
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

28 September – 2 October 2009, Universidad Politecnica de Valencia, Spain 
Alberto DOMINGO and Carlos LAZARO (eds.) 

 

Accurate Solution 
of Some I-Beam Optimization Problems 

Vadym GORDEIEV* 

*Prof., Member of IASS,  
Vice Chairman of OJSC "V.Shimanovsky UkrRDIsteelconstruction", 

1, Vyzvolyteliv prospect, Kyiv, 02660, UKRAINE. E-mail: gor@urdisc.com.ua 

Abstract 
The problem of proportioning an assembled steel I-beam made of three sheets is well-
known. It is included in nearly every course of study where the analysis of steel 
components is involved. In the presented case we consider finding the depth of a beam with 
a predefined modulus of resistance, based on the condition that the cross sectional area 
should be minimum. Such a depth of the beam is generally called optimum. At the same 
time, the minimum depth of the beam, which can be found from the stiffness conditions, 
can be considered in addition to its optimum depth. Such a problem is generally solved by 
empirical approaches with no strict formulation nor a proper mathematical analysis. The 
paper poses the problem as that of parametric mathematical programming with inequality 
constraints which appear as the condition of strength in bending, the condition of strength 
in shear, and the stiffness condition. Several variations which differ in the functional 
relationships between the depth of the beam’s web and its thickness have been analyzed.  
Keywords: Steel I-beam, optimization, inequality constraints, active constraints, parametric 
mathematical programming, accurate solution, initial data space. 

1. Introduction 
The idea of an I-beam in bending as a rational-cross-section beam seems to have been 
uttered first in a paper by Hodgkinson [1] published in early half of XIX century. An 
optimization problem of distributing metal between the web and the flanges of a beam 
appeared in the same period of time. The profile seems to be more rational if more metal is 
used for the flanges and the web is made as thin as possible. However, there is a number of 
obstacles for the web to made thinner. It cannot be too thin because it has to withstand the 
lateral force, it should be stable, corrosion-proof and resistant against random damage. 
The most important obstacle that does not permit the web to be made thinner is its stability. 
The stability is usually ensured by reinforcing the web with a set of stiffening ribs. It would 
be hardly possible to ever solve the optimal I-beam problem comprehensively once an in-
depth consideration of the stiffening ribs was involved. The problem is usually simplified 
by introducing generalized parameters based on the actual design experience. A pretty good 
generalized parameter that takes account of the web stability measures is the ratio of the 
web’s depth, h, to its thickness, δ: 

/k h= δ . (1) 
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The tentative value for this ratio can be taken as 50 to 100 for webs not reinforced by 
stiffening ribs, 100 to 150 for webs reinforced by lateral stiffeners only, and 150 to 200 for 
webs reinforced by a set of lateral and longitudinal stiffeners. Making use of the web’s 
depth vs. thickness ratio permits to reduce the number of variables in the problem by one 
because the thickness of the web is thus determined via its depth using a simple formula. 
The problem of an I-beam of the minimum cross-section area was solved for a fixed beam’s 
web depth-to-thickness ratio by K.K. Mukhanov [6]. However, this approach works only 
within a limited range of the beam’s depth values. The actual relationship between the 
beam’s web depth and its thickness is more complicated. Some textbooks on steelwork 
design such as [4], [6], [7] recommend using an empirical formula to determine the web’s 
thickness via the beam’s depth: 

3 7 ;hδ = + ⋅  (2) 
where the beam’s depth h is taken in meters while the web’s thickness δ in millimeters. 
V.M.Vakhurkin [3] suggested a power relationship between the beam’s web depth and its 
thickness where two independent parameters, k and m, are involved: 

/mh kδ =  (3) 
By using this approach, he solved a problem where an I-beam of a minimum cross-section 
area with a given modulus of resistance had to be found. It should be noted that 
relationship (3) is equivalent to (1) at m = 1 where it defines beams with a fixed web’s 
depth-to-thickness ratio, while at m = 0 it defines beams with a fixed web’s thickness. 
Approximate techniques for solving problems like this, which sometimes involve empirical 
coefficients, are presented in quite a few publications (see [4], [7] for examples). The 
book [5] already posed the problem of a minimum cross-section I-beam as a problem of 
mathematical programming with inequality constraints: ones imposed on the bending 
strength, on the shear strength and on the deflection. The problem was solved for some 
particular cases. 
This report presents a solution of the minimum cross-section area I-beam problem under 
the above-said limitations where the power relationship (3) is used. The problem will be 
further referred to as V.M.Vakhurkin’s problem. Results for beams with a fixed web’s 
depth-to-thickness ratio and for ones with a fixed web thickness will be presented as 
particular cases of this problem’s solution. 
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 2. Object of optimization 
An idealized I-beam is under consideration (Figure 1), which 
consists of a web and two flanges. It is subject to bending in 
its web’s plane and restrained against buckling out of the 
same plane. The cross-section of the I-beam has two 
symmetry axes: x – x and y – y. The flanges of the I-beam are 
assumed to have a small thickness comparing to the beam’s 
depth; they are characterized by only one parameter, Af, 
which is the chord’s cross-section area. The web is defined by 
two parameters: depth h and thickness δ. The depth of the 
web, the distance between the centroids of the flanges, and 
the depth of the beam are assumed equal to one another. 
The geometrical properties of the I-beam’s cross-section are 
defined as: 

2

2 ; ; ; ; ;2 2
4 23 3f f f
h h Sh hA A h I W S hA A

A
δ ⋅ δ ⋅⎛ ⎞ ⎛ ⎞= ⋅ + δ ⋅ = ⋅ = ⋅ = δ ⋅ μ =⋅ + ⋅ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 (4) 

where A is the cross-section area; 
 I is the moment of inertia of the cross-section with respect to the x – x axis; 
 W is the cross-section modulus with respect to the x – x axis; 
 S is the web’s cross-section area; 
 μ is the fraction of the web in the total cross-section area. 

3. V.M.Vakhurkin’s problem formulation 
Let’s consider relationship (3) in greater detail. The relationship contains empirical 
coefficients k and m which need to be specified. According to recommendations by 
V.M.Vakhurkin, the m coefficient should be taken from the range 0 ≤ m ≤ 1. As was 
indicated, its value of 0 corresponds to beams with a fixed web’s thickness while the value 
of 1 to beams with a fixed web’s depth-to-thickness ratio. As for coefficient k, choosing a 
proper value for it is much more complicated. The reason for this is that coefficient k does 
not have an explicit physical meaning and, in addition, it is a dimensional value, the unit of 
length raised to the power of m – 1. 
This report presents relationship (3) in the form of 

00

mh
h

δ ⎛ ⎞= ⎜ ⎟δ ⎝ ⎠
 (5) 

where there are additional empirical coefficients in addition to the dimensionless one m: δ0 
and h0 which have the dimension of length. When we consider the following formula, it 
becomes clear that relationships (3) and (5) are identical:  

 
Figure 1: Cross-section of 
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0 0/ .mk h= δ  (6) 

The values of h0 and δ0 should be treated as the respective depth and thickness of the web 
of a particular beam from a set of beams which we search for the optimum one. 
Further we will formulate and solve the problem of minimization of the cross-section area 
of a compound I-beam, A, where the web’s depth and thickness are related through (5), 
where the stiffness condition: I ≥ Ir; the bending strength condition: W ≥ Wr, and the shear 
strength condition on the support: S ≥ Sr need to be met. 
The given initial data include: m is the exponent in the power relationship; h0 and δ0 are the 
respective web’s depth and thickness for a particular beam from the set of beams which we 
search for the optimum one; Іr is the required moment of inertia of the cross-section based 
on the stiffness condition; Wr is the required modulus of section based on the bending 
strength condition; Sr is the required web’s cross-section area based on the shear strength 
condition on the support. We need to find the depth of the web of the optimum I-beam, h, 
and the cross-section area of its flange, Af . 
The formulation of the problem as one of mathematical programming is: 
 minimize 

1

0 0
0

2
m

f

h
A A h

h

+
⎛ ⎞= ⋅ + δ ⋅ ⋅⎜ ⎟
⎝ ⎠

 (7) 

 under the constraints: 
12

0 0

0

11
0 0

0 0
00

0; 0;2
4 3

0; 0.2
2 3

m

A f I rf

mm

W r S rf

h hhF A F IA
h

hh hhF W F h SA hh

+

++

⎛ ⎞δ ⋅ ⎛ ⎞= ≥ = ⋅ − ≥⎜ ⎟⋅ + ⋅⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞δ ⋅ ⎛ ⎞= ⋅ − ≥ = δ ⋅ ⋅ − ≥⎜ ⎟⋅ + ⋅ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎝ ⎠⎝ ⎠

 (8) 

This is a problem of nonlinear mathematical programming in the space of two variables, h 
and Af, with the objective function (7) and four inequality constraints (8). The first of the 
inequality constraints requires that the I-beam’s flanges have a non-negative cross-section 
area, the second establishes a stiffness limitation, the third is based on the bending strength 
requirement, and the fourth demands a proper shear strength on the support. 

4. Solution of the problem 
The solution of the above problem can be represented in formulas. However, problems 
where inequality constraints participate are combinatorial in their nature, so the formulas 
for finding the desirable variables will be different for different sets of active constraints. 
The set of active constraints for a particular problem depends on initial data, which consist 
of required values of Ir, Wr and Sr. The space of these parameters can be divided into areas 
such that each one will conform to a certain set of active constraints. Knowing which area 
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the point with the Ir, Wr, Sr coordinates falls into will let us know the particular set of the 
active constraints and therefore the particular formulas for finding the sought-for values of 
h and Af . 

In order to divide the space of Ir, Wr, Sr into areas with fixed sets of active constrains, we 
will write the Kuhn-Tucker conditions [2] . 
According to those, the coordinates of the point that represents the solution of optimization 
problem (7), (8) should satisfy the following set of equations and inequalities: 

;W SA I
A I W S

F FF F A
h h h h h

∂ ∂∂ ∂ ∂λ ⋅ + λ ⋅ + λ ⋅ + λ ⋅ =
∂ ∂ ∂ ∂ ∂

 (9) 

;W SA I
A I W S

f f f f f

F FF F A
A A A A A

∂ ∂∂ ∂ ∂λ ⋅ + λ ⋅ + λ ⋅ + λ ⋅ =
∂ ∂ ∂ ∂ ∂

 (10) 

0; 0; 0; 0;A I W SF F F F≥ ≥ ≥ ≥  (11) 

0; 0; 0; 0;A I W Sλ ≥ λ ≥ λ ≥ λ ≥  (12) 

0; 0; 0; 0;A A I I W W S SF F F Fλ ⋅ = λ ⋅ = λ ⋅ = λ ⋅ =  (13) 

where  λA, λI, λW, λS are Lagrangian multipliers yet to be found. 
Equations (9) and (10) will look as follows, taking into account (7) and (8): 

( ) ( )

( ) ( )

1 1
0 0 0 0

0 0

1
0 0

0

3 2
12 6

11 0;

m m

I Wf f

m

S

h hh hm mh A A
h h

hh m
hh

+ +

+

⎛ ⎞ ⎛ ⎞δ ⋅ ⋅ δ ⋅ ⋅⎛ ⎞ ⎛ ⎞+ +λ ⋅ ⋅ + λ ⋅ +⎜ ⎟ ⎜ ⎟+ ⋅ + ⋅⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

δ ⋅ ⋅ ⎛ ⎞++ λ − ⋅ ⋅ =⎜ ⎟
⎝ ⎠

 (14) 

2 / 2 2;A I Wh hλ + λ ⋅ + λ ⋅ =  (15) 

Equalities (13) are referred to as complementary slackness conditions. Each one of them 
requires that at least one participating variable be equal to zero. If we choose a particular set 
of active constraints, it will become clear what inequalities of (11) actually hold true as 
equalities. Their respective constraints (w.r. to the index) from group (12) will remain 
inequalities. However, the rest of the constrains from group (12) will have to hold as 
equalities, and their respective constraints from group (11) as inequalities. This will derive 
a set of 6 equations and 4 inequalities from relationships (9) through (12). The six equations 
are to be used to find six unknowns: h, Af , λA, λI, λW, λS, by expressing those via the given 
values of Ir, Wr, Sr. The other four inequalities define an area in the space of parameters Ir, 
Wr, Sr, which conforms to the selected set of active constraints. Any contradiction between 
the sets of equations and inequalities means that the particular selected active constraint set 
is not feasible. 
Solutions of the equation/inequality set (9) – (13) for all feasible active constraint sets are 
presented in Table 1. The constraints are denoted as A, I, W, S in accordance with the 
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subscripts in the constraint formulas (8). The h column gives formulas to find the optimum 
depth of the beam’s web, the Af column gives those for finding the optimum area of the I-
beam’s flange, and the μ column gives formulas for finding the fraction of the web in the 
total area of the I-beam’s cross-section. 
Table  1. Formulas for finding optimum parameters of an I-beam in V.M.Vakhurkin’s 

problem 
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Inequalities which define areas conforming to specific sets of active constraints are listed in 
Table 2. The “Space of Ir, Wr, Sr” column of this table gives inequalities for each set of 
active constraints which bound an area in the said three-dimensional space of parameters. 
However, a transition to variables κI and κS can be made, which makes it possible to reduce 
the dimensionality of the space to two. 
 
 
 
 
 
 

2709



Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2009, Valencia 
Evolution and Trends in Design, Analysis and Construction of Shell and Spatial Structures 

 

Table 2. Inequalities which define areas for possible sets of active constraints in 
V.M.Vakhurkin’s problem 
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These variables are dimensionless and are defined as: 
/ ; / ;I I W S S Wh h h hκ = κ =  (16) 

where
( ) ( )

1 1 1
3 2 1

0 0 03 2
0 0 0 0 0 0

12 3
; ; .

1 1

m m m
r r r

I W S

I W S
h h h h h h

h h hm m

+ + +⋅ ⋅⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⋅ = ⋅ = ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟δ ⋅ ⋅ δ ⋅ ⋅ δ ⋅+ +⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 (17) 

The geometrical meaning of variables hI, hW, hS is that they are optimum depths of the 
beam with respect to stiffness, to the strength in bending, and to the strength in shear on the 
support. 
The "Space of κI, κS" column of Table 2 presents inequalities which bound areas in this 
two-dimensional space for the same sets of active constrains. Dashes replace inequalities 
which are always true or follow from the others. 

5. The case of a fixed web’s depth-to-thickness ratio 
Such a problem is a particular case of the previous one when m = 1 is assumed. Table 3 
presents relationships for the optimum parameters where: 

0 0/ .h kδ =  (18) 
 

Table  3. Formulas for finding optimum parameters of I-beams where the web’s depth to its 
thickness ratio is fixed  
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Table 4 presents inequalities for possible sets of active constraints in the space of 
dimensionless parameters κI, κS determined from (16) where 
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Table 4. Inequalities which define areas in the space of dimensionless parameters for 
possible sets of active constraints in the case of a fixed web’s depth-to-thickness 
ratio 

 

Act. 
con. 

Space of 
 κI, κS 

Act.
con.

Space of 
 κI, κS 

Act.
con.

Space of 
 κI, κS 

3 2Iκ ≥  4 2 I≥ κ  4 2S Iκ ≥ ⋅ κ  
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3 4Sκ ≥  
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3 2 I> κ  4 2I sκ ≥ ⋅ κ  42 S I⋅ κ ≥ κ  IW 
4 2I Sκ ≥ ⋅ κ  

IS 

S Iκ > κ  

WS 

1Sκ >  

The graphical representation of the areas is shown in Figure 2. 

 
Figure 2: Division of the κI, κS plane into areas I, IW, W, IS, WS, AS for the case of a 

fixed web’s depth-to-thickness ratio 
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It should be noted that the plots are built in logarithmic scales, so the boundaries of all areas 
prove to be straight lines. 

6. A fixed web thickness case 
This problem is a particular case of V.M.Vakhurkin’s problem which appears at m = 0. 
Table 5 presents formulas for the optimum parameters, where δ0=δ is assumed. 
Table 5. Formulas for finding optimum parameters of I-beams in the fixed-web-thickness 

case 
 

Act. 
constr. h Af μ Act. 

constr. h Af μ 

I 
23 12 rI⋅ δ ⋅

δ
 0 1 W 3 rW⋅ δ ⋅

δ
 

3
6

rW⋅ δ ⋅
 

3
4

 

AS rS
δ

 0 1 IW 
2 r

r

I
W
⋅

 
2

2 3
r r

r r

W I
I W

δ ⋅
−

⋅ ⋅
  

    WS rS
δ

 
6

r r

r

W S
S

δ ⋅
−   

Table 6 presents inequalities for possible sets of active constraints in the space of 
dimensionless parameters κI, κS found from (16), where 

23 12 3
; ; .r r r

I W S

I W Sh h h
⋅ δ ⋅ ⋅ δ ⋅

= = =
δ δ δ

 (20) 

  

Table  6. Inequalities which define areas in the dimensionless parameter space for possible 
sets of active constrains in the fixed-web-thickness case 

 

Act. 
con. 

Space of 
 κI, κS 

Act.
con.

Space of 
 κI, κS 

Act.
con.

Space of 
 κI, κS 

2Iκ ≥  3 2 I≥ κ  S Iκ ≥ κ  
I 

I Sκ ≥ κ  
W 

1 S≥ κ  
AS 

2Sκ ≥  
3 2I Sκ ≥ ⋅ κ   1Sκ >  

2 I≥ κ   2 S≥ κ  IW 

3 2Iκ >  

 

 

WS 
32 S I⋅ κ ≥ κ  

The graphical representation of the areas is given in Figure 3. 
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Figure 3: Dividing the κI, κS plane into areas I, IW, W, WS, AS for fixed-web-thickness 

beams 

7. Solution steps 
Here follows the sequence of steps that should be taken to solve the optimum I-beam 
problem: 

− choose a relationship between the web’s depth and its thickness by setting 
parameters m, h0, δ0, or k, or δ; 

− use initial data: Іr, Wr, Sr to calculate the auxiliary values hI, hW and hS from (17), 
(19), or (20); 

− calculate parameters κI and κS using (16); 

− find out, by using the inequalities from Table 2, or the plots from Figure 2 or 
Figure 3, which area the (κI, κS) point falls into; 

− calculate the optimum values for h and Af by using formulas from appropriate cells 
of Table 1, 3, or 5; 

− calculate other characteristic numbers for the optimum I-beam using (4). 
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Conclusion 
This paper formulates the problem of finding an optimum I-beam as a parametric 
mathematical programming problem that has inequality constraints. An exact solution is 
given for the problem in the form of formula sets. Appropriate formulas should be selected 
on the basis of imposed active constraints which are defined by the initial data of a 
particular problem. 
A significant attention is paid to the initial data space, in particular, the division of that into 
areas where particular sets of active constraints are in effect. Results of such a division for 
commonly known particular cases are presented both in formulas and in plots. A qualitative 
distribution of the optimum solutions for I-beams over limit state types is demonstrated. 
The results of this work can be used both in practical design activities and in courses of 
study dedicated to metalwork design or mathematical programming. 
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