link α
l→ β is caused by an

action γ that is not ordered w.r.t. α or β, and l ∈ DEL(γ). That is, γ may

potentially compromise the causal link α
l→ β since it may delete l before the

execution of β, thus making the causal link unsafe (44).

Threats are addressed through the introduction of either an ordering constraint

γ ≺ α (this is called demotion because the causal link is posted after the threat-

ening action) or an ordering β ≺ γ (this is called promotion because the causal

link is placed before the threatening action) (44).

A solution plan for a partial-order planning task is a threat-free partial plan

in which the preconditions of all the actions are supported through causal links;

that is, ∀β ∈ ∆, ∀l ∈ PRE(β), ∃α l→ β, α ∈ ∆.

UCPOP (90) is one of the first and most significant approaches in implementing

a sound and complete POP algorithm. The Versatile Heuristic POP (VHPOP)

(126), loosely based on UCPOP, combines the POP paradigm with some of the

advancements in state-based heuristic planning. More precisely, VHPOP adapts

the hadd additive heuristic to a plan-space backward-chaining context.

Planning systems such as UCPOP and VHPOP put the POP paradigm at the

focus of the planning research in the 1990s. However, POP faces important chal-

lenges related to its lack of scalability, which caused the single-agent planning
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research community to put the emphasis on state-based approaches. The problem

of defining a high-quality heuristic to guide the POP plan-space search remains

unsolved. Currently, there is not a single POP heuristic that can make this process

competitive against the latest state-based planning frameworks (77, 126).

Some recent works, however, have successfully reformulated the classical POP

algorithm as a forward-chaining plan-space search (18). Plans in forward-chaining

POP are built departing from the initial state, which makes it possible to compute

a frontier state from each plan; i.e., the state that results from applying the set of

actions in the plan. The use of frontier states is a critical turning point that allows

these methods to apply effective state-based heuristic functions, which has given

rise to remarkably efficient POP systems, such as OPTIC (6) and FLAP (100).

POP has thus experienced a revival thanks to the novel forward-chaining tech-

niques. Moreover, these techniques are used in other fields, such as temporal

planning and, in particular, distributed and multi-agent planning. This is due to

the flexibility of POP, along with its ability to efficiently handle concurrency (12).

2.1.2.3 Other approaches to single-agent planning

Aside from state-space heuristic search and POP, other search strategies have

been proposed to solve the single-agent classical planning problem. Among these

proposals, we can highlight the following ones:

Planning graph. This technique, firstly introduced in the Graphplan system

(8), compiles a planning graph, a compact structure that encodes all the possible

plans up to a pre-established length. This structure is then used to guide the

search process. Planning graph approaches take a middle ground between state-

based and POP techniques, exploring the search space defined by the planning

graph, rather than the state or plan space.
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The planning graph structure has been of remarkable influence in state-based

heuristic planning, since it is used by the popular hFF estimator to solve the

delete-relaxed problem (54).

Planning as satisfiability. This approach maps the planning task into another

well-known problem for which there exist efficient solvers. More precisely, the task

is translated to a propositional satisfiability (SAT) problem. The task is encoded

as a propositional formula, and then addressed through a SAT solver, which solves

it by determining whether the formula has a model.

The SATPLAN system (61) first devises a planning graph and then translates

its information into a SAT problem, iteratively applying a general SAT solver to

solve it. The solution of the SAT problem is then translated again into a plan.

Hierarchical Task Network (HTN). In HTN planning (35), the objective is

not to attain a set of goals, but to perform a set of tasks. Tasks can be either

primitive (directly solvable through an action) or non-primitive (decomposable

into a set of smaller tasks). The input of the planner includes a set of actions

and a set of methods, which are prescriptions that indicate how to decompose a

particular task. HTN proceeds by progressively decomposing the non-primitive

tasks until only primitive tasks remain.

Nowadays, HTN is one of the more widely-used planning methods for practical

applications (44).
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2.2 Cooperative Multi-Agent Planning

Multi-Agent Planning (MAP) extends automated planning by distributing the

planning task among several entities which work together to devise a competent

joint plan that meets the task goals. This generalization entails some key differ-

ences with respect to the more restrictive single-agent planning approach, such

as the distribution of the task among agents or the coordination of the agents’

activities.

Whereas some approaches to MAP, like Best-Response Planning (58), consider

the problem of planning with competitive and self-interested planning agents, this

PhD thesis focuses on the topic of cooperative MAP. Self-interested MAP involves

using techniques other than the ones used in cooperative planning, such as game

theory, auction systems or preference-based planning.

Despite agents being fully cooperative, the preservation of the agents’ privacy

has arisen as one of the fundamental topics in cooperative MAP, and thus, privacy

is one of the central aspects of this work.

This section first describes a cooperative MAP task to illustrate the additional

challenges MAP presents with respect to single-agent planning. Next, we tackle

the problem of representing a cooperative MAP task and review the most rel-

evant MAP specification languages. Following, we analyze the topic of privacy

preservation in MAP. Afterwards, we describe the main features that characterize

a cooperative MAP framework and classify the most recent approaches. Finally,

we discuss the use of heuristic search in cooperative MAP and briefly review the

existing MAS platforms that facilitate the design of distributed MAP systems.
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Figure 2.2: Example MAP task

2.2.1 Cooperative MAP task characterization

A cooperative MAP task involves several planning entities, or agents, working

together in a shared environment. Agents must devise a joint plan to attain a set

of global objectives or goals. In order to illustrate the features of a MAP task, let

us introduce a brief application example loosely based on Example 1.

Example 2. Consider the transportation task in Figure 2.2, which includes three

different agents. There are two transport agencies, ta1 and ta2, each of them

having a truck, t1 and t2, respectively. The two agencies work in two different

geographical areas, ga1 and ga2, respectively. The third agent is a factory, f ,

which is placed in the area ga2.

To manufacture products, factory f requires raw materials, rm, that are gath-

ered from area ga1. In this task, agents are specialized: ta1 and ta2 have the same

capabilities, but they act in different geographical areas; i.e., they are spatially dis-

tributed agents. Moreover, the factory agent f is functionally different from ta1

and ta2.

The goal of this task is for f to manufacture a final product fp. In order

to carry out the task, ta1 will send its truck t1 to load the raw materials rm,

located in l2, and then transport them to a storage facility, sf , that is placed in

the intersection of both geographical areas. Then, ta2 will complete the delivery by

using its truck t2 to transport rm from sf to f , which will in turn manufacture

the final product fp. Therefore, this task involves three specialized agents that are

spatially and functionally distributed and must cooperate to accomplish a common

goal.
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Example 2 emphasizes most of the key elements of a cooperative MAP task.

First, the planning actions are distributed among the planning agents. The spatial

and/or functional distribution of planning agents gives rise to specialized agents

that have different knowledge and capabilities.

Agent specialization entails the need of cooperation, since agents are forced to

interact in order to solve the task goals. The complexity of a MAP task is often

described by means of its coupling level (14), that is, the number of interactions

that arise among agents during the resolution of a MAP task. According to this

parameter, cooperative MAP tasks can be classified as follows:

� Loosely-coupled tasks: these tasks require few to none interactions among

agents. Consider a MAP version of the well-known Satellite domain: each

satellite captures images in isolation, using its equipped instruments. Inter-

actions in this domain are not required, since agents do not need to cooperate

to fulfill the task goals (positive interactions) and their actions do not prevent

other agents from attaining other goals (negative interactions).

� Tightly-coupled tasks: in these tasks, a large number of interactions among

agents is required to obtain a solution plan. In Example 2, agent f cannot

manufacture the final product fp unless ta2 delivers the raw materials rm to

f , while agent ta2 requires ta1 to deliver rm in sf . Therefore, interactions

among ta1, ta2 and f are necessary to solve this particular MAP task.

The coupling level is a key aspect of MAP tasks that determines the design

of many approaches to MAP: some methods are more effective or even limited to

loosely-coupled tasks, while others take a more general approach and are equally

effective regardless of the coupling level of the task.

Another basic aspect of MAP tasks, which is not directly related to the cou-

pling level, is the presence of cooperative goals; i.e., goals that cannot be solved
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individually by any agent because their resolution involves the cooperation of spe-

cialized agents. The task in Example 2 has a cooperative goal, since none of the

agents can achieve the manufacturing of the final product by itself. Instead, they

must make use of their specialized capabilities and interact with each other to

deliver the raw materials and manufacture the final product.

The distribution of the task information in MAP also stresses the issue of

privacy, which is one of the basic aspects that should be considered in multi-agent

applications (101). Since the three parties involved in Example 2 are specialized

in different functional or geographical areas of the task, most of the information

managed by factory f is not relevant for the transport agencies and vice-versa. The

same occurs with the transport agencies ta1 and ta2. Additionally, agents may

not be willing to share the sensitive information of their internal procedures with

the others. For instance, ta1 and ta2 are cooperating in this particular delivery

task, but they might be potential competitors since they work in the same business

area. Therefore, agents in MAP want to minimize the information they share with

each other, either for strategic reasons or simply because it is not relevant for the

rest of the agents in order to address the planning task.

2.2.2 Representation in cooperative MAP

The representation of a cooperative MAP task involves modelling several elements

that are not present in single-agent tasks. Therefore, single-agent planning speci-

fication languages are not expressive enough to fulfil the requirements of a MAP

task, which stresses the need of specialized task specification languages for MAP.

Some MAP frameworks include a centralized entry point that distributes the

MAP task among agents; however, this is not a feature shared by each and every

MAP model. Particularly, fully-distributed approaches to MAP require a factored

input, such that each agent receives its own, independent domain and problem.
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Additionally, the representation of the individual tasks should include informa-

tion regarding agents’ privacy, so that the agent’s model distinguishes among the

information that can and cannot be shared with other planning entities.

Among the existing MAP languages, MA-PDDL1 stands out as the first at-

tempt to create a de facto standard specification language for cooperative MAP

tasks. MA-PDDL extends and adapts PDDL3.1 to a MAP context, and allows for

factored (:factored-privacy requirement) and unfactored task representations

(:unfactored-privacy requirement), which can be easily adopted by most of the

existing MAP frameworks.

In order to model the task in Example 2 with MA-PDDL, we use the factored

specification, so that each agent receives two independent files that encode its

domain and problem specification. For the sake of simplicity, we show fragments

of the MA-PDDL specification only for agents ta1 and f , since ta1 and ta2 are

functionally equivalent.

The next two fragments of code define the type hierarchy of agents ta1 and f ,

respectively:

(:types area location package agency - object

truck place - location)

The type hierarchy for ta1 includes an extra type with respect to Example 1,

agency, which is used to define the transport agencies.

(:types location package product - object

truck place - location

factory - place)

Agent f is defined through the type factory, which is a subtype of place since

f acts also as a place reachable by a truck.

1Please refer to http://agents.fel.cvut.cz/codmap/MA-PDDL-BNF-20150221.pdf for a com-

plete BNF definition of the syntax of MA-PDDL.
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The following code excerpts define the predicates used by agents ta1 and f ,

respectively:

(: predicates

(at ?p - package ?l - location)

(: private

(link ?p1 - place ?p2 - place)

(owner ?a - agency ?t - truck)

(in -area ?p - place ?a - area)

(pos ?t - truck ?l - location ))

)

The domain specification for agent ta1 includes the public predicate at, which

models the position of the packages. The predicates link, owner, pos and

in-area are defined as private, which prevents agency ta1 from disclosing in-

ternal information, such as the places that compose the agent’s working area, as

well as the connections among them, the trucks that agency ta1 possesses and

their locations.

(: predicates

(manufactured ?p - product)

(: private

(at ?p - package ?l - location)

(pending ?p - product ))

)

Predicates for agent f also include at, so that the factory is notified about

the arrival of packages. This predicate is defined as private since the factory

does not need to inform the rest of agents about the position of the packages.

The manufactured predicate is defined as public, so that the rest of agents know

whether the task goal is fulfilled. On the other hand, pending is defined as private

in order for the factory f to occlude its pending orders.

Agents in Example 2 are specialized and, among other differentiating elements,

they have different planning operators. Three different operators, load, unload
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and drive, are defined for transport agencies ta1 and ta2. The following fragment

of code shows the encoding of the drive operator:

(: action drive

:parameters (?a - agency ?t - truck ?p1 - place ?p2 - place)

:precondition (and (in-area ?p1 ?a)(in-area ?p2 ?a)(owner ?a ?t)

(pos ?t ?p1)(link ?p1 ?p2))

:effect (and (not (pos ?t ?p1))(pos ?t ?p2))

)

The drive operator of agent ta1 is used to drive a truck between two different

places. The movements of ta1’s trucks are limited to its working area, ga1,

through the in-area preconditions. ta1 can only drive a truck if it is the owner

of the truck.

The factory f can only apply the manufacture operator:

(: action manufacture

:parameters (?f - factory ?rm - package ?fp - product)

:precondition (and (at ?rm ?f)( pending ?fp))

:effect (and (not (pending ?fp))( manufactured ?fp))

)

This operator allows the factory f to manufacture pending products. The

operator requires a package of raw materials to be delivered to the factory in

order for it to be executed.

The problem block starts with the definition of the task objects for each agent.

(: objects

ta1 - agency

ga1 - area

t1 - truck

rm - package

l1 l2 sf - place)

The transport agency ta1 has knowledge about its truck t1 along with the

places within its working area ga1 and the package rm.
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(: objects

rm - package

fp - product

f - factory)

The objects known to agent f include the package rm and the product fp.

Next, we show the initial state specification for agents ta1 and f , respectively:

(:init

(pos t1 l1)(at rm l2)(owner t1 ta1)

(link l1 l2)(link l2 l1)(link l1 sf)(link sf l1)(link l2 sf)

(link sf l2)(in -area l1 ga1)(in -area l2 ga1)(in -area sf ga1)

Agent ta1 knows the initial state of its working area ga1, which includes the

position of its truck t1 and the package rm, as well as the links among the

places within ga1: l1, l2 and sf.

(:init (pending fp))

The initial state of agent f includes a single literal which indicates that the

production of product fp is still pending.

Finally, the :goal section, which is common to the three participating agents,

includes a single global goal indicating that the product fp must be manufactured

for the MAP task to be completed:

(:goal (manufactured fp))

2.2.2.1 MAP task specification languages

As reviewed in section 2.1.1.1, there is a large body of research on planning task

specification languages. Since planning has traditionally been regarded as a cen-

tralized problem, the most popular definition languages, such as the different ver-

sions of PDDL (the Planning Domain Definition Language), are designed exclu-

sively to model single-agent planning tasks.
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MAP introduces a set of requirements that are not present in single-agent

planning, such as privacy or specialized agents, which motivates the development

of specification languages for multi-agent planning.

MA-STRIPS (14), which was designed as a minimalist multi-agent extension

to STRIPS (36), is one of the most common MAP languages in the literature.

MA-STRIPS enables the definition of a set of planning agents and provides each

entity with the actions it can execute.

The MAP framework introduced in this PhD thesis presents several advanced

features that motivated the definition of our own PDDL-based specification lan-

guage (the language syntax is detailed in (115)), instead of using MA-STRIPS .

Since we model the world states through state variables instead of predicates,

our MAP language is based on PDDL3.1 (64), the latest version of PDDL. Un-

like its predecessors, which model planning tasks through predicates, PDDL3.1

incorporates state variables that map to a finite domain of objects of the task.

Due to the inherently distributed nature of the MAP model presented in this

PhD thesis, we use factored task descriptions in our language; that is, each agent

receives a separate domain and problem description, which define the typology of

the agent and its local view of the MAP task, respectively. The domain description

maintains the structure of a regular PDDL3.1 domain, while the problem is ex-

tended with an additional :shared-data section, which specifies the information

that an agent can share with the rest of participants.

As discussed in the previous section, the recently introduced MA-PDDL aims

to be the de facto standard MAP specification language. MA-PDDL is derived

from PDDL3.1 and includes specific constructs to define the private information

managed by each agent. MAP tasks can be defined in a factored or unfactored

way, allowing a wide variety of planners to support MA-PDDL.
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Regarding expressiveness, our MAP language and MA-PDDL are very simi-

lar. For this reason, our framework was recently updated to support both our

specification language as well as the factored version of MA-PDDL.

2.2.3 Privacy in cooperative MAP

The MAP task of Example 2 includes two different agents, ta1 and ta2, that

represent two transport agencies. Whereas both agents are working cooperatively

in this particular task, they are likely not willing to reveal sensitive information

on their internal procedures to a potential competitor.

Therefore, Example 2 emphasizes the role of privacy as one of the basic as-

pects that should be strengthen in distributed MAP. The topic of privacy was not

raised until recently since early MAP approaches focused in other aspects, such as

information distribution (80).

However, privacy is nowadays one of the main research topics in MAP. The

current state-of-the-art literature reveals a growing effort on the analysis, formal-

ization and usage of privacy as a means to improve the performance of MAP

systems. Most of the recent MAP models are specifically designed to preserve

agents’ privacy (11, 72).

Privacy in MAP can be discussed from a theoretical or a practical perspective.

There exist various theoretical privacy models which present different definitions

and usage of private information. On the other hand, the implementation of

privacy in MAP approaches also feature significant distinctiveness.

2.2.3.1 Theoretical privacy models

Privacy in MAP can be applied to both actions and literals (preconditions and

effects). A private literal or action is ideally known only to an agent or a subset

of agents. In Example 2, the literal (pos t1 sf) indicates that the truck t1 is
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in location sf, as modelled in section 2.2.2. Agent ta2 is aware of this situation,

since the public location sf is known to both ta1 and ta2. However, ta2 will ignore

the position of t1 whenever the truck is placed at either l1 or l2, because both

locations are private to agent ta1. In other words, the literal (pos t1 sf) is de-

fined as public in Example 2, while (pos t1 l1) and (pos t1 l2) are considered

private to ta1.

We identify two different theoretical privacy models existing in the literature:

� MA-STRIPS: The MA-STRIPS model (14) is the currently most extended

privacy scheme. Given an agent i, a literal is said to be private to i if it

is required and affected only by the actions of i. An action α is thus said

to be private to agent i if all its preconditions and effects are private to i.

Otherwise, α is said to be public and is known to all the participants in the

task.

However, public actions may include some private preconditions and effects.

We refer to the public projection of an action α as an abstraction αp that

contains only the public preconditions and effects of α. In this latter case,

agent i will reveal the projection αp to the rest of participants rather than

α to enforce privacy.

� Our model: The MAP model introduced in this PhD thesis presents some

key differences with respect to MA-STRIPS, since it defines a pairwise privacy

model; that is, a literal can be either public, private to an agent, or known

to a subset of agents.

Given an action α of an agent i, the projection of α received by two agents j

and k may then differ according to the pairwise privacy constraints between

i and the other two agents.

40



2.2 Cooperative Multi-Agent Planning

MA-STRIPS Our modelPrivate

Public

i – k

i – j

j – k

i

j k

i

j k

Figure 2.3: Privacy in MA-STRIPS and our model

Figure 2.3 illustrates the differences between the MA-STRIPS and FMAP pri-

vacy models. The Venn diagram represents the information known to three agents

i, j and k. MA-STRIPS considers that the public information is known to all the

agents that take part in the MAP task. On the contrary, FMAP only labels as

public the information that is shared by all the agents in the task (that is, the

central area of the Ventt diagram). The elements known to only two of the agents

are private to the third participating agent.

2.2.3.2 Practical application of privacy

Besides the theoretical privacy models, recent studies also discuss the practical

privacy guarantees of a MAP algorithm. The work in (13) analyzes the implemen-

tation of privacy in current MAP methods and concludes that most of the existing

frameworks offer a weak form of privacy that allows an agent to infer or deduce

private information that is not explicitly transmitted by other agents.

Authors in (13) and (103) suggest a four-level privacy classification to analyze

the privacy models of current MAP approaches:

� No privacy: Most of the earlier approaches to MAP do not implement any

degree of privacy and allow agents to share whole search states. In some
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cases, private data is transmitted but unused, and thus, these methods can

be easily extended to support a weak notion of privacy (79).

� Weak privacy: A MAP system is said to be weakly private if agents do not

communicate the private values of a variable to other agents during search

(13). Additionally, agents in a weakly private MAP framework only reveal

the public projection of their own actions.

A privacy setting is considered weak when agents may infer the existence

and properties of private variables, values, and action preconditions, from

information communicated during the resolution of the MAP task.

For example, let us consider the private literal (at rm t1) in Example 2,

which describes the location of the package rm. This literal is private because

truck t1 is property of agent ta1, and thus, its status is only known by such

agent. Suppose that rm is located in sf in one state, but it disappears in

the following state. This can lead the rest of agents to deduce that there is

some private literal indicating the presence of an undisclosed resource used

by ta1 to transport the package.

– Obfuscation: The simplest way to achieve weak privacy is to encrypt

the private values of a variable in the public projection of the associated

actions. Since the private values of an agent do not appear in the

preconditions or effects of other agents’ actions, obfuscation does not

affect the actions’ applicability.

This technique implies the substitution of private information by unique

identifiers in the public projection of each action, effectively preventing

the access of other agents to the private data (11).
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� Object cardinality privacy: A MAP algorithm preserves object cardinal-

ity privacy if, given an agent i and a type t, no other agent can infer the

value of the cardinality of type t of agent i from the set of messages sent by

agent i.

In other words, this level of privacy strongly preserves the number of objects

of a given type t that an agent i possesses, thus representing a middle ground

between the weak and strong privacy settings.

Occluding the cardinality of private objects is motivated by real-world sce-

narios. Consider, for example, the logistics task in Example 2.2. One can

assume that the transport agencies that take part in the MAP task, ta1 and

ta2, know that packages are delivered using trucks. However, agents would

likely like to hide sensitive information related to their capabilities, such as

the number of trucks they have, or their transportation routes.

� Strong privacy: A MAP algorithm is said to be strongly private if no

agent can deduce private data other than the information related to its own

actions’ description, the public projection of other agents’ actions, and the

public projection of the solution plan (13). More precisely, a variable or a

value is said to be strongly private if the rest of agents cannot deduce its

existence from the information they possess.

Strong privacy implies considering additional factors beyond the MAP algo-

rithm itself. The amount of information that can be acquired by other agents

directly depends on the nature of the communication channel (synchronous,

asynchronous, lossy), as well as the features and computational power of the

agents.

As it will be discussed in section 2.2.4, the vast majority of the state-of-the-art

MAP methods can be classified in the no privacy and weak privacy levels. Earlier
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approaches to MAP do not consider privacy at all, while the most recent proposals

implement some form of weak privacy, using mostly obfuscation to occlude the

private information in the public projection of the actions and states.

The recent DPP planner (103) is the first MAP system to offer object cardinal-

ity privacy guarantees, while SECURE-MAFS (13), an upgraded version of MAFS

(79), is the only method in the literature that supports strong privacy.

2.2.4 Cooperative MAP systems taxonomy

As described in section 2.2.1, cooperative MAP tasks involve some additional chal-

lenges with respect to the more compact single-agent planning task formulation,

such as information distribution, specialized agents, coordination or privacy. The

state of the art in cooperative MAP presents a wide variety of approaches that can

be categorized according to the techniques they use to address these challenges.

In order to define a MAP taxonomy, we first enumerate the most relevant

aspects according to which MAP approaches can be classified:

� Centralized/distributed planning: MAP is concerned with planning by

multiple agents (distributed MAP) or planning for multiple agents by means

of a single planning entity (centralized MAP). In general, centralized MAP

approaches leverage the distributed structure of the MAP tasks to improve

the efficiency of the single-agent planning process. In contrast, agents in

distributed MAP carry out planning jointly. For this reason, distributed

MAP involves research topics such as the coordination of agents, the design

of privacy-preserving planning methods, and the development of distributed

heuristic functions.

� Coordination of agents: Distributed MAP can be viewed as the prob-

lem of coordinating agents in a shared environment where information is
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distributed (27). Coordination can be applied at different points of the dis-

tributed MAP process. Some approaches perform coordination before plan-

ning, distributing the task or allocating the goals among the agents. Other

models follow a plan merging approach; that is, agents apply local planning

and the individual plans are coordinated afterwards into a global solution

plan that addresses the MAP task. Finally, other frameworks interleave the

planning and coordination activities, so that agents jointly build a solution

plan in a coordinated fashion.

� Underlying planning paradigm: Most MAP approaches reuse single-

agent planning technology adapting it to a distributed context. Many MAP

frameworks are underpinned by state-based planning, while others are based

on approaches such as partial-order planning (POP), satisfiability or plan-

ning as a constraint satisfaction problem (CSP).

� Privacy preservation: Besides the need for information distribution, pri-

vacy is also one of the main motivations to adopt a MAP approach. Privacy

entails coordinating agents without making sensitive information publicly

available. Whereas this aspect was initially relegated in MAP (119), the

most recent approaches tackle this issue through the development of robust

privacy-preserving algorithms. As described in section 2.2.3, the privacy

guarantees offered by a MAP algorithm can be classified in four levels, rang-

ing from no privacy to strong privacy preservation.

� Local/global heuristics: Most of the state-of-the-art approaches to MAP

use heuristic search to improve the overall performance of the planning pro-

cess. However, heuristic functions are usually locally applied by each agent,

which diminishes the accuracy of the estimates because of the limited view

of the agents over the MAP task. One of the current challenges of MAP
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focuses on the development of global heuristics to match the accuracy of

single-agent estimators.

Table 2.1 displays the main features of the state-of-the-art cooperative MAP

approaches discussed in this section. The MAP taxonomy is organized following

the topics of information distribution and coordination: first, we revise the most

relevant centralized approaches to MAP, and then, we classify the distributed

techniques with special emphasis on the particular combination of planning and

coordination of each planner.

Approach Distribution Coordination Paradigm Privacy Heuristics

MA-STRIPS Centralized Interleaved CSP+Planning Weak -

TFPOP Centralized Interleaved Forward POP No -

ADP Centralized Agent decomposition State-based No Local

DPP Centralized Interleaved State-based
Object

Local
cardinality

MAPR Distributed Goal allocation State-based Weak Local

µ-SATPLAN Distributed Goal allocation dis-SAT No -

Planning First Distributed Plan merging dis-CSP No -

MAFS Distributed Interleaved State-based No Local

MAD-A* Distributed Interleaved State-based No Local

SECURE-MAFS Distributed Interleaved State-based Strong Local

GPPP Distributed Interleaved State-based Weak Global

MAP-POP Distributed Interleaved POP Weak Global

FMAP Distributed Interleaved Forward POP Weak Global

MH-FMAP Distributed Interleaved Forward POP Weak Global

Table 2.1: Summary of the state-of-the-art MAP approaches

Centralized MAP. Several works in the literature apply a centralized approach

to MAP, taking advantage of the distributed structure of a MAP task to maximize

the performance of the planner. Centralized MAP features two basic operations: a

planning process to solve the local planning tasks of the agents and a coordination
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procedure that combines the local solutions into a global plan that achieves the

goals of the MAP task.

Centralized MAP assumes a single planning entity with complete knowledge

of the task, which is rather unrealistic if the agents involved in the task have sen-

sitive private information that they are not willing to disclose (99). For instance,

transport agencies in Example 2 wish to conceal the information regarding their

internal processes and business strategies; therefore, a centralized setting is not an

acceptable solution.

Authors in (14) introduce MA-STRIPS, an early centralized MAP approach that

combines CSP and planning, aimed to efficiently solve loosely-coupled tasks. MAP

tasks are encoded through the homonymous MA-STRIPS language (see section

2.2.2.1). MA-STRIPS classifies actions and literals as either public or internal, thus

establishing the first MAP privacy approach in the literature (see section 2.2.3).

MA-STRIPS identifies the coordination points of the task and uses a CSP to

determine the public actions that can be executed in these points. Each agent

solves its internal (private) planning problem defined between coordination points,

which finally results in a sound solution plan for the MAP task.

TFPOP (67) is a centralized MAP approach that plans for multiple agents

using a forward-chaining POP search scheme. TFPOP combines the flexibility of

backward-chaining POP and the performance of forward search.

The Agent Decomposition-based Planner (ADP) (22) aims to exploit the multi-

agent structure inherent to some planning tasks to speed up centralized planning.

First, an automated process that decomposes STRIPS -like problems into MAP

tasks is run. Then, a state-based centralized plan synthesis procedure is applied.

In each iteration, ADP determines a set of subgoals that can be attained from

the current state by one of the agents. A search process, guided through the

well-known hFF heuristic (54), is carried out to find a plan that achieves those

47



2. STATE OF THE ART IN AUTOMATED PLANNING

i j n

...
!i !j

!

Pre-planning coordination (goal allocation)
{g0,...,gi} {gi+1,...,gj} {gm,...,gn}

Post-planning coordination (plan merging)

!i
!j

i j n

Coordination

!n

! Solution
plan

Solution
plan

Interleaved planning and coordination

i j

"0

"1 "2 "3

"0

"3 "4 "5

...

Figure 2.4: Planning and coordination schemes in distributed MAP

subgoals, which results in a new state. The process is repeated until a solution is

found.

The DP-Projection Planner (DPP) (103), is a centralized MA-STRIPS planner

that uses the Dependency-Preserving (DP) projection, a novel and accurate form

of public projection. The DP projection is used by the single-agent planner Fast

Downward to create a high-level plan. Then, the multi-agent solution plan is

completed by extending the high-level plan with private agents’ actions with the

FF planner. DPP features object cardinality privacy guarantees, and, according to

the results in (103), it is the current top-performing MA-STRIPS planner.

Distributed MAP. The principal aspect of distributed approaches is the com-

bination of planning and coordination, which often determines the typology of

tasks that can be solved by the planner (see Figure 2.4).
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Various MAP models put the emphasis on coordinating agents before start-

ing the planning activity. Pre-planning coordination divides the task among the

agents, so that each agent is endowed with a portion of the MAP task. This is a re-

markably efficient coordination scheme, but its usage may lead to some limitations

in terms of applicability.

Multi-Agent Planning by plan Reuse (MAPR) (11) distributes the task goals

among the agents before planning. Then, agents sequentially launch the state-

based planner LAMA (95). Each agent takes the solution plan of the previous

agent as an input; therefore, the global solution plan is built incrementally (see

top picture in Figure 2.4). Agents weakly preserve privacy by obfuscating the

private information they incorporate into the plan. While MAPR is one of the

best-performing approaches to MAP, its applicability is limited to tasks without

specialized agents or cooperative goals, since it is designed under the assumption

that each stand-alone agent is capable of solving its allocated goals.

Another group of MAP techniques focuses on plan merging. In this approach,

agents perform planning individually, while a subsequent coordination process is

applied to come up with a global solution for the MAP task (see bottom left picture

in Figure 2.4). Plan merging is suitable for solving loosely-coupled tasks in which

agents are capable of achieving the problem goals by themselves (20). Therefore,

plan merging is an appropriate post-planning coordination mechanism to tackle

problems in which agents can solve the different problem goals independently and

the majority of the environment resources are not shared.

However, plan merging presents several limitations. On the one hand, agents

perform planning individually using their local projection of the MAP task. For

this reason, MAP methods based on plan merging lose flexibility against other

MAP proposals. On the other hand, individual planning combined with a post-
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planning coordination strategy is not adequate to solve tightly-coupled problems,

since merging may introduce exponentially many ordering constraints in problems

which require a coordination effort (20).

Additionally, plan merging is not an effective method for attaining cooperative

goals since this resolution scheme generally assumes that each agent is able to solve

a subset of the task’s goals by itself. However, some approaches use plan merging

to coordinate local plans of specialized agents. In this case, the effort is placed on

discovering the interaction points among agents through the public information

that they share (80).

Planning First (80) is a MA-STRIPS planner built upon the combination of

CSP and Planning introduced in (14). Planning First is designed to tackle loosely-

coupled tasks with specialized agents in a fully-distributed fashion. Agents indi-

vidually carry out planning through a state-based planner, and afterwards, the

resulting local plans are coordinated by solving a distributed CSP (56).

µ-SATPLAN (28) extends the satisfiability-based planner SATPLAN (61). The

MAP task goals in µ-SATPLAN are a priori distributed among the agents. Sim-

ilarly to MAPR (11), µ-SATPLAN performs a sequential approach to plan coor-

dination: agents perform individual planning in order, so that each participant

takes the previous agent’s solution as an input, thus progressively generating a

coordinated plan. Authors confirm that µ-SATPLAN is limited to loosely-coupled

tasks without cooperative goals, since it is assumed that each agent can solve its

goals by itself (28).

The work in (20) introduces a distributed coordination framework based on

POP that addresses the interactions that emerge between the agents’ local plans.

This framework, however, does not consider privacy. The proposal in (113) is

based on the iterative revision of the agents’ local plans. Agents in this model

cooperate by mutually adapting their local plans, with a focus on improving their
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common or individual benefit. This approach also ignores privacy and assumes

agents to be fully cooperative. The method in (120) uses multi-agent plan repair

to solve inconsistencies among the agents’ local plans while maintaining privacy.

A third approach to MAP interleaves the planning and coordination activi-

ties, which results in a unified vision of cooperative MAP. Intertwining planning

and coordination gives rise to general-purpose methods that are not constrained

to loosely-coupled tasks, thus being able to efficiently tackle complex tasks with

specialized agents and cooperative goals.

In general, MAP techniques that interleave planning and coordination are not

as efficient as plan merging models at solving loosely-coupled tasks, since coordi-

nation is a costly process that usually has a negative impact in the computational

execution time of the planning tasks (22). Nevertheless, the interleaved scheme

offers an appropriate trade-off between efficiency and generality, solving a much

wider range of MAP tasks.

One of the first domain-independent MAP models is the Generalized Partial

Global Planning (GPGP) framework (68). Agents in GPGP have a partial view of

the world and communicate their local plans to the rest of the agents, which in turn

merge this information into their own partial global plan in order to progressively

improve it.

The Multi-Agent Forward Search (MAFS) (79) is a distributed forward-chaining

privacy-preserving MA-STRIPS system in which agents individually explore a state

space. An agent in MAFS maintains an independent open list of states and expands

the best one according to its local heuristic estimates. To optimize the search, the

resulting states are only shared if they are relevant to other agents (see bottom

right picture in Figure 2.4); that is, an agent i sends a state s to an agent j if j
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has at least one action whose public preconditions hold in s, and the action that

gave rise to s is public.

Authors in (79) also introduce an optimal variation of MAFS, the Multi-Agent

Distributed A*, MAD-A*. In this case, an agent selects for its expansion the state

that minimizes f = g + h, where h is estimated through an admissible heuristic.

MAD-A* is proven to be cost-optimal if all the actions that achieve some goal

condition are considered public.

Agents in both MAFS and MAD-A* share complete search states, but these

approaches can be easily extended to support privacy, since agents do not take

advantage of the states’ private information. For this reason, a third version

of MAFS, SECURE-MAFS (13), focuses on security, being the first work in the

MAP literature to guarantee a form of strong privacy. Authors in (13) prove that

agents in SECURE-MAFS cannot deduce any private information from the data

they receive from other agents duringp planning.

The Greedy Privacy-Preserving Planner (GPPP) (72) builds upon MAFS and

noticeably improves its search performance through the use of a global landmark-

based heuristic function. In GPPP, agents effectively preserve privacy by masking

the private information in the shared states through private state identifiers.

The three versions of the MAP framework introduced in this PhD thesis, MAP-

POP, FMAP and MH-FMAP, apply a fully-distributed MAP scheme that inter-

leaves planning and coordination, performing a general multi-agent search. In

our model, the participants explore a distributed search tree in which nodes are

partial-order plans whose actions are contributed by different agents. In MAP-

POP, agents perform an incomplete POP search, while FMAP and MH-FMAP

apply a sound and complete forward-chaining POP to progressively develop and

coordinate a joint plan until its completion. Our MAP approaches weakly preserve
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privacy by occluding the private information in the partial plans exchanged by the

agents.

2.2.5 Heuristic search in cooperative MAP

Many of the aforementioned state-of-the-art cooperative MAP frameworks apply

some form of heuristic search to guide the planning process. Since agents usually

have a limited knowledge of the task, the quality of an agent’s local estimates is

rather poor in comparison to the global heuristics applied in single-agent planning.

A global heuristic in MAP is the application of a heuristic estimate to the

MAP task carried out by several agents which have a different knowledge of the

task and, possibly, privacy requirements.

The development of global estimators constitutes one of the current challenges

in cooperative MAP (78). This is caused by the inherent features of MAP scenar-

ios, which introduce additional requirements to the heuristic evaluation and make

it an arduous task:

� The data of a MAP task is usually distributed across the agents; unlike

single-agent planning, in MAP there does not exist an entity that centralizes

the information of the task. Hence, a robust communication protocol among

the agents is required to compute global heuristic estimates.

� Most MAP models deal with agents’ privacy. The communication protocol

must then guarantee that agents are able to calculate heuristic estimates

without revealing sensitive private information.

In some works, the features of the planning model force the application of a

local heuristic search scheme. For instance, in MAPR (11), goals are allocated to

the agents, which then solve their subtasks iteratively, so that the solution of an
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agent is communicated to the next participant. Thus, the heuristic functions used

by MAPR, hFF (54) and hLand (95), are applied from a local standpoint.

Local search heuristics have also been used in MAP approaches whose planning

model is suitable to accommodate global heuristic functions. Agents in MAFS and

MAD-A* (79) generate and evaluate search states locally. An agent shares only the

states that are relevant to other planning entities, along with their local heuristic

values. When an agent receives a state from another participant, it performs a

local evaluation of the state and then it chooses between or combines the heuristic

value it has calculated and the value it received along with the state.

In (78), authors test MAD-A* with two optimal heuristic functions, LM-Cut

(51) and merge-and-shrink (53), applied locally by each agent. Despite using only

local estimators, MAD-A* is proven to be cost-optimal when using the aforemen-

tioned admissible heuristics.

Authors in (106) introduce a multi-agent design of the hFF heuristic. This

adaptation, based on the use of distributed Relaxed Planning Graphs (dis-RPGs)

(127), yields the same results as the original single-agent design of hFF (54). How-

ever, the construction and exploration of a dis-RPG entails many communications

between agents, resulting in a computationally expensive approach.

The work in (107) presents the distributed design of several relaxation heuris-

tics, namely hadd, hmax and a relaxed version of hFF . In this work, authors replace

the dis-RPG by an exploration queue, a more compact structure that significantly

reduces the need of communications among agents. The distributed version of

hFF , however, does not yield the same results as the original single-agent version.

Finally, GPPP (72), introduces a distributed version of a privacy-preserving

landmarks extraction algorithm for MAP. The heuristic value of a plan is calculated

as the sum of the local heuristic estimates computed by each agent. GPPP improves
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the performance of the MA-STRIPS-based planner MAFS thanks to the accurate

estimates provided by this landmark-based heuristic (79).

This PhD thesis thoroughly explores the topic of distributed heuristics, intro-

ducing two different global estimators, hDTG and hLand (117). The first heuristic,

hDTG, estimates quality of a plan by building a relaxed plan between the frontier

state (6) of such plan and the goal state. The relaxed plan is calculated by finding

the shortest paths between values of the frontier state and the goals in the Domain

Transition Graph (49) associated to each state variable of the MAP task.

Additionally, we introduce a fully-distributed landmark-based heuristic, hLand,

that estimates the quality of a plan by taking account of the landmarks that are

not satisfied in such plan.

Both heuristics are combined through a novel multi-heuristic approach that al-

ternates the heuristic estimators in an orthogonal fashion, dramatically improving

the performance of the search procedure.

2.2.6 MAS platforms

In order to develop fully-distributed MAP systems, it is necessary to provide the

planning agents with basic operation and communication capabilities, so that they

can interact with each other and work cooperatively. Over the last years, some

relevant works in frameworks for the design of MAP systems have been published.

The work in (123) presents a complete MAP architecture for large-scale prob-

lem solving, which organizes agents into planning cells committed to a particu-

lar planning process. The TAEMS domain independent coordination framework

(68) provides agents with planning capabilities, and applies the GPGP method

to coordinate them. The domain-independent multi-agent system infrastructure

RETSINA (110) introduced a specific planning component (86). Once integrated
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into the agents’ internal structure, this component provides them with planning

capabilities.

Aside from the frameworks exclusively designed to support MAP, there is a

growing body of work on general-purpose middlewares for the design of Multi-

Agent Systems (MAS). One of the basic requirements to build a MAS is to de-

fine a standard communication language. The Foundation for Intelligent Physical

Agents (FIPA) provides a collection of standards to promote the interaction of

heterogeneous agents and the services that they can represent. In particular, the

FIPA Agent Communication Language (ACL) (81) has become the de facto stan-

dard for communicating agents in most MAS platforms.

The Java Agent DEvelopment Framework (JADE) (5) is a Java-based MAS

platform that provides the sets of services, conventions and knowledge required

by agents to interact with each other, including an asynchronous message passing

mechanism and a yellow-pages service, among other features that facilitate the

development of distributed frameworks, such as a MAP system.

The MAP framework introduced in this PhD Thesis is built upon Magentix2

(37), a general-purpose platform for open MAS. Magentix2 provides a variety of

services and tools for the optimized management of open MAS, such as a commu-

nication infrastructure that allows agents to interact via the FIPA ACL language.
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Selected papers

This chapter compiles the most relevant research papers published during the

development of this PhD thesis. The articles are chronologically listed and provide

a thorough description of the scientific contributions that conform this work.

This chapter is organized as follows: section 3.1 describes the selected articles

and briefly summarizes their contents. The subsequent sections include the full

text of the research articles adapted to the format of this investigation.

3.1 Summary of the selected papers

The results obtained during the development of the present PhD thesis have been

systematically communicated through the publication of a wide range of scientific

papers. This chapter focuses on the impact articles that synthesize the main body

of this work, offering a clear and comprehensive summary of the obtained results.

The next sections arrange these articles according to their date of publication,

which gives a clear idea of the evolution of the research and the main milestones

reached during the development of this PhD thesis.
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An approach to multi-agent planning with incomplete information. Sec-

tion 3.2 presents the full text of our first impact paper, included in the proceedings

of the 2012 20th European Conference on Artificial Intelligence1 (ECAI).

This article offers an overview of our initial approach to cooperative MAP, the

so-called MAP-POP. MAP-POP is a general-purpose approach to MAP capable

of tackling complex tightly-coupled tasks in which agents have different abilities

and an incomplete knowledge of the MAP task. Agents in MAP-POP incorporate

a backward-chaining Partial Order Planning (POP) system that allows them to

individually generate refinement plans.

Sections 3.2.2 and 3.2.3 provide our first formalization of a cooperative MAP

task and a summary of the algorithms behind the MAP-POP framework, respec-

tively. Section 3.2.3.3 analyzes the soundness and lack of completeness of MAP-

POP, one of the main limitations of our initial approach.

The experimental results in section 3.2.4 compare the performance of MAP-

POP against one of the most representative MAP frameworks at that point, Plan-

ning First (80). The benchmark used in this paper includes three well-known

planning domains (Satellite, Rovers and Logistics) from the International Plan-

ning Competition2 (IPC) suites, adapted to a MAP context. The results show that

MAP-POP scales up much better than the distributed CSP approach of Planning

First, obtaining a much greater coverage (number of solved problems) in the three

tested domains.

1http://www.eccai.org/ecai.shtml
2http://ipc.icaps-conference.org/
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3.1 Summary of the selected papers

A flexible coupling approach to multi-agent planning under incomplete

information. An extension of MAP-POP, originally published in the Knowledge

and Information Systems1 journal in 2014, is presented in section 3.3.

This article provides insight into some aspects of MAP-POP not discussed in

the previous paper, such as our MAP task definition language. Additionally, the

formalization of the MAP task is revised and updated, and the main algorithms

behind MAP-POP are discussed in depth. Finally, this paper contributes with an

early formal definition of the agents’ private information, an aspect that has been

typically ignored in many MAP frameworks.

The article first presents a thorough analysis of the state of the art in MAP in

section 3.3.2, as well as an extended formalization of the cooperative MAP task

in section 3.3.5, including the formal definition of the components of a single and

multi-agent POP.

Section 3.3.6 presents in detail our MAP task definition language, including

a complete BNF description of the constructs that model the particular require-

ments of MAP tasks, such as privacy. Furthermore, we offer several modelling

examples. The different stages of the MAP-POP framework, discussed in sections

3.3.7, 3.3.8 and 3.3.9, are thoroughly explained and illustrated through a compre-

hensive example of application.

The experimental results, presented in section 3.3.10, assess the performance

of MAP-POP when solving single-agent and multi-agent tasks. Additionally, we

analyze the scalability of MAP-POP when tackling tasks with an increasing number

of agents. For these tests, we used two customized MAP domains: the first domain

features complex tightly-coupled tasks, while the second one gives rise to simpler

loosely-coupled MAP tasks.

1http://link.springer.com/journal/10115
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FMAP: distributed cooperative multi-agent planning. The article in sec-

tion 3.4, originally published in the Applied Intelligence1 journal in 2014, intro-

duces FMAP, a completely renewed MAP framework that inherits the architecture,

input language and refinement planning model of the agents in MAP-POP but im-

plements a forward multi-agent search. This allows us to use state-based heuristic

functions instead of the traditional POP-based estimators of MAP-POP. The in-

troduction of this new search scheme implies re-modelling some aspects of the

former MAP-POP framework so as to integrate the state-based heuristics.

After analyzing the related work and formalizing the MAP task notion in sec-

tions 3.4.2 and 3.4.3, respectively, section 3.4.4 discusses the algorithms of the

FMAP framework. First, the new search procedure, based on forward chaining

POP, is introduced in section 3.4.4.1. Then, section 3.4.4.2 analyzes completeness

and soundness: unlike MAP-POP, FMAP is proven to be a complete method. Next,

hDTG, the new global heuristic function that governs FMAP’s search, is thoroughly

analyzed in section 3.4.4.3. Finally, the limitations of the FMAP framework are

critically discussed in section 3.4.4.4.

This paper offers a more comprehensive experimentation than the previous

two papers, using a much larger benchmark: 10 different domains from the IPC

were adapted to a MAP context and used to assess the performance of FMAP.

Section 3.4.5 classifies the domains in the benchmark according to their features

and the type of tasks they give rise to. Then, two different comparisons are carried

out: FMAP is compared against MAP-POP and MAPR, a powerful state-of-the-art

approach to MAP. Both tests prove that FMAP is a reliable and general approach

to MAP that not only outperforms MAPR in terms of coverage, but also proves to

be superior to MAP-POP in all the measured magnitudes.

1http://link.springer.com/journal/10489
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3.1 Summary of the selected papers

Global heuristics for distributed cooperative multi-agent planning. The

article presented in section 3.5, published in the proceedings of the 2015 25th In-

ternational Conference on Automated Planning and Scheduling1 (ICAPS), intro-

duces MH-FMAP, our final approach to MAP, which extends the FMAP algorithm

by incorporating a multi-heuristic search. This article discusses the design of two

different global heuristic functions for MAP, as well as their integration in the

MH-FMAP framework.

After summarizing the related work in section 3.5.2, we formalize the definition

of a MAP task in section 3.5.3. The formalization of a MAP task is revised and

updated in this article, providng a more compact definition than the previous

papers. Section 3.5.4 is a remainder of the original FMAP search algorithm, which

is revised in this paper to accommodate the multi-heuristic search.

Section 3.5.5 is devoted to discuss the global heuristic functions that constitute

the core of this paper: hDTG, which was firstly introduced in section 3.4.4.3, and

hLand, a landmark-based global MAP heuristic. After presenting the two heuristic

estimators, we introduce MH-FMAP, a search algorithm that extends FMAP by

combining hDTG and hLand.

For the experimentation, we reused the benchmark in section 3.4.5 and fo-

cused on two different tests: first, we tested MH-FMAP against FMAP, guiding

the search through either hDTG or hLand. Then, we compared the performance

of MH-FMAP and GPPP, the only other MAP system that guides search through

a global landmark-based heuristic function. Both tests prove the efficiency of our

multi-heuristic approach, which not only outperforms its single-heuristic counter-

parts, but also the GPPP framework.

1http://www.icaps-conference.org/
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Abstract Multi-agent planning (MAP) approaches have been typically conceived

for independent or loosely-coupled problems to enhance the benefits of distributed

planning between autonomous agents as solving this type of problems require less

coordination between the agents’ sub-plans. However, when it comes to tightly-

coupled agents’ tasks, MAP has been relegated in favour of centralized approaches

and little work has been done in this direction. In this paper, we present a general-

purpose MAP capable to efficiently handle planning problems with any level of

coupling between agents. We propose a cooperative refinement planning approach,

built upon the partial-order planning paradigm, that allows agents to work with in-

complete information and to have incomplete views of the world, i.e. being ignorant

of other agents’ information, as well as maintaining their own private informa-

tion. We show various experiments to compare the performance of our system with

a distributed CSP-based MAP approach over a suite of problems.

3.2.1 Introduction

Multi-agent planning (MAP) refers to any planning or plan execution activity

that involves several agents. In general terms, MAP is about the collective effort of
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multiple planning agents to combine their knowledge, information, and capabilities

so as to develop solutions to problems that each could not have solved as well (if

at all) alone (31). There exists a great variety of tools and techniques for MAP.

Agent-oriented MAP approaches put the emphasis on distributed execution, plan

synchronization and collaborative activity at run-time planning to ensure that

the agent’s local objectives will be met (27, 111). Another research line in MAP

focuses on coordination of already completed plans that agents have constructed

to achieve their individual goals, as for example plan merging (19, 21, 113). In

contrast, the cooperative distributed planning (CDP) approach puts the emphasis

on planning and how it can be extended into a distributed environment, on building

a competent plan carried out by multiple agents (27). In CDP, agents typically

exchange information about their plans, which they iteratively refine and revise

until they fit together well.

Following the cooperative approach, differences among MAP models lie in the

integration of the planning and coordination stages (24, 31). Some recent works

on fully cooperative MAP have emerged lately. The work in (67) considers agents

as having sequential threads of execution and interaction only occurs when dis-

tributing sub-plans to individual agents for plan execution. This approach follows

a single-agent planning and distributed coordination. A centralized algorithm for

MAP can be found in (14), where multiple agents do planning over a centralized

plan interleaving planning and coordination. In a distributed version of this latter

work, authors use a distributed CSP solver to handle coordination (80).

The aforementioned approaches are conceived for loosely-coupled problems

(LCP), where agents have little interaction between each other, as these processes

are likely to be inefficient in tightly-coupled problems (TCP) (80). This way, the

coupling level of a cooperative multi-agent system is formally defined as a set of

parameters to limit the combinatorial blow-up of planning complexity (14). On
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the other hand, these MAP models do not consider systems composed of multiple

entities distributed functionally or spatially but rather agents endowed with the

same capabilities and acting under complete information. When capabilities are

distributed across the agents’ domains, agents have necessarily to interact to solve

the MAP problem while being unaware of the other agents’ abilities or information

about the world, i.e. working under incomplete information.

In this paper, we present a general-purpose MAP model able to work with

inherently distributed entities and suitable for both LCP and TCP domains. Sim-

ilarly to (58), we use an iterative planning refinement procedure that uses single-

agent planning technology. Particularly, our model builds upon a partial-order

planning (POP) paradigm, which also allow us to represent a collection of acting

entities as a single agent. POP is a very suitable approach for centralized MAP

with a small number of coordination points between agents (67), and the applica-

tion of a multi-agent POP refinement framework also reveals as a very appropriate

mechanism to address tightly-coupled problems.

This paper is organized as follows: The next section presents the specification

of a MAP task. Section 3.2.3 describes the refinement planning algorithm carried

out by the agents, respectively. Following, we show the results of the tests we have

performed, and finally, we conclude and outline the future lines of research.

3.2.2 Multi-agent planning task

In our approach, the planning formalism of an agent is based on a STRIPS-like

model of classical planning under partial observability. The model allows agents

to represent their partial view of the world through the adoption of the open world

assumption. States are represented in terms of state variables. O is a finite set

of objects that model the elements of the planning domain; V is a finite set of

state variables each with an associated finite domain, Dv, of mutually exclusive
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values. Values in Dv denote objects of the planning domain, i.e., ∀v ∈ V, Dv ⊆ O.

A state is a set of positive fluents of the form 〈v, d〉, and negative fluents of the

form 〈v,¬d〉, meaning that the variable takes on the value d or ¬d, respectively.

A formula (v, d) evaluates to true if the fluent 〈v, d〉 is present in the state and it

evaluates to false otherwise. More specifically, (v, d) evaluates to false if the fluent

〈v,¬d〉 is in the state, or if no fluent relating the variable, v, and the value, d, is

present in the state, in which case we say the current value of v is unknown. We

will generally refer to as fluents both positive and negative fluents.

Actions are given as tuples a = 〈pre(a), eff(a)〉, where pre(a) denotes the for-

mulas that must hold in a state S for a to be applicable, and eff(a) represents

the new fluents in the resulting state S′. Effects of the form (v = d) add a fluent

〈v, d〉 in the resulting state as well as a set of fluents {〈v,¬dj〉},∀dj 6= d, dj ∈ Dv,

reflecting that (v, dj) evaluates to false in the resulting state. Effects of the form

(v 6= d) add a fluent 〈v,¬d〉 to the resulting state, which implies the current value

of v is unknown unless there is a fluent 〈v, d′〉 in S′, d 6= d′.

We define a MAP task as a tuple T = 〈AG,V,A, I,G〉 where:

� AG = {1, . . . , n} is a finite non-empty set of planning agents.

� V = {Vi}ni=1, where Vi is the set of state variables managed by agent i.

Variables can be shared by two or more different agents.

� A = {Ai}ni=1, where Ai is the set of actions that agent i can perform. Given

two different agents i, j, Ai and Aj can share some common actions or be

two disjoint sets.

� I = {Ii}ni=1, where Ii is the set of fluents known by agent i that represents

the initial state of the agent. If two agents share a variable v then they also

share all of the fluents regarding v.
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� G = {Gi}ni=1, where Gi is a set of formulas known to agent i that must hold

in the final state and denote the top-level goals of T.

As defined above, state variables may not be known to all agents. Given a state

variable v ∈ Vi and v 6∈ Vj , ∀j 6= i, v is said to be private to agent i. Additionally,

agents can have different visions of the domain of a state variable; that is, not

every value in a variable domain has to be visible to all agents. Given an agent i,

we denote its view of the domain of a variable v as Dvi ⊆ Dv. Thus, the domain

of a state variable v can be defined as Dv = {Dvi}
n
i=1. Agents’ incomplete views

on the state variables and their domains directly affect the visibility of the fluents.

� An agent i has full visibility of a fluent 〈v, d〉 or 〈v,¬d〉 if v ∈ Vi and d ∈ Dvi .

� An agent i has partial visibility of a fluent 〈v, d〉 or 〈v,¬d〉 if v ∈ Vi but

d 6∈ Dvi . Given a state S, where 〈v, d〉 ∈ S, agent i will see instead a fluent

〈v,⊥〉, where ⊥ is the undefined value.

� An agent i has no visibility of a fluent 〈v, d〉 or 〈v,¬d〉 if v 6∈ Vi.

Our MAP model can be viewed as a POP-based, multi-agent refinement plan-

ning framework, a general method based on the refinement of the set of all possible

partial-order plans (59). An agent proposes a plan Π that typically enforces some

top-level goals of the planning task; then, the rest of agents collaborate on the

refinement of this base plan Π by proposing refinement steps that solve some open

goals in openGoals(Π). This way, agents cooperatively solve the MAP task by

consecutively refining an initially empty plan Π.

A refinement step Πi devised by an agent i over a base plan Πg, where g ∈

openGoals(Πg), is a triple Πi = 〈∆, OR,CL〉, where ∆ ∈ Ai is a set of actions and

OR and CL are sets of orderings and causal links over ∆, respectively. Πi is a

plan free of threats (126) that solves g as well as all the new open goals that arise
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from this resolution and can only be achieved by agent i, 〈v, d〉 or 〈v,¬d〉, where

(v ∈ Vi) ∧ (v 6∈ Vj ,∀j 6= i). That is, when solving an open goal of a base plan,

an agent i will also achieve the new arising open goals concerning fluents that are

only visible to i, so are not visible to the rest of agents, leaving the rest of goals

unsolved. Let g ∈ openGoals(Πg) be a formula of the form (v, d) or (v,¬d); an

agent i computes a refinement step over Πg iff v ∈ Vi.

Plans that agents build are concurrent multi-agent (MA) plans as two different

actions in Π can now be executed concurrently by two different agents. Some MAP

models adopt a simple form of concurrency: two actions can happen simultaneously

if none of them changes the value of a state variable that the other relies on

or affects, too (15). We impose the additional concurrency constraint that the

preconditions of two actions have to be mutually consistent (? ). This definition

of concurrency is straightforwardly extended to a joint action a = 〈a1, . . . , an〉.

Agents address concurrency inconsistencies through the detection of threats over

the causal links of their actions. This way, concurrency issues between two different

actions may not arise until their preconditions are supported through causal links.

A refinement plan Π devised by an agent i over a base plan Πg is a concurrent

MA plan that results from the composition of Πg and a refinement step Πi proposed

by agent i. This refinement plan, which could eventually become a base plan, is

defined as Π = Πg◦Πi, where ◦ represents the composition operation. A composite

plan Π is a concurrent MA plan if for every pair of unequal actions ai and aj , i 6= j,

∀pi ∈ pre(ai), pi 6∈ openGoals(Π), ∀pj ∈ pre(aj), pj 6∈ openGoals(Π), ai and aj are

concurrently consistent.

In our model, each agent implements a POP planner to compute refinement

plans over a base plan Π. If an agent is not capable to come up with a concurrent

MA plan, then the agent refrains from suggesting such a refinement. If no agent

elicits a consistent refinement plan for a base plan, the plan node is pruned.
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3.2.3 Refinement planning

The cooperative refinement planning algorithm starts with a preliminary infor-

mation exchange by which agents communicate shareable information. After this

initial stage, agents execute the multi-agent refinement planning algorithm, which

comprises two interleaved stages. First, agents individually elicit refinement plans

over a centralized base plan through their embedded POP. Later, agents jointly

select the most promising refinement as the next base plan.

Algorithm 1: Dis-RPG construction for an agent i

Build initial RPGi

repeat
∀j 6= i, i sends j shareable fluents SFi→j ∈ RPGi of the form 〈v, d〉 or

〈v,¬d〉, where v ∈ Vi ∩ Vj and d ∈ Dvi ∩Dvj

∀j 6= i, i receives from j shareable fluents SFj→i ∈ RPGj of the form

〈v, d〉 or 〈v,¬d〉, where v ∈ Vi ∩ Vj and d ∈ Dvi ∩Dvj

RF ← ∅
∀j 6= i, RFi ← RFi ∪ SFj→i
for all received fluents f ∈ RFi do

if f 6∈ RPGi then

Insert f in RPGi

costRPGi
(f)← cost(f)

if (f ∈ RPGi) ∧ (costRPGi(f) > cost(f)) then

costRPGi
(f)← cost(f)

Expand RPGi

until RFi = ∅

3.2.3.1 Information exchange

Agents receive the information on the MAP task through a set of definition files.

These files are encoded in a MAP language that extends PDDL3.1 (64), including
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a :shared-data section to configure the agent’s vision of the planning task and

which fluents it shares and with whom.

Prior to executing the refinement procedure, agents share information by build-

ing a distributed Relaxed Planning Graph (dis-RPG), based on the approach of

(127). Agents exchange the fluents defined as shareable in the :shared-data sec-

tion of the MAP definition files. Fluents are labeled with the list of agents that

can achieve them, giving each agent a view of the possible interactions that can

arise at planning time with other agents. Additionally, the dis-RPG provides an

estimate of the best cost to achieve each fluent, a helpful information to design

heuristics to guide the problem-solving process.

Algorithm 1 summarizes the construction of the dis-RPG. Agents compute an

initial RPG and expand it by following the procedure in (54). The RPG contains

a set of fluent and action levels that are interleaved. The first fluent level contains

the fluents that are part of the initial state, and the first action level includes all

the actions whose preconditions appear in the first fluent level. The effects of these

actions are placed in the second fluent level, and this way the graph is expanded

until no new fluents are found.

Once all the agents have computed their initial RPGs, the iterative dis-RPG

composition begins. As depicted in Algorithm 1, agents start each iteration by

exchanging the the fluents shareable with other agents. An agent i will send agent

j the set of fluents SFi→j that are visible to agent j, i.e., the new fluents of the

form 〈v, d〉 or 〈v,¬d〉, where v ∈ Vi ∩Vj and d ∈ Dvi ∩Dvj . Likewise, agent i will

receive from all agents j 6= i the shareable fluents they have generated.

Agent i updates then its RPGi with the set of new fluents it has received, RFi.

If a fluent f is not yet in RPGi, it is stored according to cost(f). If f is already in

RPGi, its cost is updated if costRPGi(f) > cost(f). Hence, agents only store the

best estimated cost to reach each fluent. After updating RPGi, agent i expands
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it by checking whether the new inserted fluents trigger new actions in RPGi or

not. The fluents produced as effects of these new actions will be shared in the

next iteration.

The process finishes when there are no new fluents in the system. Following,

agents start the refinement planning process to build a solution plan jointly.

3.2.3.2 Multi-agent refinement planning

The refinement planning process is based on a democratic leadership by which

a baton is scheduled among the agents following a round-robin strategy. Agents

carry out two interleaved stages: the individual construction of refinement plans

through a POP, and a coordination process by which agents jointly search the

refinement space.

Algorithm 2 describes the refinement planning process. Each agent i computes

a finite set of refinement plans for Πg, Refinementsi(Π
g), through its embedded

POP planner. The internal POP system follows an A∗ search algorithm guided

by a state-of-the-art POP heuristic function (126). The resulting refinement plans

are exchanged by the agents in the system for their evaluation (send and receive

operations in Algorithm 2).

Agent i has a local, partial vision of each refinement plan, viewi(Π), according

to its visibility over the planning task T. Thus, when receiving a refinement plan

Π, agent i will only view the open goals (v, d) ∈ openGoals(Π) | v ∈ Vi. With

respect to the fluents, agent i will only view those fluents for which it has full

visibility. If i has partial visibility of a fluent 〈v, d〉 or 〈v,¬d〉, it will see instead a

fluent 〈v,⊥〉, where ⊥ stands for the undefined value. This notion of partial view

directly affects the evaluation of the refinements.

The evaluation of refinement plans is carried out through a utility function F

(currently, we use the same heuristic function that guides the agents’ internal POP
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for this purpose) that allows agents to estimate the quality of the plans. Since

agents do not have complete information on the MAP task or the refinement plans,

they evaluate plans according to its own view of each refinement plan Π, i.e., agent

i evaluates a refinement plan Π according to F(viewi(Π)) (see Algorithm 2).

Algorithm 2: Refinement planning process for an agent i

Π← Π0

R = ∅
repeat

Select open goal g ∈ openGoals(Π)

Refine base plan Πg individually

∀j 6= i, send Refinementsi(Π
g) to agent j

∀j 6= i, receive Refinementsj(Π
g)

Refinements(Πg)← Refinementsi(Π
g)

∀j 6= i, Refinements(Πg)← Refinements(Πg)∪
Refinementsj(Π

g)

for all plans Π ∈ Refinements(Πg) do

Evaluate Π according to F(viewi(Π))

R← R ∪Refinements(Πg) Select best-valued plan Πbest ∈ R
Π← Πbest if openGoals(Π) = ∅ then

return Π

until R = ∅

Once evaluated, the new refinement plans are stored in the set of refinements

R. Next, each agent votes for the best-valued candidate Πbest ∈ R. In case of

a draw, the baton agent will choose the next base plan among the most voted

alternatives.

Once a refinement plan is selected, agents adopt it as the new base plan Π.

If openGoals(Π) = ∅, a solution plan is returned. As some open goals might not

be visible to some agents, every agent i must confirm that Π is a solution plan

according to viewi(Π), i.e., Π is a solution iff ∀i ∈ AG, openGoals(viewi(Π)) = ∅.
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If the plan has still pending goals, the baton agent selects the next open goal

g ∈ openGoals(Π) to be solved, and a new iteration of the refinement planning

process starts.

The planning algorithm carried out by the agents can be regarded as a joint

exploration of the refinement space. Nodes in the search tree represent refinement

plans and each iteration of the algorithm expands a different node.

3.2.3.3 Soundness and completeness

The algorithm we have presented can be regarded as a multi-agent extension of

the POP algorithm. A partial-order plan is sound if it is a threat-free plan. In our

algorithm, we address inconsistencies among the concurrent MA plans by detecting

and solving threats. Thus, in order to prove that our algorithm is sound, we should

ensure that all the threats among the causal links of a concurrent MA plan are

correctly detected and solved.

Under complete information, threats on a MA concurrent plan will be correctly

detected by any agent, as all the fluents in the plan are fully visible. In our

incomplete information model, we should study how visibility over fluents affects

the detection of threats.

Let Π be a MA concurrent plan and let 〈v, d1〉 be a fluent in a causal link

cl ∈ CL(Π). Suppose that an agent i builds a refinement Π′ over Π that adds a

new action at to the plan which is not ordered with respect to cl and has an effect

(v = d2). This effect causes a threat over cl as it conflicts with 〈v, d1〉. For Π′ to

be sound, agent i should be able to detect such a threat whatever visibility it has

over the fluent 〈v, d1〉:

� If i has full visibility over 〈v, d1〉, the inconsistency between cl and at will be

correctly detected.
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� If i has no visibility over 〈v, d1〉, then v 6∈ Vi. In this case, agent i does not

have an action at with an effect involving variable v, i.e., such a threat can

never occur.

� If i has partial visibility over 〈v, d1〉, agent i will see instead a fluent 〈v,⊥〉.

Since ⊥6= d2, the threat will be detected and solved.

Therefore, all the threats over MA concurrent plans are always detected and

resolved, which proves that our MAP algorithm is sound.

As for completeness, we cannot ensure that our MAP algorithm is complete.

According to the notion of refinement plan we have used in this work, the number

of refinement plans that an agent can produce over a base plan may not be finite.

Hence, we are implicitly pruning the refinement search space. Nevertheless, agents

rely on an A∗ POP search process to build the refinement plans, which in most

cases returns good refinement plans that guide the MAP algorithm towards a

solution plan. The empirical results shown in the next section confirm our claim.

3.2.4 Experimental results

We designed and executed a set of tests to compare the performance and scalability

of our MAP-POP approach with another state-of-the-art MAP system. Comparing

the performance of multi-agent planning systems is not an easy task due to two

main reasons. First, most MAP approaches are not general-purpose but domain-

dependent systems specifically designed to address a particular problem, most

typically traffic control or real-time planning applications. Second, unlike single-

agent planners that have been promoted and populated through the celebration of

the International Planning Competitions1 (IPC) and, therefore, have been made

1http://ipc.icaps-conference.org/
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publicly available, it is difficult to find a multi-agent planner able to run the

benchmark domains and planning problem suites created for the IPCs.

Problem #Ag %CL %DA
MAP-POP Planning First

#A #TS #Par Time #A #TS #Par Time

IPCSat1 1 1,2 54 9 8 1 0,23 10 9 1 0,14

IPCSat4 2 29,3 2082 21 11 2 18,80 †
IPCSat10 5 23,7 1786 29 20 3 90,30 †
IPCSat16 10 18,3 7196 51 24 5 73,70 †
IPCSat17 12 14,3 8324 46 16 4 53,90 †

IndSat1 2 5,2 40 9 4 2 0,83 9 4 2 0,16

IndSat2 4 1,4 274 14 3 4 2,20 14 4 4 0,31

IndSat3 7 0,3 1820 32 4 7 6,50 32 4 7 4,10

IndSat4 8 0,3 2082 28 3 8 8,70 28 4 8 11,10

IndSat5 14 0,1 11020 63 4 14 32,50 †

IPCRov1 1 1,2 81 10 7 1 0,34 11 7 1 0,36

IPCRov2 1 2,3 45 8 4 1 0,39 9 5 1 0,32

IPCRov7 3 77,4 157 18 6 3 8,58 †
IPCRov14 4 58,7 797 35 21 2 81,87 †
IPCRov15 4 85 536 42 16 4 42,01 †

IndRov1 2 45,5 160 24 11 2 3,61 22 7 2 2,75

IndRov2 3 45,5 239 36 11 3 5,50 33 7 3 12,14

IndRov3 4 45,5 318 48 11 4 9,19 44 7 4 120,72

IndRov4 5 45,5 397 70 11 5 14,14 55 7 5 674,00

IndRov5 6 45,5 476 72 11 6 20,69 66 7 6 2594,52

IPCLog2 3 20 52 27 9 3 18,19 †
IPCLog4 4 12,3 116 37 13 4 33,77 †
IPCLog5 4 14 116 31 11 4 40,19 †
IPCLog7 5 9,8 206 46 15 5 96,48 †
IPCLog9 5 11,7 206 45 17 5 239,58 †

IndLog1 3 44,4 20 6 6 2 1,58 9 8 3 0,58

IndLog2 3 55,5 20 10 9 3 2,25 10 9 3 0,61

IndLog3 4 65 42 13 10 4 3,23 9 8 4 66,19

IndLog4 4 70 42 14 6 4 3,77 14 6 4 284,09

IndLog5 6 54,1 98 21 6 6 13,58 †

Table 3.1: Performance comparison between MAP-POP and Planning First

Despite these drawbacks, we could assess the performance of MAP-POP and

compare the results with those obtained in the Planning First approach presented in
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(80)1. Planning First is a MAP system that also makes use of single-agent planning

technology. More precisely, it builds upon a single-agent state-based planner (17),

and handles agent coordination by solving a distributed CSP.

Planning First defines public actions as the actions of an agent whose descrip-

tions contain atoms affected by and/or affecting the actions of another agent.

Based on this concept, it defines the notion of coupling level as the average rate

of public actions of an agent. A high value of coupling level results in many agent

coordination points, thus giving rise to tightly-coupled problems. The approach

followed by Planning First is especially effective when dealing with loosely-coupled

problems (LCP) (80), but its performance decreases when tackling tightly-coupled

problems (TCP).

The tests presented here involve three of the benchmark domains used on the

IPCs: satellite, rovers and logistics, which are the domains used in the results

presented in (80) as well. These domains give rise to problems of different cou-

pling levels. The satellite problems are LCP as the different agents (the satellites)

are not likely to interact with each other; they move, calibrate their instruments

and take images by themselves. Rovers problems tend to present a medium cou-

pling level: rover agents are independent but they have access to certain shared

resources in their environment, namely the rock and soil samples they collect and

analyze. The logistics problems fall into the TCP category since agents (trucks

and planes) have to cooperate to transport the different packages to the target

locations and problems present several coordination points (locations) at which

agents can interact.

We adapted the STRIPS problem files used in the IPCs to both our MAP

language and the MA-STRIPS language used by Planning First (14). Problems

1We want to especially thank Raz Nissim for providing us with the source code of his Planning

First system for testing and comparison purposes.
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from the IPCs turned out to be complex instances for Planning First because agents

have necessarily to interact to each other and cooperate to find a solution plan for

these problems and Planning First works better when plans for each agent can be

computed (mostly) independently. For this reason, we encoded an additional set of

problems limiting cooperation and interactions among agents as much as possible.

Particularly, in these additional problems, agents can solve goals independently,

i.e., an agent is able to solve a goal or set of goals by itself without need of

interacting with the rest of agents (we will refer to these problems as independent

problems in the remainder).

Table 3.1 shows the results when comparing the quality of the solution plans

obtained with MAP-POP and Planning First and the execution times1. The quality

of the solution plans is assessed through three parameters: a) the number of actions

of the plan; b) the duration of the plan, i.e. the number of time units or time steps

required to execute the plan; and c) the number of agents that take part in the

solution plan). This latter parameter gives an idea of how the effort on solving

the problem has been distributed among the agents.

Problems labeled with IPC are directly taken from the IPC benchmarks, while

problems labeled with Ind are the extra set of independent problems we created

to assess Planning First performance (for each domain, we show the results of 5

out of the 20 IPC problems we tested as well as 5 independent problems). The

next three columns in the table show the difficulty of the planning problems:

#Ag indicates the number of agents involved in the problem; %CL estimates the

coupling level of the problem as the average rate of instantiated public actions of

agents (taking into consideration the notion of public and private action defined

in (80)), and #DA refers to the total number of instanced actions. The results

1All the tests were performed on a single machine with a 2.83 GHz Intel Core 2 Quad CPU

and 8 GB RAM.
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for each planner include the number of actions (#A) and time steps (#TS ) of

the solution plan, respectively. #Par indicates the number of agents that take

part in the solution plan, and Time shows the total execution time. A dagger (†)

indicates that Planning First was not able to solve the problem.

For the most loosely-coupled problems, the satellite domain, MAP-POP exhib-

ited an excellent performance as our results confirmed that it was able to solve

18 out of 20 IPC problems. For the five IPC problems for the satellite domain

shown in Table 3.1, we can see that our approach deals very efficiently with com-

plex problems up to 12 agents. It is also noticeable that at least one third of the

participating agents take part in the solution plans, which has a positive impact

on the plan duration, as actions are carried out in parallel by different agents.

Although the IPC satellite problems do not present a high coupling level (less

than 30% of public actions in the worst case), Planning First only solves the first

IPC problem, as these problems require cooperation among agents and it is more

necessary for larger instances. As for the additional problems we encoded (Ind-

Sat1, ..., IndSat5), we can see that Planning First is not able to solve the largest

one, IndSat5. Planning First is faster than MAP-POP when dealing with small

problems, but its performance decreases when the size of the problem increases.

For instance, while the first three problems are solved faster by Planning First, it

is slower than MAP-POP when solving IndSat4, and it does not find a solution to

the most complex instance, IndSat5. MAP-POP proves also to be more effective at

parallelizing actions in this domain as it obtains plans of equal or shorter duration

than Planning First.

With respect to the rovers domain, our results confirmed that MAP-POP solves

15 out of the 20 IPC problems for this domain. For the five IPC rovers problems

shown in Table 3.1, we can see the workload in this domain is better distributed

than in the satellite domain as most of the agents participate in the solution plan,
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which considerably reduces the duration of the plan. For instance, the solution

plan for problem IPCRov7 contains 18 actions and is solved in just 6 time steps.

Planning First solves only the two smallest IPC problems. For the independent

problems we modeled, Planning First obtains better-quality but more costly solu-

tions than MAP-POP. The differences in execution time are far more noticeable

than in the satellite domain. This is due to to the more tightly-coupled nature of

the problems of this domain (45.5% coupling level for the independent problems),

which affects negatively the performance of Planning First.

Finally, the logistics domain has proven to be the most complex one for both

multi-agent approaches. Agents in this domain are trucks and airplanes that

must cooperate in most of the cases to transport packages. Hence, solutions for

these problems are more costly than in the rovers and satellite domains, as they

require agent coordination, an important feature to determine the efficiency of

a MAP approach. Our results confirmed that MAP-POP loses performance in

this domain, being able to solve only 9 out of 20 IPC problems. However, it

distributes the workload effectively since all of the agents participate in all the

solution plans obtained. Planning First shows also a poorer performance in this

domain as it is not able to solve any of the IPC problems. These results are in line

with the conclusions exposed in (80), which reveals the difficulty of a CSP-based

approach to deal efficiently with problems that exhibit a high level of inter-agent

interaction. As for the independent problems, some of the solutions obtained by

MAP-POP have better quality in terms of actions and duration than the solutions

of Planning First. In addition, Planning First is still remarkably slower than MAP-

POP, being unable to solve the IndLog5 problem, even though we defined rather

small instances (notice the differences in execution time for the instance IndLog4).

Again, Planning First only performs better than MAP-POP in the smaller problems.
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Figure 3.1: Scalability results for the satellite domain

The second test compares the scalability of both MAP frameworks, i.e. to

which extent their efficiency is affected by the number of agents. In order to do so,

we have run fourteen different tests for both the satellite and the rovers domains.

Each test increases the number of agents in the task by one, from one agent to

fourteen. The problems are modeled so that each of the participant agents has to

achieve one of the problem’s goals by itself.

Figure 3.1 shows the scalability results for the satellite domain. As it can be

observed, Planning First show a better performance when solving small problems

(up to seven agents). However, its performance decreases quickly as we execute

larger problems. MAP-POP is faster at solving the 8-agent satellite problem, and

Planning First is unable to find a solution for the 9-agent problem upwards. MAP-

POP, however, finds a solution for the 14 problem instances, and execution times
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Figure 3.2: Scalability results for the rovers domain

suffer only a slight increase between problems.

The differences in performance of both systems are more noticeable in the more

tightly-coupled rovers domain. The results of this test are depicted in Figure 3.2.

In this case, Planning First requires more than 40 minutes to solve the 6-agent

rovers problem, while MAP-POP takes only 20 seconds. Again, MAP-POP solves

all the problems without losing performance in the larger instances.

In conclusion, MAP-POP proves to be a more robust approach than Planning

First as it can tackle larger and more complex planning problems. Moreover, while

Planning First is designed for solving LCP, MAP-POP is a general-purpose method

that tackles problems of different coupling levels. Although MAP-POP behaves

better in LCP problems, it can also solve complex TCP problems. Scalability

results show that Planning First performs better when dealing with simple problems
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that involve few agents. However, MAP-POP scales up far better, being able to

solve much larger planning problems.

3.2.5 Conclusions and future work

This paper presents a general-purpose MAP model suitable to cope with a wide

variety of MA planning domains under incomplete information. The ability to

define incomplete views of the world for the agents allows us to deal with more

real problems, from inherently distributed domains -functionally or spatially- to

problems that handle global and centralized sources of information. Currently,

we are testing our planner on large-size logistics applications in which agents are

geographically distributed and are completely unaware of the other agent’s infor-

mation except for the coordination points within their working areas.

The MAP resolution process is a POP-based refinement planning approach that

iteratively combines planning and coordination while maintaining for each agent

only the information that is visible to the planning entity. This POP approach

centered around the gradual construction of a joint solution plan for the MAP

task highly benefits the resolution of cooperative distributed planning problems.

We have compared our MAP approach against Planning First, a system that

handles agent coordination through a distributed CSP. Results show that MAP-

POP efficiently solves loosely-coupled problems but it also shows competitive when

solving problems that have a higher coupling level and when computing plans that

require the cooperation among agents. Hence, we can conclude that MAP-POP

is an efficient, domain-independent and general-purpose framework to solve MAP

problems.
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Journal: Knowledge and Information Systems

Volume (number): 38(1)

Pages: 141-178

Impact factor (2014): 1.782 (first third)

Year: 2014

Abstract Multi-agent planning (MAP) approaches are typically oriented at solv-

ing loosely-coupled problems, being ineffective to deal with more complex, strongly-

related problems. In most cases, agents work under complete information, building

complete knowledge bases. The present article introduces a general-purpose MAP

framework designed to tackle problems of any coupling levels under incomplete in-

formation. Agents in our MAP model are partially unaware of the information

managed by the rest of agents and share only the critical information that affects

other agents, thus maintaining a distributed vision of the task.

Agents solve MAP tasks through the adoption of an iterative refinement plan-

ning procedure that uses single-agent planning technology. In particular, agents

will devise refinements through the Partial-Order Planning paradigm, a flexible

framework to build refinement plans leaving unsolved details that will be gradually

completed by means of new refinements. Our proposal is supported with the im-

plementation of a fully-operative MAP system and we show various experiments

when running our system over different types of MAP problems, from the most

strongly-related to the most loosely-coupled.
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3.3.1 Introduction

Planning is the art of building control algorithms that synthesize a course of action

to achieve a desired set of goals from an initial situation. Traditionally, planning

has been regarded as a centralized process in which a single entity is in charge of

devising a plan that satisfies the problem goals.

Multi-Agent Planning (MAP) generalizes the problem of planning in domains

where several agents plan and act together. MAP introduces a social approach

to planning (76), focusing on the collective effort of multiple planning entities

to accomplish tasks by combining their knowledge, information and capabilities.

This is required when agents are unable to solve their tasks by themselves, or at

least can accomplish them better (more quickly, completely, precisely, or certainly)

when working with others (31).

MAP is concerned with planning by multiple agents, i.e., distributed planning,

and planning for multiple agents, i.e., planning for multi-agent execution, thus

giving rise to a great variety of tools and techniques. The approach traditionally

adopted by the Multi-Agent Systems (MAS) research community assumes that, in

general, agents are self-interested and that there is not a common goal to solve, thus

focusing on coordinating the activities of multiple agents in a shared environment

(27). In agent-oriented approaches, the ultimate objective is to ensure that the

agents’ local objectives (private goals) will be achieved by their plans and so the

emphasis is put on distributed execution, plan synchronization and collaborative

activity at run-time planning (32, 60, 111). All in all, these techniques use planning

as a means to controlling and coordinating agents rather than building a competent

and joint plan, and so they are very appropriate for the design of real-time systems

(75).
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In planning-oriented approaches dealing with contexts in which agents are as-

sumed to be cooperative, the objective is to study how planning can be extended

into a distributed environment or, more particularly, on the construction of a

competent plan by several planning entities. There exist different approaches to

address this objective, varying according to the typology of the planning problem

to solve. In particular, the adoption of one or another strategy depends on the co-

ordination needs of the problem, i.e., to which extent agents are able to make their

own plans without affecting what the other agents are planning to do. Thus, when

agents are assumed to be relatively independent, they carry out their planning ac-

tivities individually and exchange information about their local plans, which they

iteratively refine and revise until they fit together in order to ensure that the result-

ing plan will jointly execute in a coherent and efficient manner (27). This has been

the predominant approach in cooperative MAP, existing a large body of research

on post-planning coordination, i.e., solving inconsistencies among local plans that

have been constructed separately. The well-known Partial Global Planning (PGP)

framework (32) is one of the first techniques that allows agents to communicate

and merge their local plans. Ever since, many works on plan merging methods for

building a joint plan given the local plans of each participating agent have arisen

(see section 3.3.2 for a detailed description).

The application of MAP to loosely-coupled multi-agent tasks, in which agents

have little interaction to each other, is still an active area of research. Some

recent works in this line, where agents are engaged in some cooperative behaviour,

have emerged lately. These works follow a common approach that consists of

coordinating the local solutions developed by the agents. For instance, the work

in (67) considers that agents have sequential threads of execution and interactions

only occur when distributing sub-plans to individual agents for plan execution.

This approximation follows a single-agent planning and distributed coordination.
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The work in (14) applies individual planning and coordinates the local solutions

through the resolution of a Constraint Satisfaction Problem (CSP). In an extension

of this latter work, authors use a distributed CSP to solve inconsistencies among

agents’ plans (80).

Most of the aforementioned approaches turn out to be inefficient at the time

of solving strongly-related problems in which the number of coordination points

among agents is large (80). To deal with these problems, other MAP models use

a unified approach in which planning and coordination of activities are integrated

rather than being treated as independent processes (4, 58). However, these ap-

proaches do not achieve high performance in loosely-coupled problems because

the reasoning procedures rely very strongly on a high degree of interdependency

between the agents’ actions.

The problem of building a competent joint plan among several planning entities

has been generally dismissed by the MAS community, more concerned with the

development of coordination mechanisms for agents, and ignored by the planning

community, which has traditionally resorted to efficient single-agent algorithms to

solve planning problems. MAP is not only about a divide-and-conquer strategy to

tackle large planning problems, it is also about the development of techniques for

planning entities that are geographically or spatially distributed. While one might

expect the number of coordination points in inherently distributed problems not

to be very large, another issue that comes up is the distribution of information

among agents. In frameworks like those presented in (4, 15) agents communicate

all the available information and build complete knowledge bases, i.e., agents have

complete information on the MAP task. However, in large-size problems with

heterogeneous agents, building complete knowledge bases is not viable. Besides

efficiency issues, agents may be unable to manage the information handled by

other agents as they may have different knowledge and abilities.
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In this paper, we present a novel approach to cooperative MAP that allows

to efficiently solve problems with any level of interaction among agents. Unlike

other techniques, our MAP system is capable of solving from the most loosely-

coupled problems to the most strongly-related problems. The key point to address

this aspect is to use a refinement planning approach (59) that allows agents to

interleave planning and coordination, or more specifically, to coordinate their plans

during planning. We also allow heterogeneous agents to work under incomplete

information, sharing only the critical information that affects other agents and

maintaining a distributed vision of the MAP task. This issue, which has been

ignored in almost all of the MAP approaches, is of key importance to efficiently

handle inherently distributed problems. Last but not least, our MAP approach is

entirely based on the use of single-agent planning technology adapted to a multi-

agent context. More precisely, agents follow the Partial-Order Planning paradigm

(77, 126).

As well as introducing the MAP architecture and a theoretical model for multi-

agent planning, our proposal is supported with the implementation of a fully-

operative MAP system. The empirical evaluation of the system demonstrates this

novel approach to be effective when dealing with both strongly-related problems

and loosely-coupled problems in which agents manage incomplete information.

This paper is organized as follows: section 3.3.2 summarizes some background

on the main topics related to this work and reviews the most recent literature

on MAP; section 3.3.3 introduces the example MAP scenario we will use to il-

lustrate the different aspects of our framework; section 3.3.4 outlines our MAP

architecture; section 3.3.5 presents the theoretical planning model upon which our

system is based; section 3.3.6 outlines the planning language used to model MAP

tasks; section 3.3.7 provides an overview of the MAP algorithm followed by the

agents; section 3.3.8 describes the first stage of our MAP algorithm, the initial
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information exchange; section 3.3.9 outlines second stage of the MAP algorithm,

the refinement planning and coordination protocol; section 3.3.10 presents the ex-

perimental results, and finally, section 3.3.11 concludes and summarizes our future

lines of research.

3.3.2 Background

Our MAP model builds upon several single-agent planning techniques. This sec-

tion provides a review on the principal single-agent planning concepts used in our

MAP approach as well as the most relevant and recent approaches to cooperative

MAP. We also outline the most relevant works on MAP architectures and frame-

works and we conclude by summarizing the main contributions and novelties of

our approach.

3.3.2.1 Single-agent planning

Single-agent planning is regarded as a search process by which a single entity syn-

thesizes a set of actions (plan) to reach a set of objectives from an initial situation

(122). Over the last years, single-agent planning has experienced great advances,

specifically in the construction of domain-independent heuristics. Nowadays, it is

possible to find a great variety of planning systems. The most recent planners com-

bine different techniques in order to increase the algorithms efficiency: landmarks

(95), domain transition graphs (50), forward-chaining partial-order planning (18),

probes (69) or divide-and-conquer strategies (30), among others.

The work in (8) introduced the concept of Relaxed Planning Graph, which has

proven to be one of the most effective constructs to devise heuristics in state-space

planning (54). This technique has been integrated in many single-agent planning

frameworks and has also been extended to a distributed context (127).
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While state-space planners such as Fast Forward (54) are still a relevant re-

search topic, plan-space planning has been replaced by other more efficient tech-

niques. However, plan-space planning has recently seen a revival since its flexibility

makes it specially suitable for distributed environments.

Among plan-space search algorithms, the Partial-Order Planning (POP) ap-

proach (90, 126) is particularly relevant. POP performs a plan-based, backward

search process, refining partial plans through the addition of actions, causal links

and ordering constraints. POP is based on the least commitment strategy (121),

which defers planning decisions during the search process and introduces partial-

order relations among actions rather than enforcing a concrete order among them.

The particular nature of the POP paradigm (absence of states, backward search)

makes it difficult to devise competitive heuristics to guide the search process.

Although some recent works reformulate the basic algorithm to improve its per-

formance (18), POP has been discontinued by the planning community in favor

of other approaches. Nevertheless, it is still used in temporal planning and MAP

environments as it is a flexible paradigm to handle concurrency (12).

3.3.2.2 Cooperative Multi-Agent Planning

MAP extends the single-agent planning problem by distributing the planning task

among several entities which work together to devise a competent joint plan that

meets the problem goals. This generalization entails some differences to the more

restrictive single-agent planning approach. MAP can be viewed as the problem of

coordinating agents in a shared environment where information is distributed (27).

This definition emphasizes two aspects of MAP that are not present in single-agent

planning: the coordination of the planning activities and the distribution of the

information among agents.
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In general, solving a cooperative MAP task involves the following stages (31):

1) global goal refinement, 2) task allocation, 3) coordination before planning, 4)

individual planning, 5) coordination after planning, and 6) plan execution. Some

of the previous stages can be avoided or combined. For instance, some works do

not distribute the goals explicitly (avoiding stage 2) (4, 15), while others apply

only coordination after planning (avoiding stage 3) (21, 120).

MAP problems can be classified according to their coupling level, a measure

of the number of interactions or coordination points among agents that will arise

during the task resolution (14). In loosely-coupled problems, each problem goal

problem is likely to be solved by a single agent, while goals in strongly-related

problems tend to require the cooperation of several agents. The number of coordi-

nation points in a MAP problem determines which approaches are more suitable

to solve it efficiently.

A wide range of MAP approaches put the emphasis on coordination after indi-

vidual planning (coordination is performed at stage 5 of the MAP scheme described

above). This way, these frameworks perform the planning and coordination stages

independently and separately, combining or merging solutions into a global joint

plan (24, 31, 60, 113).

Different coordination techniques have been proposed for merging and gather-

ing several individual plans into a single joint plan. The Partial Global Planning

framework (32) and its extension, the Generalized Partial Global Planning ap-

proach (26), allow agents to communicate their local plans to the rest of agents

and then they merge this information into their own partial global plan in order to

improve it. This iterative process goes on until the agents’ local plans fit together.

The work in (113) proposes a post-planning coordination approach based on the

iterative revision of the agents’ local plans. Agents in this model cooperate by mu-

tually adapting their individual plans, with a focus on maximizing their common
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or individual profit. (80) introduces a cooperative MAP approach for loosely-

coupled systems in which agents carry out planning individually through a state-

based planner (17, 54). The resulting local plans are then coordinated by solving

a distributed Constraint Satisfaction Problem. The approach in (120) solves in-

consistencies among the local plans devised by self-interested agents through plan

repair. Other proposals deal with insincere agents by combining planning, coordi-

nation, and execution (34) or consider the communication needs that arise when

plans are being executed (112).

The aforementioned plan merging methods follow a common approach: agents

build plans individually while a subsequent independent process is used to coor-

dinate these plans. This approach is suitable for solving loosely-coupled problems

efficiently as the agents’ local solutions in these problems present few interdepen-

dencies with each other. Thus, plan merging through post-planning coordination

is an appropriate method to tackle problems in which agents can solve the different

problem goals independently and the majority of the environment resources are

not shared.

However, plan merging methods present several limitations. On the one hand,

goals must be a priori allocated to each agent or at least implicitly distributed

among the planning entities, as agents perform their planning activity in an iso-

lated manner. Because of this, methods based on plan merging lose flexibility

against other MAP proposals. On the other hand, the previous merging ap-

proaches have proven to be inefficient when solving strongly-related problems in

which most of the resources are shared and most of the goals require cooperation

among agents (80). The individual planning combined with a post-planning coor-

dination strategy is not adequate to solve these strongly-related problems, since

merging may introduce exponentially many ordering constraints in problems which

require a coordination effort.

91



3. SELECTED PAPERS

Another research trend on cooperative MAP stresses the importance of combin-

ing and integrating planning and coordination activities, i.e., apply coordination

during planning. Hence, this trend can be seen as an extension of single-agent

planning to MAP, providing a unified vision of MAP. Proposals in this line focus

on the cooperative incremental construction of a joint plan, allowing agents to per-

form their planning activity over a centralized plan representation. This is a more

suitable approach than the plan merging techniques for tackling strongly-related

MAP problems with a large number of coordination points, as agents work over

a centralized plan representation and planning and coordination of activities are

carried out in an integrated way.

The proposal in (27) applies the continual planning approach, which interleaves

planning and execution and coordinates agents by synchronizing them at execution

time (15). The approach in (58) introduces the best-response planning algorithm,

which iteratively improves the quality of the agents’ plans through single-agent

planning technology. Finally, the works in (4, 84) solve inconsistencies among

agents’ plans through a coordination protocol based on iterated dialogues. Agents

discuss and argument about the different plan proposals until the agents’ view-

points are aligned and an agreement is reached.

The integrated planning and coordination approach followed by the aforemen-

tioned MAP models copes with a wider range of MAP problems than the plan

merging method, which can only deal with simpler, loosely-coupled problems. In

addition, the continual revision and coordination of the agents’ plans provides

better results in terms of plan quality. However, integrating planning and co-

ordination entails higher communication costs for loosely-coupled problems than

using plan merging, as coordination has to be performed throughout the planning

process, thus introducing an overhead. Hence, the simpler plan merging approach

is far more effective for small-size and non-complex planning tasks.
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Research on cooperative MAP, traditionally carried out by the planning com-

munity, has generally overlooked the management of incomplete information, an

active research topic, though, within the MAS community. Planning with incom-

plete information has several different meanings: that certain facts of the initial

state are not known, that operators can have random or nondeterministic effects,

or that the plans built contain sensing operations and are branching (48). In our

case, we interpret incomplete information as agents not knowing the initial state

completely and being total or partially unaware of the information managed by

other agents.

The issue of incomplete information has been treated from two different per-

spectives: the probabilistic way, with the development of formal models such

as Dec-POMDPs (Decentralized Partial Observable Markov Decision Processes)

for coordination among multiple agents in contexts with partial observability

(66, 124); and the epistemological way, which assumes that agents have beliefs

about the state of the world and beliefs over the other agents’ knowledge (29, 65).

This latter approach has been widely used in games of incomplete information

(45). Both perspectives define agents as having an imprecise or uncertain view of

the world and of the other agents’ information but, to the best of our knowledge,

there are not proposals to deal with ignorance, i.e., local views of agents that reflect

agent’s unawareness over the information of the rest of agents. This introduces a

complexity factor in the planning process as agents can only plan on the basis of

their information, being ignorant on the planning decisions of other agents. It is

important to note, though, that the information unknown to one agent does not

have a direct impact on the agents’ choices because its actions are not involved

with the unknown piece of information. However, this absence of information may

have an indirect impact in the overall planning process and quality of the plan.
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3.3.2.3 Architectures and frameworks for MAP

The design of architectures and frameworks constitutes another active research

field in MAP. Over the last years, some relevant works in MAP frameworks have

been published. The work in (123) presents a complete MAP architecture for

large-scale problem solving, which organizes agents into planning cells committed

to a particular planning process. The TAEMS domain-independent coordination

framework (68) provides agents with planning capabilities, and applies the GPGP

approach to coordinate them.

Other MAP architectures are based on general-purpose MAS platforms, rather

than being designed from the ground up. MAS platforms, such as Magentix2 (1, 37)

or JADE (5), provide the sets of services, conventions and knowledge required by

agents to interact with each other. For instance, the domain-independent multi-

agent system infrastructure RETSINA (110) introduced a planning component (86).

Once integrated into the agents’ internal architecture, this component provides

them with planning capabilities.

Similarly, our MAP approach builds upon the Magentix2 MAS platform, which

provides the communication services required by the agents. From this base, we

introduce the additional components to provide the agents with planning capabil-

ities and allow them to tackle MAP tasks.

3.3.2.4 Contributions of our model

Our novel approach to cooperative MAP can be classified into the research trend

that integrates planning and coordination. The MAP system achieves two main

objectives: 1) it solves complex strongly-related problems as well as loosely-coupled

problems without losing generality; and 2) it allows heterogeneous agents to work

under incomplete information, sharing only the critical information that affects
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other agents and being partially unaware of the other agents’ information on the

MAP task.

Our MAP approach focuses on a novel method that combines single-agent plan-

ning technologies and a refinement-based methodology. More precisely, we combine

a distributed refinement planning procedure (59) and an individual Partial-Order

Planning (POP) (77, 126). Agents incrementally build local refinements to a cer-

tain base plan through their local POPs, and coordinate these partial solutions

through the refinement planning process. Empirical evaluation proves this method

to perform effectively for both strongly-related and loosely-coupled problems.

Another key feature of our method is the ability to work under incomplete

information. Unlike many MAP proposals, agents in our approach do not require

to build complete knowledge bases, but they can be partially unaware of the in-

formation on the initial state and the knowledge and abilities of the rest of agents.

Our PDDL3.1 -based MAP specification language (64) defines this partial visibil-

ity of the agents, allowing to specify which information can be shared with other

agents for cooperation purposes. Agents exchange the shareable information with

other agents through the construction of a distributed Relaxed Planning Graph

(127) and perform planning while being partially unaware of the other agents’

knowledge. This way, our proposal stresses the importance of privacy in a MAP

context, as agents share only the essential information that affects other agents

and are partially unaware of the information held by the rest of planning entities.

3.3.3 Motivating example

This section introduces the example MAP scenario we use in the following to illus-

trate the concepts presented throughout this paper. The example of application,

depicted in Figure 3.3, describes a transportation and storage scenario in which

two agents (Ag1 and Ag2) take the role of transport agencies and a third agent
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(Ag3) manages a storage facility. Transport agents deliver packages through a net-

work of cities. In turn, the warehouse agent is in charge of storing and delivering

packages to the trucks. Packages can be either raw materials or final products.

Agents in the MAP task are entrusted with two different goals: deliver the final

product p1 to city cA and the raw material p3 to city cE.

This scenario includes bidirectional links among cities that allow transport

agents to move trucks from one city to another. Transport agents Ag1 and Ag2

can perform three different actions: they can load and unload packages in the

trucks and they can move the trucks between cities in their working areas. Ag1

and Ag2 can only move trucks within the cities included in their working areas,

depicted in Figure 3.3 as two different circles. This way, transport agents have to

interact and cooperate in order to deliver packages to a different working area.

A possible plan to solve the scenario depicted in Figure 3.3 involves Ag1 loading

the raw material p3 in the truck t1. Then Ag1 would handle t1 to Ag2 in cB or cD,

both included in the working areas of Ag1 and Ag2, and Ag2 would take care of

transporting the product to cE. This leads to a key aspect of our model: in order to

promote cooperation, Ag1 should share with Ag2 the information on the position

of t1 once it reaches cB or cD. As we will discuss in the following section, agents

will share the information that is relevant for other agents in order to successfully

cooperate.

The warehouse agent Ag3 is in charge of interacting with the trucks to store raw

materials and deliver final products. The warehouse has a table in which packages

can be stacked and unstacked. Packages are swapped in the city in which the

warehouse is placed, the exchange city. As seen in Figure 3.3, cF is the exchange

city used by Ag2 and Ag3 to swap packages.

Ag2 and Ag3 will also share information on the packages they leave in the

exchange city, which will be necessary for them to interact. For example, to
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Figure 3.3: Transportation and storage scenario

accomplish the first goal of the task (transporting the final product p1 to cA), Ag3

will deliver p1 to the exchange city cF, informing Ag2 about the position of the

package. Then, Ag2 will load p1 in the truck t1 and will drive t1 to cB or cD.

Finally, Ag1 will perform the final transportation, delivering p1 to city cA.

3.3.4 Multi-agent planning architecture

The architecture of our MAP system is depicted in Figure 3.4. The MAP architec-

ture basically consists of a set of agents endowed with planning capabilities and an

underlying communication infrastructure that allows them to interact with each

other.

All the agents share the same internal structure, and the internal planning

algorithm followed by each agent is a POP procedure, so they all develop the

same rationale. However, since agents handle different information and knowledge,

that is, incomplete information on the MAP task and different planning abilities,

our MAP system features heterogeneous agents. In the example of application

presented in section 3.3.3, two agents play the role of transport agencies and a third
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Figure 3.4: MAP system architecture

agent manages a storage facility. The first two agents will likely perform similar

actions like driving vehicles from one location to another, which will be different

from the planning abilities of the third agent devoted to stack and arrange packages

in a warehouse. Additionally, agents will have a different view of the planning task

accordingly to their abilities and initial knowledge; thus, the first two agents will

have information about the trucks and roads connecting the different locations,

and the third agent will manage the information about the packages and the hoists

in the warehouse.

Together with the planning agents, the MAP architecture provides a set of com-

ponents that allow the user to interact with the platform. The main components

of the MAP architecture are:

� Graphical User Interface (GUI): This component allows the user to interact

with the MAP system. The user requests the resolution of a MAP task
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by providing, for each agent involved in the task, two input files encoded

through our MAP specification language, the domain and problem file (see

section 3.3.6). The first file defines the typology and the planning capabilities

of the agent, while the second file defines the concrete aspects of the task it

has to solve. Once a solution is found, it is displayed to the user through

the GUI.

� MAP manager: This component interacts with the GUI by collecting the

user’s request for a plan and assigning the MAP task to a subset of agents

that are available, i.e., they are not solving any particular planning task at

the moment. Agents are fully reconfigurable and can be reused when they

become available again by assigning a new MAP task to them.

� Pool of planning agents: The architecture includes a pool of planning agents

which all share the same internal structure shown in Figure 3.5. Agents

are configurable through the domain and problem files provided by the user,

which define the agents’ knowledge and abilities. Once a subset of the agents

in the pool receive a planning task, they start working together to find a

solution plan.

� Communication infrastructure: Agents interact with each other through a

communication infrastructure, which allows them to exchange messages by

following the FIPA communication protocols (63). The developed MAP

system uses the Magentix2 MAS platform (37) as its communication infras-

tructure.

The internal structure of the planning agents includes several modules to ac-

complish the requirements of our refinement planning approach. Through these

modules, agents make plan refinements over a base plan, select the best alternative
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from a set of refinement plans and communicate with each other (see Figure 3.5).

Although agents have the same internal structure, they have different planning

abilities and visibility over the MAP task as defined in the domain and problem

file provided by the user. The internal modules of a planning agent are:

� Communication module: Through this module, each planning agent interacts

with the rest of agents via the communication infrastructure. The commu-

nication module receives messages from the rest of agents and transmits the

received information to the rest of internal modules of the planning agent.

When the agent wants to communicate with other agents, this module is in

charge of sending the messages through the communication infrastructure

(the Magentix2 MAS platform). Hence, this module acts as an interface

between the planning agent and the rest of agents in the MAP task.

� Planning module: This module is in charge of performing the actual plan-

ning search. It includes an embedded Partial-Order Planner which has been
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modified to be able to start the planning process from an incomplete plan

and return valid refinements instead of complete solution plans. The plan-

ning module receives the current base plan from the communication module

and returns a set of valid refinements over the base plan.

� Reasoning module: Agents coordination consists in evaluating the refinement

plans and choosing the most promising one as the next base plan (see section

3.3.7). The reasoning module of each agent receives the refinement proposals

of the agents and evaluates them according to the view of the MAP task

of the respective agent. Hence, this module provides agents with facilities

to perform the coordination process, allowing agents to reason about the

different proposals and vote for the next base plan.

In conclusion, the internal design of planning agents provides them with the

basic capabilities required to solve MAP tasks. Agents use their internal com-

ponents to interact with each other through the communication infrastructure,

reason about plans and proceed with the next plan refinement.

3.3.5 Planning model

This section presents the MAP model upon which our planning architecture is

based. It also describes the procedure followed by the agents for building and

exchanging plans among them.

The following subsections describe and formalize the main components of a

MAP task and outline the Partial-Order Planning concepts used in the MAP al-

gorithm (see section 3.3.7). In order to illustrate the formal definitions introduced

in this section, we provide simple examples based on the transportation MAP task

presented in section 3.3.3. Also, for the sake of clarification of some definitions,

we point out the reader to the figures of plans showed in section 3.3.9.

101



3. SELECTED PAPERS

3.3.5.1 Formalization of a MAP task

Definition 3.1. (MAP task) A MAP task is a tuple T = 〈AG,O,V,A, I,G〉.
AG = {1, . . . , n} is a finite non-empty set of planning agents. O is a finite set of

objects that model the elements of the planning domain over which the planning

actions can act. V is a finite set of state variables that model the states of the

world. Each state variable v ∈ V is mapped to a finite domain of mutually exclusive

values Dv. Each value in a state variables’s domain corresponds to an object of

the planning domain, i.e. ∀v ∈ V, Dv ⊆ O. When a value is assigned to a state

variable, the pair variable-value acts as a ground atom in propositional planning.

A is the set of deterministic actions of the agents. I is the set of values assigned

to the state variables in V and represents the initial state of the MAP task T. G

is the set of goals of the MAP task that agents have to achieve; G represents the

values that the state variables are expected to take in the final state.

Information that agents have on the states of the world (problem states) is

modeled through a set of ground atoms or fluents. This includes the initial state,

I, and the goal state, G. As opposite to STRIPS-like models (36), which apply

negation by failure (only positive fluents are represented, the absence of a fluent

implies its negation), we allow to explicitly represent both true and false infor-

mation. Thus, our model adopts the open world assumption, considering that

the information which is not explicitly stored in the internal model of agents is

unknown to them. Again, this also refers to the information in the initial state, I,

and the goals, G.

Definition 3.2. (Fluent) A ground atom or fluent of the problem is a tuple

of the form 〈v, d〉, where v ∈ V and d ∈ Dv. A negative fluent is of the form

〈v,¬d〉. A positive fluent 〈v, d〉 indicates that the variable v takes the value d,

while a negative fluent 〈v,¬d〉 indicates that the variable v does not take the value

d.

As stated in Definition 3.2, a fluent relates a variable with one of the values in

its domain. For instance, let (at t1) be a variable that refers to the position of
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a truck object t1 in the example introduced in section 3.3.3. Possible values for

this variable are the cities cA, cB, cC, cD, cE and cF. Then, a positive fluent 〈at

t1, cA〉 indicates that t1 is in cA while a negative fluent 〈at t1, ¬cA〉 indicates

that t1 is not in cA.

In our model, agents are heterogeneous as they may have different knowledge

and planning capabilities. In addition, they may have incomplete information

on the MAP task as this can be distributed across agents. In this case, agents

must cooperate with each other to solve the MAP task. Even though information

is distributed across agents, there must be a subset of state variables shareable

between agents in order to exchange the values of such variables and successfully

communicate between each other. To denote the actions, goals, etc. of an agent

i ∈ AG we will use the superscript notation xi for any such aspect x.

From the set of variables, V, of the MAP task, we distinguish Vi as the set of

variables managed by agent i, which includes the private variables, only known to

agent i, and the public variables, shared with other agents. Thus, V = {Vi}ni=1.

Di
v ⊆ Dv is the set of values of a variable v ∈ Vi that are visible to agent i.

The information of the initial state of the MAP task, I, is modeled through a

set of positive and negative fluents. This information is distributed among agents

under the assumption that agents’ partial knowledge about I is consistent, i.e.

there is not contradictory information among agents. Hence, I can be defined as

I =
⋃
∀i∈AG Ii. It is possible to define MAP tasks in which all the agents have a

complete view of the initial state I, i.e. ∀i ∈ AG, Ii = I.

For example, Ag1 and Ag2 are two transport agents in the MAP scenario of

section 3.3.3. Initially, Ag1 knows that the truck t1 is in city cA so the fluent 〈at

t1, cA〉 is part of IAg1. On the contrary, Ag2 does not know where t1 is initially

located, but it knows that the truck is not in city cB. Hence, the fluent 〈at t1,
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¬cB〉 belongs to IAg2, the initial state of Ag2.

Each agent i ∈ AG is associated with a set, Ai, of possible actions such that

the set of actions of a planning task is defined as A =
⋃
∀i∈AG Ai. An action α is

said to be public if it is shared by two or more agents, i.e. α ∈ Ai ∧α ∈ Aj , i 6= j.

α ∈ Ai is private to agent i iff α 6∈ Aj ,∀j 6= i. An action α ∈ Ai denotes that

agent i has the capability expressed in α. If α forms part of the final plan then

agent i is also responsible of executing α.

Definition 3.3. (Planning rule or action) A planning rule or action α ∈
A is a tuple 〈PRE(α), EFF (α)〉. PRE(α) = {p1, . . . , pn} is a set of fluents

that represents the preconditions of α, while EFF (α) = {e1, . . . , em} is a set of

operations of the form (v = d) or (v 6= d), v ∈ V, d ∈ Dv, that represent the

consequences of executing α.

An action α may belong to different agents, i.e. α ∈ Ai and α ∈ Aj , i 6= j.

Executing an action α in a world state S gives rise to a new world state S′ generated

as the result of applying EFF (α) over S. Particularly:

� An operation (v = d) ∈ EFF (α) implies the addition of a fluent 〈v, d〉 and a

set of fluents 〈v,¬d′〉, ∀d′ ∈ Dv | d′ 6= d, to the world state S′. If 〈v, d′〉 ∈ S

or 〈v,¬d〉 ∈ S, d′ 6= d, the operation (v = d) also implies that the fluents

〈v, d′〉 or 〈v,¬d〉 will not be present in S′. For example, suppose that agent

Ag1 knows that the truck t1 can be placed at the cities cA, cB, cC and cD,

i.e., DAg1
at t1 = {cA, cB, cC, cD}. If Ag1 knows a positive fluent 〈at t1, cA〉,

it also knows the negative fluents 〈at t1, ¬cB〉, 〈at t1, ¬cC〉 and 〈at t1,

¬cD〉.

� An operation (v 6= d) ∈ EFF (α) implies the addition of a fluent 〈v,¬d〉 to

the world state S′. If 〈v, d〉 ∈ S, the operation (v 6= d) also entails that

the fluent 〈v, d〉 will not be present in S′. Note that the only existence of
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a fluent 〈v,¬d〉 in a state indicates that the value of the variable v is not

known in such a state and, consequently, the rest of values in Dv, except

for d, are unknown values. For example, if the fluent 〈at t1, ¬cB〉 is in the

world state of agent Ag2, then the agent only knows that the truck t1 is

not in city cB but the agent is not aware of the actual position of the truck.

Thus, whether t1 is in cA, cC or cD is unknown to Ag2.

The set of preconditions of an action α, PRE(α), defines the fluents that

must hold in a world state S for that α is applicable in this state. A positive

precondition of the form 〈v, d〉 indicates that the fluent 〈v, d〉 must hold in S,

while a negative precondition 〈v,¬d〉 indicates that the fluent 〈v,¬d〉 must hold

in S. Note that the existence of a positive fluent 〈v, d〉 also implies the existence

of a negative fluent 〈v,¬d′〉 for the rest of values in the variable’s domain, i.e.

(∃〈v, d〉 ∈ S)⇒ (∀d′ ∈ Dv, d
′ 6= d, ∃〈v,¬d′〉 ∈ S).

Additionally, agents use a utility function F to evaluate the quality of the

plan proposals. For each agent i, F assigns a cost, cost(viewi(Π)) ∈ R+
0 , to each

plan proposal Π according to the view that agent i has of that plan, viewi(Π).

Finally, the private goals of an agent i, PGi, are fluents that agent i is interested in

attaining. Private goals are encoded as soft constraints (42), as it is not mandatory

that agents achieve them.

3.3.5.2 Concepts on Partial-Order Planning

Our MAP model can be regarded as a multi-agent refinement planning framework,

a general method based on the refinement of the set of all possible plans (59). An

agent proposes a plan Π that typically enforces some of the goals that have not

yet been supported (see definition 3.5); then, the rest of agents collaborate on the

refinement of Π by solving some of these pending goals in Π. This way, agents

cooperatively solve the MAP task by consecutively refining an initially empty plan.
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In this context, Partial-Order Planning (POP) (3) arises as a suitable approach

to address refinement planning, since it is focused on solving the pending goals

progressively. Consequently, agents in our MAP approach plan concurrent ac-

tions through the adoption of the POP paradigm. In the following, we provide

some basic definitions concerning single-agent POP and its adaptation to a MAP

context.

Single-agent Partial-Order Planning.

Definition 3.4. (Partial plan) A partial plan is a tuple Π = 〈∆,OR,CL〉.
∆ ⊆ A is the set of actions in Π. OR is a set of ordering constraints (≺) on

∆. CL is a set of causal links over ∆. A causal link is of the form α
〈v,d〉→ β or

α
〈v,¬d〉→ β, where α ∈ A and β ∈ A are actions in ∆. α

〈v,d〉→ β indicates that

there is an operation (v = d) such that v ∈ V, d ∈ Dv, (v = d) ∈ EFF (α) and a

fluent 〈v, d〉 ∈ PRE(β). α
〈v,¬d〉→ β indicates that there is a fluent 〈v,¬d〉 such that

v ∈ V, d ∈ Dv, 〈v,¬d〉 ∈ PRE(β) supported by an operation (v 6= d) ∈ EFF (α)

or an operation (v = d′) ∈ EFF (α), d′ ∈ Dv, d′ 6= d.

This definition of partial plan represents the mapping of a plan into a directed

acyclic graph, where ∆ represents the nodes of the graph (actions) and OR and

CL are sets of directed edges representing the precedences and causal links among

these actions, respectively.

An empty partial plan is defined as Π0 = 〈∆0, OR0, CL0〉, where ∆0 contains

α0 and αf , the initial and final action of the plan, respectively. α0 and αf are

fictitious actions that do not belong to the action set of any particular agent. OR0

contains the constraint α0 ≺ αf and CL0 is an empty set. This way, a plan Π

for any given MAP task T will always contain the two fictitious actions such that

PRE(α0) = ∅ and EFF (α0) = I, PRE(αf ) = G, and EFF (αf ) = ∅; i.e. α0

represents the initial situation of the MAP task T, and αf represents the global

goals of T.
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Assuming that G 6= ∅, an empty plan is said to be incomplete if the precon-

ditions of αf are not yet supported through a causal link. The POP process is

aimed at introducing causal links to support these preconditions, also called open

goals.

Definition 3.5. (Open goal) An open goal in a partial plan Π = 〈∆, OR, CL〉
is a fluent og of the form 〈v, d〉 or 〈v,¬d〉, such that v ∈ V, d ∈ Dv, og ∈ PRE(β),

β ∈ ∆, and @α ∈ ∆/α
og→ β ∈ CL, i.e., an open goal og is a precondition of ab

action β in the plan Π that is not yet supported by a causal link α
og→ β ∈ CL.

openGoals(Π) denotes the set of open goals in Π. A plan is incomplete if it has

open goals. Otherwise, we say it is a complete plan.

As the POP search progresses, the causal links in a partial plan may become

unsafe as a result of the introduction of a new action which is not ordered with

respect to the causal link. These conflicts are called threats.

Definition 3.6. (Threat) A threat in a partial plan Π = 〈∆, OR, CL〉 represents

a conflict between an action of the plan and a causal link. An action γ causes a

threat over a causal link α
〈v,d〉→ β if ((v = d′) ∈ EFF (γ) ∨ (v 6= d) ∈ EFF (γ)),

where v ∈ V, d ∈ Dv, d′ ∈ Dv and d 6= d′, and there is neither an ordering

constraint γ ≺ α nor β ≺ γ. The action γ will cause a threat over a causal link

of the form α
〈v,¬d〉→ β if (v = d) ∈ EFF (γ), where v ∈ V, d ∈ Dv, and there is

neither an ordering γ ≺ α nor β ≺ γ. Threats(Π) denotes the set of threats in Π.

A threat t ∈ Threats(Π) can be solved by promoting or demoting the threaten-

ing action γ with respect to the causal link α
〈v,d〉→ β or α

〈v,¬d〉→ β, i.e. introducing

an ordering constraint γ ≺ α or β ≺ γ. Threats and open goals are referred to

as the flaws of a partial-order plan. The POP process is guided by solving the

pending flaws of an initially empty partial plan.

Figure 3.6 in section 3.3.9 depicts a refinement plan for the example introduced

in section 3.3.3. This refinement plan includes a causal link Init
〈at t1, cA〉→ load

t1 p3 cA. Suppose that a new action drive t1 cA cB, that causes the truck t1
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to move from cA to cB, is added to the refinement plan and that this new action

is not ordered with respect to load t1 p3 cA. In this case, (at t1 = cB) ∈

EFF (drive t1 cA cB). This effect causes a threat over the previous causal link,

as it introduces a fluent 〈at t1, cB〉 that affects the value of the variable (at t1).

This threat can be solved by introducing an ordering constraint load t1 p3 cA

≺ drive t1 cA cB, i.e., demoting the threatening action drive t1 cA cB with

respect to the causal link.

Multi-agent Partial-Order Planning. Agents in our MAP model cooperate

on the refinement of a base plan Π by proposing refinement steps that solve some

open goals in Π. This way, agents cooperatively solve the MAP task by consecu-

tively refining Π, the initially empty base plan.

Definition 3.7. (Refinement step) A refinement step Πi devised by an agent i

over a base plan Πg, where g ∈ openGoals(Πg), is a triple Πi = 〈∆i, ORi, CLi〉,
where ∆i ⊆ A is a set of actions and ORi and CLi are sets of orderings and causal

links over ∆i, respectively. Πi is a threat-free partial plan that solves g as well as

all the new open goals of the form 〈v, d〉 or 〈v,¬d〉 that arise from this resolution

and can only be achieved by agent i, where (v ∈ Vi) ∧ (v 6∈ Vj ,∀j 6= i). That

is, when solving a goal of a base plan, agents only accomplish the new open goals

concerning their private fluents, leaving public goals unresolved. In other words,

the refinement method only iterates over the public fluents. Let g ∈ openGoals(Πg)

be a fluent of the form 〈v, d〉 or 〈v,¬d〉; an agent i proposes a refinement step over

Πg iff v ∈ Vi.

In our MAP approach partial plans are multi-agent concurrent plans as two

or more actions can be concurrently executed by different agents. Some MAP

models adopt a simple form of concurrency: two concurrent actions are mutually

consistent if none of them changes the value of a state variable that the other relies

on or affects, too (15). We impose the additional concurrency constraint that the

preconditions of two actions have to be consistent (12) for these two actions to be
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mutually consistent. This definition of concurrency is straightforwardly extended

to a joint action α = 〈α1, . . . , αn〉.

Definition 3.8. (Mutually consistent actions) Two concurrent actions α ∈ Ai

and β ∈ Aj are mutually consistent if none of the following conditions holds:

� ∃(v = d) ∈ EFF (α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where

v ∈ Vi ∩ Vj, d ∈ Di
v ∩Dj

v, d′ ∈ Dj
v and d 6= d′, or vice versa.

� ∃(v = d) ∈ EFF (α) and ∃((v = d′) ∈ EFF (β)∨ (v 6= d) ∈ EFF (β)), where

v ∈ Vi ∩ Vj, d ∈ Di
v ∩Dj

v, d′ ∈ Dj
v and d 6= d′, or vice versa.

� ∃〈v, d〉 ∈ PRE(α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where

v ∈ Vi ∩ Vj, d ∈ Di
v ∩Dj

v, d′ ∈ Dj
v and d 6= d′, or vice versa.

Going back to our example in section 3.3.3, two concurrent actions drive t1

cA cB, planned by agent Ag1, and drive t1 cA cC, planned by agent Ag2, are

mutually inconsistent as (at t1 = cB) ∈ EFF (drive t1 cA cB) and 〈at t1,

cC〉 ∈ PRE(drive t1 cC cB) (the first condition in Definition 3.8 holds). Con-

current actions drive t1 cA cB and drive t1 cA cC are also mutually inconsis-

tent as (at t1 = cB) ∈ EFF (drive t1 cA cB) and (at t1 = cC) ∈ EFF (drive

t1 cA cC) (second condition holds). Finally, concurrent actions drive t1 cA cB

and drive t1 cC cB are mutually inconsistent as 〈at t1, cA〉 ∈ PRE(drive

t1 cA cB) and 〈at t1, cC〉 ∈ PRE(drive t1 cC cB) (third condition holds).

As agents address concurrency inconsistencies through the detection of threats

over the causal links of their plans, concurrency is ensured among private ac-

tions since a refinement step put forward by an agent is always a threat-free plan.

However, concurrency issues between two public actions introduced by different

agents do not arise until their preconditions are fully supported through causal

links. This way, it is not possible to ensure that two concurrent actions are mu-

tually consistent until their preconditions are fully supported. Thus, our notion
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of multi-agent concurrent plan distinguishes between public and private actions

when dealing with concurrency.

Definition 3.9. (Multi-agent concurrent plan) A partial plan Π = 〈∆,OR,
CL〉 is a multi-agent concurrent plan if for every pair of unequal, concurrent,

public actions α and β, α 6= β, ∀pα ∈ PRE(α), pα 6∈ openGoals(Π), ∀pβ ∈
PRE(β), pβ 6∈ openGoals(Π), α and β are mutually consistent.

Definition 3.10. (Refinement plan) A refinement plan Π devised by an agent

i over a base plan Πg is a concurrent multi-agent plan that results from the com-

position of Πg and a refinement step Πi proposed by agent i. Π is defined as

Π = Πg ◦Πi, where ◦ represents the composition operation.

Thus, an agent i can build a refinement plan Π upon a base plan Πg by com-

posing Πg and a refinement step Πi that solves at least g ∈ openGoals(Πg), i.e.

Π = Πg ◦Πi. As previously mentioned, refinement steps are always threat-free and

their actions are mutually consistent. Hence, if a refinement step brings about a

concurrency inconsistency or a threat on the composite plan, the proposer agent

is responsible for addressing such a flaw. If an agent is not able to come up with

a consistent refinement plan, then it refrains from suggesting it. In case no re-

finements for a base plan can be found, the base plan is said to be a dead-end

plan.

Definition 3.11. (Dead-end plan) A plan Π is called a dead-end plan if ∃g ∈
openGoals(Π) and there is no refinement step Πi such that g 6∈ openGoals(Π◦Πi);

that is, no refinement step solves the open goal g.

Definition 3.12. (Solution plan) A multi-agent concurrent plan Π is a solu-

tion plan for a planning task T if openGoals(Π) = ∅ (Π is a complete plan),

Threats(Π) = ∅, and every pair of actions α, β ∈ Π are mutually consistent.

That is, a solution plan is a complete multi-agent concurrent plan. Note that

we require Π to be a complete plan so it cannot have pending open goals. Con-

sequently, the preconditions of the fictitious final action αf will also hold thus
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guaranteeing that Π solves the MAP task T. For instance, Figure 3.8 in section

3.3.9 shows a solution plan for the MAP task presented in section 3.3.3. The dif-

ferent shapes of the actions indicate which agent has proposed them. The solution

plan in Figure 3.8 is a complete, concurrent plan to which all the agents in the

MAP task have contributed.

3.3.6 Planning language for MAP tasks

In our MAP system, we define the agents’ planning tasks through several speci-

fication files. These files encode the information of the agent on the MAP task,

namely the variables, Vi; the objects associated to the variables, Oi; the planning

actions, Ai; and the initial state of the agent, Ii. All this information is written

in a planning definition language.

Traditionally, planning has been regarded as a single-agent problem, where

only one centralized planning entity is required. MAP presents new requirements

and challenges that are not present in classical, centralized planning. Planning

agents in our MAP model can withhold their private information, and decide which

information to share with the rest of agents. In addition, planning agents can have

private individual objectives besides the goals of the planning task. Therefore, the

planning language must provide support to allow us to define shareable information

and private goals.

Planning definition languages have experienced a remarkable evolution over the

last years, continuously increasing their expressivity through the addition of new

features. Our MAP language is based on PDDL3.1 (64), the most recent version

of PDDL (43), which was introduced in the context of the 2008 International

Planning Competition. Unlike its predecessors, that model a planning domain

through logical predicates, PDDL3.1 also incorporates state variables by adding

fluents that map a tuple of objects to an object of the planning task. We have

111



3. SELECTED PAPERS

extended the PDDL3.1 language with some new structures to model the multi-

agent features of a planning task.

In single-agent PDDL language, the user writes two files, one containing the

domain of the task and another one containing the data of the problem to be

solved. The domain file describes the planning actions, the types of objects and

the state variables of the task, while the problem file details the current objects

of the task, the initial state (the initial values of the state variables) and the task

goals. These files have a similar structure to their PDDL counterparts, and reflects

the additional information required by MAP tasks.

In our MAP system, each agent has a domain and a problem file that model,

respectively, the typology of the planning agent and its particular vision of the

MAP task. The domain and problem files also include the information that is

shared among agents. The shared-data structure allows the problem designer

to define which fluents will be shared by each agent and with whom. Through

this structure, the designer can define the incomplete information of the agent.

This way, the domain knowledge of the agents can be modeled (or specified) from

a complete unawareness to a full visibility of the domain. Additionally, since

agents in MAP may have both global and local goals, this information is modeled

through the structures global-goal and private-goal. Finally, we have included

an additional multi-functions structure in order to simplify the specification of

fluents in the initial state of an agent.

The following subsections analyze the structures that cover the requirements

of MAP domains, i.e. modeling the data shared among agents, and the definition

of local and global goals. The last subsection provides an example that describes

the encoding of the MAP task introduced in section 3.3.3 with our language.
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3.3.6.1 Shared data

The shared-data structure, located on the agent’s problem file, determines which

fluents are shareable and with which agent or agents they will be shared. As shown

in section 3.3.8, this structure directly affects the initial information exchange that

agents perform before planning, and it also defines the partial view of the planning

task of each agent.

As agents only exchange fluents, in the :shared-data structure the problem

designer specifies the fluents that the agent can share and with which agents. The

shared-data structure has the following BNF syntax:

<shared-data-def> ::= (:shared-data <share-def>+)

<share-def> ::= (<atom-formula-def>+ [- <agent-def>?])

<agent-def> ::= <agent> | (either <agent> <agent>+)

<agent> ::= <name>

<atom-formula-def> ::= (<predicate> <typed-list(element)>)

<atom-formula-def> ::= (= <object-fluent> <object>)

<predicate> ::= <name>

<object-fluent> ::= (<name> <object>*)

<object> ::= <name>

<element> ::= <variable> | <constant>

<variable> ::= ?<name>

<constant> ::= <name>

<typed-list(x)> ::= x*

As the BNF syntax shows, it is possible to define fluents or predicates within

the :shared-data section and associate them to one, some or all the agents in the

system (if agent is not specified, the predicates or fluents are shared with all the

agents).

3.3.6.2 Private and global goals

A particularity of the MAP approach when compared to traditional planning is the

fact that agents have private and global goals. To reflect this information in the

model, the private-goal and global-goal structures have been included into
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the problem files. Similarly to the goal section in PDDL3.1, goals can be modeled

through predicates or fluents. The private-goal and global-goal structures use

the following BNF syntax:

<private-goal-def> ::= (:private-goal <predicate-def>)

<global-goal-def> ::= (:global-goal <predicate-def>)

<predicate-def> ::= <atom-formula-def>

<predicate-def> ::= (and <atom-form-def> <atom-form-def>+)

<predicate-def> ::= (or <atom-form-def> <atom-form-def>+)

<atom-form-def> ::= (<predicate> <typed-list(element)>)

<atom-form-def> ::= (= <object-fluent-def> <object>)

<predicate> ::= <name>

<object-fluent-def> ::= (<name> <object>*)

<object> ::= <name>

<element> ::= <variable> | <constant>

<variable> ::= ?<name>

<constant> ::= <name>

<typed-list(x)> ::= x*

As shown in the BNF syntax description, both global and local goals are de-

scribed as conjunctions or disjunctions of fluents and predicates, or rather as a

single fluent or predicate.

3.3.6.3 Encoding example

This subsection describes the encoding of the MAP task presented in section 3.3.3

with our MAP language. This MAP task describes a transportation and storage

scenario in which two agents (Ag1 and Ag2) take the role of transport agencies

and an agent (Ag3) manages a storage facility. Transport agents deliver pack-

ages through a network of cities, while the warehouse agent stores and loads the

packages in trucks. In the following, we provide a description of the domain and

problem files of the agents for this task, stressing the specification of shareable

information.
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Planning agents receive two different description files, namely the domain and

problem file. The domain file contains a general description of the capabilities of

the agent, including the actions that the agent can perform and the predicates and

functions it can manage. All agents of the same type share the same domain file,

e.g. transport agents Ag1 and Ag2 in this example receive the same domain file.

The problem file models the concrete problem assigned to each agent, including a

description of the objects of the task, the initial situation and the global goals of

the task as well as private goals of the agent. Each agent receives its particular

problem file.

Domain files. The domain file for transport agents specifies bidirectional links

among cities, which allow trucks to move from one city to another. Trucks can

only travel within the cities included in their working areas, depicted in Figure

3.3 with two circles. This way, transport agents have to interact and cooperate in

order to deliver packages to a different area. The domain file for transport agents

is modeled as follows:

(define (domain Transport)

(:requirements :typing :equality :fluents)

(:types truck package agent city - object

raw-material final-product - package)

(:predicates (empty ?c - city))

(:functions (at ?t - truck) - city

(pos ?p - package) - (either city truck)

)

(:multi-functions (link ?c - city) - city

(area) - city

)

(:action load

:parameters (?t - truck ?p - package ?c - city)

:precondition (and (member (area) ?c)(= (at ?t) ?c)(= (pos ?p) ?c))

:effect (and (assign (pos ?p) ?t)(empty ?c))

)

(:action unload
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:parameters (?t - truck ?p - package ?c - city)

:precondition (and (empty ?c)(member (area) ?c)

(= (at ?t) ?c)(= (pos ?p) ?t))

:effect (and (assign (pos ?p) ?c)(not (empty ?c)))

)

(:action drive

:parameters (?t - truck ?c1 ?c2 - city)

:precondition (and (member (area) ?c1)(member (area) ?c2)

(member (link ?c1) ?c2)(= (at ?t) ?c1))

:effect (assign (at ?t) ?c2)

)

)

The domain file shown above is structured similarly as a regular PDDL3.1

file. The main sections of the file are highlighted in bold. The :requirements

section indicates the PDDL features that have been used to encode the domain

information. :types describes the object-type hierarchy of this particular domain.

As it can be seen, the planning domain of transport agents includes four different

types of objects, namely truck, agent, city and package. A package can be

either a raw-material or a final-product.

Structures :predicates, :functions and :multi-functions define the state

variables used in the transport domain. During the planning process, these vari-

ables will be instantiated to objects defined in the transport agents’ problems, thus

giving rise to the fluents that will be used throughput the planning process. For

instance, let us consider the function (at ?t - truck) - city, where (at ?t) is

a state variable and city is the type of its domain values. Given a truck object

t1 and a city object c1, the previous function will result in a fluent of the form

(= (at t1) c1), which indicates that t1 is located at c1.

The domain file of transport agents include the following predicates, functions

and multi-functions: empty is a predicate to indicate whether a city is empty or

already contains a package (a city can only have one package simultaneously);
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function at returns the city in which a certain truck is placed; function pos

describes the position of a package, either a truck or a city; multi-function link

returns the outcoming connections (roads) from a certain city; and area describes

the working area of an agent in terms of the cities it can drive a truck to.

The last portion of a PDDL3.1 domain file defines the abilities of the agent, i.e.,

the actions it can perform. Actions are described through its parameters (objects

that take part in the action), preconditions (predicates and functions that must

hold for the action to be applicable) and effects (predicates and functions that

describe the consequences of applying the action). As in the case of predicates,

functions and multi-functions, actions are described through state variables. In

particular, preconditions encode queries on fluents that check whether a variable

takes on a particular value, and effects encode assignment operations on fluents to

make a state variable take on a value.

As described in the domain file, transport agents can perform three different

actions: load and unload a package into/from a truck, and drive a truck from

a city to another one of the agent’s area.

The domain file for warehouse agents is similar to the classical blocksworld

domain, in which packages can be stacked and unstacked on/from the table or

other packages. In this case, only one pile of packages can be stacked on the

table, and there are two types of packages, raw materials and final products.

The transportation and storage scenario depicted in Figure 3.3 includes two final

products (packages p1 and p2) and a raw material (package p3). The warehouse

agent delivers final products to the city in which the warehouse is placed (the

exchange city, cF in Figure 3.3), and acquires raw materials that are unloaded

from the trucks in the exchange city. Following, we show a sketch of the warehouse

domain file encoding:
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(define (domain Warehouse)

(:requirements :typing :equality :fluents)

(:types package agent city table hoist - object

raw-material final-product - package)

(:predicates (empty ?c - city)

(clear ?p - (either package table hoist))

(exchange-city ?c - city)

)

(:functions (pos ?p - package) - (either city package table hoist))

(:action acquire

:parameters (?p - raw-material ?c - city ?h - hoist)

:precondition (and (= (pos ?p) ?c)(clear ?h)(exchange-city ?c))

:effect (and (assign (pos ?p) ?h)(not (clear ?h))(empty ?c))

)

...

)

As the transport agents, warehouse agents manage city, hoist and package

objects. Additionally, warehouse agents consider table and hoist objects. The

hoist is used to deliver and acquire packages, while the table is used to stack

and unstack packages within the warehouse.

Warehouse agents perform the four actions indicated above: they can stack

and unstack a package on top/from a clear table or package; and can also

acquire and deliver a package from/to the exchange-city by using a hoist.

The sketch of the domain file illustrates the encoding of the acquire action.

Problem files. Each agent receives its own problem file that models the partic-

ular objects managed by the agent, the initial situation known to the agent and

the global and private goals that the agent must achieve. Moreover, the problem

files include the definition of the shareable fluents and with which agents they can

be shared.

We now explain the problem file of transport agent Ag1 (this problem will be

later used to illustrate the construction of the dis-RPG). Problem files describe the
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initial state of the task by including both the positive and negative information

known by the agent. This way, the information not represented in the problem

file is unknown to the agent. Ag1’s problem file is encoded as follows:

(define (problem Ag1)

(:domain Transport)

(:objects

Ag1 Ag2 Ag3 - agent

t1 - truck

cA cB cC cD cE cF - city

p3 - raw-material

p1 p2 - final-product)

(:shared-data

(empty ?c - city) - (either Ag2 Ag3)

((at ?t - truck) - city)

((pos ?p - package) - (either city truck)) - Ag2

((pos ?p - package) - city) - Ag3

)

(:init

(empty cB) (empty cC) (empty cD) (not (empty cA))

(= (at t1) cA) (not (= (at t1) cB)) (not (= (at t1) cC))

(not (= (at t1) cD)) (= (pos p3) cA) (not (= (pos p3) cB))

(not (= (pos p3) cC)) (not (= (pos p3) cD))

(= (link cA) {cB cC}) (not (= (link cA) {cA cD}))

(= (link cB) {cA cC}) (not (= (link cB) {cB cD}))

(= (link cC) {cA cB cD}) (not (= (link cC) {cC}))

(= (link cD) {cC}) (not (= (link cD) {cA cB cD}))

(= (area) {cA cB cC cD}) (not (= (area) {cE cF}))

)

(:global-goal (and (= (pos p1) cA)(= (pos p3) cE)))

)

Sections of the problem file are also highlighted in bold. A problem file starts

with a description of the :objects that the agent manages. As shown in the

code, agents are represented as objects. Ag1 knows that there is a truck t1 in

the task, and it has knowledge of six different cities, although it only manages the

four cities included in its working area (see Figure 3.3). The agent also knows

that there are three packages in the MAP task, the final-products p1 and p2
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and the raw-material p3.

The :shared-data section is a key aspect of our MAP language, as it defines

the information shareable by the agents and directly affects their knowledge of the

task. The predicates and functions defined in this structure are the patterns of

the fluents that the agent regards as shareable with other agents. For instance,

Ag1’s :shared-data section includes the following pattern: (empty ?c - city)

- (either Ag2 Ag3). This pattern indicates that Ag1 will share the fluents that

match the pattern (empty ?c - city) with both Ag2 and Ag3. Given that Ag1

knows the cities cA, cB, cC, cD, cE and cF, fluents as (= (empty cA) true) or

(= (empty cD) false) match the pattern, and Ag1 shares this information with

Ag2 and Ag3.

The :init section describes the initial state of Ag1, i.e., the initial situation of

the world known to Ag1. It is defined with predicates like (empty cB), functions

like (= (at t1) cA)) and multi-functions like (= (link cA) {cB cC}), that hold

in the initial situation. The initial state includes both positive and negative in-

formation. For instance, the function (not (= (at t1) cC)) indicates that Ag1

knows that truck t1 is not initially placed at city cC. The information not in-

cluded in the initial state is considered unknown to Ag1.

While the initial state contains predicates, functions and multi-functions, in-

ternally the system treats all of them as fluents. For instance, a predicate (empty

cB) is internally converted into a fluent (= (empty cB) true), while functions

like (= (at t1) cA) are already in the form of fluents. Multi-functions are used

to easily define multiple functions through a simplified notation. The conversion

into fluents is straightforward: given a multi-function (= (link cA) cB cC), we

generate the fluents (= (link cA cB) true) and (= (link cA cC) true).

Finally, the :global-goal structure shows the global objective of the MAP

task. In this case, the goal is to transport the raw-material p3 to city cF, and
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to deliver a final-product to city cA. Notice that, in this example, there is not

a :private-goal section.

3.3.7 MAP algorithm overview

This section summarizes the main stages of the MAP algorithm followed by the

agents to devise, exchange and select refinement plans to come up with a solution

for the MAP task. Agents follow a procedure that integrates planning and coordi-

nation, allowing agents to solve both strongly-related and loosely-coupled problems

without losing generality. Agents perform an individual Partial-Order Planning

(POP) search to build refinements over the current base plan, while one of the

agents leads the process of gathering the new refinement plans and selecting the

next base plan.

Algorithm 3: Overview of the MAP algorithm

Initial information exchange

repeat

Individual refinement process

Coordination process

until a solution plan is found or the search space is completely explored

Algorithm 3 shows the main steps of the MAP algorithm. The stages of the

algorithm are outlined as follows:

� Initial information exchange: The algorithm starts with an initial com-

munication stage by which agents exchange the shareable information on the

planning domain in order to generate the data structures that will be used

in the subsequent planning process. Agents take advantage of the exchanged

information to build a distributed Relaxed Planning Graph, which provides

them with their partial view on the MAP task.
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� Resolution process: Once agents have exchanged the shareable informa-

tion and the distributed Relaxed Planning Graph is computed, they start

the iterative resolution process by which they explore the search space until

they find a solution for the MAP task. As shown in Algorithm 3, this process

comprises two different interleaved stages, an individual planning process by

which agents devise refinements over a centralized base plan and a coordi-

nation process to exchange the new refinement plans and to select the next

base plan:

– Individual refinement process: Agents individually refine the cur-

rent base plan of the MAP system. Each planning agent is provided

with an internal POP system. The classical POP algorithm has been

adapted to a MAP context in order to obtain valid refinement plans

over an incomplete base plan (see section 3.3.9.1).

– Coordination process: Agents communicate and exchange the new

refinement plans over the current base plan. Later, they jointly evaluate

these refinement plans and select the most promising one as the next

base plan.

The following sections detail the two main stages of the MAP algorithm. Sec-

tion 3.3.8 describes the initial information exchanging stage performed by the

agents, while section 3.3.9 details the resolution process, including both the coor-

dination process and the individual construction of the refinement plans.

3.3.8 Initial information exchange

Prior to the resolution process itself, agents perform a preliminary stage to share

public planning information effectively. This initial stage builds a distributed Re-

laxed Planning Graph (dis-RPG), whose construction is inspired by the approach
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in (127). Unlike the proposal in (127), which stops the graph construction once all

the problem goals appear in the graph, our procedure builds a complete dis-RPG

by maintaining the incomplete information of the agents, so they only exchange

the information defined as shareable in the input files (see section 3.3.6). This

section describes in detail the dis-RPG building process and subsection 3.3.8.1

provides a trace based on the MAP task presented in section 3.3.3 that illustrates

this process.

Algorithm 4: Dis-RPG construction for an agent i

Build initial RPGi

repeat

∀j 6= i, i sends j shareable fluents SF i→j ∈ RPGi of the form 〈v, d〉 or

〈v,¬d〉, where v ∈ Vi ∩ Vj and d ∈ Di
v ∩Dj

v

∀j 6= i, i receives from j shareable fluents SF j→i ∈ RPGj of the form

〈v, d〉 or 〈v,¬d〉, where v ∈ Vi ∩ Vj and d ∈ Di
v ∩Dj

v

RF i ← ∅
∀j 6= i, RF i ← RF i ∪ SF j→i

for all received fluents f ∈ RF i do

if f 6∈ RPGi then

Insert f in RPGi

levelRPGi(f)← level(f)

if (f ∈ RPGi) ∧ (levelRPGi(f) > level(f)) then

levelRPGi(f)← level(f)

Expand RPGi

until RF i = ∅

The dis-RPG provides the agents with valuable planning information that will

be used throughout the refinement planning process:

� Agents exchange the fluents defined as shareable in the :shared-data section

of the MAP domain definition files (see subsection 3.3.6.1). Fluents are
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labeled with the list of agents that can achieve them, giving each agent a

view of the possible interactions that can arise at planning time with other

agents.

� An estimate of the best cost to achieve each fluent is computed. This infor-

mation is used to design heuristics to guide the refinement planning process.

Following Algorithm 4, the first step of the dis-RPG construction consists in

computing the initial RPG for each agent i, RPGi, taking only into account the

fluents and actions initially known to the agent. Agents compute this initial plan-

ning graph by following the procedure presented in (54). The RPG consists of

a set of alternating fluent and action levels. The first fluent level contains the

fluents that are part of the initial state, and the first action level includes all the

actions whose preconditions appear in the first fluent level. Fluents that are part

of the effects of these actions (and have not been included in the first fluent level)

are placed in the second fluent level, and actions whose preconditions are included

in the two prior fluent levels of the graph (and are not in the first action level)

are stored in the second action level. By following this procedure, the RPG is

expanded until no new fluents are found. This way, the level of the graph in which

an action or fluent appears gives an estimate of the cost of achieving such an action

or fluent.

Once all agents have computed their initial RPGs, the iterative composition

of the dis-RPG begins. As depicted in Algorithm 4, after computing the initial

RPGi, agent i executes the first iteration of the algorithm and exchanges the

fluents and actions of its RPGi with the rest of agents. Agents only exchange the

fluents defined as shareable in the :shared-data structure of the input files (see

subsection 3.3.6.1). Agent i sends agent j the set of fluents SF i→j that are visible

to agent j, i.e., the fluents in RPGi of the form 〈v, d〉 or 〈v,¬d〉, where v ∈ Vi∩Vj
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F0

[2](empty cB) T [2](link cE cB) T

[2](empty cD) T [2](link cE cD) T

[2](empty cE) T [2](link cF cD) T

[2](empty cF) T [2](area cB) T

[2](link cB cE) T [2](area cD) T

[2](link cD cE) T [2](area cE) T

[2](link cD cF) T [2](area cF) T

Table 3.2: Initial RPG built by agent Ag2

F0 A0 F1 A1

[1](at t1) cA [1](pos p3) cA load t1 p3 cA [1](pos p3) t1 unload t1 p3 cB

[1](empty cA) F [1](link cC cA) T drive t1 cA cB [1](empty cA) T unload t1 p3 cC

[1](empty cB) T [1](link cC cB) T drive t1 cA cC [1](at t1) cB unload t1 p3 cA

[1](empty cC) T [1](link cC cD) T [1](at t1) cC drive t1 cB cA

[1](empty cD) T [1](link cD cC) T drive t1 cB cC

[1](link cA cB) T [1](area cA) T drive t1 cC cA

[1](link cA cC) T [1](area cB) T drive t1 cC cB

[1](link cB cA) T [1](area cC) T drive t1 cC cD

[1](link cB cC) T [1](area cD) T

F2 A2 F3 A3

[1](empty cB) F load t1 p3 cB [1](empty cD) F load t1 p3 cD

[1](empty cC) F load t1 p3 cC [1](pos p3) cD

[1](at t1) cD unload t1 p3 cD

[1](pos p3) cB drive t1 cD cC

[1](pos p3) cC

Table 3.3: Initial RPG built by agent Ag1

and d ∈ Di
v ∩Dj

v. Likewise, agent i will receive from the rest of agents j 6= i the

shareable fluents of their RPGj that are visible to agent i.

Agent i updates its RPGi accordingly with the new fluents received from the

rest of agents. We will refer to these fluents as RF i (see Algorithm 4). If a fluent

f ∈ RF i is not in RPGi then it is stored according to level(f). If f is already

in RPGi, its level in the graph is updated if levelRPGi(f) > level(f). Hence,

agents only store the best estimated level to reach each fluent, placing each fluent

at the lowest possible level of the graph. After updating RPGi, agent i expands it

by checking wether the new inserted fluents trigger new actions in RPGi or not.
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The fluents produced as effects of these new actions will be shared in the next

information exchange iteration. The RPG expansion procedure also updates the

existing actions by placing them at a lower action level if their preconditions have

been updated.

Since agents only exchange those fluents defined as shareable, the dis-RPG

process gives each agent a different view of the planning task, so no agent handles

a complete representation of the dis-RPG. In contrast, each agent i maintains its

own internal RPGi, whose information depends on the fluents other agents have

shared with it, which makes each agent have its own, partial view of the planning

task. Thus, agents design plans under incomplete information, as they are partly

aware of the information on the planning task.

The dis-RPG process finishes when agents do not receive more fluents from the

others. Following, agents start the resolution process to jointly devise a solution

plan.

3.3.8.1 dis-RPG example

In order to illustrate the dis-RPG stage of the MAP algorithm, this section provides

an example trace based on the transportation and storage MAP task introduced in

section 3.3.3. The planning agents receive the input files presented in subsection

3.3.6.3 and start the MAP algorithm by building the dis-RPG.

In the first stage of Algorithm 4, each agent individually generates an initial

RPG, according to its problem file. To illustrate this stage of the process, we focus

on the initial RPGs built by the transport agents Ag1 and Ag2.

Table 3.2 shows the initial RPG calculated by agent Ag2. The numbers in

brackets indicate the agents that can generate the fluent, while the values T and

F stand for true and false, respectively. Ag2 does not know the position of the

packages and the truck because they are initially located out of its working area

126



3.3 A flexible coupling approach to multi-agent planning under
incomplete information

(see Figure 3.3 in section 3.3.3). Therefore, its initial RPG only includes F0, the

first level of fluents, which stores the fluents on the initial state of Ag2. The initial

RPG of Ag2 does not contain any action level because there are no applicable

actions, that is, their preconditions do not hold in F0.

Agent Ag1 does know the position of the package p3 and the truck t1, and

consequently, it can compute a much larger initial RPG (see Table 3.3). Notice

that the level A0 includes the actions whose preconditions are satisfied in F0, while

F1 stores the fluents that are part of the effects of the actions in A0 and are not

in F0. For instance, the action drive t1 cA cB, at level A0, has the following

preconditions: (= (area) cA), (= (area) cB), (= (link cA cB) true) and (=

(at t1) cA). As Table 3.3 shows, these fluents are at F0, which triggers the action

drive t1 cA cB at A0.

Once agents have built their initial RPGs, they start the iterative dis-RPG

building process by exchanging the shareable fluents in their RPGs.

In subsection 3.3.6.3, we show the :shared-data section of Ag1, which shares

with Ag2 fluents that match the following patterns: (empty ?c - city), ((at

?t - truck) - city) and ((at ?t - truck) - city). The fluents shared by

Ag1 and Ag2 are marked in red in Table 3.3. Ag2 also sends its shareable fluents

to the rest of agents and stores the fluents received from other agents.

Agents expand their RPGs by checking if the fluents they have received trigger

new actions in the graph. The process carries on until no new fluents appear in

the dis-RPG. As each agent has a different :shared-data section, the information

will vary from one RPG to another, giving each agent a different and incomplete

view of the dis-RPG and the MAP task itself.

Table 3.4 shows the final dis-RPG of the transportation scenario as seen by

agent Ag2. As it can be observed, the dis-RPG provides both an estimate of the
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F0 A0 F1 A1

[1, 2](empty cB) T [2](link cE cB) T load t1 p3 cA [1](empty cA) T unload t1 p3 cB

[1, 2](empty cD) T [2](link cE cD) T drive t1 cA cB [1, 2](at t1) cB unload t1 p3 cC

[2](empty cE) T [2](link cF cD) T drive t1 cA cC [1](at t1) cC unload t1 p3 cA

[2](empty cF) T [2](area cB) T [1, 2](pos p3) t1 drive t1 cB cA

[2](link cB cE) T [2](area cD) T drive t1 cB cC

[2](link cD cE) T [2](area cE) T drive t1 cC cA

[2](link cD cF) T [2](area cF) T drive t1 cC cB

[1](empty cA) F [1](at t1) cA drive t1 cC cD

[1](pos p3) cA [2, 3](empty cF) T

F2 A2 F3 A3

[1, 2](empty cB) F load t1 p3 cB [1, 2](empty cD) F load t1 p3 cD

[1](empty cC) F load t1 p3 cC [2](at t1) cF

[1, 2](at t1) cD unload t1 p3 cD [1, 2](pos p3) cD

[2](at t1) cE drive t1 cD cC [2](pos p3) cE

[1, 2](pos p3) cB [2](empty cE) F

[1](pos p3) cC [2, 3](pos p2) cF

[2, 3](pos p1) cF

[1, 2](empty cF) F

F4 A4 F5 A5

[2](pos p3) cF unload t1 p1 cB [1](pos p1) cA load t1 p1 cB

[1, 2](pos p1) t1 unload t1 p1 cC [1, 2](pos p1) cB load t1 p1 cD

[1, 2](pos p2) t1 unload t1 p1 cD [1](pos p1) cC load t1 p2 cB

unload t1 p1 cA [1, 2](pos p1) cD load t1 p2 cD

unload t1 p2 cB [2](pos p1) cE load t1 p1 cC

unload t1 p2 cC [1](pos p2) cA load t1 p1 cA

unload t1 p2 cD [1, 2](pos p2) cB load t1 p2 cC

unload t1 p2 cA [1](pos p2) cC load t1 p2 cA

[1, 2](pos p2) cD

[2](pos p2) cE

Table 3.4: Final dis-RPG as viewed by agent Ag2

cost of achieving each fluent (this cost corresponds to the level at which the fluent

appears), and the set of agents that achieve that fluent in the RPG.

3.3.9 Resolution process

After the information exchange, agents initiate the resolution process (see Algo-

rithm 5), which comprises two interleaved stages: the individual refinement stage

and the coordination stage. The first stage involves agents building individual
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refinements over a centralized base plan by using a POP. In the second stage,

agents follow a coordination process to gradually build a joint solution plan for

the MAP task, exchanging and evaluating the refinements generated individually

and selecting the most promising one in order to reach a solution.

Algorithm 5: Resolution process for an agent i

Π← Π0

R = ∅
repeat

Select open goal g ∈ openGoals(Π)

Refinementsi(Πg)← Refine base plan Πg individually

∀j 6= i, send Refinementsi(Πg) to agent j

∀j 6= i, receive Refinementsj(Πg)

Refinements(Πg)← Refinementsi(Πg)

∀j 6= i, Refinements(Πg)← Refinements(Πg) ∪Refinementsj(Πg)

Evaluate Refinements(Πg)

R← R ∪Refinements(Πg)

Vote for the best plan Πi ∈ R
Π← Πi

if openGoals(Π) = ∅ then
return Π

until R = ∅

3.3.9.1 Individual refinement stage

A planning agent i executes its individual POP process in order to refine the

current base plan Π. As shown in Algorithm 5, agent i refines Π by solving a

particular open goal g ∈ openGoals(Π), thus obtaining a set of valid refinement

plans over Πg, Refinements
i(Πg).

Our definition of refinement plan (see subsection 3.3.5.2) states that a re-

finement plan Πi of an agent i over a base plan Π solves one of its open goals
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g ∈ openGoals(Π), as well as all the private open goals gi of the form 〈v, d〉 or

〈v,¬d〉 that arise from this resolution, where v ∈ Vi ∧ d ∈ Di
v ∧ ((∀j 6= i, v 6∈

Vj) ∨ (∀j 6= i, d 6∈ Dj
v)) ∧ (gi 6∈ openGoals(Π)).

We have designed a customized version of the classical POP algorithm com-

pliant with the requirements introduced by the MAP approach. Our POP system

is able to start the search process from any given base plan, rather than starting

with an empty plan as in a traditional POP process. In addition, the POP is

aimed at building refinement plans, rather than complete solution plans.

3.3.9.2 Coordination process

The coordination process is based on a democratic leadership in which a leadership

baton is scheduled among the agents (initially, the baton is randomly assigned to

one of the participating agents). The resolution process interleaves the coordina-

tion process with the individual refinement stage. A coordination iteration is led

by the agent which has the baton (baton agent). Once the coordination iteration

is completed, the baton is handed over to the following agent.

Algorithm 5 depicts the main steps of the coordination process. After the in-

dividual refinement stage, agents exchange the refinement plans they have elicited

over the current base plan Π. Following, agents receive the refinement plans of

the other agents and evaluate them according to their view of the planning task.

Agents apply a voting process to adopt the most promising plan as the next base

plan Π, and check if the selected plan is a solution. Otherwise, agents choose a new

open goal of the plan g ∈ openGoals(Π) and each agent i starts a new individual

refinement stage to compute the refinements over Π, Refinementsi(Πg).

In the first step of the coordination process, the individual refinement plans are

exchanged between agents for their evaluation. An agent i sends the refinement

plans it has devised over the current base plan Π by solving g ∈ openGoals(Π),
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Refinementsi(Πg), to the rest of agents in the task. In turn, agent i receives the

refinements devised by each agent j in the task, Refinementsj (Πg), where j 6= i.

Note that agents have a local, partial view of the plans, so given a refinement plan

Π, an agent i will only view the open goals og ∈ openGoals(Π) of the form 〈v, d〉

or 〈v,¬d〉 such that v ∈ Vi and d ∈ Di
v. The view agent i has on each refinement

plan Π, viewi(Π), ensures agents’ privacy and directly affects the evaluation of the

refinements.

The evaluation of the refinement plans is carried out through a utility function

F, by which agents estimate the quality of the plans. Since an agent i evaluates

a plan accordingly to its view, F(viewi(Π)), the results of the evaluation may be

different from the other agents’. Therefore, agents will have different perspectives

on the quality of the refinement plans.

Once the refinement plans are evaluated, agents vote for the most promising

candidate in R, which stores all the refinement plans that have not yet been

selected as a base plan (see Algorithm 5). Each agent i votes for the best refinement

plan in R according to the utility function F. In case of a draw, the baton agent

will choose the next base plan among the most voted alternatives. If R = ∅, the

refinement planning process ends with no solution found.

Once a refinement plan is selected, agents adopt it as the new base plan Π.

If openGoals(Π) = ∅, a solution plan is returned. As some open goals might

not be visible to some agents, all agents must confirm that Π is a solution plan

according to their view of Π. Finally, the baton agent selects the next open

goal g ∈ openGoals(Π) to be solved, and a new iteration of the refinement and

coordination process starts.

The resolution process carried out by the agents can be regarded as a joint

exploration of the refinement space. Nodes in the search tree represent refinement

plans and each iteration of the process expands a different node.
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Ag1

Init Goalsload t1 
p3 cA

unload 
t1 p1 cA

(at t1) cA

(at t1) cA

(pos p1) cA(empty cA) T

Figure 3.6: Refinement plan Π00

3.3.9.3 Resolution example

This subsection illustrates the resolution process by showing a partial trace that

follows the trace example described in subsection 3.3.8.1. After completing the

initial information exchange and building the dis-RPG, agents proceed with the

resolution process in order to solve the MAP task.

The plan construction starts with an initial empty plan, Π0, which contains

only the two fictitious steps that represent the initial state and the goals of the

MAP task. The first open goal selected by Ag1 (which takes the role of baton

agent in this first iteration) for its resolution is (= (pos p1) cA), as it is the

most costly one according to the dis-RPG. The goals of the task are highlighted

in bold in Table 3.4. This dis-RPG shows that (= (pos p1) cA) has a cost of 5,

(= (pos p3) cF) has a cost of 4, and the only agent that can achieve (= (pos

p1) cA) is Ag1. Hence, Ag1 proposes a set of refinements over Π0, Π00, . . . ,Π09,

while Ag2 and Ag3 refrain from making proposals. The proposed refinements are

evaluated through the utility function F, and the best-valued one, Π00, is selected

as the new base plan.

Figure 3.6 depicts the refinement plan Π00. Since all the causal links in Π00

involve shareable fluents, all the agents have a complete view of this refinement

plan. However, agents Ag1 and Ag3 have different views of the refinement Π06 (see

Figure 3.7). In order to guarantee privacy, several causal links (black arrows) of

Π06 have been occluded to Ag3, which only sees ordering constraints instead (grey
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Ag1

Init Goalsdrive t1 
cB cC

drive t1 
cC cA

(at t1) cA

(pos p1) cA(at t1) cC load t1 
p3 cA

unload 
t1 p1 cA

(at t1) cAa)
(pos p3) cA

(empty cA) T

Ag1

Init Goalsdrive t1 
cB cC

drive t1 
cC cA

(pos p1) cAload t1 
p3 cA

unload 
t1 p1 cAb)

(pos p3) cA

(empty cA) T

Figure 3.7: Refinement plan Π06 as observed by: a) Ag1 b) Ag3
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Goals

drive t1 
cB cE

unstack p1 
p2 h1

Ag1

Ag2
Ag3

load t1 
p3 cA

drive t1 
cA cB

unload 
t1 p3 cE

drive t1 
cE cD

drive t1 
cD cF
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cF h1

drive t1 
cF cD

load t1 
p1 cF

drive t1 
cD cE

drive t1 
cE cB

drive t1 
cB cA

unload 
t1 p1 cA

Figure 3.8: Solution plan for the MAP task

arrows). According to the problem definition files, the fluents involved in these

causal links are private to the transport agent Ag1 because they are not shareable

data, and therefore, Ag1 does not communicate them to Ag3.

Once the refinement plan Π00 is chosen as the new base plan, Ag1 passes on

the baton to Ag2 and a new iteration of the resolution process starts. The MAP

process will carry on until a solution plan is found. Since some open goals are

not visible to some agents, all participating agents must confirm that the plan has

no pending open goals. Figure 3.8 depicts the solution plan for the MAP task at

hand, showing in different shapes the actions to be executed by each agent. As

it can be observed, the solution of the MAP task is a joint plan to which all the

participant agents have contributed.
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3.3.10 Experimental results

Several tests have been performed to evaluate the performance of our MAP system.

The tests compare the MAP model with a single-agent approach to analyze its

advantages and shortcomings against a centralized planning model. We have used

two different planning domains for our experiments. Next subsections present the

MAP domains and analyze the results of the different tests.

3.3.10.1 Multi-agent planning domains

The two planning domains used to test the MAP system have been taken from

real-life problems or adapted from well-known case studies. The two domains

were designed such that we could test the performance and the quality of the

solutions obtained with a wide range of problems. We tested our MAP system with

different levels of complexity: from loosely-coupled problems, in which interactions

among agents are rather low, to strongly-related problems, that require a strong

coordination effort to be solved. Additionally, we created both a multi-agent and

a single-agent version for each problem.

In section 3.3.3, we described a transportation and storage domain, in which

agents take the roles of transport agencies and storage facilities, which work to-

gether to transport raw materials and final products to different cities. This do-

main gives rise to strongly-related problems as interactions between agents are

required in order to accomplish the different objectives. Agents in the transporta-

tion domain have different abilities, so they should cooperate with each other in

order to achieve the different goals.

We defined an additional planning domain, the picture domain. This domain

gives rise to simpler, loosely-coupled problems as agents can work independently

in order to solve the objectives, and hence cooperation and interactions among

agents are not mandatory to find a solution. Planning agents in the picture domain
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(workers) are not specialized, they all share the same abilities and so they all can

perform the same actions. In addition, agents in this domain do not keep private

information for themselves but all the problem information is shared among the

agents. Next subsection describes the picture domain.

Picture domain. This domain, adapted from the case study in (87), presents

a situation in which several workers have to cooperate to hang a set of pictures

on walls. To do so, they have to acquire different tools that are scattered over

several locations. Agents move through the locations to get the tools and hang

the pictures. The domain defines a set of bidirectional links that connect the

locations.

Figure 3.9 depicts an example of this planning domain. In contrast to the

transportation domain, agents in the picture domain share the same capabilities:

agents can pickUp and putDown a tool in the location where the agent and the

tool are placed; an agent can also pass the tool it is carrying on to another agent

at the same location; agents can walk from one location to another through

the link that connects both locations; finally, an agent can hang a picture on a

certain location with the tool it is carrying.

This domain gives rise to loosely-coupled problems because an individual agent

is likely to solve the problem goals by itself in most cases. Moreover, agents

share the same abilities and have access to all the locations, so they are able to

work independently and cooperation is not a requirement to complete the task.

Cooperation is however useful to improve the quality of the solutions and to solve

conflicts on the use of the tools, as they are limited resources shared by all the

participating agents.
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Figure 3.9: Picture domain example

3.3.10.2 Tests and results

The following subsections show the experimental results. We carried out two dif-

ferent tests1. The first one compares the quality of the solution plans obtained by

a single agent and by a set of planning agents working together on the problem.

To do so, we defined a set of MAP problems and the single-agent equivalent ver-

sion. Finally, we measured the robustness and scalability of the MAP system by

executing a planning problem several times, increasing each time the number of

planning agents in the system.

Multi-Agent vs. Single-Agent Planning. This first set of tests compares the

quality of the solution plans of our MAP approach versus the centralized single-

agent framework. The testbed includes twenty planning problems (ten problems

per domain) of increasing difficulty.

As stated in subsection 3.3.10.1, the transportation problems present a high

1All the tests were performed on a single machine with a 2.83 GHz Intel Core 2 Quad CPU

and 8 GB RAM.
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coupling level because agents are required to interact between each other to solve

most of the problem goals. In contrast, agents in the picture problems can solve the

goals independently in most cases so the coupling level in these problems is rather

low. Another key difference between both domains is that planning agents in the

picture domain (workers) are also the entities that execute the plans, whereas

agents in the transportation domain are merely planning entities. This way, given

two parallel actions in a plan of the picture domain, each one is associated to a

different agent (worker) whereas two parallel actions in a plan of the transportation

domain can be associated to two different trucks of the same transport agent, which

is the planning entity. In other words, concurrency is associated to the agents in

the picture domain and to the resources managed by the agents (trucks, hoists,

etc.) in the transportation domain.

Table 3.5 shows the obtained results. #Ag indicates the number of agents that

perform the planning problem in the MAP tests. #Actions and #TS refer to the

number of actions and time steps of the solution plan, respectively (notice that

we do not count the plans’ fictitious actions). Finally, Parallelism indicates the

maximum number of parallel branches in the MAP solution plans.

Time steps are the number of time units necessary to execute the plan, i.e.,

the duration of the plan. For instance, Figure 3.10 depicts the solution plan for

the Picture2 MAP problem. Although the plan is composed of twelve planning

actions (without taking into account the two fictitious actions), it can be executed

in only eight time steps, since most of its actions can be executed in two parallel

branches. Then, the duration of the plan in Figure 3.10 is 8 time units.

Discussion on the results. In the transportation domain, the MAP approach

obtains the same results than the single-agent approach w.r.t. the number of

actions and time steps. The single-agent approach performs rather well in this
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particular domain, obtaining good-quality solutions, if not optimal, for almost

all the tested problems. Notice that the single-agent approach features a single

planning entity that has a full visibility on the planning problem. Despite the

fact that the participating agents on the MAP tests have an incomplete view of

the problem, the results show that MAP agents cooperate effectively, obtaining

plans of the same quality as the single-agent approach, both in terms of number

of actions and plan duration (time steps).

In the transportation domain, planning agents have a set of resources at their

disposal (truck and hoists) to execute the actions of the plan. Since partial-

order planners allow for parallelism, both the MAP and single-agent plans contain

parallel actions. Actions in this domain are executed by the trucks and hoists

instead of the planning agents themselves. Hence, the number of parallel branches

and the duration of the solution plans of this domain is only conditioned by the

number of available resources (trucks and hoists). For this reason, both approaches

give rise to plans with the same number of actions and time steps. On the basis of

these results, we can affirm that the quality of the MAP plans is not diminished

by the limited view and incomplete information of the agents and the existence of

private information among agents.

The results of the picture domain present more differences between both ap-

proaches. The single-agent approach obtains sequential plans because the single

planning agent is also the only execution entity. MAP, however, takes advantage of

having several planning/execution agents cooperating. MAP enforces cooperation

as agents can work together to reach an objective. For instance, Figure 3.10 shows

that an agent can pick up a tool and pass it on to another agent. This cooperation

improves the solution because it prevents the agent from going for the tool and

retrace its steps, thus reducing the number of actions of the plan. Agents also co-

operate by proposing different parts of the plan that can be executed concurrently,
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which reduces the duration of the plans with respect to the centralized approach.

Table 3.5 shows that all the MAP solution plans for the picture domain include

at least two parallel branches of actions, meaning that at least two agents work

concurrently, which improves the quality of the solutions as shown in Table 3.5.

Problem
Multi-Agent Planning Single-Agent Planning

#Ag #Actions #TS Parallelism #Actions #TS

Transportation1 2 14 11 2 14 11

Transportation2 2 11 9 2 11 9

Transportation3 3 9 5 2 9 5

Transportation4 3 11 6 2 11 6

Transportation5 4 13 6 3 13 6

Transportation6 4 11 5 3 11 5

Transportation7 5 10 8 2 10 8

Transportation8 5 15 9 3 15 9

Transportation9 6 11 5 3 11 5

Transportation10 6 17 10 3 17 10

Picture1 2 11 6 2 14 14

Picture2 2 12 8 2 11 11

Picture3 3 6 2 3 8 8

Picture4 3 11 7 2 11 11

Picture5 4 8 2 4 11 11

Picture6 4 10 6 2 10 10

Picture7 5 8 5 2 8 8

Picture8 5 10 2 5 14 14

Picture9 6 9 5 2 9 9

Picture10 6 12 2 6 17 17

Table 3.5: Single-Agent vs. Multi-Agent Planning comparison

In conclusion, while being a more costly approach (see next subsection for

scalability tests), MAP obtains equal or better solution plans in terms of both

number of actions and duration of the plans than the single-agent model. We have
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Figure 3.10: Solution plan for the Picture2 MAP problem

shown that MAP promotes cooperation among agents thus improving the quality

of the solution. In addition, MAP agents manage their incomplete information on

the MAP task efficiently as the quality of the solution plans is not affected, being

at least on par with the single-agent approach. Moreover, results show that our

approach obtains good-quality solution plans for problems with different coupling

and complexity levels, from loosely-coupled to strongly-related problems.

Scalability analysis. In this subsection we evaluate the scalability of our MAP

framework, i.e., how the number of agents in the MAP system affects its efficiency.

To do so, eight different test problems were generated for both the transportation

and the picture domains. Each test increases the number of agents by one, keeping

the rest of the planning problem’s parameters unchanged.

All the transportation tests include ten different cities, one truck, one empty

table in the warehouse and one package of raw material. All the problems include

a single warehouse agent, and each of them adds an extra transport agent, up to

eight transport agents. The problem goal for all the test problems is to deliver

the raw material to the warehouse, which must place it on the empty table. The

optimal solution plan for all the problems includes ten actions and involves the

participation of at least one transport agent and the warehouse agent.

As for the picture domain, all the test problems include two different tools and
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Figure 3.11: Scalability results for the transportation domain
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Figure 3.12: Scalability results for the picture domain

twelve different locations. The goal for all the problems is to hang two different

pictures. The optimal solution plan for these problems has eight actions and

involves the participation of two different agents. Each agent picks up one tool

and hangs one picture.

Figures 3.11 and 3.12 depict the results for each domain. As it can be observed,

the number of messages experiences a notable increase with each new agent in-

cluded in the MAP process. So does the execution time, which is conditioned by

the number of messages exchanged among agents.
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Discussion on the results. These results are caused by the growing number

of refinement plans proposed by the agents. Refinement plans are communicated

to all the agents in the MAP system, reason why the addition of a planning agent

represents such an overhead as each new agent proposes and communicates a

number of extra refinement plans. In addition, the refinement plans proposed by

each new planning agent increase the complexity of the search tree as they may

also be adopted as base plans at some point.

Notice that the number of messages is much larger in the case of the picture

problems, even though we have defined similar size and complexity problems for

the two planning domains. This is due to the loosely-coupled nature of the picture

problems because agents in this domain share the same abilities and every agent

can make a plan proposal over any base plan.

As opposite to the picture domain, agents in the transportation domain are

specialized, which makes them unable to make plan refinements over every base

plan. Transport agents are limited by their working areas, while warehouse agents

cannot take part in the transportation of the packages. This fact limits the number

of exchanged messages, which also benefits the execution time. This way, our

system proves to be more stable when solving strongly-related problems like the

transportation tests since the addition of a new agent causes a lower increase in

the number of messages, which directly affects the execution time.

In conclusion, the number of agents in the MAP system is a parameter that

has a significant influence on its efficiency because the number of messages among

agents constitutes one of the bottlenecks of the system. This issue is more no-

ticeable when dealing with loosely-coupled problems, as agents can devise plan

proposals over almost any base plan, whereas our MAP system shows a more ro-

bust behavior when solving strongly-related problems. Therefore, our immediate

challenge is to reduce the number of messages between agents. This way, we will

142



3.3 A flexible coupling approach to multi-agent planning under
incomplete information

improve the scalability of the system and we will be able to test more complex

planning problems.

3.3.11 Conclusions

This article presents a MAP model that allows agents to plan under incomplete

information. Our approach is suitable to solve a wide range of MAP problems,

from strongly-related problems with a high degree of interaction among agents to

simpler loosely-coupled problems, which present limited interactions among agents.

Our model allows for heterogeneous agents with different information, capabilities

and private goals to cooperatively build a joint plan while handling an incomplete

view of the MAP task. Agents keep their private data and share only the relevant

information for their interactions with other agents, thus being unaware of part of

the information managed by the rest of agents.

Shareable information is defined through our MAP language, extended from

PDDL3.1. The information exchange is carried out through the construction of a

distributed Relaxed Planning Graph, by which agents share the public fluents and

estimate the best cost to achieve them.

The MAP resolution process is based on a refinement planning procedure

whereby agents propose successive refinements to an initially empty base plan

until a consistent joint plan is obtained. This procedure, that iteratively combines

planning and coordination, uses single-agent planning technology to build the re-

finement plans. More precisely, we adapt the POP paradigm to a MAP context,

which allows agents to build refinement plans leaving details unresolved that will

be gradually completed by other agents until a solution plan is found.

Conclusions drawn from the experiments show that MAP agents obtain solu-

tion plans of equal or better quality than a single-agent approach for both loosely-

coupled and strongly-related problems. Despite agents do not have a complete view
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of the MAP task and keep private information, the quality of the MAP solution

plans is not affected, neither in terms of number of actions nor plan duration.

Hence, we can affirm that our model tackles large MAP tasks in which informa-

tion is distributed among a number of planning entities at least as effectively as a

single-agent planning approach working under complete information.

Moreover, our MAP approach enforces cooperation among agents since they

work together to solve goals more efficiently. MAP improves plan concurrency as

agents can solve different goals in parallel, which reduces the duration and the

number of actions of the solution plans.
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Abstract This paper proposes FMAP (Forward Multi-Agent Planning), a fully-

distributed multi-agent planning method that integrates planning and coordination.

Although FMAP is particularly aimed at solving problems that require cooperation

among agents, the flexibility of the domain-independent planning model allows

FMAP to tackle any type of multi-agent planning tasks. In FMAP, agents jointly

explore the plan space by building up refinement plans through a complete and

flexible forward-chaining partial-order planner. Search is guided by hDTG, a novel

heuristic function based on the concepts of Domain Transition Graph and fron-

tier state, and optimized to evaluate plans in distributed environments. Agents in

FMAP apply an advanced privacy model that allows them to effectively keep pri-

vate information while communicating only the data of the refinement plans that is

relevant to each of the participating agents. Experimental results show that FMAP

is a general-purpose approach that efficiently solves tightly-coupled domains with

specialized agents and cooperative goals as well as loosely-coupled problems. In

particular, the empirical evaluation shows that FMAP outperforms current MAP

systems at solving complex planning tasks adapted from the International Planning

Competition benchmarks.
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3.4.1 Introduction

Multi-agent planning (MAP) introduces a social approach to planning by which

multiple intelligent entities work together to solve planning tasks that they are

not able to attain by themselves, or at least they can accomplish them better by

cooperating (24). MAP puts the focus on the collective effort of multiple agents

to accomplish tasks by combining their knowledge and capabilities.

The complexity of solving a MAP task directly depends on its typology. In

order to illustrate the features of a MAP task, let us introduce a brief application

example.

Example 3. Consider the transportation task in Figure 3.13, which involves three

different agents: two transport agencies, ta1 and ta2, each having a truck (t1

and t2, respectively), that work in two different geographical areas, ga1 and ga2,

respectively; and a factory, f , which is placed in the area ga2. To manufacture

products, the factory f requires raw materials that are gathered from area ga1. In

this task, ta1 and ta2 share the same abilities but act in different areas; i.e. they

are spatially distributed agents. Additionally, the factory agent f is functionally

different to ta1 and ta2. The goal of this task is for f to manufacture a set of final

products. In order to carry out the task, ta1 will send its truck t1 to load the raw

materials, rm, located in l2, and transport them to a storage facility, sf , placed

in the intersection of both geographical areas. Then, ta2 will complete the delivery

by using its truck t2 to transport the materials from sf to f , which will in turn

manufacture the final products. This task involves thereby three specialized agents

that are spatially and functionally distributed and should cooperate to accomplish

a common goal.

Example 3 emphasizes most of the key elements of a MAP task. First, the

spatial and/or functional distribution of planning agents gives rise to specialized

agents that have different knowledge and capabilities. In turn, this information

distribution stresses the issue of privacy, which is one of the basic aspects that

should be considered in multi-agent applications (101).
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Figure 3.13: Example transportation task

As the three parties involved in Example 3 are agents specialized in different

functional or geographical areas of the task, most of the information managed by

the factory f is not relevant for the transport agencies and vice-versa, and the same

can be applied to the transport agencies ta1 and ta2. Additionally, agents might

not be willing to share the sensitive information on their internal procedures with

the others. For instance, ta1 and ta2 are cooperating in this particular delivery

task but they might be potential competitors as they work on the same business

area. Then, agents in a MAP context want to minimize the information they share

with each other, either for strategic reasons or simply because it is not relevant

for the rest of the agents to address the planning task.

In addition to the need for a computational or information distribution, privacy

is also one of the reasons to adopt a multi-agent approach. This aspect, however,

has been traditionally relegated in MAP, particularly by the planning community

(119). While some approaches define a basic notion of privacy (11, 80), others

allow agents to share detailed parts of their plans, or do not consider private

information at all (67).

The complexity of a MAP task is often described by means of its coupling level

(14), measured as the number of interactions that arise among agents during the

resolution of a MAP task. According to this parameter, MAP tasks can be clas-
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sified into loosely-coupled tasks, that present few interactions among agents, and

tightly-coupled tasks, which involve many interactions among agents. The coupling

level, however, does not take into consideration one key aspect of MAP tasks: the

presence of cooperative goals; that is, goals that cannot be solved individually by

any agent as they require the cooperation of specialized agents. Example 3 illus-

trates a tightly-coupled task with one of such goals, as none of the agents can

achieve the manufacturing of the final products by itself. Instead, they must make

use of their specialized capabilities and interact with each other to deliver the raw

materials and manufacture the final products.

In this paper we present FMAP (Forward MAP), a domain-independent MAP

system designed to cope with a great variety of planning tasks of different complex-

ity and coupling level. FMAP is a fully distributed method that interleaves plan-

ning and coordination by following a cooperative refinement planning approach.

This search scheme allows us to efficiently coordinate agents’ actions in any type

of planning task (either loosely-coupled or tightly-coupled) as well as to handle

cooperative goals.

FMAP relies on a theoretical model which defines a more sophisticated notion

of privacy than most of the existing MAP systems. Instead of using a single set

of private data, FMAP allows agents to declare the information they will share

with each other. For instance, the transport agency ta2 in Example 1 will share

with factory f information which is likely to be different from the one shared with

agent ta1. Our system enhances privacy by minimizing the information that agents

need to disclose. FMAP is a complete and reliable planning system which shows

to be very competitive when compared to other state-of-the-art MAP systems.

The experimental results will show that FMAP is particularly effective for solving

tightly-coupled MAP problems with cooperative goals.
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This article is organized as follows: the next section presents some related

work on multi-agent planning, with an emphasis on issues like the coupling level

of planning tasks, privacy or cooperative goals. Section 3.4.3 formalizes the notion

of a MAP task; section 3.4.4 describes the main components of FMAP, the search

procedure and the DTG-based heuristic function; finally, section 3.4.5 provides a

thorough experimental evaluation of FMAP and section 3.4.6 concludes the paper.

3.4.2 Related work

In the literature, we can find two main approaches to solve MAP tasks like the one

described in Example 3. Centralized MAP implies using an intermediary agent

that has a complete knowledge of the task. The distributed approach allows agents

to perform planning by themselves, interacting with each other and coordinating

their local solutions, if necessary. The adoption of a centralized approach is aimed

at improving the planner performance by taking advantage of the inherent struc-

ture of the MAP tasks (22, 67). Centralized approaches assume a single planning

entity which has a complete knowledge of the task, which is rather unrealistic if

the parties involved in the task have sensitive private information that they are

not willing to disclose (99). In Example 3, the three agents involved in the task

want to protect the information regarding their internal processes and business

strategies, so a centralized setting is not an acceptable solution.

We then focus on fully distributed MAP, that is, the problem of coordinating

agents in a shared environment where information is distributed. The distributed

MAP setting involves two main tasks: the planning of local solutions and the

coordination of the agents’ plans into a global solution. Coordination can be

performed at one or various stages of the distributed resolution of a MAP task.

Some techniques are used for problems in which agents build local plans for the

individual goals they have been assigned. MAP is about coordinating the local
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plans of agents so as to mutually benefit by avoiding duplicating effort. In this

case, the goal is not to build a joint plan among entities that are functionally

or spatially distributed but to apply plan merging to coordinate local plans of

multiple agents that are capable to achieve the problem goals by themselves (20).

There is a large body of work on plan-merging techniques. The work in (20)

introduces a distributed coordination framework based on partial-order planning

that addresses the interactions emerging between the agents’ local plans. This

framework, however, does not consider privacy in agents. The proposal in (113)

is based on the iterative revision of the agents’ local plans. Agents in this model

cooperate by mutually adapting their local plans, with a focus on improving their

common or individual profit. This approach also ignores privacy and agents are

assumed to be fully cooperative. The approach in (120) uses multi-agent plan

repair to solve inconsistencies among the agents local plans while keeping privacy.

µ-SATPLAN (28) extends a satisfiability-based planner to coordinate the agents’

local plans by studying positive and negative interactions among them.

Plan-merging techniques are not particularly well suited to cope with tightly-

coupled tasks as they may introduce exponentially many ordering constraints in

problems which require a big coordination effort (20). In general, plan merging is

not an effective method for attaining cooperative goals, as this resolution scheme

generally assumes that each agent is able to solve a subset of the task’s goals by

itself. However, some approaches use plan merging to coordinate local plans of spe-

cialized agents. In this case, the effort is put on discovering the interaction points

among agents through the public information they share. For instance, Planning

First (80) introduces a cooperative MAP approach for loosely-coupled tasks, in

which specialized agents carry out planning individually through a state-based

planner. The resulting local plans are then coordinated by solving a distributed
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Constraint Satisfaction Problem (CSP) (56). This combination of CSP and plan-

ning to solve MAP tasks was originally introduced by the MA-STRIPS framework

(14).

Another major research trend in MAP interleaves planning and coordination,

providing a more unified vision of cooperative MAP. One of the first approaches

to domain-independent MAP is the Generalized Partial Global Planning (GPGP)

framework (68). Agents in GPGP have a partial view of the world and communi-

cate their local plans to the rest of agents, which in turn merge this information

into their own partial global plan in order to improve it. Approaches to continual

planning, interleaving planning and execution in a world under continual change,

assume there is uncertainty in the world state and thereby agents do not have a

complete view of the world (15). Particularly, in (15), agents have a limited knowl-

edge of the environment and limited capabilities but the authors do not explicitly

deal with a functional distribution among agents or cooperative goals. TFPOP is

a fully centralized approach that combines temporal and forward-chaining partial-

order planning to solve loosely-coupled MAP tasks (67). The Best-Response Plan-

ning algorithm departs from an initial joint plan built through the Planning First

MAP system (80), and iteratively improves the quality of this initial plan by ap-

plying cost optimal planning (58). Agents can only access the public information

of the other agents’ plans, thus preserving privacy, and they optimize their plans

with the aim to converge to a Nash equilibrium regarding their preferences. MAP-

POP is a fully distributed method that effectively keeps agents privacy (114, 115).

Agents in MAP-POP perform an incomplete partial-order planning search to pro-

gressively develop and coordinate a joint plan until its completion.

Finally, MAPR is a recent planner that performs goal allocation to each agent

(11). Agents iteratively solve the assigned goals by extending the plan of the

previous agent. In this approach, agents work under limited knowledge of the
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environment by obfuscating the private information in their plans. MAPR is par-

ticularly effective for loosely-coupled problems, but it cannot deal with tasks that

feature specialized agents and cooperative goals as it assumes that each goal is

achieved by a single agent. Section 3.4.5 will show a comparative performance

evaluation between MAPR and our proposed approach FMAP.

3.4.3 MAP task formalization

Agents in FMAP work under a limited knowledge of the planning task by assuming

that information not represented in an agent’s model is unknown to the agent. The

states of the world are modeled through a finite set of state variables, V, each of

them associated to a finite domain, Dv, of mutually exclusive values that refer

to the objects in the world. Assigning a value d to a variable v ∈ V generates a

fluent. A positive fluent is a tuple 〈v, d〉, which indicates that the variable v takes

the value d. A negative fluent is of the form 〈v,¬d〉, indicating that v does not

take the value d. A state S is a set of positive and negative fluents.

An action is a tuple α = 〈PRE(α), EFF (α)〉, where PRE(α) is a finite set

of fluents that represents the preconditions of α, and EFF (α) is a finite set of

positive and negative variable assignments that model the effects of α. Executing

an action α in a world state S leads to a new world state S′ as a result of applying

EFF (α) over S. An effect of the form (v = d) assigns the value d to the variable v,

i.e. it adds the fluent 〈v, d〉 to S′, as well as a set of fluents 〈v,¬d′〉 for each other

value d′ in the variable domain, in order to have a consistent state representation.

Additionally, any fluent in S of the form 〈v,¬d〉 or 〈v, d′′〉, d′′ 6= d, is removed in

state S′. This latter modification removes any fluent that contradicts 〈v, d〉. On

the other hand, an assignment (v 6= d) adds the fluent 〈v,¬d〉 to S′ and removes

〈v, d〉 from S′, if such a fluent exists in S.
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For instance, let us suppose that the transportation task in Example 3 includes

a variable pos-rm that describes the position of the raw materials rm, which can be

any of the locations in the task. Let S be a state that includes a fluent 〈pos-rm, l2〉,

which indicates that rm is placed in its initial location (see Figure 3.13). Agent

ta1 performs an action to load rm into its truck t1, which includes an effect of the

form (pos-rm = t1). The application of this action results in a new world state

S′ that will include a fluent 〈pos-rm, t1〉 and fluents of the form 〈pos-rm,¬l〉 for

each other location l 6= t1; the fluent 〈pos-rm, l2〉 will no longer be in S′.

Definition 3.13. A MAP task is defined as a tuple TMAP = 〈AG,V, I,G,A〉.
AG = {1, . . . , n} is a finite non-empty set of agents. V =

⋃
i∈AG Vi, where Vi is

the set of state variables known to an agent i. I =
⋃
i∈AG Ii is a set of fluents

that defines the initial state of TMAP . As specialized agents are allowed, they may

only know a subset of I. Given two agents i and j, Ii ∩ Ij may be ∅ or not; in any

case, the initial states of the agents never contradict each other. G is the set of

goals of TMAP , i.e., the values of the state variables that agents have to achieve

to accomplish TMAP . Finally, A =
⋃
i∈AG Ai is the set of planning actions of the

agents. Ai and Aj of two specialized agents i and j will typically be two disjoint

sets as the agents have their own different capabilities; otherwise, Ai and Aj may

overlap. A includes two fictitious actions αi and αf that do not belong to the

action set of any particular agent: αi represents the initial state of TMAP , i.e.,

PRE(αi) = ∅ and EFF (αi) = I, while αf represents the global goals of TMAP ,

i.e., PRE(αf ) = G, and EFF (αf ) = ∅.

As discussed in Example 3, our model considers specialized agents that can

be functionally and/or spatially distributed. This specialization defines the local

view that each agent has of the MAP task. Local views are a typical characteristic

of multi-agent systems and other distributed systems. For instance, distributed

CSPs use local views, such that agents only receive information on the constraints

in which they are involved (56, 125). Next, we define the information of an agent

i on a planning task TMAP .
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The view of an agent i on a MAP task TMAP is defined as TiMAP = 〈Vi,Ai, Ii,G〉.

Vi is the set of state variables known to agent i; Ai ⊆ A is the set of its capabilities

(planning actions); Ii is the subset of fluents of the initial state I that are visible to

agent i; and G is the set of global goals of TMAP . Since agents in FMAP are fully

cooperative, they are all aware of the global goals of the task. Obviously, because

of specialization, a particular agent may not understand the goals as specified in

G; defining G as global goals implies that all agents contribute to the achievement

of G, either directly (achieving a g ∈ G) or indirectly (introducing actions whose

effects help other agents achieve g).

The state variables of an agent i are determined by the view it has on the

initial state, Ii, the planning actions it can perform, Ai, and set of goals of TMAP .

This also affects the domain Dv of a variable v. We define Di
v ⊆ Dv as the set of

values of the variable v that are known to agent i.

Consider again the pos-rm variable in Example 3. The domain of pos-rm

contains all the locations in the transportation task, including the factory f , the

storage facility sf and the trucks; that is, Dpos-rm = {l1, l2, l3, l4, f, sf, t1, t2}.

However, agents ta1 and ta2 have local knowledge about the domain of pos-rm

as some of the values of such variable refer to objects of TMAP that are unknown

to them. Hence, ta1 will manage Dta1
pos-rm = {l1, l2, sf, t1}, while ta2 will manage

Dta2
pos-rm = {l3, l4, sf, f, t2}.

Agents in FMAP interact with each other by sharing information on their state

variables. For each pair of agents i and j, the public information they share is

defined as Vij = Vji = Vi ∩ Vj . Additionally, some of the values in the domain of

a variable can also be public to both agents. The set of values of a variable v that

are public to a pair of agents i and j is defined as Dij
v = Di

v ∩Dj
v.

Back to Example 3, the pos-rm variable is public to agents ta1 and ta2. The

values that are public to both agents are defined as the intersection of the known
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values to each of them, Dta1 ta2
pos-rm = {sf}. This way, the only public location of rm

to agents ta1 and ta2 is the storage facility sf , which is precisely the intersection

between both geographical areas. Hence, if agent ta1 places rm in sf , it will

inform ta2 accordingly, and vice versa. This allows agents ta1 and ta2 to work

together while minimizing the information they share with each other.

Our MAP model is a multi-agent refinement planning framework, a general

method based on the refinement of the set of all possible plans. The internal

reasoning of agents in FMAP is configured as a Partial-Order Planning (POP)

search procedure. Other local search strategies are applicable, as long as agents

build partial-order plans. The following concepts and definitions are standard

terms from the POP paradigm (44), which have been adapted to state variables.

Additionally, definitions also account for the multi-agent nature of the planning

task and the local views of the task by the agents.

Definition 3.14. A partial-order plan or partial plan is a tuple Π = 〈∆,OR,CL〉.
∆ = {α|α ∈ A} is the set of actions in Π. OR is a finite set of ordering constraints

(≺) on ∆. CL is a finite set of causal links of the form α
〈v,d〉→ β or α

〈v,¬d〉→ β,

where α and β are actions in ∆. A causal link α
〈v,d〉→ β enforces precondition

〈v, d〉 ∈ PRE(β) through an effect (v = d) ∈ EFF (α) (44). Similarly, a causal

link α
〈v,¬d〉→ β enforces 〈v,¬d〉 ∈ PRE(β) through an effect (v 6= d) ∈ EFF (α) or

(v = d′) ∈ EFF (α), d′ 6= d.

An empty partial plan is defined as Π0 = 〈∆0, OR0, CL0〉, where OR0 and CL0

are empty sets, and ∆0 contains only the fictitious initial action αi. A partial plan

Π for a task TMAP will always contain αi.

The introduction of new actions in a partial plan may trigger the appearance

of flaws. There are two types of flaws in a partial plan: preconditions that are not

yet solved (or supported) through a causal link, and threats. A threat over a causal

link α
〈v,d〉→ β is caused by an action γ that is not ordered w.r.t. α or β and might
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potentially modify the value of v (44) ((v 6= d) ∈ EFF (γ) or (v = d′) ∈ EFF (γ),

d′ 6= d), making the causal link unsafe. Threats are addressed by introducing

either an ordering constraint γ ≺ α (this is called demotion because the causal

link is posted after the threatening action) or an ordering β ≺ γ (this is called

promotion because the causal link is placed before the threatening action) (44).

A flaw-free plan is a threat-free partial plan in which the preconditions of all

the actions are supported through causal links.

Planning agents in FMAP cooperate to solve MAP tasks by progressively re-

fining an initially empty plan Π until a solution is reached. The definition of

refinement plan is closely related to the internal forward-chaining partial-order

planning search performed by the agents. Refinement planning is a technique

widely used by many planners, specifically in anytime planning, where a first ini-

tial solution is progressively refined until the deliberation time expires (98). We

define a refinement plan as follows:

Definition 3.15. A refinement plan Πr = 〈∆r, ORr, CLr〉 over a partial plan

Π = 〈∆, OR, CL〉, is a flaw-free partial plan which extends Π, i.e., ∆ ⊂ ∆r,

OR ⊂ ORr and CL ⊂ CLr. Πr introduces a new action α ∈ ∆r in Π, resulting

in ∆r = ∆ ∪ α. All the preconditions in PRE(α) are linked to existing actions

in Π through causal links; i.e., all preconditions are supported and so it holds

∀p ∈ PRE(α), ∃ β p→ α ∈ CLr, where β ∈ ∆.

Refinement plans in FMAP include actions that can be executed in parallel by

different agents. Some MAP models consider that two parallel or non-sequential

actions are mutually consistent if none of them modifies the value of a state variable

that the other relies on or affects (15). We also consider that the preconditions

of two mutually consistent actions have to be consistent (12). Hence, two non-

sequential actions α ∈ Ai and β ∈ Aj are mutually consistent if none of the

following conditions holds:
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� ∃(v = d) ∈ EFF (α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where

v ∈ Vij , d ∈ Dij
v , d′ ∈ Dj

v and d 6= d′, or vice versa; that is, the effects of α

and preconditions of β (or vice versa) do not contradict under the specified

conditions.

� ∃(v = d) ∈ EFF (α) and ∃((v = d′) ∈ EFF (β) ∨ (v 6= d) ∈ EFF (β)),

where v ∈ Vij , d ∈ Dij
v , d′ ∈ Dj

v and d 6= d′, or vice versa; that is, the effects

of α and effects of β (or vice versa) do not contradict under the specified

conditions.

� ∃〈v, d〉 ∈ PRE(α) and ∃(〈v, d′〉 ∈ PRE(β) ∨ 〈v,¬d〉 ∈ PRE(β)), where

v ∈ Vij , d ∈ Dij
v , d′ ∈ Dj

v and d 6= d′, or vice versa; that is, the preconditions

of α and preconditions of β (or vice versa) do not contradict under the

specified conditions.

Agents address parallelism by the resolution of threats over the causal links of

the plan. Thus, consistency between any two non-sequential actions introduced

by different agents is always guaranteed as refinement plans are flaw-free plans.

Finally, a solution plan for TMAP is a refinement plan Π = 〈∆, OR, CL〉 that

addresses all the global goals G of TMAP . A solution plan includes the fictitious

final action αf and ensures that all its preconditions (note that PRE(αf ) = G) are

satisfied; that is, ∀g ∈ PRE(αf ), ∃ β g→ αf ∈ CL, β ∈ ∆, which is the necessary

condition to guarantee that Π solves TMAP .

3.4.3.1 Privacy in partial plans

Every time an agent i refines a partial plan by introducing a new action α ∈ Ai, it

communicates the resulting refinement plan to the rest of the agents in TMAP . As

stated above, the information that is public to a pair of agents is defined according

to the common state variables and domain values. In order to preserve privacy,
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agent i will only communicate agent j the fluents in action α whose variables

are common to both agents. The information of a refinement plan Π that agent j

receives from agent i configures its view of such plan, viewj(Π). More particularly,

given two agents i and j and a fluent 〈v, d〉, where v ∈ Vi and d ∈ Di
v (equivalently

for a negative fluent 〈v,¬d〉), we distinguish the three following cases:

� Public fluent: if v ∈ Vij and d ∈ Dij
v , the fluent 〈v, d〉 is public to both i

and j, and thus, agent i will send agent j all the causal links, preconditions

and effects regarding 〈v, d〉.

� Private fluent to agent i: if v 6∈ Vij , the fluent 〈v, d〉 is private to agent

i w.r.t. agent j, and thus, agent i will occlude the preconditions and effects

regarding 〈v, d〉 to agent j. Causal links of the form α
〈v,d〉→ β will be sent to

agent j as simply ordering constraints α ≺ β.

� Partially private fluent to agent i: if v ∈ Vij but d 6∈ Dij
v , the fluent

〈v, d〉 is partially private to agent i w.r.t. agent j. Instead of 〈v, d〉, agent

i will send agent j a fluent 〈v,⊥〉, where ⊥ is the undefined value. Hence,

preconditions of the form 〈v, d〉 will be sent as 〈v,⊥〉, effects of the form

(v = d) will be replaced by (v =⊥) and causal links α
〈v,d〉→ β will adopt the

form α
〈v,⊥〉→ β.

If an agent j receives a fluent 〈v,⊥〉, ⊥ is interpreted as follows: ∀d ∈ Dj
v, 〈v,¬d〉.

That is, ⊥ indicates that v is not assigned any of the values known to agent j (Dj
v).

This mechanism is used to inform an agent that a resource is no longer available

in its influence area. For instance, suppose that agent ta2 in Example 3 acquires

the raw material rm from sf by loading it into its truck t2. Agent ta2 commu-

nicates ta1 that rm is no longer in sf , but agent ta1 does not know about the

truck t2. To solve this issue, ta2 sends ta1 the fluent 〈pos-rm,⊥〉, meaning that

158



3.4 FMAP: distributed cooperative multi-agent planning

!"#$%&'()*+,!"#$%&'()*',-i -f
./

*#.0)&')12)*+01345)&')*')*+

6/

!"#$%&'()*',

7"#$%&'8*+/

!"#$%&'()*+,
!"#$%12()*+,

7"#$%128&'/

!"#$%12()*+,

-i -f-1-0
!"#$%12()⊥,

7"#$%128)⊥/

!"#$%12()⊥,

Figure 3.14: A refinement plan Πr as viewed by: a) agent ta1 b) agent ta2

the resource rm is no longer available in the geographical area of agent ta1. Con-

sequently, ta1 is now aware that rm is not located in any of its accessible positions

Dta1
pos-rm = {l1, l2, sf, t1}.

Figure 3.14 shows the view that transport agents ta1 and ta2 in Example 3

have of a simple refinement plan Πr. In this plan, agent ta1 drives the truck

t1 from l1 to l2 and loads rm into t1. As shown in Figure 3.14a), viewta1(Πr)

contains all the information of both actions in the plan as agent ta1 has introduced

them. Agent ta2, however, does not know the truck t1, and hence, the variable

pos-t1, which models the position of t1, is private to ta1 w.r.t. ta2. This way,

all the preconditions and effects related to the fluents 〈pos-t1, l1〉 and 〈pos-t1, l2〉

are occluded in viewta2(Πr) (see Figure 3.14b)). Additionally, the causal links

regarding these two fluents are replaced by ordering constraints in viewta2(Πr).

On the other hand, the variable pos-rm is public to both agents, but the load

action refers to the locations t1 and l2, that are not in Dta2
pos-rm. Therefore, fluents

〈pos-rm, l2〉 and 〈pos-rm, t1〉 are partially private to agent ta1 w.r.t. ta2. This

way, the precondition 〈pos-rm, l2〉 and the effect (pos-rm = t1) of the load action

are replaced by 〈pos-rm,⊥〉 and (pos-rm =⊥) in viewta2(Πr), respectively. The

fluent 〈pos-rm, l2〉 is also replaced by 〈pos-rm,⊥〉 in the causal link αi
〈pos-rm,l2〉→

load t1 rm l2.
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3.4.3.2 MAP definition language

There is a large body of work on languages to specify planning tasks. Since plan-

ning has been traditionally regarded as a centralized problem, the most popular

definition languages, such as the different versions of PDDL (the Planning Domain

Definition Language1), are designed to model single-agent planning tasks. MAP

introduces a set of requirements that are not present in single-agent planning, such

as privacy or specialized agents, which motivate the development of specification

languages for multi-agent planning.

There are many different approaches to MAP as was described in section 3.4.2.

MA-STRIPS (14), which was designed as a minimalistic extension to STRIPS

(36), is one of the most common MAP languages. It allows to define a set of agents

and associate the planning actions they can execute. FMAP presents several ad-

vanced features that motivated the definition of our own PDDL-based specification

language (language syntax is detailed in (115)), rather than using MA-STRIPS .

As the world states in FMAP are modeled through state variables instead of

predicates, our MAP language is based on PDDL3.1 (64), the last version of

PDDL. Unlike its predecessors, that model planning tasks through predicates,

PDDL3.1 incorporates state variables that map to a finite domain of objects of

the task.

In a single-agent language, the user specifies the domain of the task (planning

operators, types of objects, and functions) and the problem to be solved (objects

of the task, initial state and goals). In FMAP, we define a domain and a problem

file for each agent, which model, respectively, the typology of the agent and its

local view of the MAP task. The domain files keep the structure of a regular

PDDL3.1 domain file. The problem files, however, are extended with an additional

1http://en.wikipedia.org/wiki/Planning_Domain_Definition_Language
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Figure 3.15: FMAP multi-agent search tree example

:shared-data section, which specifies the information that an agent can share

with each other participating agent in the task.

3.4.4 FMAP refinement planning procedure

FMAP is based on a cooperative refinement planning procedure in which agents

jointly explore a multi-agent plan-space search tree. A multi-agent search tree is

one in which the partial plans of the nodes are built with the contributions of one

or more agents.

Figure 3.15 shows the first level of the multi-agent search tree that would be

generated for the transportation task of Example 3. At this level, agents ta1

and ta2 propose each two refinement plans, specifically plans to move their trucks

within their geographical areas. In each of these refinement plans, the agent adds

one action and the corresponding orderings and causal links. Agent f does not

contribute here with any refinement plan because the initial empty plan Π0 does

not comprise the necessary supporting information for f to insert any of its actions.

In a subsequent iteration (expansion of the next tree node), agents can in turn

create new refinement plans. For instance, if node Π00 in Figure 3.15 is selected

next for expansion, the three agents in the problem (ta1, ta2 or f) will try to

create refinement plans over Π00 by adding one of their actions and supporting it

through the necessary causal links and orderings.
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Agents keep a copy of the multi-agent search tree, storing the local view they

have of each of the plans in the tree nodes. Given a node Π in the multi-agent

search tree, an agent i maintains viewi(Π) in its copy of the tree.

FMAP applies a multi-agent A* search that iteratively explores the multi-agent

tree. One iteration of FMAP involves: 1) agents select one of the unexplored leaf

nodes of the tree for expansion; 2) agents expand the selected plan by generating

all the refinement plans over this node; and 3) agents evaluate the resulting suc-

cessor nodes and communicate the results to the rest of agents. Instead of using

a broadcast control framework, FMAP uses a democratic leadership, in which a

coordinator role is scheduled among the agents. One of the agents adopts the

role of coordinator at each iteration, thus leading the procedure in one iteration

(initially, the coordinator role is randomly assigned to one of the participating

agents). More specifically, a FMAP iteration is as follows:

� Base plan selection: Among all the open nodes (unexplored leaf nodes) of

the multi-agent search tree, the coordinator agent selects the most promising

plan, Πb, as the base plan to refine in the current iteration. Πb is selected

according to the evaluation of the open nodes (details on the node evaluation

and selection are in section 3.4.4.3). In the initial iteration, the base plan is

the empty plan Π0.

� Refinement plan generation: Agents expand Πb and generate its suc-

cessor nodes. A successor node is a refinement plan over Πb that an agent

generates individually through its embedded forward-chaining partial-order

planner (see subsection 3.4.4.1).

� Refinement plan evaluation: Every agent i evaluates its refinement plans

Πr by applying a classical A* evaluation function (f(Πr) = g(viewi(Πr)) +

h(viewi(Πr)). g(viewi(Πr))) stands for the number of actions of Πr. Since
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agents view all the actions of the plans (but not necessarily all its precondi-

tions and effects), g(viewi(Πr)) is equivalent to g(Πr). h(viewi(Πr)) applies

our DTG-based heuristic (see subsection 3.4.4.3) to estimate the cost of

reaching a solution plan from Πr.

� Refinement plan communication: Agents communicate their refinement

plans to each other agent. The information that an agent i communicates of

its plan Πr to the rest of agents depends on the level of privacy specified with

each of them. Along with the refinement plan Πr, agent i communicates the

result of the evaluation of Πr, f(Πr).

Once the iteration is completed, the leadership is handed to another agent,

which adopts the coordinator role, and a new iteration starts. The next coordina-

tor agent selects the new base plan Πb as the open node Π that minimizes f(Π),

and agents proceed to expand it. This iterative process carries on until Πb becomes

a solution plan that supports the final action αf , or when all the open nodes have

been visited, in which case, agents will have explored the complete search space

without finding a solution for the MAP task TMAP .

A refinement plan Π is evaluated only by the agent that generates it. The agent

communicates Π along with f(Π) to the rest of agents. Therefore, the decision on

the next base plan is not affected by the agent that plays the coordinator role, as

all the agents manage the same f(Π) value for every open node Π.

Back to the example depicted in Figure 3.15, agent ta1 evaluates its refine-

ment plans, Π00 and Π01, and communicates them to agents ta2 and f , along

with f(Π00) and f(Π01); likewise, ta2 with ta1 and f . In this first level of the

tree, agents ta1 and ta2 have a complete view of the refinement plans they have

generated as these plans only contain an action introduced by themselves. How-

ever, when ta1 and ta2 communicate their plans to each other, they will only send
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the fluents according to the level of privacy defined between them, as described

in subsection 3.4.3.1. This way, ta1 will send viewta2(Π00) and viewta2(Π01) to

agent ta2, and viewf (Π00) and viewf (Π01) to agent f .

The next subsections analyze the key elements of FMAP, that is, the search al-

gorithm that agents use for the generation of the refinement plans and the heuristic

function they use for plan evaluation. We also include a subsection that addresses

the completeness and correctness of the algorithm as well as a subsection that

describes the limitations of FMAP.

3.4.4.1 Forward-Chaining Partial-Order Planning

Agents in FMAP use an embedded flexible forward-chaining POP system, which

will be referred to as FLEX in the following, to generate the refinement plans.

As other approaches, FLEX explores the potential of forward search to support

partial-order planning. OPTIC (6), for instance, combines partial-order structures

with information on the frontier state of the plan. Informally speaking, the frontier

state of the partial plan of a tree node is the resulting state after executing the

actions in such a plan. Given a refinement plan Π = 〈∆,OR,CL〉, we define its

frontier state FS(Π) as the set of fluents 〈v, d〉 achieved by actions α ∈ ∆ | 〈v, d〉 ∈

EFF (α), such that any action α′ ∈ ∆ that modifies the value of the variable v

(〈v, d′〉 ∈ EFF (α′) | d 6= d′) is not reachable from α by following the orderings

and causal links in Π.

The only actions that OPTIC add to a plan are those whose preconditions hold

in the frontier state. This behaviour forces OPTIC to some early commitments

although this does not sacrifice completeness, as search can backtrack. Also, TF-

POP (67) applies a centralized forward-chaining POP for multiple agents, keeping

a sequential execution thread per agent.
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Figure 3.16: Loading rm in plan Π001: a) inserting actions from a frontier state

b) with FLEX

The aforementioned approaches only permit introducing actions that are appli-

cable in the frontier state of the plan. In contrast, FLEX allows inserting actions

at any position of the plan without assuming that any action in the plan has

already been executed. This is a more flexible approach that is also more compli-

ant with the least-commitment principle that typically guides backward-chaining

POP. Figure 3.16 shows the advantages of our flexible search strategy. Consider

the refinement plan Π001, which is the result of a refinement of agent ta1 on plan

Π00 (see Figure 3.15) after including the action (drive t1 l1 sf). This is not

the best course of action for taking the raw material rm to the factory f as ta1

should load rm into t1 before moving to sf . The frontier state FS(Π001) reflects

the state of the world after executing the plan Π001, in which the truck t1 would

be at sf . Planners like OPTIC would only introduce actions that are applicable

in the frontier state FS(Π001). In this example, OPTIC would insert first the

action (drive t1 sf l2) to move the truck t1 back to l2 in order to apply then

(load t1 rm l2) (see Figure 3.16a). FLEX, however, is able to introduce actions at

any position in the plan, so the load action can be directly placed between both

drive actions, thus minimizing the length of the plan (see Figure 3.16b).

Algorithm 6 summarizes the FLEX procedure invoked by an agent i to generate
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refinement plans, and Figure 3.17 shows how agent ta1 in Example 3 uses the

FLEX algorithm to refine plan Π00 on Figure 3.15. The first operation of an

agent i that executes FLEX is to check whether the fictitious final action αf is

supportable in Πb, that is, if a solution plan can be obtained from Πb. If so,

the agent will generate a set of solution plans that cover all the possible ways to

support the preconditions of αf through causal links.

Algorithm 6: FLEX search algorithm for an agent i

RP i ← ∅
if potentiallySupportable(αf , view

i(Πb)) then
return solutionP lans

CandidateActions← ∅
for all α ∈ Ai do

if potentiallySupportable(α, viewi(Πb)) then

CandidateActions← CandidateActions ∪ α

for all α ∈ CandidateActions do

Plans← {viewi(Πb)}
repeat

Select and extract Πs ∈ Plans
F laws(Πs)← unsupportedPrecs(α,Πs) ∪ Threats(Πs)

if Flaws(Πs) = ∅ then

RP i ← RP i ∪Πs

else

Select and extract Φ ∈ Flaws(Πs)

Plans← Plans ∪ solveF law(Πs,Φ)

until Plans = ∅
return RP i

In case a solution plan is not found, agent i analyzes all its planning actions Ai

and estimates if they are supportable in Πb. Given an action α ∈ Ai, the function

potentiallySupportable(α,Πb) checks if ∀〈v, d〉 ∈ PRE(α), ∃β ∈ ∆(Πb) | (v =
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Figure 3.17: FLEX algorithm as applied by agent ta1 over plan Π00

d) ∈ EFF (β), i.e., the agent estimates that α is supportable if for every precon-

dition of α there is a matching effect among the actions of Πb.

In Figure 3.17, we can see an example of potentially supportable actions. Agent

ta1 evaluates all the actions in Ata and finds five candidate actions. In αi, the

initial state of Π00, the truck t1 is at location l1. Consequently, ta1 considers

(drive t1 l1 sf) and (drive t1 l1 l2) as potential candidate actions for its refine-

ments. Notice that action (drive t1 l1 l2) is already included in plan Π00. Actions

(drive t1 l2 sf), (drive t1 l2 l1) and (load t1 rm l2) are also classified as candi-

dates, as they are applicable after the action (drive t1 l1 l2) which is already in

plan Π00.

It is possible to introduce an action multiple times in a plan; for instance, a

truck may need to travel back and forth between two different locations several

times. For this reason, ta1 considers again (drive t1 l1 l2) as a candidate action

when refining Π00, even if this action is already included in Π00. By estimating

potentially supportable actions in any position of the plan, FLEX follows the least

commitment principle and does not leave out any potential refinement plan.
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The potentiallySupportable procedure is an estimate because it does not ac-

tually check the possible flaws that arise when supporting an action. Hence, an

agent analyzes the alternatives to support each candidate action α by generating

a POP search tree for that particular action (repeat loop in Algorithm 6). All the

leaf nodes of the tree (stored in the Plans list in Algorithm 6) are explored, thus

covering all the possible ways to introduce α in Πb.

As in backward-chaining POP, FLEX introduces the action α in Πb by sup-

porting its preconditions through causal links and solving the threats that arise

during the search. The set of flaw-free plans obtained from this search are stored in

RP i as valid refinement plans of agent i over Πb. This procedure is carried out for

each candidate action. Completeness is guaranteed as all the possible refinement

plans over a given base plan are generated by the agents involved in TMAP .

Figure 3.17 shows that, for every candidate action, ta1 performs an inde-

pendent POP search aimed at supporting the action. Actions (load t1 rm l2),

(drive t1 l2 sf), and (drive t1 l2 l1) lead to three different refinement plans over

Π00: {Π000, Π001,Π002}. These plans will then be inserted in ta1’s copy of the

multi-agent search tree. Agent ta1 will also send the information of these plans to

agents ta2 and f according to the level of privacy defined with respect to them.

ta2 and f also store the received plans in their copies of the tree.

Candidate action (drive t1 l1 sf) does not produce valid refinement plans

because it causes an unsolvable threat. This is because truck t1 cannot simultane-

ously move to two different locations from l1, which causes a conflict between the

existing action (drive t1 l1 l2) ∈ ∆(Π00) and (drive t1 l1 sf). Similarly, action

(drive t1 l1 l2) does not yield any valid refinements. The resulting plan would

have two actions (drive t1 l1 l2) in parallel, both linked to αi, which causes an

unsolvable threat because t1 cannot perform two identical drive actions in parallel.
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3.4.4.2 Completeness and Soundness

As explained in the previous section, agents refine the base plan concurrently by

analyzing all possible ways to support their actions in the base plan. Since this

operation is done by every agent and for all their actions, we can conclude FMAP

is a complete procedure that explores the whole search space.

As for soundness, a partial-order plan is sound if it is a flaw-free plan. The

FLEX algorithm addresses inconsistencies among actions in a partial plan by de-

tecting and solving threats.

When an agent i introduces an action α in a base plan Π, FLEX studies the

threats that α causes in the causal links of Π and the threats that the actions of Π

may cause in the causal links that support the preconditions of α. In both cases,

i is able to detect all threats whatever its view of the plan is, viewi(Π). That

is, FMAP soundness is guaranteed regardless the level of privacy defined between

agents.

Regarding the threats caused by the effects of a new action, privacy may pre-

vent the agent from viewing some of the causal links of the plan. Suppose that

agent i introduces an action αt with an effect (v = d′) in plan Π. Additionally,

there is a causal link in Π of the form cl = α0
〈v,d〉→ α1 introduced by an agent j; as

cl is not ordered with respect to αt, this situation generates a threat. According

to viewi(Π), agent i may find one of the following situations:

� If 〈v, d〉 is public to i and j, then cl is in viewi(Π), and thus, the threat

between cl and αt will be correctly detected and solved by promoting or

demoting αt.

� If 〈v, d〉 is private to j w.r.t. i, then αt cannot contain an effect (v = d′)

because v 6∈ Vi. Therefore, the threat described above can never occur in Π.
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� If 〈v, d〉 is partially private to j w.r.t. i, then cl = α0
〈v,d〉→ α1 will be seen as

cl = α0
〈v,⊥〉→ α1 in viewi(Π). Since ⊥6= d, agent i will be able to detect and

address the threat between αt and cl.

Consequently, an agent can always detect the arising threats when it adds a

new action, αt, in the plan. Now, we should study whether the potential threats

caused by actions in Π on the causal links that support the action αt are correctly

detected by agent i. Suppose that there is a causal link cl′ = β
〈v′,e〉→ αt, and an

action γ with an effect (v′ = e′) which is not ordered with respect to αt. Again,

agent i may find itself in three different scenarios according to its view of (v′ = e′):

� If (v′ = e′) is public to i and j, the threat between cl′ and γ will be correctly

detected by i.

� If (v′ = e′) is private to j w.r.t. i, then none of the variables in PRE(αt)

are related to v′ because v′ 6∈ Vi. Thus, this threat will never arise in Π.

� If (v′ = e′) is partially private to j w.r.t. i, (v′ = e′) will be seen as (v′ =⊥)

in viewi(Π). Since ⊥6= e, the threat between γ and cl′ will be correctly

detected by agent i.

Notice that privacy does not prevent agents from detecting and solving threats

nor affects the complexity of the process. If the fluent is public or partially private,

the agent which is refining the plan will be able to detect the threat because it

either sees the value of the variable or sees ⊥, and both contradict the value of

the variable in the causal link. If the fluent is private then there is no such threat.

This proves that FMAP is sound.
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Figure 3.19: Centralized and distributed DTG of the variable 〈pos-rm〉

3.4.4.3 DTG-based Heuristic Function

The last aspect of FMAP to analyze is how agents evaluate the refinement plans.

FMAP guides the search through a domain-independent heuristic function, as most

planning systems (23). It uses the information provided by the frontier states to

perform the heuristic evaluation of the plans contained in the tree nodes.

According to the definition shown in section 3.4.4.1, the frontier state of a

plan Π, FS(Π), can be easily computed as the finite set of fluents that results

from executing the actions of the plan Π in I, the initial state of TMAP . Since
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refinement plans are not sequential plans, the actions in ∆ have to be linearized

in order to compute the frontier state. The linearization of a refinement plan Π

involves establishing a total order among the actions in ∆. Given two actions

α ∈ ∆ and β ∈ ∆, if α ≺ β ∈ OR or β ≺ α ∈ OR, we keep this ordering constraint

in the linearized plan. In case that α and β are non-sequential actions, we set a

total ordering among them. Since plans returned by FLEX are free of conflicts, it

is irrelevant how non-sequential actions are ordered.

Frontier states allow to make use of state-based heuristics such as hFF , the

relaxed planning graph (RPG) heuristic of FF (54). However, the distributed ap-

proach and the privacy model of FMAP make the application of hFF inadequate to

guide the search. The reason is this: as none of the agents has a complete knowl-

edge to build an RPG by itself, using hFF to estimate the quality of a refinement

plan involves agents building a distributed RPG (127). This is a costly process

that entails many communications among agents to coordinate which each other,

and it has to be repeated for the evaluation of each refinement plan. Therefore,

the predictable high computational cost of the application of hFF led us to discard

this choice and opt for designing a heuristic based on Domain Transition Graphs

(DTGs) (49).

A DTG is a directed graph that shows the ways in which a variable can change

its value (49). Each transition is labeled with the necessary conditions for this

to happen; i.e., the preconditions that are common to all the actions that induce

the transition. DTGs are independent from the state of the plan, thus avoiding

recalculation during the planning process.

Privacy is kept in DTGs through the use of the undefined value ⊥. This value is

represented in a DTG as the rest of values of the variables, being the only difference

that transitions from/to ⊥ are labeled with the agents that induce them.
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Consider a reduced version of Example 3 depicted in Figure 3.18. In this ex-

ample, both transport agents ta1 and ta2 can use truck t1 within their geograph-

ical areas ga1 and ga2, respectively. Figure 3.19 shows the DTG of the variable

〈pos-rm〉. In a single-agent problem (upper diagram) all the information is avail-

able in the DTG. However, in the multi-agent task (bottom diagrams), agent ta1

ignores the location of rm if ta2 transports it to f , while ta2 does not know the

initial placement of rm, as location l1 lies outside ta2’s geographical area, ga2. In

order to evaluate the cost of achieving 〈pos-rm, f〉 from the initial state, ta1 will

first look up in its DTG, thus obtaining the cost of loading rm in t1. As shown

in Figure 3.19, the transition between values t1 and ⊥ is labeled with agent ta2.

Thus, ta1 will request ta2 the cost of the path between values t1 and f to com-

plete the calculation. Communications are required to evaluate multi-agent plans,

but DTGs are more efficient than RPGs as they remain constant during planning,

so agents can minimize the overhead by memorizing paths and distances between

values.

Our DTG-based heuristic function, hDTG in the following, returns, for a given

plan Π, the number of actions of a relaxed plan between the frontier state FS(Π)

and the set of goals of TMAP , G. hDTG performs a backward search introducing in

the relaxed plan the actions that support the goals in G, until all their preconditions

are supported. Hence, the underlying principle of hDTG is similar to hFF , except

for the fact that we use DTGs instead of RPGs to build the relaxed plan.

The hDTG evaluation of a plan Π begins by calculating the frontier state FS(Π).

Next, an iterative procedure is performed to build the relaxed plan. This procedure

manages a list of fluents, openGoals, initially set to G. The process iteratively

extracts a fluent from openGoals and supports it through the introduction of an

action in the relaxed plan. The preconditions of such an action are then included

in the openGoals list. For each variable v ∈ V, the procedure manages a list of
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values, V aluesv, which is initialized to the value of v in the frontier state FS(Π).

For each action added to the relaxed plan that has an effect (v = d′), d′ will

be stored in V aluesv. An iteration of the hDTG evaluation process performs the

following stages:

� Open goal selection: From the openGoals set, the procedure extracts the

fluent 〈v, dg〉 ∈ openG that requires the largest number of value transitions

to be supported.

� DTG path computation: For every value d0 in V aluesv, this stage cal-

culates the shortest sequence of value transitions in v’s DTG from d0 to dg.

Each path is computed by applying Dijkstra’s algorithm between the nodes

d0 and dg in the DTG associated to variable v. The path with a minimum

length is stored as minPath = ((d0, d1), (d1, d2), . . . , (dg−1, dg)).

� Relaxed plan construction: For each value transition (di, di+1) ∈ minPath,

the minimum-cost action αmin that produces such a transition is intro-

duced in the relaxed plan; that is, 〈v, di〉 ∈ PRE(αmin) and (v = di+1) ∈

EFF (αmin). The cost of an action is computed as the sum of the minimum

number of value transitions required to support its preconditions. The un-

supported preconditions of αmin are stored in openGoals, so they will be sup-

ported in the subsequent iterations. For each effect (v′ = d′) ∈ EFF (αmin),

the value d′ is stored in V aluesv′ , so d′ can be used in the following iterations

to support other openGoals.

The iterative evaluation procedure carries on until all the open goals have been

supported, that is, openGoals = ∅, and hDTG returns the number of actions in

the relaxed plan.
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3.4.4.4 Limitations of FMAP

In this section we present some limitations of FMAP that are worth discussing.

FMAP builds upon the POP paradigm, so it can handle plans with parallel ac-

tions and only enforces an ordering when strictly necessary. FMAP, however, does

not explicitly manage time constraints nor durative actions yet. A POP-based

planner can easily be extended to incorporate time because the application of the

least-commitment principle provides a high degree of execution flexibility. Addi-

tionally, POP is independent of the assumption that actions must be instantaneous

or have the same duration and allows to define actions of arbitrary duration and

different types of temporal constraints as long as the conditions under which ac-

tions interfere are well defined (104). In short, POP represents a natural and very

appropriate way to include and handle time in a planning framework.

FLEX involves the construction of a POP tree for each potentially support-

able action (see Figure 3.17). This procedure is more costly than the operations

required by a standard planner to refine a plan. However, the search trees are

independent of each other, which makes it possible to implement FLEX by using

multiple execution threads. Parallelization improves the performance of FLEX

and the ability of FMAP to scale up. Section 3.4.5 provides more insight on the

FLEX implementation.

Currently, FMAP is limited to cooperative goals, so that all the goals must

be defined as global objectives to all the participating agents (see section 3.4.3).

Nevertheless, an extension of FMAP to support self-interested agents with local

goals is being considered as a future work.

FMAP is a general procedure aimed to solve any kind of MAP task. In particu-

lar, solving tightly-coupled tasks requires a noticeable coordination effort. Multi-

agent coordination in distributed systems where agents must cooperate is always
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a major issue. This dependency on coordination makes FMAP a communication-

reliant approach. Agents do not only have to communicate the refinement plans

that they build at each iteration, but they also have to communicate during the

heuristic evaluation of the refinement plans in order to keep privacy (see subsection

3.4.4.3). The usage of a coordinator agent effectively reduces the need of commu-

nication. The experimental results will show that FMAP can effectively tackle

large problem instances (see section 3.4.5). Nevertheless, reducing communication

overhead while keeping the ability to solve any kind of task remains as an ongoing

research topic that we consider for future developments.

Privacy management is another issue that potentially worsens the performance

of FMAP. In section 3.4.3.1, we defined a mechanism to detect and address threats

in partial plans, even when agents do not have a complete view of such plans.

Privacy does not add extra complexity to FLEX since agents manage the undefined

value ⊥ as any other value in the domain of a variable. It does, however, make

the refinement-plan communication stage more complex, because, when an agent

i sends viewj(Π) to an agent j, this implies that i must previously adapt the

information of Π according to the privacy rules defined w.r.t. to j.

Privacy also affects the heuristic evaluation of the plans in terms of quality.

Since a refinement plan is only evaluated by the agent that generates it and this

evaluation is influenced by the view of the agent on the plan, the result may

not be as accurate as if the agent had a complete view of such plan. Empirical

results, however, will show that, even with these limitations, our heuristic function

provides a good performance in a wide variety of planning domains (see section

3.4.5).
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3.4.5 Experimental results

In order to assess the performance of FMAP, we run experimental tests with some

of the benchmark problems from the International Planning Competitions1 (IPC).

More precisely, we adapted the STRIPS problem suites of 10 different domains

from the latest IPC editions to a MAP context. The tests compare FMAP with

two different state-of-the-art MAP systems: MAPR (11) and MAP-POP (114). We

excluded Planning First (80) from the comparison because it is outperformed by

MAP-POP (114).

This section is organized as follows: first, we provide some information on the

FMAP implementation and experimental setup. Then, we present the features

of the tested domains and we analyze the MAP adaptation performed for each

domain. Next, we show a comparative analysis between FMAP and the aforemen-

tioned planners, MAPR (11) and MAP-POP (114). Then, we perform a scalability

analysis of FMAP and MAPR. Finally, we summarize and discuss the results ob-

tained by FMAP and how they compare to the other two planners.

3.4.5.1 FMAP implementation and experimental setup

Most multi-agent applications nowadays make use of middleware multi-agent plat-

forms that provide them with the communication services required by the agents

(83). The entire code of FMAP is implemented in Java and builds upon the Ma-

gentix2 platform2 (109). Magentix2 provides a set of libraries to define the agents’

behavior, along with the communication resources required by the agents. Magen-

tix2 agents communicate by means of the FIPA Agent Communication Language

(81). Messaging is carried out through the Apache QPid broker3, which is a critical

1http://ipc.icaps-conference.org/
2http://www.gti-ia.upv.es/sma/tools/magentix2
3http://qpid.apache.org/
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component for FMAP agents.

FMAP is optimized to take full advantage of the CPU execution threads. The

FLEX procedure, which generates refinement plans over a given base plan, de-

velops a POP search tree for each potentially supportable action of the agent’s

domain. As the construction of a tree is completely independent to each other,

these processes run in parallel for each agent.

Agents synchronize their activities at the end of the refinement plan generation

stage. Consequently, FMAP assigns the same number of execution threads to each

agent, so that they all spend a similar amount of time to complete the FLEX

procedure (note that if we allocate extra threads to a subset of the agents, they

would still have to wait to the slowest agent to synchronize). FLEX builds as many

POP search trees in parallel as execution threads agents have been allocated. The

hDTG heuristic is implemented in a similar way. An agent can simultaneously

evaluate as many plans as execution threads it has been allocated.

All the experimental tests were performed on a single machine with a quad-

core Intel Core i7 processor and 8 GB RAM (1.5 GB RAM available for the

Java VM). The CPU used in the experimentation has eight available execution

threads, distributed as follows: in tasks that involve two agents, FMAP allocates

four execution threads per agent; in tasks with three or four agents, each agent has

two available execution threads; finally, agents have a single execution thread at

their disposal in tasks involving five or more agents. For instance, the three agents

in Example 3 would get two different execution threads in this particular machine.

Hence, in the FLEX example depicted in Figure 3.17, agent ta1 would be able to

study two candidate actions simultaneously, thus reducing the execution time of

the overall procedure.
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Domain Type IPC Agents
Coop.

goals

Applicability

MAPR
FMAP

MAP-POP

Blocksworld LC ’98 robot No 3 3

Driverlog LC ’02 driver No 3 3

Rovers LC ’06 rover No 3 3

Satellite LC ’04 satellite No 3 3

Zenotravel LC ’02 aircraft No 3 3

Depots TC ’02 depot/truck Yes 7 3

Elevators TC ’11
fast-elevator/

Yes 7 3
slow-elevator

Logistics TC ’00 airplane/truck Yes 7 3

Openstacks TC ’11
manager/

Yes 7 3
manufacturer

Woodworking TC ’11 machine Yes 7 3

Table 3.6: Features of the MAP domains

3.4.5.2 Planning domain taxonomy

The benchmark used for the experiments includes 10 different domains of the

IPCs that are suitable for a multi-agent adaptation. The IPC benchmarks come

from (potential) real-world applications of planning, and they have become the de

facto mechanism to assess the performance of single-agent planning systems. The

elevators domain, for instance, is inspired in a real problem of Schindler Lifts Ltd.

(62); the satellite domain is motivated by a NASA space application (70); the

rovers domain deals with the decision of daily planning activities of Mars rovers

(16); and the openstacks domain is based on the minimum maximum simultaneous

open stacks combinatorial optimization problem. Hence, all the domains from the

IPCs resemble practical scenarios and they are modeled to keep, as far as possible,

both their structure and complexity. In MAP, there is not a standardized collection

of planning domains available. MAP approaches adapt instead some well-known
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IPC domains to a multi-agent context, namely the satellite, rovers and logistics

domains (11, 80, 114).

Converting planning domains into a multi-agent version is not always possible

due to the domain characteristics. While some IPC domains have a straightforward

multi-agent decomposition, others are inherently single-agent. We developed a

domain-dependent tool to automatically translate the original STRIPS tasks into

our PDDL-based MAP language.

Table 3.6 describes the main features of the 10 MAP domains included in

the benchmark. Column Type indicates whether the MAP tasks of the domain

are loosely-coupled (LC ) or tightly-coupled (TC ). Column IPC shows the last

edition of the IPC in which the domain was included. Agents indicates the types

of object used to define the agents. Coop. goals indicates the presence or absence

of such goals in the domains tasks. Finally, the Applicability columns show the

MAP systems capable to cope with each domain.

In order to come up with a well-balanced benchmark, we put the emphasis

on the presence (or absence) of specialized agents and cooperative goals. Be-

sides the adaptation to a multi-agent context, the 10 selected domains are a good

representative sample of loosely-coupled domains with non-specialized agents and

tightly-coupled domains with cooperative goals.

Privacy in each domain is defined according to the nature of the problem and

the type of agents involved, while maintaining a correlation and identification with

the objects in a real-world problem.

Loosely-coupled domains. The five loosely-coupled domains presented in Ta-

ble 3.6 are: Blocksworld, Driverlog, Rovers, Satellite and Zenotravel. The prime

characteristic of these domains is that agents have the same planning capabilities

(operators) such that each task goal can be individually solved by a single agent.
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That is, tasks can be addressed without cooperation among agents. Next, we

provide some insight into the features of these domains and the MAP adaptations.

Satellite (70). This domain offers a straightforward multi-agent decomposition

(80, 114). The MAP domain features an agent per satellite. The resulting MAP

tasks are almost decoupled as each satellite can attain a subset of the task goals

(even all the goals in some cases) without interacting with any other agent. The

number of agents in the problems of this domain vary from 1 up to 12. The

instruments of a satellite are private to the agent, only the orientation of each

agent and the information on the images taken by the satellites is defined as

public.

Rovers (70). As the Satellite domain, Rovers also offers a straightforward

decomposition (80, 114). The MAP domain features an agent per rover. Rovers

collect samples of soil and rock and hardly interact with each other except when a

soil or rock sample is collected by an agent, and so it is no longer available to the

rest of agents. The number of agents ranges from 1 to 8 rovers per task. As in the

Satellite domain, only the information related to the collected samples is defined

as public.

Blocksworld. The MAP version of this domain introduces a set of robot agents

(four agents per task), each having an arm to arrange blocks. Unlike the original

domain, the MAP version of Blocksworld allows to handle more than one block at

a time. All the information in this domain is considered as public.

Driverlog (70). In this MAP domain, the agents are the drivers of the problem,

ranging between 2 and 8 agents per task. Driver agents are in charge of driving the

available trucks and delivering the packages to the different destinations. All the

information in the domain (status of drivers, trucks and packages) is publicized

by the driver agents.
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Zenotravel (70). This domain defines one agent per aircraft. The simplest

tasks include one agent and the most complex ones up to five agents. Aircrafts

can directly transport passengers to any city in the task. As in the Blocksworld and

Driverlog domains, all the information concerning the situation of the passengers

and the current location of each aircraft is publicly available to all the participating

agents.

Tightly-coupled domains. We also analyzed five additional domains that fea-

ture specialized agents with different planning capabilities: Depots, Elevators, Lo-

gistics, Openstacks and Woodworking. The features of these domains give rise

to complex, tightly-coupled tasks that require interactions or commitments (46)

among agents to be solved.

Depots (70). This domain includes two different types of specialized agents,

depots and trucks, that must cooperate in order to solve most of the tasks’ goals.

This domain, which is the most complex one in our MAP benchmark, leads to

tightly-coupled MAP tasks with many dependences among agents. Depots tasks

contain a large number of participating agents, ranging from 5 to 12 agents. Only

the location of packages and trucks is defined as public information.

Elevators. Each agent in this domain can be a slow-elevator or a fast-elevator.

Operators in the STRIPS domain are basically the same for both types of elevators

as the differences between them only affect the action costs. Elevator agents,

however, are still specialized as the floors they can access are limited. This leads

to tasks that require cooperation to fulfill some of the goals. For instance, an

elevator may not be able to take a passenger to a certain floor, so it will stop in an

intermediate floor so that the passenger can board another elevator able to reach

this floor. Tasks include 3 up to 5 agents. Agents share the information regarding

the location of the different passengers.
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Domain Tasks #C
FMAP MAPR

#S #A MS Time #S #A MS Time

Blocksworld 34 19 19 17,79 13,68 86,17 34 1,27x 1,20x 0,04x

Driverlog 20 15 15 24,64 13,93 42,02 18 1,19x 1,53x 0,06x

Rovers 20 19 19 32,63 14,95 53,82 20 0,97x 0,85x 0,05x

Satellite 20 15 16 27,27 16,47 177,65 18 1,14x 1,03x 0,03x

Zenotravel 20 18 18 25,50 13,94 180,62 20 1,24x 1,32x 0,02x

Table 3.7: Comparison between FMAP and MAPR

Logistics. This domain presents two different types of specialized agents, air-

planes and trucks. The delivery of some of the packages involves the cooperation

of several truck and airplane agents (similarly to the example task introduced in

this article). Tasks feature 3 up to 10 different agents. Information regarding the

position of the packages is defined as public.

Openstacks (40). This MAP domain includes two specialized agents in all of

the tasks; the manager is in charge of handling the orders, and the manufacturer

controls the different stacks and manufactures the products. Both agents depend

on each other to perform their activities, thus resulting in tightly-coupled MAP

tasks with inherently cooperative goals. Most of the information regarding the

different orders and products is public, since both agents need it to interact with

each other.

Woodworking. This domain features four different types of specialized agents (a

planer, a saw, a grinder and a varnisher), representing the machines in a production

chain. In most cases, the output of a machine constitutes the input of the following

one, so Woodworking agents have to cooperate to fulfill the different goals. All the

tasks include four agents, a machine of each type. All the information on the status

of the different wood pieces is publicized, since agents require this information in

order to operate.
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3.4.5.3 FMAP vs. MAPR comparison

This subsection compares the experimental results of FMAP and MAPR (11).

MAPR is implemented in Lisp and uses LAMA (95) as the underlying planning

system, making no use of a middleware platform for multi-agent systems. Each

experiment is limited to 30 minutes.

Table 3.7 shows the comparative results. FMAP and MAPR #S columns refer

to the number of tasks solved by each approach. The average number of actions

(#A), makespan or plan duration (MS ) and search time (Time) consider only

the tasks solved by both FMAP and MAPR (column #C shows the number of

tasks solved by both planners). Actions, makespan and time values in MAPR are

relative to the results obtained with FMAP. Values nx in Table 3.8 indicate ”n

times as much as the FMAP result”. Thereby, an #A or MS value higher than 1x

is a better result for FMAP and a value lower than 1x is a worse result for FMAP.

However, a Time value higher than 1x indicates a better result for FMAP.

MAPR is one of the most recent MAP systems that exhibits an excellent perfor-

mance in comparison to other state-of-the-art MAP approaches (11). However, as

reflected in Table 3.6, MAPR is only compatible with the loosely-coupled domains

in the benchmark. This limitation is due to the planning approach of MAPR.

Particularly, MAPR applies a goal allocation procedure, decomposing the MAP

task into subtasks and giving each agent a subset of the task goals to solve. Each

agent subtask is solved with the single-agent planner LAMA (95) such that the

resulting subplans are progressively combined into a global solution. This makes

MAPR an incomplete planning approach, limited to loosely-coupled tasks without

cooperative goals. That is, MAPR is built under the assumption that each goal

must be addressed by at least one of the agents in isolation (11).
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Whereas the communication overhead is relatively high in FMAP (to a large

extent, this is due to the use of Magentix MAS platform), agents in MAPR do not

need to communicate during the plan construction because each agent addresses

its allocated subgoals by itself. This setup has a rather positive impact in the

execution times and the number of problems solved (coverage). Table 3.7 shows

that, as expected, execution times in MAPR are much lower than FMAP. With

respect to coverage, MAPR solves 110 out of 114 loosely-coupled tasks (roughly a

96% of the tasks), while FMAP solves 87 of such tasks (a 76%).

However, in most domains, FMAP comes up with better-quality plans than

MAPR, considering the number of actions as well as makespan. MAPR is con-

ditioned by the order in which agents solve their subtasks. The first agent that

computes a subplan cannot take advantage of the potential synergies that may

arise from other agents actions; the second agent has only the information of the

first agent’s subplan, and so on. Additionally, the allocation of goals to each agent

may lead to poorly-balanced plans. Although FMAP is a more time-consuming

approach, it avoids these limitations, as agents work together to build the plan

action by action. Thus, FMAP provides agents with a global view of the plan at

each point of the construction process, while agents in MAPR keep a local view of

the plan at hand.

The Driverlog domain, while being loosely-coupled, offers many possible syn-

ergies between agents. For instance, a driver agent can use a truck to travel to

its destination and load a package on its way, while another agent may take over

the truck and complete the delivery. If the first agent acted in isolation, it would

deliver the package and then go back to its destination, which would result in a

worse plan. Robot agents in the Blocksworld domain can also cooperate to im-

prove the quality of the plans: for instance, a robot can pick up a block so that

another robot can retrieve the block below. Goal balance is also a key aspect in
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Figure 3.20: Zenotravel task 8 solution plan as obtained by FMAP (upper plan)

and MAPR (lower plan)

Zenotravel as aircraft agents have a limited autonomy. If an aircraft solves too

many goals it may be forced to refuel, worsening the plan quality.

Figure 3.20 illustrates the MAPR limitations by showing the solution plans

obtained by both approaches for the task 8 of the Zenotravel domain. The goals

of this task involve transporting three different persons and flying plane1 to city3.

The first three goals are achievable by all the plane agents, while the last one can

only be completed by agent plane1.

MAPR starts with agent plane3, which solves all of the goals it can. Then,

plane1 receives the subplan and completes it by solving the remaining goal. The

resulting joint plan is far from the optimal solution. Agent plane3 requires 10

time units to solve its subplan, as it transports all of the passengers. The high

number of fly actions forces the agent to introduce additional actions to refuel

its tank. On the other hand, agent plane1 flies directly to its destination without

transporting any passenger.

Agents in FMAP, however, progressively build the solution plan together with-

out using an a-priori goal allocation, which allows them to obtain much better-
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Domain Tasks #C
FMAP MAP-POP

#S #A MS Time #S #A MS Time

Blocksworld 34 6 19 9,20 7,80 7,57 6 0,91x 0,74x 21,49x

Driverlog 20 2 15 9,50 7,00 0,66 2 1,11x 1,00x 949,39x

Rovers 20 6 19 32,63 14,95 53,82 6 1,01x 1,04x 29,27x

Satellite 20 7 16 17,14 12,57 16,00 7 1,03x 0,89x 0,37x

Zenotravel 20 3 18 7,67 4,33 1,25 3 1,00x 1,00x 87,54x

Depots 20 1 6 14,00 9,00 10,56 1 0,86x 1,00x 2,77x

Elevators 30 22 30 21,32 11,36 14,60 22 1,04x 1,37x 14,23x

Logistics 20 7 10 32,29 12,71 18,26 7 0,97x 0,91x 5,89x

Openstacks 30 0 23 53,13 41,78 268,62 0 - - -

Woodworking 30 0 22 16,50 4,45 100,88 0 - - -

Table 3.8: Comparison between FMAP and MAP-POP

quality plans, taking advantage of synergies between actions of different agents

and effectively balancing the workload among agents. Figure 3.20 shows that, in

FMAP, agent plane1 transports person6 to its destination, thus simplifying the

activities of plane3, which effectively avoids refueling. The resulting plan is a

much shorter and better-balanced solution than MAPR’s (only 6 time steps versus

10 time steps in MAPR) and requires fewer actions (13 actions versus 16 in MAPR).

Table 3.7 shows that FMAP noticeably improves plan quality except in the most

decoupled domains, namely Rovers and Satellite (in the latter, FMAP results are

still better than MAPR’s but not so outstanding). In these domains, synergies

among agents are minimal or even inexistent. Thus, MAPR is not penalized by its

search scheme, obtaining plans of similar quality to FMAP.

3.4.5.4 FMAP vs. MAP-POP comparison

We compared FMAP against another recent MAP system, MAP-POP (114). As

FMAP, MAP-POP agents jointly explore the space of multi-agent plans. This setup

allows MAP-POP to overcome some of the limitations of MAPR, as it is able to
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tackle tightly-coupled tasks with cooperative goals. However, MAP-POP has two

major disadvantages: much like MAPR, MAP-POP is an incomplete approach,

as it implicitly bounds the search tree by limiting its branching factor. This may

prevent agents from generating potential solution plans (114). Additionally, MAP-

POP is based on backward-chaining POP technologies, thus relying on heuristics

that offer a rather poor performance in most MAP domains.

Table 3.8 shows the comparison between FMAP and MAP-POP. As in Table

3.7, the average results consider only the tasks solved by both approaches (FMAP

results for the Openstacks and Woodworking include all the tasks solved by this

approach as MAP-POP solves none of the tasks). The figures in FMAP show the

results obtained with FMAP for the common problems; figures in MAP-POP are

relative to the results of FMAP.

In general, FMAP improves MAP-POP results in almost every aspect. In terms

of coverage, FMAP clearly outperforms MAP-POP, solving 178 out of 244 tasks

(roughly a 73% of the tasks in the benchmark), while MAP-POP solves only 54

tasks (22%). Overall, MAP-POP has issues with some of the most complex tightly-

coupled domains (in particular, Depots, Openstacks and Woodworking), but per-

forms well in the Elevators domain. With respect to the loosely-coupled domains,

MAP-POP solves only the simplest tasks, ranging from three to seven tasks solved

per domain.

Regarding plan quality, it is difficult to compare the results due to the low cover-

age of MAP-POP. Focusing on the domains in which MAP-POP solves a significant

number of tasks, we observe that MAP-POP obtains slightly better solution plans

than FMAP in Blocksworld and Satellite. FMAP, however, outperforms MAP-POP

in Elevators, the domain in which both approaches solve the largest number of

tasks.
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Figure 3.21: Logistics-like scalability task

Finally, the results show that FMAP is much faster than MAP-POP, from 5

times faster in Logistics to even 1000 times faster in the Driverlog domain. MAP-

POP only improves FMAP times in the seven Satellite tasks.

3.4.5.5 Scalability analysis

We prepared two additional experiments to analyze the ability of FMAP and MAPR

to scale up. The first test analyzes how both planners scale up when increasing

the number of agents of a task, keeping the rest of the parameters unchanged.

More specifically, we designed the loosely-coupled logistics-like transportation task

shown in Figure 3.21. The basic task includes two different trucks, t1 and t2. Truck

t1 moves between locations l1 and l2, and truck t2 between locations l3 and l4;

there is no connection between t1’s and t2’s locations. Trucks have to transport

a total of four packages, p1 . . . p4, as shown in Figure 3.21. In order to ensure

that MAPR is able to solve the task, both t1 and t2 can solve two of the four

problem goals by themselves: t1 will deliver p1 and p2, while t2 will transport

p3 and p4. Cooperation is thus not required in this task, as opposite to the IPC

logistics domain.

We defined and ran 14 different tests of this basic task. Each test increases

the number of agents in the task by one, ranging from 2 to 15 truck agents. The

problems are modeled so that the extra truck agents, t3 . . . t15, are placed in a
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Figure 3.22: Scalability results for the logistics-like task

separate location l5, from which there is no access to the locations that t1 and t2

can move through. Therefore, these additional agents included in each task are

unable to solve any of the task goals. They, however, propose refinement plans

in FMAP (more precisely, they introduce an action to move to l6, as shown in

Figure 3.21), increasing the complexity of the task in terms of both the number of

messages exchanged and the branching factor of the FMAP search tree.

The plot in Figure 3.22 separately depicts the time required by each process

in FMAP. We show the time of FLEX in generating the refinement plans, the

time consumed by the hDTG evaluation procedure and the time spent by agents

to communicate and synchronize, which includes the base plan selection and the

exchange of plans among agents. Every task was solved by FMAP in 14 iterations,

resulting in a 12-action solution plan (six actions introduced by each truck t1 and

t2).
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As shown in Figure 3.22, FLEX has a noticeably low impact in the overall

execution time. This proves that, even dealing with privacy and building a tree

for each potentially supportable action, FLEX offers a good performance and does

not limit FMAP’s scalability.

Although every task only required 14 iterations to be solved, the growing num-

ber of agents increases the size of the search tree. In the two-agent task, agents

generate 3.3 refinement plans per iteration in average, while in the 15-agent task,

the average branching factor goes up to 11.8 refinement plans. This, however, does

not affect the time consumed by hDTG, which remains relatively constant in all

tasks. As agents evaluate plans simultaneously, the evaluation time hardly grows

when the number of participants increases.

Figure 3.22 confirms that communications among agents are the major bottle-

neck of FMAP. As the number of agents increases, so does the branching factor.

Thus, each agent has to communicate more refinement plans to a higher number

of participants. Synchronizing a larger number of agents is also more complex,

which increases the number of exchanged messages. All these communications are

managed by a centralized component, the QPid broker, which is affected by the

communication overhead of the system.

The behaviour of MAPR remains constant in all the tests, taking about 0.2

seconds to resolve each task. Since MAPR does not require communications, the

growing number of agents does not affect its performance. Notice that if we con-

sider only the time spent by hDTG (around 0.8 seconds per test) and FLEX (0.02

seconds approximately), FMAP execution times are quite similar to MAPR.

The resolution of this loosely-coupled task does not require coordination in

order to be able to compare with MAPR. However, the coordination mechanism

and message exchange of FMAP is equally applied to all planning tasks. Hence,
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Figure 3.23: Scalability results for the satellite task

the ability of solving tightly-coupled tasks comes at the cost of a high coordination

effort which is not suffered by MAPR.

We performed a second experiment, based on the satellite domain, to assess

the scalability of both planners when increasing not only the number of agents,

but also the number of goals and so the complexity of the task. We also defined

14 MAP tasks, ranging from 2 to 15 satellite agents. The simplest task comprises

two satellite agents, s1 and s2, which must take an image of two different planets.

Satellites are configured so that each of them can capture an image of a single

planet. The instruments they have on board are powered on and calibrated, so

the agent can directly reorient and acquire the image. Unlike the first test, each

satellite task adds one more goal over the previous task, as well as an extra agent.

Then, the additional agents, s3 . . . s15, must each solve a goal by themselves. This

increases the branching factor as well as the number of iterations for solving a
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task.

Figure 3.23 shows the results for this scenario. The solution plans obtained by

FMAP range from 4 actions (in the two-agent task) to 30 actions (in the 15-agent

task). FMAP required 31 iterations to solve the 15-agent task and only 4 iterations

for the two-agent task. The growing complexity also affects the average branching

factor, which ranges from 25.67 to 255.06 plans.

As depicted in Figure 3.23, the complexity of the tasks does not affect FLEX,

which takes less than 0.2 seconds in each task. In general, the performance of

FLEX only decreases when handling very large base plans in domains with many

applicable actions. We thus can conclude that FLEX is an efficient and highly

scalable component of FMAP.

Regarding the hDTG heuristic, evaluation times range from 0.35 seconds in

the simplest task to 26.64 seconds in the most complex one. Although evaluation

time is slightly higher than the generation time, we can affirm that this is a good

performance considering that: 1) the branching factor and the number of itera-

tions increase from task to task, which results in a much larger number of plans

to evaluate, and 2) unlike FLEX, the evaluation hDTG also involves some commu-

nications among agents, which obviously increase when the number of agents goes

up. All in all, and considering just the times of hDTG and FLEX, FMAP is only

about 9 times slower in the 15-agent task than MAPR, which completes this task

in 3 seconds.

To sum up, both tests confirm that communication overhead is the main issue

of FMAP regarding scalability. Communicating plans and synchronizing agents

are rather costly tasks, especially when dealing with complex tasks that combine

a large branching factor and a high number of participating agents.
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3.4.5.6 Discussion on the results

The experimental results support our initial claims: FMAP is a domain-independent

approach that offers a good tradeoff between coverage and execution times, being

able to solve any typology of MAP task.

We compared FMAP against two different state-of-the-art MAP approaches.

On the one hand, MAPR is designed as a fast MAP solver. The results show

that MAPR provides excellent execution times, but its performance comes at a

cost: it completely rules out tightly-coupled domains that require cooperation.

Many real-world domains, such as logistics or production supply-chains, require

cooperation between independent entities. Hence, non-cooperative planners for

solving disjoint subtasks in which agents can effectively avoid interactions are not

suitable for many real-world MAP problems. All in all, MAPR solves 45% of the

whole benchmark while FMAP solves 73% of the tasks.

On the other hand, MAP-POP is a general approach capable of solving any

type of planning task like FMAP. The approach followed by MAP-POP is clearly

influenced by the use of backward-chaining POP technologies and, in particular,

by the low-informative heuristics. This planner offers the worst results in terms of

coverage and execution times, thus stating that FMAP represents a step ahead in

multi-agent cooperative planning.

Regarding the scalability tests, it has been proved that FMAP ability to scale

up is only affected by communications. While MAPR performance is unaltered

when the number of agents increase, FMAP performance is affected by its heavy

dependency on the agents communications. These results lead to one of our future

lines of work, studying techniques to reduce overhead communication without

losing the ability to tackle any kind of MAP task.
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3.4.6 Conclusions

FMAP is a general-purpose MAP model that supports inherently distributed do-

mains and defines an advanced notion of privacy. Agents in FMAP use an internal

POP procedure to calculate all possible ways to refine a plan, which guarantees

FMAP completeness. Agents exchange plans and their evaluations by means of

a communication mechanism governed by a coordinator agent. FMAP exploits

the structure of distributed state-independent domain transition graphs for the

heuristic evaluation of plan, thus avoiding recalculating estimates in each node of

the POP search tree.

Privacy is maintained all along the search process. Agents only communicate

the relevant information they share with the rest of agents. This advanced notion

of privacy is very useful for modeling real-world problems. The experiments show

that dealing with privacy has a relatively low impact in the overall performance

of FMAP.

The exhaustive testing on IPC benchmarks shows that FMAP outperforms

other state-of-the-art MAP frameworks as it is capable of solving tightly-coupled

domains with specialized agents and cooperative goals as well as loosely-coupled

problems. The performance of FMAP is only affected by the extensive communica-

tions among agents. To the best of our knowledge, FMAP is likely to be currently

the most competitive domain-independent MAP system.

195



3. SELECTED PAPERS

196



3.5 Global heuristics for distributed cooperative multi-agent planning

3.5 Global heuristics for distributed cooperative

multi-agent planning

Paper data

Authors: A. Torreño, Ó. Sapena, E. Onaindia
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Abstract Almost every planner needs good heuristics to be efficient. Heuristic

planning has experienced an impressive progress over the last years thanks to the

emergence of more and more powerful estimators. However, this progress has not

been translated to multi-agent planning (MAP) due to the difficulty of applying

classical heuristics in distributed environments. The application of local search

heuristics in each agent has been the most widely adopted approach in MAP but

there exist some recent attempts to use global heuristics. In this paper we show that

the success of global heuristics in MAP depends on a proper selection of heuristics

for a distributed environment as well as on their adequate combination.

3.5.1 Introduction

Cooperative Multi-Agent Planning (MAP) extends classical planning by introduc-

ing a set of individual entities or agents that plan together in a shared deterministic

environment to solve a common set of goals. Agents in cooperative MAP address

two basic tasks, synthesize individual plans and coordinate them to build a joint

plan that solves the MAP task.
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The various existing MAP approaches can be classified according to the plan-

ning and coordination models they use. Some approaches perform a pre-planning

distribution of the MAP task. MAPR (11) allocates the task goals to the partici-

pating agents, which in turn individually invoke LAMA (95) to solve their assigned

subtasks. The work in (22) automatically decomposes single-agent tasks into MAP

problems, which are then locally solved through a centralized heuristic planner.

Other MAP techniques put the focus on plan merging. Planning First (80) is

one of the first planners based on MA-STRIPS (14), a minimalistic multi-agent

extension of the STRIPS model. Agents in Planning First individually synthesize

plans through a state-based planner. The resulting local plans are then coordinated

through a distributed Constraint Satisfaction Problem.

A third group of approaches directly apply multi-agent search, interleaving

planning and coordination. MA-A* (78) is also a MA-STRIPS -based approach

that performs a distributed A* search, guiding the procedure through admissible

local heuristic functions. The work in (10) formulates a privacy-preserving MAP

model by adapting MA-A*.

Most of the aforementioned MAP approaches resort to heuristic search at some

point during the planning process, applying local heuristic search to each partic-

ipating agent. Since agents usually have a limited knowledge of the task, the

quality of local estimates diminish in comparison to the global heuristics applied

in single-agent planning tasks.

A global heuristic in MAP is the application of a heuristic estimate to the

MAP task carried out by several agents which have a different knowledge of the

task and, possibly, privacy requirements. The design of global estimators for coop-

erative MAP is a challenging task (78) which has been seldom studied. Exceptions

are the work in (107), which introduces a distributed version of some well-known
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relaxation-based heuristics, and the application of a landmark-based global heuris-

tic in the GPP planner (72).

The focus of the present work is to analyze the benefits of global heuristics in

MAP and to study how the combination of these functions can noticeably improve

the efficiency of cooperative MAP systems. For our purposes, we take FMAP as

our framework (116). FMAP is a fully-distributed forward-chaining multiagent

POP approach that preserves agents’ privacy. Specifically, this paper presents the

following contributions:

� Formalization of two distributed heuristic functions: hDTG (116), a variation

of the Context-Enhanced Additive heuristic (52) based on Domain Transi-

tion Graphs (49); and hLand, a privacy-preserving version of the landmark

extraction algorithm introduced in (55).

� MH-FMAP, a novel multi-heuristic MAP approach that combines hDTG and

hLand orthogonally, notably improving the performance of FMAP.

This paper is organized as follows: after presenting some related work and the

key notions of FMAP, we introduce the formalization of hDTG, the design of hLand

and the combination of both heuristics into MH-FMAP. The experimental results

evaluate the two heuristics and the multi-heuristic approach on various domains

adapted from the International Planning Competition1 (IPC) to a multi-agent

context and compares the results with the ones obtained with GPPP.

3.5.2 Related work

Many of the existing MAP frameworks apply some form of heuristic search to

guide the planning process. The use of global heuristics in MAP is, however, less

1http://ipc.icaps-conference.org
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frequent due to the inherent features of MAP scenarios, which introduce additional

requirements and make it an arduous task:

� The data of a MAP task are usually distributed across the agents; unlike

single-agent planning, in MAP it does not exist an entity that centralizes

the information of the task. Hence, a communication protocol among the

agents is required to compute global heuristic estimates.

� Most MAP models deal with agents’ privacy. The communication protocol

must thus guarantee that agents are able to calculate heuristic estimates

without revealing sensitive private information.

In some works, the features of the planning model force the application of a

local heuristic search scheme, in which an agent calculates the heuristic value of

a plan based on its local information. In (11), goals are allocated to the agents,

which then solve their problems iteratively, communicating the solution of an agent

to the next agent. Thus, the heuristic functions defined in LAMA, namely hFF

(54) and hLand (95), are applied from a local standpoint.

Local search heuristics have also been used in other MAP approaches, even

though their planning model is suitable to accommodate distributed functions.

The work in (78) presents MA-A*, a multi-agent design of the well-known A*

algorithm. Authors test different configurations of the planner with two optimal

heuristic functions, Merge&Shrink (53) and LM-Cut (51). These functions are

however applied locally by each agent.

Authors in (106) introduce a multi-agent design of the hFF heuristic. This

adaptation, based on the use of distributed Relaxed Planning Graphs (dis-RPGs)

(127), yields the same results as the original single-agent design of hFF (54). How-

ever, the construction and exploration of a dis-RPG entails many communications

between agents, resulting in a computationally expensive approach.
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In (107), authors present the distributed design of several relaxation heuristics,

namely hadd, hmax and a relaxed version of hFF . In this work, authors replace

the dis-RPG by an exploration queue, a more compact structure that significantly

reduces the need of communications among agents. The distributed version of

hFF , however, does not yield the same results as the original single-agent version.

Finally, in (72), authors design a distributed version of a privacy-preserving

landmarks extraction algorithm for MAP, resulting in a planner named GPPP.

Authors show that the Landmarks Graph used in GPPP improves the performance

of the MA-STRIPS -based planner MAFS (79). In GPPP, the heuristic value of the

plan is calculated as the sum of the local heuristic estimates computed by each

agent.

3.5.3 Multi-agent planning task formalization

In this section we present the formalization of a MAP task as used in the FMAP

framework (116). Agents have a limited knowledge of the planning task, and it

is assumed that the information that is not represented in the agent’s model is

unknown to the agent. The states of the world are defined through a finite set of

state variables, V, each of which is associated to a finite domain, Dv, of mutually

exclusive values that refer to the objects in the world. Assigning a value d to a

variable v ∈ V generates a fluent, a tuple of the form 〈v, d〉. A state S is defined

as a finite set of fluents.

An action is of the form α = PRE(α) → EFF (α), where PRE(α) and

EFF (α) are finite set of fluents representing the preconditions and effects of α,

respectively. Executing an action α in a world state S leads to a new world state

S′ as a result of applying EFF (α) over S. An effect of the form 〈v, d〉 updates S′

w.r.t. S, replacing the fluent 〈v, d′〉 ∈ S by 〈v, d〉. Since values in Dv are mutually

exclusive, the inclusion of 〈v, d〉 in S′ implies that ∀d′ ∈ Dv, d
′ 6= d, 〈v, d′〉 6∈ S′.
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Definition 3.16. A MAP task is a tuple TMAP = 〈AG,V, I,G,A〉. AG =

{1, . . . , n} is a finite non-empty set of agents. V =
⋃
i∈AG Vi, where Vi is the

set of state variables known to an agent i. I =
⋃
i∈AG Ii is a set of fluents that

defines the initial state of TMAP . Since specialized agents are allowed, they may

only know a subset of I; the initial states of two agents never contradict each other.

G is a set of fluents defining the goals of TMAP . Finally, A =
⋃
i∈AG Ai is the

set of planning actions of the agents. Ai and Aj of two specialized agents i and

j will be typically disjoint sets; otherwise, Ai and Aj may overlap. A includes

two fictitious actions α0 and αf that do not belong to any particular agent: α0

represents the initial state of TMAP , while αf represents the goal state.

The view of an agent i on TMAP is defined as TiMAP = 〈Vi,Ai, Ii,G〉. Vi is

the set of state variables known to agent i; Ai ⊆ A is the set of its capabilities

(planning actions); Ii is the subset of fluents of the initial state I that are known

to agent i, and G is the set of goals, which are known to all the agents in TMAP .

An agent i may also have a partial view on the domain Dv of a variable v. We

define Di
v ⊆ Dv as the subset of values of v known to agent i.

Agents interact by sharing information about their state variables. For a pair

of agents i and j, the information they share is defined as Vij = Vji = Vi ∩ Vj .

Additionally, the set of values of a variable v shared by agents i and j is defined

as Dij
v = Di

v ∩Dj
v.

FMAP follows a forward-chaining POP approach which has been adapted to a

multi-agent context.

Definition 3.17. A partial-order plan or partial plan is a tuple Π = 〈∆,OR,CL〉.
∆ = {α|α ∈ A} is the set of actions in Π. OR is a finite set of ordering constraints

(≺) on ∆. CL is a finite set of causal links of the form α
〈v,d〉→ β, where α and β

are actions in ∆. A causal link α
〈v,d〉→ β enforces precondition 〈v, d〉 ∈ PRE(β)

through an effect 〈v, d〉 ∈ EFF (α).

An empty partial plan is defined as Π0 = 〈∆0, OR0, CL0〉, where OR0 and CL0

are empty sets, and ∆0 contains only the fictitious initial action α0.
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The introduction of new actions in a partial plan may trigger the appearance

of flaws: preconditions that are not yet supported in the plan, and threats. A

threat over a causal link α
〈v,d〉→ β is caused by an action γ not ordered w.r.t. α or

β, where (v = d′) ∈ EFF (γ), d′ 6= d. A flaw-free plan is a threat-free partial plan

without unsupported preconditions.

Agents in FMAP jointly refine an initially empty plan until a solution is reached.

We define a refinement plan as follows:

Definition 3.18. A refinement plan Πr = 〈∆r, ORr, CLr〉 over a partial plan

Π = 〈∆, OR, CL〉 is a flaw-free partial plan that extends Π by introducing an

action α, resulting in ∆r = ∆∪α. All the preconditions in PRE(α) are supported

by existing actions in Π through causal links: ∀p ∈ PRE(α), ∃ β p→ α ∈ CLr,

where β ∈ ∆.

For each refinement plan, FMAP computes the frontier state (6), that is, the

state that results from executing the actions in the plan. Frontier states allow for

the application of state-based heuristic functions.

Definition 3.19. A frontier state FS(Π) over a refinement plan Π = 〈∆, OR,

CL〉 is the set of fluents 〈v, d〉 achieved by actions α ∈ ∆ | 〈v, d〉 ∈ EFF (α),

such that any action α′ ∈ ∆ that modifies the value of the variable v (〈v, d′〉 ∈
EFF (α′) | d 6= d′) is not applicable from α by following the orderings and causal

links in Π.

A solution plan for TMAP is a refinement plan that achieves all the goals G of

TMAP by including the fictitious final action αf and supporting all its precondi-

tions, i.e., ∀g ∈ PRE(αf ), ∃ β g→ αf ∈ CL, β ∈ ∆.

3.5.3.1 Privacy in partial plans

Agents in FMAP carry out several distributed procedures that require communi-

cations. To keep privacy, only the information that is shared between the sender
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and receiver agents is transmitted. To do so, the sender encodes the information

that is not in the view of the receiver agent. Each variable and value has an asso-

ciated unique global identifier, a positive integer that is used to mask the original

variable or value when necessary.

When an agent i refines a plan Π by adding an action α ∈ Ai, it communicates

such refinement to the rest of agents. To preserve privacy, agent i will only com-

municate to agent j the fluents in α whose variables are common to both agents.

The information of Π that agent j receives from i configures its view of that plan.

More specifically, given a fluent 〈v, d〉, where v ∈ Vi and d ∈ Di
v, FMAP identifies

three cases:

� Public fluent: if v ∈ Vij and d ∈ Dij
v , the fluent 〈v, d〉 is public to both

agents, and thus agent i will share with agent j all the information regarding

〈v, d〉.

� Private fluent to agent i: if v 6∈ Vij , 〈v, d〉 is private to agent i w.r.t. j,

and hence agent i will send j 〈gid(v), gid(d)〉, thus replacing v and d by their

global identifiers, gid(v) and gid(d), respectively.

� Partially private fluent to agent i: if v ∈ Vij but d 6∈ Dij
v , 〈v, d〉 is

partially private to agent i w.r.t. j. Instead of 〈v, d〉, agent i will send j a

fluent 〈v, gid(d)〉, thus replacing the value d by its global identifier gid(d).

As well as keeping privacy during planning, encoding variables and values eases

the design of global heuristic functions and streamlines communications among

agents.
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3.5.4 FMAP: multi-agent planning framework

FMAP is a fully-configurable distributed search procedure, an appropriate testbed

for the integration of global heuristic functions. This section summarizes some of

the key aspects of this MAP framework.

Algorithm 7: FMAP search algorithm for an agent i

openList← Π0

while openList 6= ∅ do

Πb ← extractP lan(openList)

if isSolution(Πb) then
return Πb

RP ← refineP lan(Πb)

for all j ∈ AG, j 6= i do

sendRefinements(j)

RP ← RP ∪ receiveRefinements(j)

for all Πr ∈ RP do

distributedEvaluation(Πr, heuristic)

openList← openList ∪Πr

return No solution

FMAP is a cooperative refinement planning procedure in which agents jointly

explore a multi-agent, plan-space search tree (see Algorithm 7). Nodes of the tree

are partial plans contributed by one or several agents. The process is led by an

agent that plays the coordinator role (this role is rotated after each iteration of

the procedure).

Agents keep a common openList with the unexplored refinement plans prior-

itized according to a search criterion (by default, FMAP applies a weighted A*

search, evaluating nodes through a function f = g + 2 ∗ h). Agents jointly choose

the best node of openList and then each of them individually expands the se-
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lected plan through an embedded forward-chaining POP procedure, generating

all the possible refinement plans. Afterwards, agents exchange the plans and ap-

ply a distributed heuristic evaluation of such plans, which are then inserted in the

openList. The procedure ends up when a solution plan is found, or when openList

is empty.

As in most distributed frameworks, communications play a central role in

FMAP. The system is built on top of the Magentix2 MAS platform, which provides

the basic libraries to define the agents’ behavior, as well as the communication in-

frastructure required by FMAP. Agents communicate by means of the FIPA Agent

Communication Language (81), and communications are managed by the Apache

QPid message broker.

The communication broker acts as a post office, receiving the messages from the

sender agents and forwarding them to the receivers. The use of a messaging broker

offers some key advantages for the design of distributed systems since it allows

agents to be launched in different machines, as long as the broker is accessible from

the network. However, when the workload of messages is relatively high, the broker

entails a bottleneck of the system. For this reason, the global estimators introduced

in this paper have been designed and optimized to minimize the communications

among agents.

3.5.5 Global heuristic functions

This section formalizes and details the distributed design of two different heuristic

functions as well as a novel multi-heuristic approach to MAP that combines both

functions, noticeably improving the performance of the FMAP system.

The first heuristic, hDTG, is a variation of the Context-Enhanced Additive

Heuristic (52) that uses Domain Transition Graphs (DTGs) to estimate the cost

of the state variables. The second one, hLand, computes the Landmarks Graph
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(LG) of a MAP task, which is later used to calculate the number of landmarks of

the partial plans. We designed a distributed version of the landmarks extraction

algorithm introduced in (55).

The design of hDTG and hLand in FMAP aims to keep the number of messages

exchanged among the agents as low as possible. Prior to the search process,

we build data structures, like the DTGs or the LG, which remain immutable

throughout the multi-agent search, thus reducing the communication overload

during search. In contrast to other constructs, such as dis-RPGs (127), the DTGs

and the LG do not need to be re-calculated during search. The use of static

structures makes hDTG and hLand be more suitable heuristics for fully-distributed

systems than other well-known heuristic functions, such as hFF (106), that requires

the generation of a dis-RPG at each search node.

Besides hDTG and hLand, we also introduce MH-FMAP, a multi-heuristic adap-

tation of the FMAP algorithm that alternates both heuristics, successfully improv-

ing the overall performance of the MAP system.

3.5.5.1 DTG heuristic

This is a state-based additive heuristic calculated from the DTGs (49). A DTG is

a graph in which nodes represent values of a particular variable, and transitions

show the changes in the values of such variable through the actions of the agents.

An action of the form 〈v, d0〉 → 〈v, dn〉 induces a transition d0 → dn in the DTG

associated to v.

Similarly to the Context-Enhanced Additive heuristic (hCEA) (52), hDTG builds

a relaxed plan and reuses the side effects of the actions in the relaxed plan as a

basis to estimate the cost of the subsequent subgoals. A plan Π of FMAP is always

evaluated from its frontier state, FS(Π), but the cost of some of the subgoals can

be estimated in a state different from FS(Π).
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Formally, the formulation of hDTG is very close to hCEA. Given a subgoal g =

〈v, d〉, a state S and an action α ∈ A, where g ∈ EFF (α), g′ = 〈v, d′〉 ∈ PRE(α),

d′ 6= d, and z = PRE(α)\{g′}, evaluating g in S with hDTG is recursively defined

as follows:

hDTG(g|S) =


0 if g ∈ S

min
α:(g′,z→g)∈A

(1 + hDTG(g′|S)+∑
x∈z

hDTG(x|S′)) otherwise
(3.1)

The recursive equation 3.1 expresses that the precondition g′, related to the

same variable v as the fluent g, is also evaluated in S, whereas the rest of pre-

conditions, x = 〈v′, d′〉 ∈ PRE(α), v′ 6= v can be evaluated in a state S′ different

from S.

Following, we describe in detail the hDTG algorithm to clarify aspects such as

the evaluation of a subgoal g, the selection and insertion in the relaxed plan of the

action α that minimizes equation 3.1 or the selection of the states S′ from which

the preconditions x of equation 3.1 are evaluated.

Instead of exploring the Causal Graph as hCEA does, hDTG explores the DTGs.

The algorithm maintains a subGoals list that stores the subgoals of the prob-

lem that are not yet evaluated (this list is initialized as subGoals = G) and a

sideEffects list that maintains the side effects of the actions added to the re-

laxed plan (initially, sideEffects = FS(Π)). The heuristic hDTG builds a relaxed

plan by finding in the DTGs the shortest paths between the fluents in sideEffects

and subGoals via the application of the Dijkstra algorithm.

We first introduce some notions that are needed for the hDTG algorithm:

� minPath(v, d0, dn) = {d0, . . . , dn−1, dn} is the shortest path between 〈v, d0〉 ∈

sideEffects and 〈v, dn〉 ∈ subGoals, where d0 is the initial value of the path
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and dn is the final value of the variable or subgoal to be achieved.

� getAction(v, dn−1, dn) is the minimum cost action that induces a value tran-

sition dn−1 → dn.

Subgoals are sorted according to their cost. We define the cost of a subgoal

g = 〈v, dn〉 as follows:

cost(g) = arg min
〈v,d0〉∈sideEffects

|minPath(v, d0, dn)|

The cost of an action α is defined in terms of its preconditions:

cost(α) =
∑

p=〈v,dn〉∈PRE(α)

cost(p)

The hDTG algorithm extracts the subgoal g = 〈v, dn〉 ∈ subGoals that maxi-

mizes cost(g). Then, minPath(v, d0, dn) is applied to all the values d0 such that

〈v, d0〉 ∈ sideEffects. From all the obtained paths, the algorithm chooses the

shortest one, p = {d0, . . . , dn−1, dn}.

Once the shortest path p is known, the algorithm introduces in the relaxed

plan the minimum cost action α that induces each transition in p. That is, given,

for instance, the last value transition in p, dn−1 → dn, the algorithm applies

getAction(v, dn−1, dn), obtaining an action α such that 〈v, dn−1〉 ∈ PRE(α) and

〈v, dn〉 ∈ EFF (α).

The effects of the action α for each value transition in p are inserted in the

relaxed plan and stored in sideEffects, and the rest of preconditions of α, 〈v′, d′〉,

are inserted in the subGoals list. Then, a new iteration of hDTG starts with a new

subgoal g ∈ subGoals.

Note that, as stated in equation 3.1, the cost of all preconditions related to

the same variable v is estimated from the same state as g = 〈v, dn〉 since they
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are solved in the same iteration of the process using the path p as a reference.

The cost of the rest of preconditions g′ = 〈v′, d′〉, for variables v′ 6= v, might be

estimated from a state S′ different from the state of g, depending on the fluent

selected from sideEffects to compute the cost of g′.

The process is completed when all the subgoals in subGoals are processed.

hDTG returns the number of actions in the relaxed plan as an estimate of the cost

of the plan.

To preserve privacy, each agent i stores its own version of the DTGs according

to its knowledge of the planning task. Given a state variable v, agent i only keeps

the DTG nodes and transitions that involve the values in Di
v. The rest of transi-

tions are replaced by a reference to the agents that can realize such transition. For

instance, given a transition dn−1 → dn, where Di
v = {dn−1} and Dj

v = {dn−1, dn},

agent i maintains a transition dn−1 → j, which indicates agent i that it must

communicate with agent j in order to retrieve the cost of the transition. This way,

the calculation of hDTG preserves agents’ privacy.

When minPath is applied in a distributed context, agent i may have to resort

to another agent j to find out the cost of a subpath that is not visible to i. In

turn, agent j may also require the assistance of another agent k. To prevent an

excessive number of messages among agents, the recursion depth of requests is

limited during the application of hDTG.

3.5.5.2 Landmarks heuristic

This heuristic uses landmarks, fluents that must be satisfied in every solution plan

of a MAP task, as the basis of its calculation.

Agents jointly generate the Landmarks Graph (LG). Formally, LG = {N,V },

where N is a set of nodes (landmarks) and V is a set of orderings between the
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nodes. Among the different types of orderings between landmarks, we use neces-

sary orderings, which are directly inferred with the algorithm presented in (55).

A necessary ordering of the form l′ ≤n l indicates that the landmark l′ should be

achieved before l in all the solution plans for the task. Single landmarks contain

only one fluent, while disjunctive landmarks are composed of a set of fluents, where

one of them must be true in all the solution plans.

Algorithm 8 shows the distributed landmark extraction algorithm. This multi-

agent procedure is described from the point of view of one agent i. In order to

ensure privacy, all the fluents transmitted in Algorithm 8 are encoded as described

in subsection 3.5.3.1. As a result of the execution of this algorithm, each agent i

will obtain a version of the LG which includes only the landmarks that are public

to i.

The algorithm is a backwards process that departs from the goals in G. Given a

landmark l, the process finds new landmarks as the preconditions that are common

to all the actions that yield l as an effect. Once a landmark l′ is inferred from l,

a necessary ordering l′ ≤n l is also established. Before their inclusion in the LG,

all the single landmarks and necessary orderings must be verified to ensure their

correctness.

An iteration of the Algorithm 8 is conducted by an agent that plays the role

of coordinator (in the following, we reference in parenthesis the lines of Algorithm

8 in which each task is performed). Since actions are distributed across agents,

the detection of single landmarks, from the viewpoint of an agent i, is described

as follows:

� When a landmark l is extracted for its analysis (line 3), agent i calculates

candidatesi as the intersection of the preconditions of producersi, the actions

in Ai that yield l as an effect (lines 4-5).
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Algorithm 8: LG construction algorithm for an agent i

N ← ∅, V ← ∅, landmarks← G

while landmarks 6= ∅ do

l← extractLandmark(landmarks)

producersi ← α ∈ Ai | l ∈ EFF (α)

candidatesi ← ∩∀α∈producersiPRE(α)

disji ← groupNonCommonPrecs(producersi)

if isCoordinator(i) then

lm← candidatesi, disj ← {disji}
for all j ∈ AG, j 6= i do

receive({disjj , candidatesj}, j)
lm← lm ∩ candidatesj

disj ← disj ∪ disjj

lm← lm ∪ groupDisjLandmarks(disj)
∀j ∈ AG, j 6= i, send(lm, j)

else

send({disji, candidatesi}, coordinator)
lm← receive(lm, coordinator)

for all l′ ∈ lm do

if isDisjunctive(l′) ∨ verify(l′) = true then

N ← N ∪ l′

V ← V ∪ l′ ≤n l
landmarks← landmarks ∪ l′

Rotate coordinator role

for all l′ ≤n l ∈ V do

if verify(l′ ≤n l) = false then

V ← V \ {l′ ≤n l}

return LG = {N,V }
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� Agent i masks the fluents in candidatesi according to its level of privacy

w.r.t. the coordinator agent. Then, i transmits candidatesi to the coordi-

nator agent (line 16), which applies the intersection of the sets of candidates

received from all the agents in order to compute the actual set of landmark

candidates called lm (line 11).

Agent i groups the preconditions of producersi that are not in candidatesi

according to its variable in order to generate disjunctive landmarks (line 6). For

instance, let producersi = {(〈v, dn−1〉, 〈v′, d′〉) → 〈v, dn〉, (〈v, dn−1〉, 〈v′, d′′〉) →

〈v, dn〉}; then candidatesi = {〈v, dn−1〉} and disji = {(〈v′, d′〉, 〈v′, d′′〉} Agent i

sends disji along with candidatesi to the coordinator agent, which groups together

the disjunctive landmarks received from the agents, inserts them in the set lm (line

13) and sends lm back to the agents (lines 14 and 17).

In the next step, agents jointly verify the single landmark candidates l′ ∈ lm

(line 19). The verification of l′ entails solving a relaxed problem in which the

actions α such that l′ ∈ EFF (α) are excluded. If the goals in G are not satisfied

then l′ is verified as a landmark. If l′ is verified, it is added to the LG along with

a necessary order l′ ≤n l (lines 20-21). For the verification of landmarks, agents

are required to jointly generate a dis-RPG (127).

Note that, in order to preserve privacy, agent i stores l′ and the associated

ordering l′ ≤n l in its LG only if l′ is public to i. This way, agents will keep

different versions of the LG.

When the extraction and verification of landmarks is completed, the next step

is the verification of the orderings in the LG (forall loop in lines 24-26). Given

an ordering l′ ≤n l, agents create a dis-RPG excluding the actions α ∈ A | l′ ∈

PRE(α) ∧ l ∈ EFF (α) in order to validate it.
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The LG created in Algorithm 8 is used to calculate the value of hLand of a

refinement plan in FMAP. Given a plan Π, hLand(Π) returns an estimate of the

quality of Π, which is estimated as follows:

1. The agent i that generates Π checks which landmarks are satisfied in Π

according to its LG (agent i coordinates the evaluation of Π). A refinement

plan Π satisfies a landmark l iff ∃α ∈ ∆(Π) | l ∈ EFF (α), and ∀l′ ≤n l ∈ N ,

l′ ∈ EFF (β), where β ∈ ∆(Π) and ∃β ≺ α ∈ OR(Π); that is, a landmark l

is not satisfied unless all its predecessors in the LG appear in Π as effects of

the actions that precede the action α that has l in its effects.

2. Agent i communicates the verified landmarks to each agent j, j 6= i, masking

the variables and values according to the level of privacy with agent j (see

subsection 3.5.3.1). Then, agent j verifies whether Π achieves any more

landmarks that are not visible in the LG of the coordinator agent i.

3. Agents mask the new found landmarks and send them to the coordinator

agent i, which computes the value of hLand(Π) as the number of landmarks

that are not satisfied in Π.

The communication machinery required for the calculation of hLand has been

integrated into FMAP by reusing the messages of the original protocol, and thus,

its distributed calculation does not increase the communication overhead.

3.5.5.3 Multi-heuristic approach

Over the last years, one of the most successful research trends on single-agent

state-based planning emphasizes the combination of heuristic functions. Recent

studies conclude that the combination of multiple heuristics dramatically improves

performance and scalability in planning (96). This conclusion is backed up by some
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Algorithm 9: MH-FMAP algorithm for an agent i

openList← Π0, preferredList← ∅
list← true

while openList 6= ∅ do

if list = true then

Πb ← extractP lan(openList)

else

Πb ← extractP lan(preferredList)

list← ¬list
if isSolution(Πb) then

return Πb

RP ← refineP lan(Πb)

for all j ∈ AG, j 6= i do

sendRefinements(j)

RP ← RP ∪ receiveRefinements(j)

for all Πr ∈ RP do

distributedEvaluation(Πr, hDTG)

distributedEvaluation(Πr, hLand)

openList← openList ∪Πr

if hLand(Πr) < hLand(Πb) then

preferredList← preferredList ∪Πr

return No solution

well-known planning systems, such as Fast Downward (50) and LAMA (95), which

successfully apply a multi-heuristic approach to state-based planning. Up to this

date, however, the multi-heuristic approach has never been tested in MAP.

A basic question that arises when modeling a multi-heuristic approach is how to

combine heuristics in order to maximize the performance of the resulting planner.

The work in (96) experimentally compares different heuristic combination methods

(sum, weighted sum, maximum, Pareto and alternation of heuristics), concluding

215



3. SELECTED PAPERS

that the alternation of heuristics is by far the most efficient method.

Our multi-heuristic MAP approach, MH-FMAP, is a heuristic alternation mech-

anism. Rather than aggregating the heuristic values, alternation makes equal use

of all the estimators, assuming that different heuristics might be useful in different

parts of the search space. The most promising states are selected according to the

currently used heuristic, completely ignoring all other heuristic estimates (96).

MH-FMAP is inspired by Fast Downward, which combines the FF and Causal

Graph heuristics in an orthogonal way. Fast Downward maintains two open lists

per heuristic: one list stores the open nodes and the other one keeps track of the

preferred successors. While authors in (50) defined preferred successors as the ones

generated by the so-called preferred operators, we define them by means of the

landmark-based heuristic:

Definition 3.20. A refinement plan Πr is a preferred successor of a plan Π

iff hLand(Πr) < hLand(Π).

Algorithm 9 shows the FMAP basic search scheme adapted to our multi-

heuristic approach, MH-FMAP. Agents now maintain two open lists: the openList

maintains the open nodes of the search tree, ordered by f = g + 2 ∗ hDTG, and

the preferredList keeps only the preferred successors, sorted by hLand. If a plan

is a preferred successor, it is introduced in both open lists. Agents extract a base

plan from one of the lists alternatively; if a base plan is stored in both lists, it is

removed from both of them.

The results of the next section prove that MH-FMAP yields notably superior

results than the individual heuristics.
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Domain-Tasks
MH-FMAP FMAP- hDTG

Sol #Iter #Act MS Time Sol #Iter #Act MS Time

Depots-20 12 614,75 31,83 24,50 141,57 8 9,46x 1,23x 0,97x 5,55x

Driverlog-20 15 400,73 22,93 13,07 18,24 15 0,62x 1,04x 1,15x 0,60x

Elevators-30 30 53,93 24,67 13,40 9,43 30 0,66x 1,00x 0,96x 0,56x

Logistics-20 20 128,85 69,95 20,75 100,25 10 2,83x 1,05x 1,20x 5,43x

MA-Blocksworld-34 22 2542,36 18,18 14,64 45,71 23 0,96x 1,09x 1,06x 0,96x

Openstacks-30 30 707,80 63,10 52,90 353,73 25 0,75x 1,02x 0,95x 1,14x

Rovers-20 20 507,50 35,05 14,35 95,55 19 1,08x 1,01x 1,03x 1,50x

Satellite-20 19 72,74 32,58 19,95 115,05 18 0,92x 0,99x 0,97x 0,93x

Woodworking-30 27 1331,74 19,48 4,81 197,78 23 0,51x 1,01x 1,02x 0,40x

Zenotravel-20 20 96,65 32,35 18,35 115,68 20 0,94x 0,99x 0,97x 0,95x

Global results 215 670,56 35,59 20,37 128,51 191 0,95x 1,02x 0,99x 1,06x

Domain-Tasks
MH-FMAP FMAP- hLand

Sol #Iter #Act MS Time Sol #Iter #Act MS Time

Depots-20 12 614,75 31,83 24,50 141,57 7 2,58x 0,96x 0,81x 0,57x

Driverlog-20 15 400,73 22,93 13,07 18,24 7 349,37x 0,90x 1,03x 51,78x

Elevators-30 30 53,93 24,67 13,40 9,43 13 585,47x 0,97x 0,92x 49,28x

Logistics-20 20 128,85 69,95 20,75 100,25 10 8,68x 1,00x 0,98x 1,75x

MA-Blocksworld-34 22 2542,36 18,18 14,64 45,71 16 11,44x 0,98x 0,91x 7,89x

Openstacks-30 30 707,80 63,10 52,90 353,73 30 0,18x 1,02x 1,02x 0,05x

Rovers-20 20 507,50 35,05 14,35 95,55 6 7,14x 0,99x 1,00x 1,21x

Satellite-20 19 72,74 32,58 19,95 115,05 4 22,01x 1,02x 1,00x 6,42x

Woodworking-30 27 1331,74 19,48 4,81 197,78 17 0,95x 0,97x 1,01x 0,13x

Zenotravel-20 20 96,65 32,35 18,35 115,68 7 155,19x 0,97x 1,03x 20,50x

Global results 215 670,56 35,59 20,37 128,51 117 11,32x 1,00x 0,99x 0,53x

Table 3.9: Comparison between MH-FMAP and FMAP (using hDTG and hLand)

3.5.6 Experimental results

We executed a wide range of experimental tests in order to assess the performance

of the heuristic strategies presented in this paper1. Our benchmark includes the

STRIPS suites of 10 different domains from the IPC2, all of them adapted to

a MAP context: Depots, Driverlog, Elevators, Logistics, MA-Blocksworld, Open-

stacks, Rovers, Satellite, Woodworking and Zenotravel. All the tasks were directly

adapted from the STRIPS IPC suites, except for the MA-Blocksworld domain (11),

1All the experimental tests were performed on a single machine with a quad-core Intel Core

i7 processor and 8 GB RAM (2 GB RAM available for the Java VM).
2For more details on the MAP adaptation of the planning domains, please refer to (116).
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which introduces several arms that can simultaneously manipulate the blocks (4

agents per task).

The first experiment, shown in Table 3.9, compares the performance of FMAP

with the hDTG heuristic (f = g+2∗hDTG), the hLand heuristic (f = g+2∗hLand)

and MH-FMAP, our novel multi-heuristic approach based on the alternation of

hDTG and hLand.

Due to the large amount of performed tests (244 planning tasks), we only

display average results. More precisely, Table 3.9 summarizes, for each domain,

the total number of solved tasks (Sol columns) and the average results of: search

iterations (#Iter columns), execution time in seconds (Time columns), and plan

quality results in terms of number of actions (#Act columns) and makespan (MS

columns). The results of hDTG and hLand are relative to the results obtained with

MH-FMAP, considering only the common tasks solved by both MH-FMAP and the

respective single-heuristic approach. The nx values in Table 3.9 indicate ”n times

as much as the MH-FMAP result”. Therefore, a value higher than 1x in #Act, MS,

Time or #Iter is a better result for MH-FMAP.

The Sol columns of hDTG and hLand represent the number of problems solved

by each heuristic, which happens to coincide, except for the MA-Blocksworld do-

main, with the number of common tasks solved by both MH-FMAP and hDTG and

hLand, respectively. The last row of Table 3.9 displays the global average results.

MH-FMAP obtains the best coverage results in 9 out of the 10 tested domains,

solving 215 out of 244 tasks (roughly 88% of the tasks). hDTG solves one more

problem than MH-FMAP in the MA-Blocksworld domain and it solves overall 191

tasks (78%). Using hLand as a standalone estimator shows the worst performance,

solving 117 tasks (48%).

It is worth noting that MH-FMAP tends to mimic the behaviour of the best-

performing heuristic in most of the domains: for instance, in Driverlog, Elevators,
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MA-Blocksworld or Zenotravel, the results of coverage are much better with hDTG

than with hLand and this is also reflected in MH-FMAP. However, hLand solves

more problems than hDTG in the Openstacks domain and MH-FMAP equals the

results obtained with hLand. Interestingly, in the domains where hDTG and hLand

offer a similar performance (namely, Depots, Logistics and Woodworking), the

synergy of both estimators in MH-FMAP clearly outperforms the single-heuristic

approaches, even resulting in twice as much the coverage in the Logistics domain.

hLand takes much less time to evaluate a plan than the rest of approaches

(33 ms per iteration in average, while MH-FMAP and hDTG take around 200

ms).This is because, unlike hDTG, the integration of hLand in FMAP does not

require any exchange of additional messages between agents apart from those

already required by the FMAP search procedure. Nevertheless, hLand requires the

largest amount of iterations to find solutions in most domains; for instance, in

Driverlog and Elevators, hLand takes 350 and 585 times more iterations than MH-

FMAP, respectively. In general, the accuracy of hLand depends on the quality of the

Landmarks Graph (LG). Particularly, in the Openstacks domain, the LG almost

provides an skeleton for the solution plans, which explains the great performance

of hLand in this domain.

MH-FMAP requires more iterations and execution time than hDTG in 6 out

of the 10 tested domains. However, in general, MH-FMAP shows low execution

times: less than 3 minutes in most domains, and around 6 minutes in Openstacks,

the most time-consuming domain. Moreover, MH-FMAP performs admirably well

in some domains, being around 5 times faster than hDTG in Depots and Logistics.

Regarding plan quality (number of actions and makespan), MH-FMAP offers a

good tradeoff between hDTG and hLand. According to the global results in Table

3.9, the quality results of the three approaches are very similar, being #Act slightly
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higher in hDTG. As a whole, we can observe that the alternation of heuristics does

not entail a loss of quality versus the standalone heuristics.

To sum up, hLand turns out to be the fastest approach with the worst coverage.

hDTG is the slowest approach but it solves many more problems than hLand. MH-

FMAP, however, shows the potential of alternating global heuristics in MAP: it

remarkably improves the coverage up to 88% of solved problems and, despite

the overhead caused by the simultaneous application of two heuristics, it offers

competitive execution times. Finally, the combination of heuristics does not reduce

the quality of the solution plans.

The second test compares MH-FMAP to another landmark-based approach to

MAP, the Greedy Privacy Preserving Planner (GPPP). GPPP is the current best-

performing MA-STRIPS planner and it introduces PP-LM, the first distributed

version of a landmark-based heuristic (72)1.

Both PP-LM and hLand build the LG and evaluate plans by counting the land-

marks of the LG that are not reached yet. However, each heuristic is built upon a

different planning framework (MH-FMAP and GPPP), presenting some key differ-

ences among them. PP-LM is designed for propositional MA-STRIPS domains,

while hLand supports tasks where facts are modeled through object fluents. In

addition, the two heuristics are designed around a different notion of privacy: in

GPPP, the private literals of an agent are occluded to the rest of agents, and the

public literals are visible to all the participants. In contrast, MH-FMAP defines pri-

vacy between each pair of agents, masking the private information in preconditions

and effects.

Table 3.10 compares the coverage, average execution time and plan quality of

MH-FMAP and GPPP. Note that GPPP develops sequential plans, so the plan du-

ration (makespan) equals the number of actions in this approach. Figures in Table

1We want to thank the authors of GPPP for their kind support.
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Domain-Tasks
MH-FMAP GPPP

Sol #Act MS Time Sol #Act Time

Elevators-30 30 24,04 13,25 8,90 28 26,71 0,72

Logistics-20 20 69,95 20,75 100,25 20 69,25 2,02

Rovers-20 20 28,88 12,29 25,63 17 32,12 3,25

Satellite-20 19 32,58 19,95 115,05 20 38,32 3,44

Zenotravel-20 20 32,35 18,35 115,68 20 45,00 13,86

Table 3.10: Comparison between MH-FMAP and GPPP

3.10 show average results for both approaches when running five IPC domains used

in (72).

Table 3.10 shows that GPPP is much faster than MH-FMAP (up to 50 times

faster in some domains), mainly because, unlike MH-FMAP, GPPP does not use any

communication infrastructure. As commented before, the use of a communication

broker may entail a bottleneck when agents exchange a large amount of messages.

However, this superiority is not reflected in the coverage results. Despite being

slower, MH-FMAP solves 109 out of 110 tasks, five more tasks than GPPP, which

outnumbers MH-FMAP in only one task in the Satellite domain.

With respect to plan quality, MH-FMAP returns solution plans with fewer

actions than GPPP in almost all the domains. For example, in Zenotravel, the

solution plans of MH-FMAP contain 30% fewer actions than GPPP in average.

GPPP only obtains slightly better results in the Logistics domain. Additionally,

the POP-based approach of MH-FMAP allows us to obtain much shorter solutions

(better makespan) than GPPP, which is limited to sequential plans.

In conclusion, MH-FMAP proves that the alternation of global heuristics is as

effective in MAP as it is in classical planning. MH-FMAP not only performs much

better than the single-heuristic FMAP setups, but also outperforms GPPP in terms

of coverage and plan quality.
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3.5.7 Conclusions

In this paper, we have presented MH-FMAP, a multi-agent planning system that

draws upon the FMAP framework and incorporates a novel multi-heuristic search

scheme that alternates two global heuristics: hDTG and hLand. We compared the

performance of MH-FMAP against the standalone heuristics and GPPP, an MA-

STRIPS -based planner, and the results throw a very positive balance in favor of

MH-FMAP: a clearly superior coverage and a much better solution plan quality.

In contrast, these excellent results come at the cost of a high number of message-

passings between the agents.

The take-home lessons from this paper are: a) the use of global heuristics in

MAP are actually worthy as long as the gain of the heuristic pays off the commu-

nication cost; b) the alternation of heuristics shows very beneficial for planning

in general and also for MAP; c) using communication infrastructures is costly

and affects the execution time but it is, however, necessary in order to implement

heuristics in distributed environments with private information.

All in all, a proper combination of global heuristic estimators, well-defined

communication protocols and a multi-heuristic search mechanism results in an

ideal approach to cooperative MAP in distributed environments.
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General discussion on the

results

This chapter discusses the contributions of the work presented in the selected

papers of Chapter 3. Besides analysing the main contributions of this work, we

also summarize the experimental results obtained with our MAP system and dis-

cuss the ongoing and future research trends of the MAP community. In order to

perform a thorough analysis of the performance of our system, we consider not

only the results presented in the selected papers of Chapter 3, which compare the

performance of MAP-POP, FMAP and MH-FMAP against other state-of-the-art

MAP systems, but also the outcome of the 2015 Competition of Distributed and

Multi-Agent Planners (CoDMAP)1, in which MH-FMAP took part (118).

This chapter is organized as follows: section 4.1 summarizes the contributions

of our work; section 4.2 analyzes the experimental results of the MAP frameworks

presented in this PhD dissertation; and finally, section 4.3 briefly discusses the

future directions of the MAP research area.

1http://agents.fel.cvut.cz/codmap
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4.1 Summary of contributions

The focus of this dissertation is on the design and development of techniques that

address the cooperative Multi-Agent Planning (MAP) problem. The compendium

of articles of Chapter 3 are a comprehensible analysis of the main contributions of

our work and the chronological evolution of the research.

The articles in Chapter 3 provide a general overview of our MAP framework

at the time the papers were published and, therefore, further clarifications are

required to assess the individual achievements of this PhD thesis. This section is

thus devoted to classify and summarize the principal individual contributions of

this dissertation.

Aside from the state of the art in single-agent planning and MAP, presented

in Chapter 2, the contributions of this work include the formal definition of a

cooperative MAP task, a definition language to specify MAP tasks with private

information, a complete search framework for the distributed resolution of MAP

tasks, and a set of global MAP heuristic functions to guide the search process of

the resolution framework. The following subsections classify and analyze these

individual contributions.

4.1.1 Theoretical formalization of a cooperative MAP task

One of the first steps of this investigation was the formal definition of the elements

that constitute a MAP task. Our formal definition of a MAP task, which has been

progressively updated and revised across the published articles, can be found in

sections 3.2.2, 3.3.5, 3.4.3 and 3.5.3.

The formalization involves three main aspects: 1) the definition of the com-

ponents of a MAP task, 2) the formal modelling of our notion of privacy, and 3)
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the generalization of the (backward and forward) POP search scheme to a MAP

context.

We model a cooperative MAP task as an extension of a single-agent task, so

that the task actions are divided among a finite set of independent planning entities

or agents. As opposite to classical single-agent STRIPS tasks, we model the facts

that describe the world through a set of state variables, each associated to a finite

domain of objects of the world. The facts of the world are thus described through

a set of fluents that assign a specific value to a state variable. State variables are

a more comprehensive mechanism for the specification of a planning task; in fact,

many of the techniques and algorithms developed for our MAP framework take

explicit advantage of the state-variable-based task modelling.

The information of the MAP task, such as state variables, actions and initial

state of the task, is distributed among the agents. The only exception is related

to the task goals: since agents are fully cooperative, private objectives are not

considered in our formalization, and thus, all the task goals are shared by the

participating agents.

The distribution of information stresses the second key aspect of the formal-

ization; that is, the definition of privacy. Each agent possesses a limited view of

the world according to the state variables or values of the variables known to the

agent. Fluents can be either public to an agent (that is, the agent knows both the

variable and its assigned value), private (the agent does not know the variable),

or partially private (the agent knows the variable but not its assigned value).

As described in section 2.2.3.1, most current MAP privacy models are based

on MA-STRIPS, and thus, they define an agent’s private information by occluding

it to every other agent in the task. In contrast, we introduced a more realistic and
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sophisticated theoretical approach to privacy by establishing privacy pairwise, so

that a fluent can be known only to a subset of agents.

The privacy constraints established in the MAP task formalization are ap-

plied in all the algorithms and procedures of our framework, thus making privacy

preservation one of the main contributions of this research work.

The final aspect of our MAP task formalization is the definition of the plan-

ning procedure that agents carry out to solve the task. Initially, the multi-agent

resolution procedure was configured as a POP search, which eventually evolved

to a forward-chaining POP setting (see section 4.1.3). While the search algo-

rithm was changed and adapted accordingly to the research progress, the concept

of refinement planning was maintained across the different versions of the MAP

framework: agents jointly search the solution space by progressively refining an

initially empty plan until a solution is found.

The implementation of the multi-agent search uses a compact plan represen-

tation (information of a search node) where the refinement plans are contributed

with the actions of several agents. Each agent maintains its own local version of

the POP search tree, where the refinement plans of the tree encode the information

known to the agent according to the privacy rules of the task.

Additionally, we guarantee that the application of the privacy constraints does

not compromise the soundness of the search process (see section 3.2.3.3). There-

fore, all the agents expand the multi-agent search tree correctly despite their lim-

ited view of the refinement plans.

4.1.2 Multi-agent planning task definition language

The special requirements of a MAP task, such as information distribution or pri-

vacy, are not supported by the different single-agent PDDL versions. Moreover,
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the MAP community has not agreed on a de facto standard language until the re-

cent 2015 CoDMAP competition, in which MA-PDDL was introduced (see section

2.2.2). In 2012, we defined our own MAP specification language, whose syntax is

described in detail in section 3.3.6.

Our language is defined as a multi-agent extension of PDDL3.1 and inherits

some of the functionalities of this single-agent language. Particularly, it allows us

to encode MAP tasks via SAS+-like state variables and it also admits the classical

PDDL predicates.

The structure of the facts that compose a MAP task are defined through two

different sections of the domain: :functions and :predicates. Internally, our

MAP framework translates predicates into true/false state variables. An addi-

tional :multi-functions section allows for a more compact definition of functions

(see section 3.3.6).

We include in our language some special characteristics and constructs that

model the particular requirements of a MAP task:

� Factored input: Since information on the MAP task is distributed among

agents, our language allows for a factored task representation; that is, each

agent receives a separate domain and problem that represent its knowledge

of the MAP task.

� Shareable information: The privacy of the agents is established through

a :shared-data section. This construct, integrated in the problem block,

defines the information shareable with other agents.

� Global and private goals: Although our model only accepts the definition

of global goals, a section :private-goal for defining private goals of agents

in non-cooperative MAP models can also be written with our language.
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One can find strong similarities between our language and MA-PDDL: both are

designed as an extension of PDDL3.1, they are intended to be used also for factored

representations, and they introduce mechanisms to define the agents’ privacy. The

main difference lies in the definition of private and public information: in MA-

PDDL the user explicitly defines the private information and in our language the

user defines the shareable (public) information.

The next section shows the modelling of Example 2 with our MAP language.

Since this particular task was also encoded through MA-PDDL in section 2.2.2, we

compare the two specifications to stress the differences between both languages.

4.1.2.1 MAP task specification example

Modelling the task in Example 2 with our language is very similar to the encoding

of the same task with MA-PDDL shown in section 2.2.2. As MA-PDDL, our

language allows for a factored input, so that each agent in the task receives a

separate domain and problem. Like in section 2.2.2, we focus on the specification

of agents ta1 and f , stressing only the fragments of the code that present major

differences with respect to the MA-PDDL representation.

Like in MA-PDDL, the domain block includes the type hierarchy of the agent,

as well as the predicates and the functions for describing the facts of the world.

The following fragments of code show the definition of the predicates and functions

for agents ta1 and f , respectively:

(: predicates

(in -area ?p - place ?a - area)

)

(: functions

(at ?p - package) - location

(owner ?t - truck) - agency

(pos ?t - truck) - location

)

(:multi-functions
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(link ?p1 - place) - place

)

As in the MA-PDDL modelling of section 2.2.2, the domain specification of

agent ta1 includes a predicate in-area. Predicates at, owner and pos are now

defined as functions, and the multi-function link allows for the definition of all

the outgoing connections from a certain place with a compact notation.

(: predicates

(pending ?p - product)

(manufactured ?p - product)

)

(: functions

(at ?p - package ?l) - location

)

The task modelling of agent f keeps the predicates pending and manufactured

used in the MA-PDDL encoding of section 2.2.2, and represents at as a state

variable.

Next, the domain specification describes the agent’s operators. The following

code snippets show the drive operator of agent ta1 and the manufacture operator

of agent f , respectively:

(: action drive

:parameters (?a - agency ?t - truck ?p1 - place ?p2 - place)

:precondition (and (in-area ?p1 ?a)(in-area ?p2 ?a)

(= (owner ?a) ?t)(= (pos ?t) ?p1)

(member (link ?p1) ?p2))

:effect (assign (pos ?t) ?p2)

)

(: action manufacture

:parameters (?f - factory ?rm - package ?fp - product)

:precondition (and (= (at ?rm) ?f)( pending ?fp))

:effect (and (not (pending ?fp))( manufactured ?fp))

)
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Whereas the encoding of these actions and their corresponding MA-PDDL

modelling (see section 2.2.2) are very similar, one can observe some key differences:

� The operator = is used to define the value that must be assigned to each

state variable in the preconditions of the action.

� The keyword member is used to check the value of a multi-function precon-

dition. For example, the precondition (member (link ?p1) ?p2)) holds if

?p2 is one of the values of the multi-function (link ?p1).

� The traditional positive and negative STRIPS effects like (not (pos ?t

?p1)) and (pos ?t ?p2) are replaced by state variable assignments. For

instance, in order to change the position of a truck in the drive action, we

assign a new value ?p2 to a (pos ?t) state variable.

Next, we show the main sections of the problem block of agents ta1 and f .

After modelling the task objects, we declare the public information that agents

ta1 and f can share starts with other agents via the :shared-data section:

(:shared-data

((at ?p - package) - location) - ta2

)

As in the MA-PDDL example, agent ta1 will only disclose the position of the

package, thus occluding all the information regarding its truck.

(:shared-data

(manufactured ?p - product) - (either ta1 ta2)

)

Similarly to ta1, agent f will only inform the rest of agents once the final

product is manufactured; i.e., once the task goal has been successfully completed.

Note that our language allows for a more advanced definition of privacy than

MA-PDDL: in our specification, the privacy is defined among pairs of agents. For
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instance, agent ta1 defines the at predicate as public with respect to agent ta2,

but at the same time, ta1 is not willing to share this predicate with agent f . This

distinction is not possible in MA-PDDL, in which all public predicates are always

shared with the rest of agents.

The initial state for agents ta1 and f , respectively, is defined in the following

fragments of code:

(:init

(= (pos t1) l1)(= (at rm) l2)(= (owner t1) ta1)

(= (link l1) {l2 sf})( link l2 {l1 sf})( link sf {l1 l2})

(in -area l1 ga1)(in -area l2 ga1)(in -area sf ga1)

(:init (pending fp))

The initial state definition for both agents is almost identical to its MA-PDDL

counterpart. However, note that, in the case of agent ta1, the multi-functions offer

a simpler and more compact definition of the links among places.

The last section of the problem block is preceded by the keyword :global-goal

instead of :goal, but otherwise, it is identical to the MA-PDDL version shown in

section 2.2.2.

4.1.3 Multi-agent planning framework

The main result of this PhD thesis is the development of a fully-distributed res-

olution framework for cooperative MAP tasks. Our MAP framework has been

progressively enhanced and refined, giving rise to three different versions of the

system; namely, MAP-POP, FMAP and MH-FMAP.

The following sections summarize the evolution of our framework, analyzing

the main features, strengths and weaknesses of each version of the system.
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4.1.3.1 Initial framework: MAP-POP

The raison d’être of cooperative MAP lies in the collaboration of several planning

entities which assist each other in order to reach a set of common objectives that

satisfies all the participants. The idea of multiple agents providing assistance to

each other is illustrated in Example 2: in order for agent f to manufacture the

final product, agent ta2 must first deliver the raw materials rm into f . In turn,

agent ta1 must deliver rm in sf , so that the package is available in the working

area of agent ta2.

The notion of multi-agent cooperation closely resembles the concept of causal

link in Partial-Order Planning (POP). A causal link of the form α
l→ β is in-

troduced in a partial-order plan to support an open precondition l of an action

β through another action α (see section 2.1.2.2). Therefore, a causal link is a

mechanism that can be naturally adapted to model the interaction of an agent

providing assistance to another one in the context of a cooperative MAP task.

Hence, the single-agent POP paradigm offers the potential and flexibility to be

extended to a cooperative MAP setting. Our initial MAP framework, MAP-POP,

adapts the traditional backward reasoning of POP to MAP to come up with a

sound and reliable MAP approach. MAP-POP is built around two basic design

principles:

� Fully-distributed system: MAP-POP is designed to be integrated seam-

lessly as a reasoning module in each agent. Reasoning is fully distributed,

thus avoiding the use of mediators or centralized modules. This design choice

implies the development of robust communication protocols as well as other

aspects such as the factored task description received by the agents.

� Privacy preservation: All the algorithms that make up MAP-POP are

designed so as to preserve the agents’ privacy established in the task de-
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scription. Only the information described as shareable is exchanged during

the execution of the different distributed procedures within MAP-POP. As

most state-of-the-art MAP methods, both MAP-POP and its successors im-

plement a weak form of privacy according to the classification presented in

section 2.2.3.2.

Algorithm 3 shows the basic MAP-POP procedure. Before initiating the plan-

ning process, agents exchange information (see section 3.3.8 for a thorough de-

scription of this stage) and progressively share the public fluents of the task. In

this stage, the planning entities perform a multi-agent grounding of the task by

building a distributed Relaxed Planning Graph (dis-RPG). The dis-RPG provides

an estimate of the cost of achieving the fluents of the task, a valuable information

that will be later used to perform heuristic calculations at planning time.

The MAP-POP resolution process, described in section 3.3.9, is based on the

iterative exploration of a multi-agent search tree. Each agent keeps its own version

of the tree, storing plans according to its privacy constraints. An iteration of the

search procedure is initiated when agents agree on the open node of the tree to

expand; that is, the next base plan. The base plan is selected according to the

estimated quality of the plans obtained through a heuristic function (see section

4.1.4 for a discussion on the heuristic estimators). Afterwards, agents select the

most costly open goal of the plan according to the dis-RPG as the next objective

to address.

Each agent individually refines the chosen base plan through an embedded POP

system, and generates a successor or refinement plan per alternative of solving the

open goal of the base plan. Once the successors are heuristically evaluated, agents

perform a coordination stage in which the refinement plans are exchanged and

incorporated into the multi-agent search tree. Agents share their refinement plans
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with the rest of participants by occluding the information defined as private in

their task descriptions. Therefore, every plan received by an agent preserves the

privacy constraints established in the MAP task.

Refinement plans in MAP-POP are partial-order plans built backwards from the

MAP task goals, whose actions can be contributed by several agents. The internal

POP search of each agent creates refinement plans through the composition of the

base plan and a refinement step. A refinement step extends a base plan by solving

the open goal selected by the group, along with all the private open goals that

arise from this resolution (see Definitions 3.7 and 3.10).

Limitations of MAP-POP. MAP-POP presents several limitations that dimin-

ish its overall performance. Firstly, as discussed in section 3.2.3.3, MAP-POP is

not a complete approach because we implicitly prune the search space by set-

ting an arbitrary limit on the number of refinement plans an agent can cre-

ate over a given base plan. This limit is set because an agent may generate

an infinite number of refinement plans of a given base plan. To illustrate this

shortcoming, let us examine the MAP task described in Example 2 and mod-

elled in section 4.1.2.1: let Π0 be an empty plan with a single open goal (=

(at rm) f). Agent ta2 can easily refine Π0 by posing the following sequence of

actions: {(load ta2 t2 rm sf), (drive ta2 t2 sf l3), (drive ta2 t2 l3

f), (unload ta2 t2 rm f)}. However, once truck t2 is in location l3, ta2 can

unload and load rm and then proceed to f, giving rise to another sound refine-

ment plan. In general, ta2 can load and unload rm in l3 multiple times, thus

obtaining a potentially limitless number of refinement plans over Π0.

Along with the lack of completeness, which might prevent the planner from

finding solution plans, the use of a traditional, backward-chaining POP to build

the refinement plans restricts the potential application of heuristic functions: it
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is not possible to infer a state from a regressed plan, which rules out the use of

powerful state-based heuristics. This explains the generally low performance of

the heuristic guidance in MAP-POP.

The aforementioned limitations motivated the design of a revised framework

that offers better theoretical properties and notably outperforms MAP-POP.

4.1.3.2 Enhanced framework: FMAP

The second version of our MAP framework, FMAP, maintains the general search

scheme of MAP-POP while redesigning key aspects such as the node expansion and

heuristic. These improvements give rise to a complete and much faster planner

that achieves vastly superior experimental results (see section 3.4.4 for a thorough

analysis of the FMAP search procedure).

FMAP also implements a multi-agent A* search in which the participanting

agents jointly explore a common search tree. The multi-agent search scheme of

FMAP is directly inherited from MAP-POP: agents select a base plan among the

open nodes of the joint search tree according to heuristic estimates on the plan

quality; the base plan is individually refined by each agent, which can contribute

with several refinement plans; and, finally, the successor plans are heuristically

evaluated and exchanged among the agents while preserving the privacy con-

straints.

The main difference with respect to MAP-POP is the replacement of the embed-

ded POP engine of the agents by a forward-chaining POP system. The forward-

chaining POP paradigm was firstly introduced in (18), just after the publication of

MAP-POP, and it demonstrated the potential to overcome most of the limitations

of backward-chaining POP while keeping its main strengths.

Agents in FMAP build plans forward from the initial state, which allows us to

infer the frontier state of each plan. The frontier state represents the situation of
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the world after executing the actions in the plan, which enables the use of state-

based heuristic functions to evaluate the partial-order plans. The hDTG heuristic

function used in FMAP (see section 4.1.4) overcomes the poor heuristic guidance

of MAP-POP, drastically improving the performance of FMAP.

Another key difference between both frameworks relies in the construction of

the refinement plans. In FMAP, a refinement plan introduces a new action in the

current base plan, fully supporting all its preconditions and solving all the threats

(see Definition 2.6) that arise during this solving process. The introduction of

this new conceptual definition of refinement plans guarantees the completeness of

FMAP since, in this case, agents are able to generate all the possible refinements

over a given base plan (see section 3.4.4.2).

In order to maximize the performance of FMAP, the internal forward POP

engine of the agents, named FLEX, is designed as a multi-thread search algorithm

that takes full advantage of the available execution threads in the CPU (see sec-

tion 3.4.4.1). FLEX selects the actions in the agent’s task whose preconditions

are satisfied with the effects of the actions in the base plan, creating a set of po-

tentially supportable actions. Then, for each action in this set, FLEX performs

an independent search process to fully support the action, thus giving rise to the

refinement plans (see Figure 3.17).

Note that, given a base plan and an action, FLEX can potentially insert the

action at many different points of the plan, thus maintaining the flexibility of the

conventional backward-chaining POP search.

Limitations of FMAP. Despite FMAP was designed to overcome the main lim-

itations of MAP-POP, we can yet identify some room for improvement.

The performance of FMAP directly depends on the accuracy of the heuristic

function hDTG, which is used to select the node to expand. Relying on a single
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Figure 4.1: Communications during search in MAP-POP/FMAP and MH-FMAP

heuristic may jeopardize the performance of the system in some domains, since the

quality of the estimates may differ from one domain to another. This fact can be

observed in the experimental results of section 3.4.5. Particularly, Table 3.8 shows

that the performance of FMAP degraded in domains like Depots and Logistics.

Moreover, section 3.4.5.5 analyzes the impact of the communications in the overall

execution time of FMAP. The results show that, in order to effectively reduce

execution times, it is necessary to optimize communications, which represent the

main bottleneck of FMAP and the reason that it does not scale up well (see Figures

3.22 and 3.23).

FMAP follows the same communication scheme as MAP-POP, described in

Figure 4.1 (left). Once an agent i has built its refinement plans over the base

plan Π0, Π00 and Π01, it configures the view of these plans for agents j and k

according to its privacy constraints with respect to them. Each plan is individually

sent to each recipient via the QPid message broker. Since the average number of

refinement plans per iteration tends to be large in most MAP domains, the amount

of messages exchanged compromises the performance of FMAP in most cases.
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4.1.3.3 Multi-heuristic framework: MH-FMAP

The latest evolution of our approach, MH-FMAP, extends FMAP by applying,

for the first time in MAP, a multi-heuristic search scheme. The literature in

single-agent planning proves the efficiency of the alternation of heuristic functions

(96). This method selects plans alternatively with each of the available heuristic

functions, using equally all the estimators and obtaining much better results than

any aggregation or combination of heuristics.

Alternating heuristics is specially useful for leaving plateaus, because if search

does not progress with one of the estimators, we can use the rest of heuristic

functions to quickly find another branch and leave the plateau.

MH-FMAP makes use of two different heuristics: hDTG, a function already

applied in FMAP, and hLand, an estimator that takes into account the landmarks

not reached in the plan (see section 4.1.4). We employ two different queues of plans,

although MH-FMAP can be generalized to apply as many heuristic schemes as

required: open nodes are ordered in the main queue according to f = g+2∗hDTG,

while the secondary queue uses hLand to arrange the preferred successors (see

Definition 3.20).

The results in section 3.5.6 prove that the synergy of both estimators clearly

outperforms FMAP, particularly in domains such as Depots and Logistics, in which

the coverage results are almost twice as much as with FMAP.

In addition to the introduction of a novel multi-heuristic search approach for

MAP, MH-FMAP includes a thorough optimization of the communication infras-

tructure in the exploration of the joint search tree and the heuristic calculations.

In particular, the exchange of plans during the multi-agent search was optimized

by grouping the refinement plans of an agent in one iteration in a single message,

as depicted in Figure 4.1 (right).
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Let us suppose that the three agents in Figure 4.1 perform n iterations of the

search algorithm to solve a given MAP task, and agent i generates in average p

refinement plans per iteration. In MAP-POP and FMAP, agent i sends a total of

2 ∗ n ∗ p messages to j and k to share refinement plans. However, in MH-FMAP,

agent i would send only 2 ∗ n messages, one message per iteration to j and k,

respectively (see Figure 4.1). Therefore, MH-FMAP clearly alleviates the negative

impact of communications with respect to its predecessors.

The reduction in the number of exchanged messages noticeably improves the

performance of the system. The results of MH-FMAP using only the hDTG heuristic

(column FMAP- hDTG in Table 3.9) show a superior coverage than the earlier

FMAP results in Table 3.8, despite the same estimator, hDTG, was used in both

cases.

4.1.4 Global heuristics for multi-agent planning

The different versions of our cooperative MAP framework discussed in section

4.1.3 implement a multi-agent heuristic search to generate solution plans. The

usual approach to evaluate plans in MAP is the application of heuristics locally

by each agent. This implies a loss of accuracy compared to the application of a

heuristic in a single-agent setting because in MAP agents usually do not have a

complete knowledge of the task.

A significant part of the work of this PhD thesis focuses on the development

of global heuristic functions for cooperative MAP that take into account the full

information of the MAP task, rather than using the local task projections managed

by the individual agents. The following subsections summarize the different MAP

heuristic functions introduced throughout the development of this research.
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4.1.4.1 Backward-chaining POP heuristic

MAP-POP adapts state-of-the-art POP heuristics to MAP. Particularly, MAP-POP

applies the additive plan selection heuristic hadd that was also used in the VHPOP

planner (126). This estimator evaluates a partial-order plan as the sum of the cost

of its open goals.

For the multi-agent adaptation of hadd, we use the dis-RPG calculated by

MAP-POP at pre-planning time. Given a fluent f of the MAP task, the fluent

level of the dis-RPG in which f appears denotes the minimum cost to reach f in

the relaxed task. Hence, given a plan Π, hadd is calculated as follows:

hadd(Π) =
∑

∀f ∈ openGoals(Π)

level(f)

The dis-RPG used in hadd is calculated from the initial state of the task. Ideally,

this graph should be recalculated in every search node from the state derived in

the plan of the node. However, since plans are built backwards, the only known

state is actually the initial state. For this reason, the initial dis-RPG is used to

evaluate all the refinement plans. This affects the precision of the hadd heuristic,

which provides rather inaccurate estimates.

4.1.4.2 DTG-based heuristic: hDTG

The most relevant advantage of FMAP and MH-FMAP with respect to MAP-POP

is the use of a forward-chaining POP to generate refinement plans. Since plans

are built in a forward-chaining fashion, we can infer the frontier state that results

from the sequential application of the actions in a given partial-order plan (see

section 3.4.4.1). In turn, frontier states can be used to obtain accurate state-based

heuristic estimators to evaluate partial plans.

The first state-based global heuristic function developed in the context of this

PhD thesis, hDTG, is thoroughly analyzed in sections 3.4.4.3 and 3.5.5.1. hDTG
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is a global estimator that evaluates plans through the information available in

the Domain Transition Graphs (DTGs) associated to the state variables of the

MAP task. As stated in section 3.19, the design of hDTG is motivated by the high

communication cost of a distributed hFF heuristic (54), which implies calculating a

dis-RPG in each base plan. On the contrary, DTGs are built at pre-planning time

and they remain unaltered during the search, which reduces the communication

needs of the system.

Formally, hDTG is a variation of the well-known hCEA estimator (52). Given

a MAP task TMAP and a partial plan Π, hDTG estimates the quality of Π by

calculating the number of actions of a relaxed plan between the frontier state

FS(Π) and the set of goals of TMAP , G. As hCEA, hDTG reuses the side effects

of the actions in the relaxed plan to estimate the cost of the subsequent goals. As

shown in equation 3.1, given a goal g = 〈v, d〉, a state S and an action α, both g

and the precondition of α related to v are evaluated in the same state S, while the

rest of preconditions of α can be evaluated in different states.

As commented before, DTGs are calculated in a pre-processing stage. The

DTGs are privacy-preserving data structures: the private values are replaced by

the undefined value ⊥ (see section 3.4.4.3). Therefore, given a variable v, two

different agents may maintain a different version of the DTG associated to v.

The hDTG plan evaluation algorithm, described in detail in section 3.4.4.3,

builds a relaxed plan by progressively supporting the goals of the task from the

plan’s frontier state. Given a goal 〈v, d〉, the procedure applies the Dijkstra algo-

rithm to calculate the shortest path in v’s DTG between an initial value (which

can be the value of v in the frontier state or an effect of an action already in the re-

laxed plan) and d. The relaxed plan is then extended by introducing a sequence of
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actions that corresponds to the value transitions in the DTG path. The algorithm

iterates until all the goals are solved.

The work in (108) compares a MA-STRIPS implementation of hDTG against

hFF using a distributed greedy best-first search. The experimental results reveal

that hDTG obtains slightly better coverage results than hFF , particularly sur-

passing the results of hFF in domains such as elevators and openstacks. All in all,

hDTG is not only computationally more efficient than hFF in a distributed setting,

but it also obtains better overall results.

4.1.4.3 Landmark-based heuristic: hLand

The most recent version of our MAP framework, MH-FMAP, aims to improve the

performance of the planning procedure by alternating global heuristics. Along

with hDTG, MH-FMAP uses hLand. This global estimator, thoroughly described

in section 3.5.5.2, measures the quality of a plan Π according to the number of

pending landmarks in Π. A landmark is a fluent that is necessarily satisfied in

every solution plan for a given MAP task.

The hLand procedure consists of two different stages. At pre-planning, agents

jointly build the Landmarks Graph (LG) through the multi-agent adaptation of

the landmark extraction procedure in (55) (see Algorithm 8). Similarly to the

DTGs used in hDTG, the LG is a privacy-preserving and immutable data structure

in which the nodes (landmarks) are connected through a set of directed edges

(necessary orderings). A necessary ordering l ≤n l′ indicates that the landmark l

will be obtained before l′ in all the solution plans for the planning task at hand.

Due to the private information, agents may have a different version of the LG,

according to the landmarks that are private. Privacy affects the plans evaluated

with hLand: given an agent i and a plan Π, agent i takes into account first the

242



4.2 Experimental results

satisfied landmarks in Π according to its view of the LG and Π. Next, it sends the

list of verified landmarks to the rest of agents, which in turn check if they reach

more landmarks in Π. Once agent i receives the rest of landmarks satisfied in Π,

it evaluates the plan according to the total amount of pending landmarks.

As stated in section 3.5.6, hLand closely resembles the PP-LM distributed

heuristic used in the GPPP system. Both hLand and PP-LM implement the

landmark extraction algorithm in (55) in the form of a global privacy-preserving

heuristic. The main difference between both approaches is that PP-LM is based

on MA-STRIPS, while hLand is built upon our planning and privacy model.

4.2 Experimental results

Throughout the selected papers in Chapter 3, the different versions of our frame-

work have been thoroughly evaluated in order to assess their performance. Our

framework has been systematically compared to other state-of-the-art MAP tech-

niques through a benchmark based on the problem suites of the International

Planning Competition (IPC).

The most recent version of our framework, MH-FMAP, was submitted to take

part in both the centralized and distributed tracks of the 2015 Competition of

Distributed and Multi-Agent Planning (CoDMAP). The CoDMAP provided re-

searchers with a set of standard MAP tasks encoded through MA-PDDL, which

will ease the task of comparing the performance of different MAP systems.

In order to perform an accurate review of the performance of our MAP system,

it is thus necessary to consider both our own experimental results, showcased in

the selected papers of Chapter 3, and the CoDMAP results. For this reason, this

section provides a summary of the experimental results obtained for each version
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of our MAP framework, followed by an in-depth review of the performance of

MH-FMAP in the 2015 CoDMAP.

4.2.1 MAP-POP results

In section 3.2.4, we made use of an early version of our benchmark to analyze

the performance of MAP-POP. Since at that point there were not standardized

benchmarks for evaluating MAP systems, the common procedure entailed adapting

the domains and problem suites of the IPC to a cooperative MAP context. For

these early tests, we used the Rovers, Satellite and Logistics domains, which are

frequently utilized to conduct experiments in other MAP-related papers (80).

The experiments of section 3.2.4 compare MAP-POP against one of the state-

of-the-art MAP systems at that point, Planning First (80). The results show that

MAP-POP scales up much better than Planning First, which tends to be faster in

smaller problem instances but it is unable to solve any of the largest problems of

the three tested MAP domains.

This conclusion is backed up by an additional scalability analysis which shows

that MAP-POP scales up better than Planning First when executing several times

a given MAP task with an increasing number of agents (see Figures 3.1 and 3.2).

Whereas Planning First converges to a solution faster in the simplest tasks, MAP-

POP offers a more stable behaviour, performing much better in instances with a

high number of agents.

In section 3.3.10, we extend the performance analysis of MAP-POP by testing

the system against two custom MAP domains: Picture, a loosely-coupled domain,

and Transportation, which gives rise to tightly-coupled tasks. In this case, we first

compare the quality of the solution plans when running MAP-POP in a single-agent

and multi-agent setup.
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The results show that, despite the influence of privacy in the distributed setting,

MAP-POP obtains similar plan quality results in both setups, in terms of number

of actions and plan duration.

The second test, whose results are depicted in Figures 3.11 and 3.12, analyzes

the scalability of MAP-POP when running the aforementioned MAP domains.

The results show that the number of participating agents directly increases the

execution time of MAP-POP and, particularly, the number of messages passed

among agents. This result stresses the high cost of communications as one of the

main disadvantages of our initial MAP approach.

4.2.2 FMAP results

For the experimental evaluation of FMAP, discussed in section 3.4.5, we used an

extended benchmark which includes 10 different MAP domains selected from the

IPC suites and adapted to a cooperative MAP context. Table 3.6 summarizes

the features of the MAP domains in our benchmark: the first 5 domains give rise

to loosely-coupled tasks, while the second half of Table 3.6 consists of complex

domains that result in tightly-coupled MAP tasks. Most of these tightly-coupled

domains also include heterogeneous agents with different abilities and knowledge

of the MAP task.

The first test, presented in section 3.4.5.3, compares the performance of FMAP

against MAPR (11), one of the best-performing state-of-the-art MAP systems.

As shown in Table 2.1, MAPR is a distributed state-based MAP system which

allocates the task goals in pre-planning time, giving rise to a set of subtasks that

are individually assigned to each of the participating agents. Agents perform

planning sequentially: each agent receives the previous agent’s solution plan and

extends it incrementally by solving its endowed subtask. This resolution scheme
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limits the scope of MAPR, since it can only cope with loosely-coupled tasks in

which goals do not require cooperation among agents.

The results in Table 3.7 show that, even though MAPR is several orders of

magnitude faster than FMAP, which gives it a superior coverage in the 5 domains

tested, our approach obtains much better-quality plans. Indeed, FMAP is partic-

ularly efficient at reducing the number of actions and the makespan of the plans.

Moreover, the general-purpose scope of FMAP allows it to tackle complex tightly-

coupled MAP domains that are not solvable by MAPR.

The second test, described in Section 3.4.5.4, compares FMAP and MAP-POP,

the previous version of our framework. As expected, the improvements introduced

in several key areas of the framework (see section 4.1.3.2) give FMAP a remarkable

performance boost against MAP-POP. Particularly, the coverage and execution

time results in Table 3.8 clearly favour FMAP, which solves 124 tasks more than

MAP-POP, being up to three orders of magnitude faster in some domains.

The experimental analysis of FMAP concludes with a thorough analysis of

the scalability of the system in section 3.4.5.5. As in previous scalability tests,

we try the same MAP task several times, increasing the number of agents by

one in each run. In order to ensure a precise analysis, we separately measured

the execution time spent by FMAP in generating, evaluating and communicating

plans. Additionally, we run the test with MAPR for comparison purposes.

Figures 3.21 and 3.23 showcase the results of the two scalability experiments,

based on a Logistics and a Satellite MAP task, respectively. Both tests confirm

that communications take most of FMAP’s execution time. The communication

overhead grows up exponentially with the number of participating agents. Never-

theless, if we consider only the evaluation and generation time, the performance

of FMAP is much closer to MAPR. Therefore, the impact of communications is
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the main reason behind the relatively high execution times exhibited by FMAP

throughout the experimental tests.

4.2.3 MH-FMAP results

The experimental evaluation of MH-FMAP, discussed in section 3.5.6, analyzes the

performance of the multi-heuristic search strategy against the two single heuristics:

more precisely, we compare MH-FMAP against FMAP when applying hDTG and

hLand to evaluate plans, respectively. We make use of the 10-domain benchmark

already utilized to assess the performance of FMAP in section 3.4.5.

Table 3.9 summarizes the results of this test. MH-FMAP obtains the best

coverage results in almost all the domains of the benchmark, solving 24 more tasks

than hDTG and 98 more tasks than hLand. MH-FMAP clearly benefits from the

alternation of heuristics, mimicking the behaviour of the best-performing estimator

in most of the domains. Additionally, MH-FMAP clearly improves the results of

the single-heuristic approaches in domains in which both heuristics offer a similar

performance, even doubling the coverage in the Logistics domain.

Regarding plan quality, the results prove that the multi-heuristic approach

does not diminish the quality of the solution plans, offering similar figures to the

standalone estimators. The same conclusions can be obtained regarding execution

time: MH-FMAP provides a good trade-off between both heuristics, being slightly

slower than hLand but faster that hDTG in 6 out of 10 MAP domains.

Additionally, we provide a second test that compares MH-FMAP against GPPP

(72) a MA-STRIPS -based method that constitutes the only other cooperative

MAP approach in the literature to integrate a global landmark-based heuristic

function, PP-LM.
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Table 3.10 showcases the experimental results obtained in this experiment.

Whereas GPPP is up to two orders of magnitude faster than MH-FMAP in some

domains, our approach improves the coverage results of GPPP, obtaining better

figures in 2 out of 5 tested domains.

Regarding plan quality, MH-FMAP is much more efficient than GPPP, returning

solutions with a lower number of actions in almost all the tested domain. Moreover,

since GPPP generates only sequential plans, the solutions produced by MH-FMAP

are much shorter, effectively minimizing the plans’ makespan.

Domain Tasks MH-FMAP coverage CoDMAP coverage

Blocksworld 19 8 0

Depots 20 12 2

Driverlog 20 15 17

Logistics 20 20 4

Rovers 11 11 7

Satellite 15 14 14

Zenotravel 17 17 14

Total 122 97 58

Table 4.1: Coverage results of MH-FMAP with our benchmark and in the CoDMAP

4.2.4 CoDMAP 2015 results

In order to conclude with the summary of the experimental results, this section

analyzes the results obtained by MH-FMAP in the 2015 Competition of Distributed

and Multi-Agent Planners (CoDMAP) (118). This event has not only introduced

MA-PDDL, a de facto standard language for the definition of cooperative MAP

tasks (see section 2.2.2), but it has also provided researchers with a standardized

benchmark of MAP domains and tasks that will ease the experimental evaluation

of ongoing and future MAP systems.
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The 2015 CoDMAP benchmark includes 12 different MAP domains, most of

which are directly adapted from the single-agent problem suites of the Interna-

tional Planning Competition (IPC). Nine of these domains were also used in our

benchmark (see section 3.4.5.2), and some of the tasks in seven of these domains

are shared by our benchmark and the CoDMAP.

Table 4.1 compares the coverage results obtained by MH-FMAP in the experi-

ments presented in section 3.5.6 and the CoDMAP, respectively, considering only

the common tasks of both benchmarks. As it can be immediately noted, the cov-

erage results are in general much better in our experimental setting than in the

CoDMAP, with the only exception of the Driverlog and Satellite domains.

This apparent anomaly can be explained by the different modelling of the tasks

in our benchmark and the CoDMAP. Particularly, it is possible to identify some

key differences regarding the task encoding and the definition of privacy.

Encoding. The MA-PDDL-based tasks of the CoDMAP are purely proposi-

tional, while the tasks in our benchmark are described through state variables.

This different PDDL model may jeopardize the performance of MH-FMAP, which

is designed to take full advantage of variable-based task descriptions.

More precisely, hDTG, one of the heuristic functions that govern the search

of MH-FMAP, bases its estimates on the DTGs associated to the MAP task, and

therefore, its accuracy depends on the quality of the information provided by the

DTGs.

In order to properly infer DTGs from a propositional task, our parser au-

tomatically translates the MA-PDDL code into our MAP language, converting

the MA-PDDL literals into state variables with an associated binary domain

Dv = {true, false}. Binary variables are not descriptive enough, since they offer
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Figure 4.2: DTG for a state variable and a predicate in the Sokoban p01 task

very poor information on the MAP task. Therefore, we presume that the differ-

ences regarding task encoding compromised the performance of MH-FMAP in the

2015 CoDMAP.

Figure 4.2 illustrates this encoding issue by depicting two DTGs inferred from

one of the tasks in the CoDMAP benchmark, the Sokoban p01 task. Our MAP

language allows us to describe the position of the player player01 through a single

state variable (pos player01). As shown in the left-hand diagram of Figure 4.2,

the associated DTG provides rich information, displaying the complete game board

and all the connections among the different positions.

In the CoDMAP, however, the task description includes one (at player01

pos-x-y) literal per position of the game board. MH-FMAP infers a binary

state variable for each position in the board, resulting in a collection of rather

simple DTGs as the one in the right-hand diagram of Figure 4.2.

Privacy. Another basic difference between both benchmarks is the level of pri-

vacy defined for each MAP task. In some of the domains, the CoDMAP organizers

introduced restrictive privacy rules, allowing agents to share less information than

our benchmark in general.
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For instance, the CoDMAP version of the well-known Satellite domain only

allows agents to share whether they have obtained an image. As opposite to our

benchmark, agents cannot reveal the direction they are pointing to.

Privacy plays a basic role in the performance of MH-FMAP, since agents trans-

mit the refinement plans including only the data defined as shareable, thus occlud-

ing the private information. This may have a direct impact in the performance of

MH-FMAP, since increasing the amount of private information reduces the avail-

able data in the plans, which might potentially affect the precision of the heuristic

estimators.

Given the aforementioned differences between both settings, it is reasonable

to conclude that task encoding and privacy are the main reasons behind the poor

performance of MH-FMAP in the 2015 CoDMAP. However, in order to properly

test and firmly confirm our hypothesis, we designed two additional experimental

tests to individually assess the impact of each factor.

Among the MAP domains in Table 4.1, we chose three domains to conduct

the additional tests, namely the loosely-coupled Rovers and Zenotravel, and the

tightly-coupled Depots.

The features of these domains make them an appropriate choice to test the im-

pact of encoding and privacy on the performance of MH-FMAP. On the one hand,

the coverage of MH-FMAP in these domains clearly diminished in the CoDMAP

setting, as shown in Table 4.1. On the other hand, these domains present the

complete range of possibilities regarding privacy:

� Depots: In this domain, both our benchmark and the CoDMAP’s define the

same notion of privacy. Agents can share the location of trucks and crates

and whether a surface or hoist is clear.
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� Rovers: Our benchmark introduces a more restrictive definition of privacy

than the CoDMAP in this case. Agents can only publicize the position of a

rock or soil sample and whether they communicated the data of a sample.

In the CoDMAP, however, most of the information regarding the instruments

of the rovers, the location of the lander and the visibility of the waypoints

are publicly available.

� Zenotravel : The CoDMAP version of the Zenotravel domain is more restric-

tive than ours. The location of the different persons is public if they are in

a city, but plane agents cannot publicize their list of persons on board.

In our version, the position of a person is always publicly available.

The next subsections detail the configuration of the encoding and privacy tests

and thoroughly analyze the results obtained.

4.2.4.1 Encoding test

One of the key factors that may affect the performance of MH-FMAP is the en-

coding of the tasks, due to its dependence on state variables. To perform a precise

analysis of the impact of task encoding, we executed a total of 49 tasks of the

Rovers, Depots and Zenotravel domains, modelled through MA-PDDL and our

language1.

All the tasks were configured using the privacy constraints defined in the

CoDMAP, so that the privacy does not affect the results of this experiment.

1As in section 3.5.6, all the tests were performed on a single machine with a quad-core Intel

Core i7 processor and 8 GB RAM, assigning up to 2 GB RAM for the Java VM. The duration

of each experiment was limited to 30 minutes.
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Domain
Our language (state variables) MA-PDDL (propositions)

#Act MS #Iter Time #Act MS #Iter Time

Depots
13,00 10,00 71,00 5,10 13,00 10,00 3421,00 99,64

Solved 12/20 Solved 2/20

Rovers
38,43 17,86 383,14 29,16 38,29 17,43 2746,57 178,94

Solved 11/11 Solved 7/11

Zenotravel
29,40 16,13 96,00 49,01 27,73 12,33 245,60 94,32

Solved 17/17 Solved 15/17

Table 4.2: Experimental results of the encoding test

Table 4.2 shows the average results obtained in this test: #Act and MS columns

indicate the average number of actions and duration (makespan) of the solution

plans for a given domain, respectively. #Iter and Time refer to the number of

iterations spent by MH-FMAP to find a solution and the execution time in seconds,

respectively. The average values are computed considering only the tasks solved

by MH-FMAP in both settings.

As it can be immediately noted, the MA-PDDL encoding does clearly compro-

mise the coverage of MH-FMAP in the three tested domains. MH-FMAP solves 40

out of 48 tasks with our language, while it only manages to find a solution in 24

tasks in the MA-PDDL version of the benchmark.

The iterations and execution time figures in Table 4.2 reveal that the proposi-

tional encoding of the MA-PDDL tasks lowers the accuracy of the heuristic func-

tions used in MH-FMAP: our planner requires up to 50 times more iterations with

the MA-PDDL encoding, being up to 20 times slower in average when solving this

version of the benchmark.

The plan quality figures (actions and makespan), however, show that MH-

FMAP obtains shorter plans with the MA-PDDL version of the benchmark. This

is also explained by the impact of propositional MA-PDDL tasks on our hDTG and

hLand estimators: since heuristic values are not informative and accurate enough,
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our system explores the MAP tree in almost a breadth fashion, expanding more

nodes in each level of the tree and finding solutions at lower depths. These solutions

have fewer actions and, in general, a lower makespan than the plans obtained for

the tasks modelled with our language.

4.2.4.2 Privacy test

The second experimental test analyzes the impact of privacy in the performance of

MH-FMAP. For this experiment, we used again the Depots, Rovers and Zenotravel

domains, modelled through our MAP language. For each domain, we run each

task with three different levels of privacy:

� No privacy: All the information of each MAP task is shared among the

agents.

� Our privacy: The private information of the agents is configured as in our

MAP benchmark (see section 3.4.5.2).

� CoDMAP privacy: The private information is defined according to the

level of privacy defined in the 2015 CoDMAP.

Note that, as we mentioned in the previous section, the privacy settings de-

fined in our benchmark and the CoDMAP coincide in the Depots domain, and

therefore, there are no differences between the results for both configurations. All

the experiments were run under the same conditions (using the same machine and

time limit) than the encoding test.

Table 4.3 displays the average results for each domain in the three privacy

settings established for this test. As in Table 4.2, #Act and MS refer to the average

number of actions and makespan of the solution plans obtained in each domain,

while #Iter and Time denote the average number of iterations and execution time,

respectively.
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Domain
No privacy Our privacy CoDMAP privacy

#Act MS #Iter Time #Act MS #Iter Time #Act MS #Iter Time

Depots
32,17 23,08 671,67 160,96 32,17 23,08 671,67 146,41 32,17 23,08 671,67 146,41

Solved 12/20 Solved 12/20 Solved 12/20

Rovers
43,20 18,40 450,20 103,31 43,20 18,40 450,20 61,99 43,20 18,40 450,20 59,99

Solved 10/11 Solved 11/11 Solved 11/11

Zenotravel
36,53 19,82 113,24 128,08 36,53 19,82 113,24 123,69 36,53 19,82 113,24 124,81

Solved 17/17 Solved 17/17 Solved 17/17

Table 4.3: Experimental results of the privacy test

The results of Table 4.3 show that the level of privacy does not have a significant

impact on the accuracy of the heuristics of MH-FMAP. In the three tested domains,

the average number of iterations remains constant regardless the privacy level, and

so does the quality of the solution plans. Since the estimates provided by both

hDTG and hLand do not change substantially when the privacy level is modified,

the shape of the MH-FMAP search tree remains unaltered in in the three versions

of a MAP task.

The only significant difference between the three privacy levels tested in this

experiment lies in the average execution time. Interestingly, defining a certain

amount of private information does benefit the execution time with respect to a

completely public setting. In the three domains, the version without privacy is

noticeably slower than the rest of variants.

The deviation on the execution time is caused by the heuristic calculations:

since plans have more available information, the agent that creates a plan can per-

form almost all the calculations of hDTG and hLand by itself, without requesting

the assistance of other agents. This reduces the parallelism in heuristic computa-

tion and introduces a noticeable overhead in terms of execution time.

Focusing on the privacy-preserving versions of the benchmark, Table 4.3 shows

only minor differences in terms of execution time between the CoDMAP privacy
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and ours. MH-FMAP obtains very similar execution times with both privacy set-

tings, while the average number of iterations and the solution quality data remain

the same in both cases.

4.2.4.3 Analysis of the results

The aforementioned results illustrate that the propositional encoding of the MAP

tasks is the main factor behind the poor results of MH-FMAP in the 2015 CoDMAP.

The encoding test in section 4.2.4.1 showed major performance differences be-

tween the MA-PDDL-based domains and their counterparts modelled with our

variable-based representation. These results are mainly caused by the binary

DTGs obtained in this particular setting, which are not informative enough and

have a huge impact on the precision of the hDTG heuristic. As shown in Table 4.2,

this issue increases the number of iterations required to find solution plans, thus

clearly reducing the scalability of MH-FMAP.

On the other hand, the second test shows that privacy is not a decisive factor

in the performance of MH-FMAP. The results in Table 4.3 reveal that there is only

an insignificant variation between the execution times of our privacy setting and

the CoDMAP’s.

4.3 Ongoing trends in Multi-Agent Planning

In order to conclude with the discussion on the results, this section sketches the

ongoing and future directions of the MAP research field.

We focus on three different topics which have recently captured the attention

of the MAP community and constitute the current main research trends in this

area; namely, privacy, MAP under uncertainty and practical applications.
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4.3.1 Privacy

The issue of privacy is one of the current centric topics in MAP research. The

state of the art in MAP shows a growing effort in analyzing, formalizing and taking

advantage of privacy as a means to improve the performance of MAP systems.

On the one hand, section 2.2.3 summarizes the body of work devoted to for-

malize privacy in MAP systems. On a theoretical level, the literature includes two

different models that define the distribution of public information on a privacy-

preserving approach MAP (see section 2.2.3.1).

From a practical standpoint, the implementation of a MAP framework may

jeopardize privacy, since in many cases an agent can infer private information

from the data it receives. Section 2.2.3.2 synthesizes a four-level classification

that characterize the privacy guarantees offered by actual MAP systems, ranging

from no privacy at all to strong privacy, a level that guarantees the protection

of private information regardless of the nature of the communication channel and

the computational capabilities of the agents.

On the other hand, some recent approaches to MAP make a smart use of

privacy to increase the performance of the system. A paradigmatic example of this

trend is DPP (103), which calculates the Dependency-Preserving (DP) projection,

an accurate public projection of the information on the MAP task which allows

for a dual search: first, agents use the DP projection to obtain a robust high-level

plan that is completed afterwards through the introduction of private actions. This

scheme improves performance with respect to a general multi-agent search, vastly

reducing the communication requirements of the agents.
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4.3.2 Multi-Agent Planning under uncertainty

This PhD thesis focuses on deterministic planning, where the world is completely

observable, the effects of the actions are deterministic and known and no exogenous

event is assumed to occur in the environment. However, in domains such as multi-

robot coordination or manufacturing, outcomes of the actions are uncertain and

agents take decisions based on partially observable worlds.

It is important to highlight that uncertainty does not amount to handling

agents’ private information in MAP. Privacy has no impact on an agent’s de-

cisions because these depend entirely on its own information. In contrast, in

non-determinism planning, agents must take decisions on the basis of uncertain or

partially known information.

In the following, we summarize several approaches that deal with uncertainty

and partial information in MAP settings.

Markov decision processes (MDPs). MDPs can deal with uncertainty and

even partially observable worlds. MDPs calculate the optimal actions for each

agent for any possible belief state or partially observable state. After taking the

actions, each agent receives a local observation on the partial information about

the other agents and the state of the world. Then, the environment generates a

global reward that depends on the actions taken by the agents. The objective of

these systems is to maximize a joint global reward function.

There exist different models of decentralized control of multiple agents under

uncertainty and partially observable information. In decentralized control appli-

cations, formal models are inspired on the use of MDPs for MAP and they vary in

the implicit or explicit communication of the agents’ actions and representation of

beliefs (102). Hence, one can find distinct variants of the decentralized partially
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observable MDPs (DEC-POMDP) (7) or the multi-agent team decision problem

(93).

Communications play a key role in DEC-POMDPs. By communicating their

local observations before acting, agents synchronize their knowledge of the envi-

ronment, and the planning problem reduces to a centralized POMDP. Therefore,

it is crucial for DEC-POMDPs to rely on optimized and realistic communication

models (105). This is of special relevance in many real-world applications, such as

in robotics.

Other approaches. In contrast to deterministic planning, agents in contin-

gency planning have no full knowledge of the conditions under which the plan

will be executed and the outcome of the actions is not fully predictable. Under

these circumstances, the planner must construct a plan that can be expected to

succeed despite the unknown initial conditions and uncertain outcomes of non-

deterministic actions.

Continual planning, interleaving planning and execution, is a technique widely

adopted to perform planning under uncertainty in worlds undergoing continual

changes (27). Since the knowledge available to the agents in continual planning is

typically insufficient, agents perform plan monitoring and then repair the plan or

apply replanning when the situation changes or planned actions fail.

For agents with limited perceptions and knowledge, it is necessary to explicitly

model the agents’ sensing capabilities as part of the planning domain (91). Other

approaches, however, let the planner postpone decisions until the perceptions have

actually been made. In other words, a conditional subplan is withheld until the

agent has enough information to solve the contingency (15).
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4.3.3 Practical applications

MAP has been used in a great variety of practical applications: industry appli-

cations, market operational frameworks, military operations or e-science applica-

tions.

In industry, MAP has been used in product assembly (e.g., car assembly).

Agents plan the path of manufacturing of the product through the assembly line

of the factory, which is composed of a number of resources connected to each

other, and where each resource can perform a number of operations. ExPlanTech,

for instance, is a consolidated framework in the area of agent-based production

planning, manufacturing simulation and supply chain management (88).

MAP technology has also been used to control the flow of electricity in the

Smart Grid (94). The agents’ actions are individually rational and contribute to

desirable global goals such as promoting the use of renewable energy, encourag-

ing energy efficiency and enabling distributed fault tolerance. Another interesting

application of MAP is the automated creation of workflows in biological path-

ways like BioMAS, a Multi-Agent System for Genomic Annotation (25). BioMAS

uses DECAF, a multi-agent system toolkit that provides standard services to in-

tegrate agent capabilities such as plan retrieval, local scheduling, communication

dispatching and execution monitoring. DECAF incorporates a GPGP (68) to coor-

dinate multi-agent tasks.

In decentralized control problems, MAP has found application in coordination

of space exploration rovers, coordinated helicopter flights, multi-access broadcast

channels, and sensor network management, among others (102). MAP combined

with argumentation techniques to handle belief changes about the context has

been used in applications of ambient intelligence in the field of healthcare (85).

Finally, MAP has been extensively used in space applications and has inspired
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the well-known Satellite IPC domain. The Artificial Intelligence groups of NASA

have developed many multi-spacecraft missions that involve MAP, such as handling

mission planning of multiple rovers, crew operations or spacecraft constellation.
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5

Conclusions

The present PhD thesis introduces a novel approach to cooperative MAP based

on distributed and privacy-preserving multi-heuristic search. In this document,

we presented a chronologically-ordered compendium of research articles that keep

record of the progressive advances and developments that led to MH-FMAP, the

final version of our MAP resolution framework, which constitutes the main con-

tribution of this research work.

Our approach presents several strengths and novel features that make it stand

out among other state-of-the-art MAP techniques:

� Our formalization of a MAP task provides an advanced definition of privacy

that makes our model more flexible than most of its counterparts. While the

common approach defines information as either public or private for all the

participants (14), our formalization establishes privacy between each pair of

agents, so that a fact can be just known to a subset of agents.

Our cooperative MAP specification language supports this richer definition

of privacy, which benefits its overall expressiveness. The features of our
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language coincide in general with those of the current de facto standard,

MA-PDDL, which proves the validity of our language specification.

� MH-FMAP interleaves planning and coordination, which results in a general-

purpose approach that efficiently solves both loosely-coupled and tightly-

coupled MAP tasks, as it is proved in the experimental results.

� Unlike most approaches to MAP, MH-FMAP is based on a novel forward-

chaining Partial-Order Planning engine. On the one hand, this paradigm

benefits the parallelism of the actions of the different agents, effectively min-

imizing the makespan or duration of the solution plans, as can be noted in

the experimentation.

On the other hand, the forward-chaining search scheme allows for the appli-

cation of accurate state-based heuristic functions that maximize the perfor-

mance of the system.

� Regarding heuristic search, we contributed to the state of the art in MAP

with several technical innovations. First, we developed two different heuristic

estimators, the DTG-based hDTG and the landmark-based hLand. Both

heuristics assess the quality of the plans according to the global information

of the MAP task, offering an excellent accuracy while keeping agents’ privacy.

Additionally, MH-FMAP introduces the first multi-heuristic search strategy

in MAP, an alternation scheme that combines both estimators. The results

show that alternating hDTG and hLand dramatically improves the scalability

and performance of the framework.

All in all, these strengths and innovations give rise to a framework capable of

tackling MAP tasks of any complexity while offering a positive trade-off between

solution quality and time consumption.
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Nevertheless, MH-FMAP still presents some limitations which can be overcome

in future developments of the model. The current weaknesses of our approach can

be summarized as follows:

� The scope of this research is limited to cooperative MAP only, since one of

the initial assumptions of our model is that agents are not self-interested.

As mentioned in Chapter 1, MAP includes other interesting topics that are

worth researching, such as self-interested agents or planning with preferences,

among others.

Additionally, our approach focuses only on suboptimal heuristic search. For

this reason, the design of optimal heuristic estimators arises as a potential

future line of research.

� Despite the optimizations introduced in the latest iteration of the framework,

MH-FMAP still relies heavily on communications among agents. Agent coor-

dination and synchronization is not only applied during the joint exploration

of the search tree, but also during the heuristic evaluation of the plans, since

global estimators entail an important communication effort.

� The analysis of the CoDMAP results in section 4.2.4 proves that the perfor-

mance of MH-FMAP is limited when solving tasks described via a proposi-

tional specification. The precision of our hDTG heuristic directly depends on

the information provided by the DTGs, and thus, this estimator is heavily

optimized for MAP tasks defined through state variables.

5.1 Future Work

According to the aforementioned strengths and limitations of our approach, we

identified several potential future lines of research and development:
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� Improving the performance of the system in propositional tasks:

As described in section 4.2.4, MH-FMAP encounters performance issues when

running propositional tasks described through MA-PDDL. This limitation is

caused by the dependence of hDTG on state variables: since predicates are

converted into binary state variables, the resulting DTGs are not informative

enough for hDTG and the quality of the estimates it returns diminishes.

In order to fix this issue, it is possible to develop and integrate a conversion

tool that adapts propositional tasks to a richer state-variable-based repre-

sentation, as in the Fast Downward planning system (50).

� Optimizing the multi-heuristic strategy: MH-FMAP constitutes our

initial approach to distributed multi-heuristic search. To our knowledge,

further research is required to develop our multi-heuristic scheme to its full

potential. In this sense, we consider three possible lines of work:

– Generalizing multi-heuristic search: It is possible to generalize the

current alternation mechanism to a four-queue scheme as applied in

Fast Downward (50), sorting both open nodes and preferred successors

through all the available heuristic estimators.

– Developing additional heuristics: Given the effectiveness of the cur-

rent multi-heuristic scheme, we consider developing additional heuristic

estimators to make them work in conjunction with hDTG and hLand.

This can potentially provide MH-FMAP with more options to leave

plateaus, thus increasing the efficiency of the multi-agent exploration.

– Improving existing estimators: One of the take-home lessons of the

research stay listed in section 1.2.2 is the possibility of using concepts

derived from the Merge-and-Shrink heuristics to improve hDTG. More
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precisely, these estimators perform alternative merge and shrink proce-

dures over an initial set of atomic projections, one per state variable,

that guard a strong resemblance to the DTGs.

As shown in section 4.2.4, the size of the DTGs is critical to the accuracy

of the hDTG heuristic. For this reason, we believe that it is possible to

combine (merge) DTGs to come up with more informative graphs, thus

improving the overall accuracy of the hDTG estimator.

� Reducing the impact of communications: The distributed procedures

carried out by MH-FMAP entail a large amount of communications to contin-

uously coordinate and synchronize the planning agents. In particular, agents

perform a joint and complete search on the space of plans, being forced to ex-

change all the refinement plans they build. This results in a very demanding

approach regarding communications, which notably slows down the system.

Some works in the literature explored less demanding ways to carry out

distributed search: MAD-A* allows agents to solve parts of the task concern-

ing private information in isolation, thus reducing the communication needs

(78). MAPR (11) introduces a sequential planning scheme in which each

agent plans over the incremental solution produced by the previous agents,

which results in an extremely fast MAP method.

Therefore, one of our future lines of work focuses on reducing the com-

munication needs of our approach via a smarter search scheme that takes

advantage of the information distribution without losing the generality and

solution quality inherent to MH-FMAP.
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in planning. Journal of Artificial Intelligence Research, 22:215–278, 2004.

199, 207, 211, 242, 243

[56] D. Jannach and M. Zanker. Modeling and solving distributed con-

figuration problems: a CSP-based approach. IEEE Transactions on

Knowledge and Data Engineering, 25(3):603–618, 2013. 50, 151, 153

[57] N.R. Jennings, P. Faratin, A.R. Lomuscio, S. Parsons,

M. Wooldridge, and C. Sierra. Automated negotiation:

prospects, methods and challenges. Group Decision and Negotiation,

10(2):199–215, 2001. 1

[58] A. Jonsson and M. Rovatsos. Scaling up multiagent planning: a

best-response approach. In Proceedings of the 21st International Confer-

ence on Automated Planning and Scheduling (ICAPS), pages 114–121, 2011.

30, 65, 86, 92, 151

[59] S. Kambhampati. Refinement planning as a unifying framework for

plan synthesis. AI Magazine, 18(2):67–97, 1997. 67, 87, 95, 105

[60] G.A. Kaminka, D.V. Pynadath, and M. Tambe. Monitoring teams

by overhearing: A multi-agent plan-recognition approach. Journal

of Artificial Intelligence Research, 17:83–135, 2002. 2, 84, 90

[61] H.A. Kautz. Deconstructing planning as satisfiability. In Proceedings

of the 21st National Conference on Artificial Intelligence (AAAI), 2, pages

1524–1526, 2006. 29, 50

[62] J. Koehler and D. Ottiger. An AI-based approach to destination

control in elevators. AI Magazine, 23(3):59–78, 2002. 179

277



REFERENCES

[63] M.T. Kone, A. Shimazu, and T. Nakajima. The state of the art in

agent communication languages. Knowledge and Information Systems,

2(3):259–284, 2000. 99

[64] D.L. Kovacs. Complete BNF description of PDDL3.1. Technical

report, 2011. 23, 38, 69, 95, 111, 160

[65] S. Kraus. Beliefs, time and incomplete information in multiple

encounter negotiations among autonomous agents. Annals of Math-

ematics and Artificial Intelligence, 20(1-4):111–159, 1997. 93

[66] A. Kumar, S. Zilberstein, and M. Toussaint. Scalable multiagent

planning using probabilistic inference. In Proceedings of the 22nd In-

ternational Joint Conference on Artificial Intelligence (IJCAI), pages 2140–

2146, Barcelona, Spain, 2011. 93

[67] J. Kvarnström. Planning for loosely coupled agents using partial

order forward-chaining. In Proceedings of the 21st International Con-

ference on Automated Planning and Scheduling (ICAPS), pages 138–145.

AAAI, 2011. 47, 64, 65, 85, 147, 149, 151, 164

[68] V. Lesser, K. Decker, T. Wagner, N. Carver, A. Garvey, B. Hor-

ling, D. Neiman, R. Podorozhny, M. Prasad, A. Raja, et al. Evo-

lution of the GPGP/TAEMS domain-independent coordination

framework. Autonomous Agents and Multi-Agent Systems, 9(1-2):87–143,

2004. 51, 55, 94, 151, 260

[69] N. Lipovetzky and H. Geffner. Searching for plans with carefully

designed probes. In Proceedings of the 21th International Conference on

Automated Planning and Scheduling (ICAPS), 2011. 88

278



REFERENCES

[70] D. Long and M. Fox. The 3rd International Planning Competition:

results and analysis. Journal of Artificial Intelligence Research, 20:1–59,

2003. 179, 181, 182

[71] D. Long, H.A. Kautz, B. Selman, B. Bonet, H. Geffner,

J. Koehler, M. Brenner, J. Hoffmann, F. Rittinger, C. Anderson,

D. Weld, D. Smith, M. Fox, and D. Long. The AIPS-98 Planning

Competition. AI Magazine, 21:13–33, 2000. 23

[72] S. Maliah, G. Shani, and R. Stern. Privacy preserving landmark

detection. In Proceedings of the 21st European Conference on Artificial

Intelligence (ECAI), pages 597–602, 2014. 3, 39, 52, 54, 199, 201, 220, 221,

247

[73] J. McCarthy and P.J. Hayes. Some philosophical problems from

the standpoint of artificial intelligence. Machine Intelligence, 4:463–

502, 1969. 19

[74] D. McDermott. The 1998 AI planning systems competition. AI

Magazine, 21(2):35–55, 2000. 22

[75] C. Micacchi and R. Cohen. A framework for simulating real-time

multi-agent systems. Knowledge and information systems, 17(2):135–166,

2008. 84

[76] N.T. Nguyen and R.P. Katarzyniak. Actions and social inter-

actions in multi-agent systems. Knowledge and Information Systems,

18(2):133–136, 2009. 1, 84

279



REFERENCES

[77] X.L. Nguyen and S. Kambhampati. Reviving partial order planning.

In Proceedings of the 17th International Joint Conference on Artificial In-

telligence (IJCAI), pages 459–464, 2001. 28, 87, 95

[78] R. Nissim and R.I. Brafman. Multi-agent A* for parallel and dis-

tributed systems. In Proceedings of the 11th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS), pages 1265–1266,

2012. 53, 54, 198, 200, 267

[79] R. Nissim and R.I. Brafman. Distributed heuristic forward search

for multi-agent planning. Journal of Artificial Intelligence Research,

51:293–332, 2014. 42, 44, 51, 52, 54, 55, 201

[80] R. Nissim, R.I. Brafman, and C. Domshlak. A general, fully dis-

tributed multi-agent planning algorithm. In Proceedings of the 9th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS), pages 1323–1330, 2010. 2, 3, 39, 50, 58, 64, 76, 77, 79, 86, 91,

147, 150, 151, 177, 180, 181, 198, 244

[81] P.D. O’Brien and R.C. Nicol. FIPA - towards a standard for soft-

ware agents. BT Technology Journal, 16(3):51–59, 1998. 56, 177, 206

[82] J. Ota. Multi-agent robot systems as distributed autonomous sys-

tems. Advanced Engineering Informatics, 20(1):59–70, 2006. 1
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