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Abstract	
	
Electrochemical	 Impedance	 Spectroscopy	 (EIS)	 is	 a	 very	 powerful	 tool	 to	 study	 the	
behaviour	of	electrochemical	systems.	At	present,	it	is	widely	used	in	the	fuel	cell	field	
in	order	to	study	challenging	cutting	edge	issues	as	membrane	drying	or	gas	diffusion	
layer	 flooding	 amongst	 others.	 The	 proper	 analysis	 of	 impedance	 data	 requires	 the	
fulfilment	of	 four	 fundamental	conditions:	causality,	 linearity,	stability	and	finiteness.	
The	 non	 compliance	 with	 any	 of	 these	 conditions	 may	 lead	 to	 biased,	 or	 even	
misguided,	 conclusions.	 Therefore	 it	 is	 critical	 to	 verify	 the	 compliance	 of	 these	
conditions	before	accepting	any	analysis	performed	on	an	experimental	spectrum.	This	
is	even	more	 important	 in	a	 fuel	 cell	experimental	 spectrum	analysis,	 since	 fuel	 cells	
are	 markedly	 non	 stationary	 systems.	 The	 aim	 of	 this	 work	 is	 to	 establish	 an	
impedance	 spectrum	 quantitative	 validation	 technique	 to	 validate	 the	 whole	
experimental	spectrum	and	to	identify	the	individual	points	within	a	spectrum	that	do	
not	 comply	 any	of	 the	 four	 conditions,	 in	order	 to	 remove	 these	 inconsistent	points	
from	 the	 analysis.	 The	designed	 validation	method	 consists	 in	 a	 Kramers-Kronig	 (KK)	
validation	test,	by	equivalent	electrical	circuit	fitting,	coupled	with	a	Montecarlo	error	
propagation	method.	In	a	first	step,	the	experimental	spectrum	is	fitted	to	a	particular	
electrical	equivalent	circuit,	which	satisfies	the	KK	relations.	Then,	in	a	second	step,	a	
statistical	 Montecarlo	 method	 is	 used	 in	 order	 to	 propagate	 the	 model	 fitting	
parameter	uncertainty	through	the	model.	Using	this	approach,	a	consistency	region	is	
built	 for	 a	 given	 confidence	 level:	 the	 experimental	 points	 inside	 this	 region	 are	
considered	consistent	 for	 the	given	confidence	 level,	whereas	 the	outside	points	are	
rejected.	 The	 method	 was	 used	 on	 PEMFC	 experimental	 impedance	 spectra;	 and	 it	
successfully	managed	to	identify	inconsistent	points,	associated	to	no	stationarities.	
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1.	Introduction	
	
In	 current	days,	 electrochemical	 impedance	 spectroscopy	 (EIS)	 has	 gained	 significant	
relevance	in	the	fuel	cell	(FC)	field,	since	this	electrochemical	measurement	technique	
allows	to	obtain	information	on	the	fuel	cell	 internal	state	and	on	its	electrochemical	
behaviour	 [1-2].	 This	 technique	provides	 detailed	 information	on	 the	 conductivity	 of	
the	membrane,	on	the	electrochemical	electrode	processes	and	on	the	intrinsic	losses	
of	 the	 system	 [3-5].	 All	 these	 data	 are	 crucial	 in	 order	 to	 tackle	 some	 of	 the	 most	
challenging	actual	issues	of	fuel	cells,	such	as	membrane	drying	and	gas	diffusion	layer	
flooding	 [6-7].	 Therefore,	 EIS	 has	 widely	 been	 applied	 for	 membrane	 electrode	
assembly	optimization	 [8-13];	operation	conditions	optimization	 [14-17];	 control	 [18]	
and	diagnosis	[19-20].	The	technique	has	been	applied	both,	to	fuel	cell	single	cells	[20-
24]	and	to	fuel	cell	stacks	[19,	25].	
	
The	impedance	of	a	given	system	for	angular	frequency	𝜔	is	defined	by	complex	Ohm’s	
law	[26]:	
	
	

𝑍 𝜔 =
ℱ 𝑈(𝑡)
ℱ 𝐼(𝑡) 	 (1)	

	
Where	ℱ	represents	 the	 Fourier	 transform	 operator.	 The	 impedance	 concept	 is	 a	
generalization	of	the	DC	electric	resistance	concept:	it	quantifies	not	only	the	electric	
resistance	 of	 the	 system	 (amplitude	 relation	 between	 the	 current	 and	 the	 voltage	
signals);	but	it	also	quantifies	the	time	offset	of	both	signals.	
	
The	 generalized	 Ohm’s	 law,	 and	 thus	 the	 impedance	 concept,	 are	 valid	 only	 if	 the	
hypothesis	of	linearity,	causality,	finite	range	and	stability	are	met	[27].	If	any	of	these	
conditions	 is	 not	 fulfilled	 the	 obtained	 results	 may	 be	 misleading	 and	 unusable	 to	
extract	 proper	 conclusions	 on	 the	 system.	 Therefore	 it	 is	 crucial	 to	 verify	 that	 the	
experimental	 impedance	 spectrum	 satisfies	 the	 four	 conditions,	 before	 starting	 the	
analysis	 itself	 [28].	Experimental	spectrum	validation	 is	even	more	 important	 for	 fuel	
cell	 systems,	 since	 these	 systems	 are	 highly	 non	 stationary,	 and	 generally	 present	
potential	time	drifts	[29].	
	
Firstly,	 the	 linearity	 of	 the	 system	 is	 essential	 for	 the	 no-generation	 of	 harmonics,	
which	 would	 distort	 the	 obtained	 EIS	 spectra	 [30].	 However,	 the	 electrochemical	
systems	 are	 in	 general	 highly	 nonlinear	 systems	 since	 they	 are	 governed	 by	 Buttler-
Volmer’s	 equation.	 In	 these	 cases,	 the	 linearity	 condition	 is	 achieved	 by	 applying	 a	
perturbation	of	small	enough	amplitude	[20].	
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Secondly,	 the	 causality	 condition	 implies	 that	 the	 system’s	 response	 is	 a	 direct	
consequence	of	 the	perturbation;	and	 therefore,	 the	 response	does	not	precede	 the	
disturbance	[31].	The	finite	range	condition	implies	that	the	system’s	impedance	takes	
a	 finite	value	 in	 the	whole	 frequency	 range	 [28].	 In	practice,	 this	 condition	 is	always	
met,	since	physical	systems	are	finite	systems;	and	therefore,	the	finite	value	condition	
is	not	a	critical	condition	[26].	
	
Finally,	a	system	meets	the	stability	condition	if	it	operates	in	a	single	operation	point	
during	the	measurement	of	the	whole	EIS	spectrum	[32].	Due	to	stochastic	processes,	
as	flooding	and	drying;	to	aging	processes;	and	to	variations	of	the	input	parameters,	
fuel	 cell	 systems	 are	 generally	 highly	 non	 stable	 systems	 [19].	 In	 consequence,	 the	
stability	condition	is	the	most	critical	condition	for	EIS	measurements	in	FC	systems.		
	
The	main	 purpose	 of	 this	work	 is	 to	 establish	 an	 experimental	 impedance	 spectrum	
quantitative	validation	technique.	The	validation	test	is	not	just	meant	to	validate	the	
experimental	spectrum	or	not	(verify	if	the	four	conditions	are	satisfied	by	the	whole	
spectrum);	 but	 it	 also	 has	 to	 distinguish	 the	 individual	 spectrum	 points	 that	 do	 not	
meet	any	of	 the	 four	conditions.	The	removal	of	 the	 inconsistent	points	allows	using	
the	 rest	 of	 the	 spectrum	 for	 the	 analysis,	 thus	 reducing	 the	 number	 of	 spectra	 that	
have	to	be	repeated	due	to	the	presence	of	a	little	amount	of	inconsistent	points.	The	
validation	 test	was	experimentally	validated	by	measuring	 the	EIS	 spectra	of	a	 single	
cell	 of	 a	 commercial	 PEMFC	 stack,	 in	 operation	 conditions	 in	which	 the	 system	was	
stable	and	in	operation	conditions	in	which	it	was	unstable.	This	work	focuses	on	the	
validation	 of	 the	 developed	method	 for	 no	 stability	 detection;	 since,	 as	 it	 has	 been	
explained	previously,	the	stability	condition	is	the	most	critical	one	in	FC	systems.	
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2.	Methodology	
	

2.1.	Kramers-Kronig	relations	
	
The	Kramers-Kronig	(KK)	relations	are	integral	equations	relating	the	real	part	and	the	
imaginary	part	of	 complex	quantities	 that	meet	 the	 conditions	of	 causality,	 linearity,	
finite	value	and	stability.	They	were	first	obtained	by	Kramers	[33]	and	Kronig	[34]	 in	
the	 field	of	 optics;	 and	 they	were	extrapolated	 to	 the	electrical	 impedances	 field	by	
Bode	 [35].	 They	 come	 from	 the	 Cauchy	 theorem	 that	 introduces	 the	 definition	 of	 a	
causal	system.	They	establish	that:	
	
	
	
	
	

𝑍** 𝜔 =
2𝜔
𝜋 ∙

𝑍* 𝑥 − 𝑍*(𝜔)
𝑥0 − 𝜔0 ∙ 𝑑𝑥

23

4
	 (2)	

	
𝑍* 𝜔 = lim

8→23
𝑍*(𝜔) +

2
𝜋 ∙

𝑥 ∙ 𝑍** 𝑥 − 𝜔 ∙ 𝑍**(𝜔)
𝑥0 − 𝜔0

23

4
∙ 𝑑𝑥	 (3)	

	
Where	𝑍* 	and	𝑍** 	denote	 respectively	 the	 real	 and	 the	 imaginary	 part	 of	 the	
impedance;	𝜔	stands	for	the	angular	frequency,	2𝜋𝑓.	
	
It	should	be	kept	 in	mind	that	these	relations	are	purely	mathematical	relations,	and	
therefore,	they	do	not	reflect	any	actual	physical	condition	of	the	studied	system.	
	
The	KK	relations	are	a	powerful	tool	for	 impedance	spectrum	consistency	verification	
[36],	since	a	consistent	spectrum	(a	spectrum	that	verifies	the	four	conditions)	satisfies	
KK	 relations;	 and	 vice	 versa,	 a	 spectrum	 that	 satisfies	 KK	 relations	 verifies	 the	 four	
conditions,	 and	 therefore	 is	 consistent.	 So	 evaluating	 if	 the	 experimental	 spectrum	
satisfies	KK	relations	is	a	good	consistency	test.		
	
Even	 if	 in	theory,	the	KK	relations	are	able	to	detect	non-compliance	with	any	of	the	
four	 conditions;	 in	 practice,	 they	 are	 much	more	 susceptible	 to	 instabilities	 that	 to	
nonlinearities	[29].	For	example,	in	the	system	investigated	by	Urquidi-Macdonald	[37]	
it	 was	 observed	 that	 KK	 relations	 were	 virtually	 insensitive	 to	 nonlinearities:	 KK	
relations	 were	 satisfied	 even	 when	 the	 system	 did	 not	 fulfil	 the	 linearity	 condition.	
Recently	 it	 has	 been	 shown	 that	 the	 Kramers-Kronig	 relations	 are	 only	 sensitive	 to	
nonlinearities	 if	 at	 least	 a	 part	 of	 the	 spectrum	 has	 been	measured	 for	 frequencies	
above	a	transition	frequency,	which	depends	on	the	system	[38].	On	the	other	hand,	it	
has	 been	 widely	 observed	 that	 the	 KK	 relations	 are	 very	 sensitive	 to	 the	 non-
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compliance	of	the	stability	condition:	even	very	slightly	unstable	systems	do	not	satisfy	
KK	relations	[39].	
	
In	 bibliography,	 KK	 relations	 have	 been	 applied	 by	 direct	 integration	 of	 the	 KK	
equations;	by	experimental	observation	of	linearity,	finiteness	and	stationarity;	and	by	
fitting	to	an	electrical	equivalent	circuit	that	satisfies	Kramers-Kronig	relations	[36].		
	
On	 the	 one	 hand,	 direct	 integration	 of	 KK	 equations	 allows	 to	 calculate	 one	 of	 the	
impedance	components	(real	part	o	imaginary	part)	from	the	other	one.	The	calculated	
component	can	then	be	compared	with	the	experimental	one;	and	conclusions	about	
the	 compliance	 of	 the	 KK	 relations	 can	 be	 extracted.	 The	 main	 limitation	 of	 this	
method	 is	 that	 KK	 relations	 direct	 integration	 requires	 data	 in	 the	 frequency	 range	
from	0	to	infinity	[40];	and	the	data	obtained	in	practice	only	cover	a	finite	frequency	
range.	Thus,	extrapolation	of	the	data	is	required.	Several	extrapolation	methods	have	
been	used	in	literature:	the	Kendig	method	[41-42];	the	Macdonald	method	[43];	the	
Haili	 method	 [44]	 and	 the	 Esteban-Orazem	 method	 [40].	 However,	 any	 of	 these	
methods	 can	 be	 used	 if	 the	 measured	 frequency	 range	 is	 too	 narrow;	 or	 if	 the	
maximum	imaginary	component	point	has	not	been	obtained	experimentally	[36].		
	
On	 the	 other	 hand,	 the	 experimental	 validation	 of	 KK	 relations	 consists	 in	 verifying	
experimentally	that	the	conditions	of	causality,	linearity	and	stability	are	satisfied:	if	so,	
it	 can	 be	 deduced	 that	 the	 KK	 are	 also	 satisfied.	 The	 hypotheses	 of	 causality	 and	
linearity	 can	 be	 experimentally	 verified	 analysing	 the	 response	 of	 the	 system	 in	 the	
frequency	 domain	 [45-46]:	 if	 these	 hypotheses	 are	 satisfied	 the	 non	 fundamental	
harmonic	content	in	the	response	signal	should	be	neglectable	[26].	The	hypothesis	of	
stability	can	be	experimentally	verified	by	replication	of	the	spectra	measurement	[28].		
	
Finally,	if	a	system	can	be	fit	to	an	equivalent	circuit	that	verifies	KK	relations,	then	the	
system	also	satisfies	these	relations	[47].	Circuits	consisting	in	passive	and	distributed	
elements	satisfy	KK	relations	[48].	Combining	both	ideas	it	can	be	deduced	that	if	the	
experimental	EIS	spectrum	(which	has	to	be	validated)	can	be	fitted	to	an	equivalent	
circuit	formed	by	passive	and	distributed	elements,	then	the	experimental	spectrum	is	
consistent	with	KK	relations.		
	
The	equivalent	circuit	fitting	methodology	has	the	great	advantage	of	not	requiring	the	
evaluation	of	 the	 integral	equations	 in	an	 infinite	 frequency	 range.	Therefore	 it	does	
not	 require	 the	 use	 of	 extrapolation	 algorithms;	 which,	 as	 mentioned	 previously,	
introduce	 errors	 in	 the	 analysis	 and	 have	 a	 very	 limited	 applicability.	 However,	 it	
presents	a	limitation:	the	equivalent	circuit	and	the	parameter	initialization	have	to	be	
carefully	selected;	since	a	bad	selection	can	lead	to	the	test	failure.				
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2.2.	Overall	methodology	selection	
	
Considering	 the	advantages	and	 the	drawbacks	of	each	one	of	both	methods,	 it	was	
decided	to	select	the	equivalent	circuit	fitting	method	for	this	work.	The	experimental	
spectra	were	fitted	to	an	equivalent	electrical	circuit	that	satisfies	KK	relations	in	order	
to	validate	the	experimental	spectra:	
	

• If	 a	 spectrum	 is	 fit	 by	 the	 equivalent	 circuit,	 then	 it	 is	 consistent	 with	 KK	
relations:	it	can	be	considered	valid;	and	can	be	used	for	further	analysis;	

• If	a	spectrum	is	not	fit	by	the	equivalent	circuit,	then	it	is	inconsistent	with	KK	
relations:	it	cannot	be	considered	valid;	and	if	used	for	further	analysis,	it	could	
lead	to	slanted	or	erroneous	conclusions.		

	
An	 issue	arises	 from	this	methodology:	 the	definition	of	 “good”	 fit.	 The	definition	of	
the	acceptance	criteria	of	the	test	(the	definition	of	“good”	and	“bad”	fits)	is	not	trivial	
and	depends	on	the	studied	system	[36].	
	
In	 order	 to	 overcome	 the	 issue	 of	 the	 acceptance	 criteria	 definition,	 a	 quantitative	
method	based	on	a	Montecarlo	algorithm	was	used.	This	quantitative	method	will	set	
the	 acceptance	 criteria	 for	 each	 point	 of	 the	 experimental	 spectrum,	 for	 a	 given	
confidence	 level.	Moreover,	 since	 this	method	 sets	 different	 acceptance	 criteria	 for	
each	point,	it	will	detect	inconsistent	points	individually	rather	than	working	with	the	
spectrum	as	a	whole.	Therefore,	the	method	will	allow	distinguishing	which	points	of	
the	experimental	spectrum	are	consistent	and	which	ones	are	inconsistent	with	the	KK	
relations.	
	

2.3.	Circuit	fitting	
	
As	introduced	previously,	in	the	present	work	the	equivalent	circuit	fitting	method	was	
selected.	The	first	step	consists	 in	the	selection	of	the	equivalent	circuit	to	which	the	
experimental	 spectra	 are	 going	 to	 be	 fit.	On	 the	one	hand,	 Bastidas	 and	 co-workers	
suggest	using	Voight’s	circuit	[49].	Voight’s	circuit,	given	in	figure	1,	is	a	𝑅 𝑅𝐶 >	circuit:	
it	 is	composed	by	𝑛	parallel	𝑅𝐶	subcircuits	 in	series	with	an	 individual	resistance.	The	
main	advantages	of	this	circuit	for	this	work	are:		
	

• Firstly,	 it	 is	 a	 very	 versatile	 circuit	 that	 can	 fit	 properly	 a	 wide	 range	 of	
impedance	spectra,	just	by	modifying	the	number	of	considered	sub	circuits,	𝑛.	
It	can	even	fit	inductive	parts	with	negative	resistance	and	capacitance	values.	
Since	this	is	only	a	validation	technique,	these	negative	values	can	be	accepted	
for	 performing	 the	 spectrum	 validation,	 even	 if	 they	 don’t	 have	 any	 physical	
meaning	for	the	studied	system	[50].	
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• Secondly,	this	circuit	satisfies	the	Kramers-Kronig	relations,	and	therefore	if	the	
experimental	 spectrum	 can	 be	 fitted	 by	 this	 circuit,	 then	 the	 experimental	
spectrum	satisfies	Kramers-Kronig	relations.	

	
On	the	other	hand,	Boukamp	suggests	using	Boukamp’s	circuit	[48],	which	consists	in	a	
Voight’s	circuit	in	series	with	a	capacitor	and	an	inductor.	It	is	a	𝑅 𝑅𝐶 >𝐶𝐿	circuit.	This	
circuit	 has	 the	 same	 advantages	 than	Voight’s	 circuit;	 but	 it	 has	 two	 supplementary	
parameters.	 Since	 Voight’s	 circuit	 is	 able	 to	 model	 inductive	 parts,	 as	 it	 has	 been	
explained	above,	both	circuits	are	equivalent	for	this	work’s	purposes.	In	consequence,	
Voight’s	circuit	was	selected	in	this	work,	since	it	involves	less	parameters.			
	
	
Using	 the	 impedance	 expressions	 for	 resistors	 and	 capacitors,	 and	 the	 impedance	
combination	 rules	 [51],	 the	 following	 expressions	 were	 obtained	 for	 the	𝑅 𝑅𝐶 >	
circuit:	
	
	

𝑍*B BC D(𝜔) = 𝑅E +
𝑅BCF

𝑅BCF ∙ 𝐶BCF ∙ 𝜔
0 + 1

>

FHE

	 (4)	

	
	

𝑍**B BC D(𝜔) = −
𝑅BCF

0 ∙ 𝐶BCF ∙ 𝜔

𝑅BCF ∙ 𝐶BCF ∙ 𝜔
0 + 1

>

FHE

	 (5)	

	
Where	𝑍*B BC D 	and	𝑍

**
B BC D 	denote	 respectively	 the	 real	 and	 the	 imaginary	 part	 of	

the	 impedance	 of	 the	𝑅 𝑅𝐶 > 	circuit;	𝑅Erepresents	 the	 individual	 resistance;	 and	
finally,	𝑅BCF 	and	𝐶BCF 	are	the	resistance	and	the	capacitance	of	the	𝑖-th	𝑅𝐶	subcircuit.	
The	 vector	 of	 parameters	 associated	 with	 the	𝑅 𝑅𝐶 >	circuit,	𝑎B(BC)D,	 is	 a	2𝑛 + 1	
dimensional	vector,	defined	as:	
	
	

𝑎B(BC)D =

𝑅E
𝑅BCE
𝐶BCE
⋮

𝑅BC>
𝐶BC> 0>2E

	 (6)	

	
Actually,	a	 large	number	of	programs	are	able	to	perform	equivalent	circuit	 fitting	to	
impedance	spectra,	as	Nova®	and	Zview®	for	instance.	However,	these	programs	are	
not	useful	in	this	case;	since	the	considered	circuit	is	a	circuit	with	a	variable	number	of	
elements	(the	number	varies	from	one	experimental	spectrum	to	another),	which	can	
need	a	 large	number	of	elements	to	fit	 the	experimental	spectrum.	The	use	of	these	
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programs	 would	 require	 modifying	 the	 fitting	 circuit	 manually	 after	 each	 iteration,	
which	 is	 infeasible	 in	 this	 work’s	 context.	 This	 is	 the	 reason	 why	 in	 this	 work	 a	
Labview®	 program	 was	 developed	 in	 order	 to	 perform	 the	 fitting	 of	 experimental	
spectra	to	Voight’s	circuit.		
	
The	 fitting	 process	 consists	 in	 determining	 the	 vector	 of	 parameters,	𝑎B(BC)D,	 that	
minimizes	 the	 fitting	error	 (difference	between	each	one	of	 the	experimental	 points	
and	the	associated	predicted-by-the-model	point).	In	order	to	quantify	the	fitting	error	
a	goodness	of	fit	parameter	must	be	defined.	In	the	EIS	field,	the	most	used	goodness	
of	 fit	 parameter	 is	 the	weighted	 sum	 of	 quadratic	 errors	 [28],	𝜒0.	 This	 parameter	 is	
defined	as:	
	
	

𝜒0 = 𝛼F ∙ 𝑍′OPQ(𝜔F) − 𝑍*B BC D(𝜔F)
0
+ 𝛽F ∙ 𝑍′′OPQ(𝜔F) − 𝑍′*B BC D(𝜔F)

0
ST

FHE

	 (7)	

	
Where	𝑁Q 	denotes	 the	 number	 of	 experimental	 points.	 Subscript	𝑒𝑥𝑝 	refers	 to	
experimental	 points;	 whereas,	 subscript	𝑅 𝑅𝐶 >	refers	 to	 model	 calculated	 points	
using	 equations	 (4)	 and	 (5).	 Finally,	𝛼F 	and	𝛽F 	are	 the	 weight	 of	 the	 real	 and	 the	
imaginary	part	of	point	𝑖.	
	
The	 optimum	weighing	 strategy	 is	 to	weight	 each	 component	 of	 each	 experimental	
point	 inversely	 to	 the	 uncertainty	 associated	 to	 it	 [26]:	 experimental	 data	 with	 low	
uncertainties	will	be	given	high	weights	in	the	fitting;	whereas,	experimental	data	with	
big	 uncertainties	 will	 be	 given	 low	 weights,	 preventing	 the	 noise	 in	 the	 fitting	 that	
these	 points	 would	 introduce	 if	 given	 a	 big	 weight.	 Thus	 the	 optimum	 weights	 are	
given	by:	
	
	 𝛼F =

1

𝜎YZ(8[)
0	 (8)	

	 𝛽F =
1

𝜎YZZ(8[)
0	 (9)	

	
Where	𝜎YZ(8[)	and	𝜎YZZ(8[)	denote	 the	uncertianty	of	 the	 real	 and	 the	 imaginary	part	
associated	to	the	𝑖-th	point.		
	
An	 hypothesis	 that	 can	 generally	 be	 applied	 is	 that	 the	 relative	 errors	 associated	 to	
measurements	 are	 constant	 [52].	 Thus,	 the	 absolute	 error	 (the	 uncertainty)	 is	
proportional	to	the	impedance	modulus:	
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	 𝜎YZ(8[) ∝ 𝑍OPQ(𝜔F) 	 (10)	

	 𝜎YZZ(8[) ∝ 𝑍OPQ(𝜔F) 	 (11)	

	
The	value	of	the	proportionality	constant	has	no	effect	on	the	fitting	[53]:	therefore,	it	
was	considered	as	the	unity.	Introducing	equations	(10)	and	(11)	in	equations	(8)	and	
(9):	
	
	 𝛼F = 𝛽F =

1

𝑍OPQ(𝜔F)
0	 (12)	

	
In	 this	 work,	 the	 weights	 (real	 part	 and	 imaginary	 part	 weights)	 of	 each	 of	 the	
experimental	point	were	determined	using	equation	 (12).	Once	each	point	has	been	
weighted,	 the	parameter	𝜒0	can	be	 calculated	 for	 a	 given	 vector	 of	 parameters.	 The	
following	step	 is	 to	proceed	 to	 the	 fitting.	Fitting	corresponds	 to	 finding	 the	best	 fit:	
the	 vector	 of	 parameters	 that	 minimizes	 the	 error	 between	 the	 model	 and	 the	
experimental	data.	 Thus,	 the	 fitting	problem	 is	 equivalent	 to	 solving	an	optimization	
problem.	The	optimization	problem	that	arises	from	the	fitting	problem	is	a	non	linear	
optimization	problem,	which	therefore	requires	a	non	linear	optimization	algorithm	to	
be	 solved.	 A	 very	 common	 and	 powerful	 non	 linear	 optimization	 algorithm	 is	 the	
Levenberg-Marquardt	 algorithm	 [54].	 This	 algorithm	was	used	 to	perform	 the	 circuit	
fitting	 in	 this	work.	 The	 Levenberg-Marquardt	 algorithm	 output	 is	 composed	 by	 the	
best	 fit	parameters	 (the	vector	𝑎B(BC)D 	that	minimizes	𝜒2);	and	by	 the	standard	error	
associated	to	each	one	of	 the	model	parameters.	These	standard	errors	quantify	 the	
uncertainty	 in	 each	 one	 of	 the	 fitted	 model	 parameters.	 The	 standard	 error	
vector,	𝜎B(BC)D,	can	be	defined	as:	
	
	

𝜎B(BC)D =

𝜎B]
𝜎BBC]
𝜎CBC]
⋮

𝜎BBCD
𝜎CBCD 0>2E

	 (13)	

	
Where	𝜎F 	denotes	 the	 standard	 error	 of	 parameter	𝑖.	 It	 corresponds	 with	 a	2𝑛 + 1	
dimensional	vector.		
	
Summing	up,	 in	 this	work,	 the	 equivalent	 circuit	 fitting	 process	was	 implemented	 in	
Labview®	 using	 a	 Levenberg-Marquardt	 algorithm	 coupled	 with	 an	 inverse-to-the-
square	weighing	strategy.		
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2.4.	Number	of	subcircuits	selection	
	
As	 explained	 in	 the	 previous	 subsection,	 the	 experimental	 spectra	 are	 fitted	 to	 a		
𝑅 𝑅𝐶 >	circuit.	A	key	issue	is	the	selection	of	the	number	of	subcircuits,	𝑛.		
	
The	goodness	of	the	fitting	will	improve	by	raising	the	number	of	subcircuits;	however	
a	 large	number	of	subcircuits	 leads	to	 large	freedom	degrees	for	the	fitting	problem,	
and	this	results	in	very	large	errors	in	the	fitted	model	parameters	(over	fitting),	which	
makes	the	fitting	useless	for	the	following	step	of	the	technique.	There	 is	an	optimal	
number	of	subcircuits,	above	which	a	further	increase	causes	a	greater	increase	in	the	
parameter	uncertainty	than	the	obtained	 increase	 in	the	goodness	of	the	fitting.	The	
optimal	number	of	RC	subcircuits	was	determined	individually	for	each	spectrum.		

	
2.5.	Montecarlo	error	propagation	

	
The	 equivalent	 circuit	 fitting	 itself	 is	 not	 a	 quantitative	 method:	 it	 does	 not	 allow	
discriminating	 the	 inconsistent	points	 from	the	consistent	ones;	 it	only	evaluates	 the	
consistency	of	the	spectrum	as	a	whole.	In	addition,	the	criterion	to	distinguish	a	“good	
fit”	from	a	“bad	fit”	should	be	defined	if	only	the	equivalent	circuit	fitting	was	used.	A	
quantitative	method	can	be	built	by	coupling	the	equivalent	circuit	fitting	(described	in	
previous	 subsections)	 with	 an	 error	 propagation	 method	 based	 on	 a	 Montecarlo	
algorithm	[36].	
	
The	 Montecarlo	 algorithm	 is	 a	 stochastic	 algorithm	 that	 simulates	 the	 random	
behaviour	of	a	real	system	by	generating	pseudo-random	numbers	using	a	computer	
[55].	The	basis	of	an	error	propagation	Montecarlo	algorithm	is	to	consider	the	input	
parameters	 of	 the	 model	 as	 random	 variables	 with	 a	 given	 distribution.	 Using	 a	
pseudo-random	 number	 generator,	 a	 random	 value	 is	 generated	 for	 each	 input	
parameter,	consistent	with	the	probability	distribution	of	that	 input.	Using	the	set	of	
random	parameters	generated	for	each	input	parameter,	the	output	is	calculated	using	
the	model.	Repeating	this	process	a	very	 large	number	of	 iterations,	a	sample	of	 the	
possible	 outputs	 of	 the	 model	 with	 the	 considered	 distributions	 of	 the	 input	
parameters	 is	 obtained.	 	 If	 the	 number	 of	 iterations	 is	 high	 enough,	 the	 sample	
estimates	(sample	mean	and	sample	standard	deviation)	will	be	good	estimators	of	the	
population	 parameters	 (mean	 and	 standard	 deviation	 of	 the	 model	 output).	 This	
information	of	the	distribution	of	the	model	output	can	be	used	to	build	a	consistency	
zone	of	the	output	variable,	with	a	given	degree	of	confidence.		
	
So,	 in	 this	work,	once	 the	experimental	 spectrum	was	 fitted	 to	 the	circuit,	 the	 fitted	
model	 parameters	 and	 their	 errors	 were	 used	 to	 propagate	 the	 errors	 through	 the	
model,	 using	 a	 Montecarlo	 algorithm.	 Firstly,	 each	 circuit	 element	 was	 assigned	 a	
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random	 variable	 value,	 normally	 distributed	 around	 the	 fitted	 value	 of	 that	 model	
parameter	 and	 with	 a	 standard	 deviation	 equal	 to	 the	 fitting	 error	 for	 that	 model	
parameter.	 The	 normality	 assumption	 is	 a	 good	 hypothesis	 when	 no	 a	 priori	
information	of	the	distribution	is	available	[56].	Therefore,	the	random	vector	of	input	
parameters	of	the	model,	𝑋_`>,	is	generated	according	to	the	following	distribution:	
	
	 𝑋_`>~𝒩 𝑎B(BC)D; 	𝜎B(BC)D 	 (14)	

	
Where	𝒩	denotes	the	normal	distribution.	For	the	sake	of	simplicity	a	component-to-
component	 vectorial	 notation	 has	 been	 used:	 the	𝑖-th	 component	 of	 vector	 	𝑋_`>	is	
distributed	according	 to	a	normal	distribution	of	mean	 the	𝑖-th	component	of	vector	
𝑎B(BC)D 	and	 standard	 deviation	 the	𝑖-th	 component	 of	 vector	𝜎B(BC)D.	𝑎B(BC)D 	is	 the	
vector	 of	 fitted	 values	 of	 each	 circuit	 element;	 and		𝜎B(BC)D 	represents	 the	 fitting	
standard	 error	 vector.	 Both,	𝑎B(BC)D 	and		𝜎B(BC)D 	were	 determined	 in	 the	 equivalent	
circuit	fitting	step,	as	described	in	previous	subsections.		
	
Secondly,	once	 the	 random	vector	of	 input	parameters	of	 the	model	was	generated,	
the	random	parameters	were	introduced	in	the	equations	of	the	model	(4)	and	(5)	in	
order	 to	 calculate	 the	 real	 part	 and	 the	 imaginary	 part	 of	 the	 impedance	 for	 every	
frequency	 in	 the	 experimental	 frequency	 range,	 obtaining	 the	 simulated	 spectrum.		
This	 corresponds	 to	 a	 single	 iteration.	 The	 model	 spectrum	 was	 simulated	 a	 large	
number	of	 times	 (in	 the	order	of	hundreds	of	 thousands).	Since	each	simulation	had	
different	model	 parameters	 (since	 the	model	 parameters	 are	 random	variables),	 the	
simulated	spectrum	differed	from	one	simulation	to	the	other.	For	each	frequency	of	
the	 spectrum,	 the	 sample	mean	 and	 the	 sample	 standard	 deviation	were	 calculated	
from	the	whole	collection	of	simulated	spectra.		
	
On	the	one	hand,	the	sample	means	were	calculated	using	the	following	expressions:	
	
	

𝑍* 𝜔F =
1
𝑛FdO

∙ 𝑍*(𝜔F)e

>[fg

eHE

	 (15)	

	
𝑍** 𝜔F =

1
𝑛FdO

∙ 𝑍**(𝜔F)e

>[fg

eHE

	 (16)	

	
Where	𝑛FdO 	denotes	 the	 number	 of	 iterations.	𝑍* 𝜔F 	and	𝑍** 𝜔F 	represent	 the	
sample	means	of	 the	 real	 part	 and	 the	 imaginary	part	of	 the	 impedance	 for	 angular	
frequency	𝜔F.		
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On	the	other	hand,	the	sample	standard	deviations	were	calculated	using	the	following	
expressions:	
	
	

𝑠YZ(8[) =
1

𝑛FdO − 1
∙ 𝑍*(𝜔F)e − 𝑍* 𝜔F

0
>[fg

eHE

	 (17)	

	

𝑠YZZ(8[) =
1

𝑛FdO − 1
∙ 𝑍**(𝜔F)e − 𝑍** 𝜔F

0
>[fg

eHE

	

	

(18)	

Where	𝑠YZ(8[)	and	𝑠YZZ(8[)	denote	the	sample	standard	deviations	of	the	real	part	and	
the	imaginary	part	of	the	impedance	for	angular	frequency	𝜔F.		
	
Therefore,	 four	 sample	 parameters	 (two	 means	 and	 two	 standard	 deviations;	 one	
associated	to	the	real	part	and	another	to	the	imaginary	part)	are	calculated	for	each	
frequency	in	the	experimental	frequency	range.		
	
As	explained	previously,	the	theoretical	foundation	of	Montecarlo	algorithm	is	that	for	
a	high	enough	number	of	iterations,	the	sample	parameters	tend	to	the	parameters	of	
the	output	population	[55].	Therefore:	
	
	 lim

>[fg→23
𝑍* 𝜔F = 𝜇YZ(8[)	 (19)	

	 lim
>[fg→23

𝑍** 𝜔F = 𝜇YZZ(8[)	 (20)	

	 lim
>[fg→23

𝑠YZ(8[) = 𝜎YZ(8[)	 (21)	

	 lim
>[fg→23

𝑠YZZ(8[) = 𝜎YZZ(8[)	 (22)	

	
Where	𝜇YZ(8[)	and	𝜎YZ(8[)	are	the	mean	and	the	standard	error	of	the	real	part	of	the	
impedance	 for	 angular	 frequency 	𝜔F ;	 and	𝜇YZZ(8[) 	and	𝜎YZZ(8[) 	are	 the	 analgoue	
parameters	of	the	imaginary	part	of	the	impedance	for	thar	angular	frequency.		
	
Therefore,	if	the	number	of	iterations	is	high	enough,	then	the	population	parameters	
(the	parameters	of	interest)	can	be	deduced	from	the	value	of	the	sample	parameters,	
determined	with	 the	 simulation	 process.	 A	 convergence	 study	was	 done	 in	 order	 to	
guarantee	 that	 the	 number	 of	 iterations	 was	 high	 enough	 in	 order	 to	 obtain	 the	
population	parameters	from	the	sample	estimators	with	a	low	error.	
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Thirdly,	 the	 Kolmogorov-Smirnov	 normality	 test	 was	 applied	 in	 order	 to	 test	 the	
normality	of	each	one	of	 the	output	distributions	 (one	 for	 the	 real	part	and	another	
one	for	the	imaginary	part,	of	each	frequency	in	the	experimental	frequency	range).	In	
this	case,	the	Kolmogorov-Smirnov	normality	test	showed	that	there	were	not	enough	
statistical	 evidences	 to	 reject	 the	 normality	 assumption	 for	 any	 of	 the	 output	
distributions.	For	this	reason,	the	normality	assumption	was	accepted	for	every	output	
distribution.	Therefore,	for	each	𝜔F 	in	the	experimental	frequency	range:	
	
	 𝑍*(𝜔F)~𝒩 𝜇YZ(8[); 	𝜎YZ(8[) 	 (23)	

	 𝑍**(𝜔F)~𝒩 𝜇YZZ(8[); 	𝜎YZZ(8[) 	 (24)	

	
Knowing	 the	 distribution	 of	 a	 random	 variable	 allows	 to	 build	 a	 confidence	 interval	
that	contains	the	random	variable	with	a	given	confidence	level	[55].		
	
According	to	the	normal	distribution	properties	[56]:	
	
	 ℙ 𝜇 − 𝜎 ≤ 𝒩 𝜇; 	𝜎 ≤ 𝜇 + 𝜎 = 0.6826	 (25)	

	 ℙ 𝜇 − 2𝜎 ≤ 𝒩 𝜇; 	𝜎 ≤ 𝜇 + 2𝜎 = 0.9545	 (26)	

	 ℙ 𝜇 − 3𝜎 ≤ 𝒩 𝜇; 	𝜎 ≤ 𝜇 + 3𝜎 = 0.9973	 (27)	

	
Where	ℙ 𝐴 	denotes	the	probability	of	event	A.	
	
These	properties	were	used	together	with	the	normality	assumption	in	order	to	build	a	
consistency	region	for	each	one	of	the	output	variables,	with	a	known	confidence	level.	
The	following	consistency	regions	were	defined	for	each	frequency:	
	
	 𝑍* 𝜔F ∈ 𝜇YZ 8[ − 𝑘 ∙ 𝜎YZ 8[ ; 𝜇YZ 8[ + 𝑘 ∙ 𝜎YZ 8[ 	 (28)	

	 𝑍**(𝜔F) ∈ 𝜇YZZ 8[ − 𝑘 ∙ 𝜎YZZ 8[ ; 𝜇YZZ 8[ + 𝑘 ∙ 𝜎YZZ 8[ 	 (29)	

	
Where	𝑘	is	a	constant	that	depends	on	the	selected	confidence	level.	Table	1	gives	the	
value	of	𝑘	for	the	typical	confidence	levels.		It	also	gives	the	probability	of	type	I	error	
for	 each	 confidence	 level:	 the	 probability	 to	 classify	 as	 inconsistent	 a	 point	 that	 is	
consistent.		
	
The	criteria	used	in	this	work	were:	on	the	one	hand,	all	the	experimental	points	inside	
the	consistency	region	can	be	considered	to	satisfy	the	Kramers-Kronig	relations	(with	



14	
	

a	 given	 confidence	 level),	 and	 therefore	 are	 consistent	 and	 can	 be	 used	 in	 the	
spectrum	further	analysis.	 In	contrast,	any	point	outside	 the	consistency	 region	does	
not	 satisfy	 the	 Kramers-Kronig	 relations	 (with	 a	 given	 confidence	 level),	 and	
consequently	does	not	satisfy	the	four	conditions,	hence	it	has	to	be	removed	in	order	
to	avoid	misleading	conclusions	from	the	analysis	of	the	spectrum.		
	

2.6.	Methodology	summary	
	
In	 conclusion,	 the	 selected	method	 for	 this	work	 is	 divided	 in	 two	 parts:	 firstly,	 the	
experimental	spectrum	is	fit	to	an	equivalent	circuit.	Secondly,	the	results	of	the	fit	are	
used	 to	 feed	 a	 Montecarlo	 based	 error	 propagation	 method	 that	 will	 build	 an	
acceptance	 zone	 for	 each	 individual	point	of	 the	experimental	 spectrum,	 for	 a	 given	
confidence	 level.	 On	 the	 one	 hand,	 experimental	 points	 inside	 the	 associated	
acceptance	zone	can	be	considered	consistent,	for	that	confidence	level;	and	therefore	
used	 in	 further	 analysis	 of	 the	 spectrum.	 On	 the	 other	 hand,	 experimental	 points	
outside	 the	 associated	 acceptance	 zone	 can	 be	 considered	 inconsistent,	 for	 that	
confidence	 level;	 and	 therefore	 should	 be	 deleted	 from	 further	 analysis	 of	 the	
spectrum.	Figure	2	sums	up	the	overall	methodology	proposed	in	this	work.	
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3.	Experimental	work	
	
The	 aim	 of	 the	 experimental	 part	 of	 this	 work	 is	 to	 verify	 that	 the	 implemented	
method	is	able	to	detect	no	stationarities.	In	order	to	achieve	this	goal,	the	impedance	
spectrum	 of	 an	 individual	 cell	 of	 a	 commercial	 PEM	 fuel	 cell	 was	 obtained	
experimentally,	in	stable	and	in	unstable	conditions	(flooding).	
	
The	 experimental	 setup	 is	 represented	 in	 figure	 3.	 Its	 main	 element	 is	 a	 300W	
commercial	FC	stack,	provided	by	HeliocentriS®,	composed	by	20	individual	cells,	with	
an	 effective	 area	 of	 58	 cm2.	 The	 air	 supply	 is	 provided	 by	 a	 compressor	 and	 the	
hydrogen	comes	from	a	200	bar	high-pressure	storage	tank.	The	humidification	of	the	
gas	 inlets	 is	 assured	 by	 a	 humidification	 system	 and	 the	 fuel	 cell	 stack	 operating	
temperature	 is	 controlled	 by	 a	 refrigeration	 system.	 On	 the	 one	 hand,	 the	
humidification	 system	 consists	 in	 two	 independent	 bubbling	 humidification	 systems,	
with	humidification	temperature	control.	On	the	other	hand,	the	refrigeration	system	
consists	 in	 a	 heat	 exchanger	 equipped	 with	 a	 continuous	 pump	 and	 a	 temperature	
controller.	 The	 reactant	 gases	 flow	 rates	 are	 controlled	 using	mass	 flow	 controllers.	
The	reactant	inlet	pressures	are	monitored	by	pressure	gauges	and	are	regulated	using	
manual	valves.	All	the	relevant	system	temperatures	are	monitored	by	thermocouples.	
The	overall	 control	was	done	using	a	control	computer	with	a	Labview®	application.	
All	 the	 experiments	 were	 carried	 out	 in	 dead	 end	 anode	 mode.	 The	 individual	 cell	
galvanostatic	 impedance	 spectra	 were	 obtained	 using	 an	 Autolab®	 302N	
potentiostat/galvanostat	with	FRA	module,	controlled	using	NOVA®	software.		
	
The	selected	frequency	range	extended	from	1800	Hz	to	250	mHz,	with	50	frequencies	
logarithmically	 spaced.	 All	 the	 spectra	 were	 obtained	 for	 a	 DC	 current	 of	1	A.	 The	
perturbation	amplitude	was	set	to	5%	of	the	DC	current	[10].	
	
The	 impedance	 spectrum	 was	 measured	 in	 stable	 conditions,	 in	 slight	 flooding	
conditions	and	in	severe	flooding	conditions.	The	operation	parameters	related	to	each	
situation	are	given	in	table	2.	It	was	determined	in	a	preliminary	work	that	each	one	of	
these	 set	of	operation	parameters	 leads	 to	 the	corresponding	 situation	 (no	 flooding,	
slight	flooding	or	severe	flooding).	Each	spectrum	measurement	was	repeated	3	times,	
in	order	to	obtain	representative	spectra.	
	
A	15	min	preconditioning	was	performed	before	each	measurement	in	order	to	assure	
that	 the	 initial	 point	 was	 the	 same	 in	 all	 the	 experiments.	 The	 preconditioning	was	
done	 in	 no	 flooding	 conditions.	 After	 the	 preconditioning,	 the	 operation	 conditions	
were	 set	 to	 the	 conditions	 associated	 with	 the	 experiment	 that	 was	 going	 to	 be	
performed;	and	simultaneously,	the	measurement	process	was	started.	In	this	way,	a	
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time	 drift	 (no	 stationarity)	 was	 achieved	 in	 the	 slight	 flooding	 and	 severe	 flooding	
experiments:	in	the	second	case,	the	time	drift	was	of	higher	magnitude.	
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4.	Results	and	discussion	
	

4.1.	Nyquist	diagrams	
	
Figure	4	shows	the	Nyquist	diagram	of	the	experimental	spectra	obtained	in	the	three	
conditions.	
	
It	can	be	observed	that	the	initial	points,	in	the	high	frequency	zone,	are	the	same	in	
the	three	cases.	This	is	due	to	the	fact	that	the	initial	state	was	the	same	in	the	three	
experiments,	as	it	was	explained	in	the	experimental	setup	section.	The	three	spectra	
are	 formed	 by	 two	 capacitive	 depressed	 semi-circles.	 The	 detailed	 analysis	 of	 these	
spectra	was	done	by	Pérez-Page	and	co-workers	[57-58],	and	is	out	of	the	scope	of	this	
work.	
	
On	the	one	hand,	comparing	the	spectrum	obtained	in	no	flooding	conditions	with	the	
spectrum	obtained	 in	minor	 flooding	 conditions	 it	 is	observed	 that	qualitatively	 they	
have	 the	 same	 shape.	 However,	 it	 will	 be	 shown	 with	 the	 application	 of	 the	
Montecarlo	 based	 validation	 method	 that	 the	 no	 flooding	 spectrum	 is	 a	 valid	
spectrum;	 whereas	 the	 minor	 flooding	 spectrum	 has	 inconsistent	 points	 with	 the	
stationarity	 hypothesis.	 Thus,	 two	 spectra	with	 the	 same	Nyquist	 shape	may	 not	 be	
equivalent	from	a	validity	point	of	view:	the	validity	of	an	impedance	spectrum	cannot	
be	determined	directly	from	the	Nyquist	diagram.	
	
On	 the	 other	 hand,	 the	 spectrum	 obtained	 in	 severe	 flooding	 conditions	 presents	 a	
significant	 scattering	 in	 the	 low	 frequency	 zone.	 In	 this	 case,	 a	 clue	 of	 the	 non	
stationarity	can	be	obtained	directly	from	the	Nyquist	plot.	However,	the	Nyquist	plot	
is	useless	to	determine	which	points	are	consistent	and	which	ones	are	inconsistent.	
	
In	conclusion,	Nyquist	diagrams	are	not	effective	tools	to	determine	if	an	experimental	
spectrum	 is	 valid	 or	 not;	 and	 to	 discriminate	 the	 consistent	 points	 from	 the	
inconsistent	ones.		
	
	

4.2.	Selection	of	the	number	of	subcircuits	and	equivalent	circuit	fitting	and	
	
As	discussed	in	section	2,	the	first	step	of	the	proposed	method	is	to	select	the	number	
of	subcircuits,	𝑛.	In	order	to	achieve	this	goal,	the	experimental	spectra	were	fitted	to	
Voight’s	 circuit,	 with	 different	 number	 of	 subcircuits.	 Figures	 5,	 6	 and	 7	 show	 the	
results	obtained	for	the	non-flooding	spectrum.	Similar	results	were	obtained	for	the	
slight	flooding	and	the	severe	flooding	spectra.		
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On	 the	 one	 hand,	 figure	 5	 shows	 the	 determination	 coefficient,	𝑅0,	 of	 the	 fit	 as	 a	
function	 of	 the	 number	 of	 subcircuits.	 The	 figure	 shows	 the	 results	 for	 the	 total	
determination	 coefficient,	 and	 for	 the	 determination	 coefficients	 associated	 only	 to	
the	real	part	and	only	to	the	imaginary	part.	All	three	determination	coefficients	show	
the	 same	 trend	with	𝑛.	 The	 determination	 coefficient	 is	 a	 parameter	 that	 quantifies	
the	goodness	of	the	fitting:	a	determination	coefficient	of	1	corresponds	to	a	“perfect	
fitting”	 (The	model	 is	 able	 to	 simulate	 the	100%	of	 the	 experimental	 variance).	 It	 is	
observed	 that	 initially	𝑅0 	raises	 with	 the	 number	 of	 subcircuits;	 and	 then	 it	
asymptotically	tends	to	the	unity.	Thus,	initially	the	consideration	of	a	supplementary	
subcircuit	 improves	significantly	the	fitting;	but	after	a	certain	number	of	subcircuits,	
further	increases	of	the	number	of	subcircuits	do	not	improve	significantly	the	fitting.	
In	 this	 case,	 the	 fitting	 does	 not	 improve	 significantly	 by	 the	 addition	 of	 a	
supplementary	subcircuit	from	𝑛 = 5.		
	
On	the	other	hand,	figures	6	and	7	show	the	evolution	of	the	standard	error	associated	
to	the	different	model	parameters	with	the	number	of	subcircuits.	The	standard	error	
associated	 to	 parameter	𝑅E,	𝜎B],	 is	 given	 by	 figure	 6.	 It	 is	 observed	 that	 initially	 it	
varies	with	the	number	of	subcircuits;	but	after	𝑛 = 4	it	remains	constant.		
	
The	 number	 of	 parameters	𝑅𝑅𝐶F 	and	𝐶𝑅𝐶F 	varies	 with	𝑛.	 Consequently,	 rather	 than	
representing	 the	 individual	 evolution	 of	 each	 one	 of	 these	 parameters,	 the	 mean	
standard	errors	are	considered:	
	
	

𝜎BBC =
1
𝑛 ∙ 𝜎BBC[

>

FHE

	 (30)	

	
𝜎CBC =

1
𝑛 ∙ 𝜎CBC[

>

FHE

	 (31)	

	
Where	𝜎BBC 	denotes	 the	 mean	 standard	 error	 of	 parameters	𝑅𝑅𝐶F;	 and	𝜎CBC 	is	 the	
mean	standard	error	of	parameters	𝐶𝑅𝐶F.	These	parameters	are	the	most	natural	way	
to	combine	the	individual	standard	errors	in	one	unique	parameter	for	each	group	of	
parameters	(resistances	and	capacitances).		
Figure	 7	 shows	 the	 evolution	 of	 the	 mean	 standard	 errors	 with	 the	 number	 of	
subcircuits.	It	can	be	observed	that	the	mean	standard	errors	raise	with	the	number	of	
subcircuits:	 initially	 in	 a	 controlled	 way;	 and	 afterwards	 significantly	 faster.	 For	
instance,	the	introduction	of	a	supplementary	subcircuit	for	𝑛 = 5	causes	an	order	of	
magnitude	change	in	the	mean	standard	errors	(the	mean	standard	error	associated	to	
𝐶𝑅𝐶F 	parameters	is	out	of	the	figure’s	scale).	
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In	 conclusion,	 for	𝑛 = 5		 the	 introduction	 of	 a	 supplementary	 subcircuit	 does	 not	
increase	significantly	the	goodness	of	the	fitting	(the	model	is	able	to	nearly	perfectly	
simulate	 the	 experimental	 spectrum);	 and	 causes	 a	 great	 increase	 of	 the	 mean	
standard	errors.	This	 is	due	 to	overfitting,	as	 it	was	discussed	 in	 section	2.	Thus,	 the	
optimal	number	of	subcircuits	in	this	case	is		𝑛 = 5.	The	same	result	was	obtained	for	
the	slight	flooding	and	severe	flooding	spectra.	
	
The	obtained	fits	for	𝑛 = 5	are	shown	in	figure	4	together	with	the	experimental	data.	
The	Montecarlo	based	error	propagation	algorithm	was	applied	to	these	fits	 in	order	
to	 obtain	 the	 consistency	 regions	 presented	 in	 section	 4.4,	 as	 it	 was	 described	 in	
section	2.	
	

4.3.	Montecarlo	algorithm	convergence	study	
	
As	it	was	described	in	section	2.5,	the	convergence	of	the	sample	parameters	to	their	
population	 analogues	 requires	 a	 high	 enough	 number	 of	 iterations.	 Thus	 a	
convergence	 study	 is	 required	 in	 order	 to	 determine	 the	 order	 of	magnitude	 of	 the	
number	of	iterations	that	guarantees	the	convergence.		
	
	
Figures	 8	 and	 9	 represent	 the	 results	 of	 the	 convergence	 study	 for	 the	 minimum	
frequency:	on	the	one	hand,	figure	8	shows	the	evolution	of	the	sample	means	(of	the	
real	part	and	of	the	imaginary	part)	for	the	first	800	iterations;	on	the	other	hand,	figure	
9	shows	the	evolution	of	 the	sample	standard	deviations	 (of	 the	real	part	and	of	 the	
imaginary	part)	 for	 the	 first	800	 iterations.	Analogue	convergence	studies	were	done	
for	the	rest	of	the	frequencies	in	the	experimental	frequency	list.	
	
It	 can	be	observed	 that	after	800	 iterations	 the	4	 studied	parameters	 (2	parameters	
(mean	and	standard	deviation)	and	2	components	(real	part	and	imaginary	part))	have	
converged.	Thus,	it	can	be	deduced	that	the	convergence	of	the	Montecarlo	method	is	
quite	quick:	with	around	1000	iterations,	the	sample	parameters	are	good	estimations	
of	their	population	analogues.	Similar	results	were	obtained	for	the	other	frequencies.	
In	 this	 work,	 to	 ensure	 convergence,	 the	 number	 of	 performed	 iterations	 was	 two	
orders	of	magnitude	higher:	100000	iterations	were	performed	for	each	experimental	
spectrum.	As	an	additional	 convergence	verification	 layer,	 the	 sample	parameters	 vs	
number	of	iterations	graphs	for	every	frequency	in	the	experimental	frequency	range	
were	observed	to	verify	that	all	the	sample	parameters	had	converged.	
	
	 	



20	
	

4.4.	Consistency	zones	
	
Figures	10,	11	and	12	show	the	obtained	results	for	non	flooding,	slight	flooding	and	
severe	flooding	conditions	respectively.	These	figures	consist	in	the	real	and	imaginary	
impedance	 components	 versus	 the	 frequency	 plot	 obtained	 in	 each	 case.	 The	
experimental	 points	 are	 represented	 with	 the	 consistency	 region	 overlaid:	 the	
consistency	region	is	formed	by	an	upper	and	a	lower	limit.	The	number	of	simulations	
used	in	the	Montecarlo	algorithm	was	100000;	and	the	consistency	region	was	built	for	
a	confidence	level	of	95.45%.	The	inconsistent	points	are	clearly	identified	in	this	kind	
of	representation.	
	
On	 the	 one	 hand,	 it	 can	 be	 observed	 that	 in	 no	 flooding	 conditions,	 all	 the	
experimental	points	(except	an	anomalous	point,	associated	with	50	Hz	grid	coupling)	
are	 within	 the	 consistency	 zone.	 It	 can	 be	 deduced	 that	 the	 four	 conditions	 are	
satisfied	for	all	these	experimental	points;	and	therefore	the	spectrum	is	valid,	and	can	
be	analysed	without	inconsistency	bias	or	errors	risk.	
	
On	 the	 other	 hand,	 in	 flooding	 conditions,	 the	 flooding	 phenomenon	 itself	 causes	 a	
non	stationarity:	a	 time	drift	 in	 the	PEMFC	system.	This	 time	drift	mainly	affects	 the	
low	frequency	points	of	the	spectrum,	since	they	are	the	most	time	consuming	ones.	It	
can	be	observed	 that	 the	presented	method	 is	 able	 to	detect	 the	 time	drift,	both	 in	
light	 and	 in	 severe	 flooding	 conditions.	 The	 advantage	 of	 the	Montecarlo	method	 is	
that	 it	 discriminates	 between	 the	 experimental	 points	 for	 which	 the	 time	 drift	 is	
significant	and	the	experimental	points	that	due	to	the	little	measurement	time	(high	
frequencies)	are	not	significantly	affected	by	the	time	drift.	Therefore,	the	inconsistent	
points	can	be	deleted	from	the	spectrum;	and	the	refined	spectrum	can	be	analysed	
with	the	certainty	that	no	bias	or	errors	are	being	introduced	in	the	analysis	because	of	
the	non	stationarity	of	the	system.			
	
These	 results	 show	 the	power	of	 the	 implemented	 validation	 technique:	 it	 can	even	
detect	no	stationarities	that	do	not	affect	the	shape	of	the	impedance	spectrum,	as	in	
the	case	of	the	minor	flooding	conditions.	The	results	also	show	the	usefulness	of	the	
implemented	 technique:	 if	 not	 used,	 the	minor	 flooding	 spectrum	would	 have	 been	
accepted	 (since	 there	 is	 nothing	 in	 the	 Nyquist	 plot	 that	 alerts	 that	 the	 spectrum	
contains	 inconsistent	points);	and	biased	conclusions	would	have	been	obtained.	The	
validation	technique	does	not	only	allow	to	determine	if	the	spectrum	is	valid	or	not	as	
a	whole;	but	it	also	allows	to	discriminate	the	consistent	points	from	the	inconsistent	
ones.	
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5.	Conclusions	
	
In	 conclusion,	 the	 equivalent	 electrical	 circuit	 fitting	 coupled	 with	Montecarlo	 error	
propagation	 method	 manages	 to	 validate	 the	 experimental	 impedance	 spectra	 by	
building	 a	 consistency	 region	 that	 allows	 distinguishing	 the	 consistent	 points	 of	 an	
experimental	 spectrum	 from	 the	 inconsistent	 ones.	 The	 inconsistent	 points	 can	 be	
deleted	in	order	to	analyze	the	rest	of	the	spectrum,	being	certain	that	the	used	data	
verify	 the	 conditions	 of	 linearity	 and	 stability,	 and	 therefore	 that	 the	 obtained	
conclusions	are	nor	misleading	due	to	the	presence	of	time	drifts	or	nonlinearities.	
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6.	Nomenclature	
	
Normal	letters	
	
𝐶		 	 Capacitance	 𝐹 	
𝑛	 	 Number	of	RC	subcircuits	in	Voight	circuit	
𝑛FdO		 	 Number	of	iterations	
𝑁Q		 	 Number	of	points	in	the	impedance	spectrum	
𝑅		 	 Resistance	 𝛺 	
𝑠		 	 Sample	standard	deviation	
𝑋_`>		 	 Random	vector	of	input	parameters	
𝑋		 	 Sample	mean	
𝑍	 	 Complex	impedance	 𝛺 	
𝑍′	 	 Impedance	real	part	 𝛺 	
𝑍′′	 	 Impedance	imaginary	part	 𝛺 	
	
Greek	letters	
	
𝛼		 	 Real	part	weight	factor	
𝛽		 	 Imaginary	part	weight	factor	
𝜎		 	 Population	standard	deviation	
𝜇		 	 Population	mean	
𝜒0		 	 Sum	of	weighed	squared	residuals	of	the	model	 𝛺0 	
𝜔	 	 Angular	frequency	 𝑟𝑎𝑑 ∙ 𝑠|E 	
	
Subscripts	
	
𝑒𝑥𝑝		 	 Experimental	spectrum	points	
𝑅𝐶F 	 	 i-th	RC	subcircuit	of	Voight	circuit	
𝑅 𝑅𝐶 >		 Voight	circuit	with	𝑛	RC	subcircuits	
𝑅 𝑅𝐶 >𝐶𝐿			 Boukamp	circuit	with	𝑛	RC	subcircuits	
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Table	1.	Consistency	region	definition	
	

𝑪𝒐𝒏𝒇𝒊𝒅𝒆𝒏𝒄𝒆	𝒍𝒆𝒗𝒆𝒍	(%)	 𝒌	 ℙ 𝑬𝒓𝒓𝒐𝒓	𝑰 	
𝟔𝟖. 𝟐𝟔	 1	 0.3174	
𝟗𝟓. 𝟒𝟓	 2	 0.0455	
𝟗𝟗. 𝟕𝟑	 3	 0.0027	
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Table	2.	Operation	parameters	
	

Operation	parameter	 No	
flooding	

Slight	
flooding	

Severe	
flooding	

Operation	
temperature	 30°𝐶	 30°𝐶	 30°𝐶	

Hydrogen	
humidification	
temperature	

30°𝐶	 50°𝐶	 70°𝐶	

Air	humidification	
temperature	 30°𝐶	 50°𝐶	 70°𝐶	
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Figure	1.	Voight’s	circuit	
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Figure	2.	Equivalent	circuit	fitting	coupled	with	Montecarlo	error	propagation	method	
for	construction	of	consistency	regions	
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Figure	3.	Experimental	setup	
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Figure	4.	Nyquist	diagram	
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Figure	5.	Determination	coefficient	of	the	fit	of	the	no	flooding	spectrum	to	Voight's	

circuit	with	𝒏	subcircuits	
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Figure	6.	Standard	error	of	resistance	𝑹𝟏	of	the	fit	of	the	no	flooding	spectrum	to	

Voight's	circuit	with	𝒏	subcircuits	
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Figure	7.	Mean	standard	error	of	resistances	𝑹𝑹𝑪𝒊	and	capacitances	𝑪𝑹𝑪𝒊	of	the	fit	of	

the	no	flooding	spectrum	to	Voight's	circuit	with	n	subcircuits	
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Figure	8.	Real	part	(a)	and	imaginary	part	(b)	mean	convergence	for	minimum	

frequency	
	
	
	

-0.0003

-0.0002

-0.0001

0.0000

0 200 400 600 800

0.01175

0.01180

0.01185

0.01190

0.01195

0.01200

0.01205

0 200 400 600 800

a

b



40	
	

	
Figure	9.	Real	part	(a)	and	imaginary	part	(b)	standard	deviation	convergence	for	

minimum	frequency	
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Figure	10.	Experimental	impedance	spectrum	(real	part	(a)	and	imaginary	part	(b))	
obtained	for	no	flooding	conditions	(stable	conditions),	and	the	built	consistency	

region	
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Figure	11.	Experimental	impedance	spectrum	(real	part	(a)	and	imaginary	part	(b))	

obtained	for	slight	flooding	conditions,	and	the	built	consistency	region	
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Figure	12.	Experimental	impedance	spectrum	(real	part	(a)	and	imaginary	part	(b))	

obtained	for	severe	flooding	conditions,	and	the	built	consistency	region	
	
	

0.000

0.002

0.004

0.006

0.008

0.010

0.1 1.0 10.0 100.0 1000.0 10000.0

Experimental	data

Mean

Upper	limit

Lower	limit

0.00

0.01

0.02

0.03

0.1 1.0 10.0 100.0 1000.0 10000.0

Experimental	data

Mean

Upper	limit

Lower	limit

a

b


