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Abstract 
This paper presents a stabilized finite element formulation for large eddy simulation to 
predict the turbulent flow with high Reynolds number, which can be applied for the 
simulation of wind field and wind pressure distribution around shell and spatial structures. 
The Smagorinsky sub-grid scale model is applied for the governing equations of 
incompressible viscous flow and the streamline upwind Petrov-Galerkin (SUPG) weak 
formulation is adopted for momentum equation. For the spatial discretization, the same 
order iso-parametric interpolation process for the flow’s velocity and pressure is introduced, 
and for temporal discretization, the explicit three-step finite element method is applied. All 
of those are adopted to overcome the instabilities of the FEM in solving the turbulent flow 
with high Reynolds number. For the numerical examples, we apply a lid driven flow of 
Re=106 in a square cavity and a flow past square cylinder at Re=22 000 with a moderate 
number of elements. Numerical results show that the present approach(that is, the 
combination of FEM with SUPG and the explicit three-step finite element method) can 
effectively suppress the computational instabilities for flow velocities and pressure fields, 
and is an efficient and reliable numerical procedure for solving turbulent flows with high 
Reynolds number.  
 
Keywords: large eddy simulation, finite element method, Reynolds number, streamline 
upwind Petrov-Galerkin 

1. Introduction 
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The understanding for the turbulent  flow field with high Reynolds number is a seriously  
challenge for structural wind engineering. Nowadays, the prediction of wind flow around 
shell and spatial structures using computational fluid dynamics (CFD) is viable due to its 
high computational  precise in describing the fluctuating motion of turbulence. 
Among existing numerical techniques for predicting turbulent flows in CFD, large-eddy 
simulation (LES) appears to be one of the most promising approaches. In LES, the 
fluctuating motion of turbulence larger than the grid size can be computed exactly. Early 
LES technique is based on the Smagorinsky model(SM) for the unresolved sub-grid scales 
(SGS) (Smagorinsky [7]). Potential of this scheme has been clearly demonstrated in a 
turbulent channel flow by Deardorff [2]. Despite its limitation, it remains the most popular 
model due to its simplicity.  
For the advantages of dealing with complex geometry and boundary conditions, finite 
element method (FEM) has been widely used for the solution of various fluid dynamic 
problems. However, it is known that classic Galerkin FEM meets great problems when 
applied to solve flow field with high Reynolds number. In order to overcome this 
drawback, some stabilized finite element formulations have been developed by many 
researchers. Among them, Streamline upwind/ Petrov-Galerkin (SUPG) method is famous 
which was proposed by Brooks and Hughes [1] and further developed by Hughes and 
Tezduyar [4,8].  
In this paper, unsteady incompressible viscous flow with high Reynolds number is 
investigated and the formulation of Smagorinsky SGS model with SUPG stabilized term is 
applied to the computation of flow field. The same order iso-parametric interpolation for 
the flow’s velocity and pressure is employed for the spatial discretization, the three-step 
finite element method is applied for the temporal discretization of the momentum equation 
and the Poisson pressure equation is derived from the incompressible condition. The above 
procedure  on computing turbulent flow is conviniently used to predict the wind field 
around the buildings. On the other hand, for the verification of the present method, a series 
of the numerical examples of lid driven flow in a square cavity at Re=106 and flow past a 
square cylinder at Re=22 000 are carried out and some conclusions are discussed.  

2. Governing equations 

2.1. LES equations 
The governing equations of LES turbulence model for incompressible viscous flow with 
SGS model proposed by Smagorinsky are as follows [7]: 

0, =iiu                                                                  (1) 

jijjitijijti uupuuu ,,,,,, )])([(/ +++−=+ ννρ                            (2) 

where νt=(CSh)2(Sij
2/2)0.5, Sij=(ui,j+uj,i)/2, h=S1/2 for 2D, S is the area of 2D element. u and p 

are the velocity and pressure respectively, ν is 1/Re as kinematic viscosity, νt is the 
turbulent eddy viscosity, ρ is the fluid density. Constants used here, CS=0.15 for 2D is 
suggested by Murakami [6]. 
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2.2. Stabilized finite element formulations 
The FEM weak form of the momentum equation can be actualized via Eq.(2) multiplying 
the velocity test function and added with SUPG stabilized term as follow [1], 

∫ ∫ +−++
∂
∂

Ω Γ ijijjiijjij
i

i h dΓundΩuuu
t
uu δσδσδ ])([ ,,  

0)(
1

,,,SUPG =−+
∂
∂∑∫

=

el

e

n

e
Ω jijjij

i
jij dΩuu

t
uuu σδτ          (3) 

where nel is the number of elements, δui is the velocity test function, nj is the normal unit 
vector of the stress boundary Γh , σij is the stress tensor given by 

))(( ,, ijjitijij uup +++−= ννρδσ                                      (4) 
 

and the stabilization parameter τSUPG is defined as follow(Dettmer and Peric′[3]), 
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where he, ue and Ree represent the characteristic element size, convective velocity and the 
Reynolds number of a element respectively. Here we use (ν+νt) to describe the element 
viscosity. And β1 define the limits of z as Ree near to infinite and β2 define the derivative 
dz/dRee  at Ree=0. In this work β1=1 and β2=1/3 have been obtained, and the characteristic 
element size is defined as the diameter of a circle which area is equal to the element area. 

3. Computation formulations 

3.1. Spatial discretization 
The spatial discretization of Eq.(3) is performed using the finite element method and the 
same order interpolation is adopted for both flow velocity and pressure. Thus the trial 
function and the test function for both flow velocity and pressure could be expressed by 
means of ФI, and the flow velocity and pressure in an element can be described as follow, 

iIIi uΦu =             II pΦp =                                                 (6) 

where uiI is velocity at node I in the i direction, pI is the pressure at node I. 
Substituting Eq(6) into Eq(3), the finite element formulation for momentum equation is 
expressed as follow, 

0=−++−+
∂
∂

iIiJIJiIJiIJiJIJ
iJ

IJ BuDHpGuN
t

uM                              (7) 
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where 

ΩΦΦΦ+ΩΦΦ= ∫∫
ΩΩ

dudM jKKJjISUPGJIIJ ,τ                              (8) 

ΩΦΦΦΦ+ΩΦΦΦ= ∫∫
ΩΩ

duuduN jJjKKjLLjISUPGiJKiKIIJ ,, τ               (9) 

ΩΦΦΦ−ΩΦΦ= ∫∫
ΩΩ

dudG iJjKKjISUPGJiIiIJ ,,,
11
ρ

τ
ρ                               (10) 

ΩΦΦ+= ∫
Ω

duvvH jJiJjItiI ,,)(                                              (11) 

ΩΦΦ+= ∫
Ω

dvvD jJjItIJ ,,)(                                                 (12) 
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3.2. Temporal discretization 
Explicit three-step finite element method is applied here for the temporal discretization of 
the momentum equation and the formulation of the momentum equation at each step is 
expressed as(Jiang  and Kawahara[5]),  
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where Δt represents the length of time increment, the superscripts of n , 3
1+n  and 

3
2+n denote the sub-steps of each time increment respectively.  

3.3. Finite element formulation for the pressure equation 
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Before entering the next step ui
n+1 from Eq.(16), the pressure pn+1 has to be confirmed. By 

taking the divergence of both sides of Eq.(2) and considering the incompressible condition 
of ui i

n+1=0, we can get Poisson pressure equation as follow,  
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By using the trial function and test function of Galerkin finite element in Eq.(6) and 
considering νt evaluated at the center of each element for each sub-step, the final finite 
element formulation for pressure of pn+1 is,  
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4. Numerical examples 

4.1. Lid driven flow in a square cavity at Re=106  
In this section, a lid driven flow of Re=106 in a square cavity is considered to verify the 
present method. A unit horizontal velocity (U) is prescribed on the top side of unit length 
(H), while the no-slip boundary condition is imposed on all other sides. The computational 
mesh is showed in Figure 1. The total of  3200 unstructured elements with refined mesh at 
the corners is generated to discretize the square cavity and the time increment of 0.01s is 
applied for the computation.  
Figure 2 shows the streamline of fluid flow at 100s, Figure 3(a) and Figure 3(b) show the 
velocity vector and the vorticity in the square cavity at 100s respectively. From them we 
can see that there is one main eddy in the middle of the cavity and a few weak and 
disordered vortexes with scale larger than grid  scale near corners of square cavity. 
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Figure 1: Finite element mesh      Figure 2: Streamline of fluid flow at 100s for Re=106 

                   
(a) velocity vector                           (b) vorticity 

Figure 3: Velocity vector and vorticity of fluid flow at 100s for Re=106 

Figure 4, Figure 5 and Figure 6 show the horizontal velocity (u) field, vertical velocity (v) 
field and pressure (p) field at 100s predicted by LES with and without SUPG stabilized 
term respectively. We can see that the present method has better stabilization for velocities 
and pressure fields than the normal LES technique. That is a strong demonstration of the 
stabilized effect of SUPG for finite element method. 
 

           
                                 (a) LES with SUPG                 (b) LES without SUPG 
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                               Figure 4: Horizontal velocity (u) field at 100s for Re=106 

                                      
                                (a) LES with SUPG                      (b) LES without SUPG 
                                  Figure 5: Vertical velocity (v) field at 100s for Re=106 

                                      
                                (a) LES with SUPG                      (b) LES without SUPG 
                                  Figure 6: Pressure (p) field at 100s for Re=106 

4.2. Turbulent flow past a square cylinder at Re=22 000  
Two dimensional turbulent flow of Re=22 000 past a square cylinder is simulated. The 
computational region and element mesh are showed in Figure 7. The characteristic velocity 
(U) in streamwise direction from left inlet and the characteristic length (H) of the square 
cylinder are both unit value. The distances upstream and downstream in the square cylinder 
are 5H and 10H respectively. And the width of the region is 7H. Uniform mesh with 5027 
rectangle elements is used to discretize the flow domain. The cylinder surface is no-slip 
boundary condition and the time increment is 0.01s. 
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 Figure 7: Geometry and mesh      Figure 8: Streamline of fluid flow at 100s for Re=22 000 

 
(a) velocity vector                                          (b) vorticity 

Figure 9: Velocity vector and vorticity of fluid flow at 100s for Re=22 000 

Figure 8 shows the streamline of fluid flow at 100s, Figure 9(a) and Figure 9(b) show the 
velocity vector and the vorticity of the fluid flow at 100s respectively. We can see that there 
are obvious separation from the front corners and vortex street backwards from the square 
cylinder. Figure 10(a), Figure 11(a) and Figure 12(a) show the streamwise velocity (u) 
field, lateral velocity (v) field and pressure (p) field at 100s respectively which were 
computed by present method, while Figure 10(b), Figure 11(b) and Figure 12(b) show the 
streamwise velocity (u) field, lateral velocity (v) field and pressure (p) field at 100s 
respectively which were computed by normal LES finite element method without SUPG 
stabilized term. From them we can see that the present method has good stabilization and 
accuracy for both velocity and pressure fields without numerical oscillation even with a 
moderate number of elements.  

 
(a) LES with SUPG                              (b) LES without SUPG 
Figure 10: Streamwise velocity (u) field at 100s for Re=22 000 

 
(a) LES with SUPG                              (b) LES without SUPG 

Figure 11: Lateral velocity (v) field at 100s for Re=22 000 
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(a) LES with SUPG                                   (b) LES with SUPG 

Figure 12: Pressure (p) field at 100s for Re=22 000 

5. Conclusions 
A stabilized finite element technique is developed to predict turbulent flow with high 
Reynolds number which can be applied for the simulation of wind field and wind pressure 
distribution around shell and spatial structures, where SUPG stabilized formulation is 
introduced. For the spatial discretization based on the finite element method, the same order 
iso-parametric interpolation process for the flow’s velocity and pressure is adopted. And for 
the temporal discretization of the momentum equation, the explicit three-step finite element 
method is applied, which possesses second order temporal precise. Moreover, the flow 
pressure is investigated by the Poisson equation derived from the incompressible condition. 
On the other hand, the lid driven flow of Re=106 in a square cavity and turbulent flow past 
a square cylinder of Re=22000 are discussed respectively, as the numerical examples. 
Numerical results show that the present method can effectively suppress the computational 
instability in simulation of flow  velocities and pressure field, and perfectly predict the 
turbulent flow with high Reynolds number.  
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