
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1098/rspa.2012.0066

http://hdl.handle.net/10251/66165

Royal Society, The

Díaz Morales, UM.; Boronat Zaragoza, M.; Corma Canós, A. (2012). Hybrid organic-
inorganic structured materials as single-site heterogeneous catalysts. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences. 468(2143):1927-1954.
doi:10.1098/rspa.2012.0066.



1 

 

Proceedings of the Royal Society A. Mathematical, Physical & Engineering Sciences 

“Recent Advances in Single-site Heterogeneous Catalysis (SSHC)” 

Hybrid organic-inorganic structured materials as single-site heterogeneous 

catalysts 

 

Urbano Díaz, Mercedes Boronat, Avelino Corma* 

Insituto de Tecnología Química, Universidad Politécnica de Valencia-Consejo Superior 

de Investigaciones Científicas, Av. Naranjos s/n, 46022 Valencia, Spain 

* Author for correspondence (acorma@itq.upv.es) 

 

1. Introduction 

The most important feature in catalysis is selectivity. Catalyst selectivity can be 

maximized when the nature of the selective active sites is known and a catalyst that only 

contains these sites is synthesized. Well defined homogeneous active sites exist in the 

case of molecular catalysts such as those formed, for instance, by cations and anions in 

solution, transition metal complexes and organocatalysts, which are successfully used as 

homogeneous catalysts. However, it is difficult to prepare solid catalysts, but not 

impossible, with a system of unique and well defined homogeneous active sites 

(Thomas 1997; Thomas et al. 2005). Generally, the synthesis of solid catalysts results in 

surface sites heterogeneity with the corresponding negative impact on selectivity.  

Since well defined single sites can be achieved with transition metal complexes and 

organocatalysts, one can envisage the preparation of hybrid organic-inorganic solid 

materials in where the molecular catalysts would be part of the structure. This type of 

materials should couple the advantages of the homogeneous and heterogeneous 

catalysts, offering the possibility of preparing single-site heterogeneous catalyst (Song 

et al. 2002; Valkenberg et al. 2002; De Vos et al. 2002; Madhavan et al. 2008; Corma 

2004). 
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In this manuscript we present the characteristics and catalytic properties of hybrid 

organic-inorganic materials, emphasizing the possibilities of periodic mesoporous 

hybrid materials and coordination polymers as single-site solid catalysts.  

1. Hybrid organic-inorganic catalysts prepared by grafting molecular catalysts on 

solids  

Heterogenization of homogeneous single-site catalysts on mesoporous inorganic solids 

allows to combine the superior activity and selectivity of homogeneous catalysts with 

the easy separation, recovering and recycling of heterogeneous catalysts, and with the 

possibility of using continuous flow operations (Corma 2004). In this sense, MCM-41 

and related mesoporous silicas have been widely used to prepare organic-inorganic 

hybrid catalysts (Kresge et al. 1992). MCM-41 combines very large surface areas (> 

1000 m2/g) with regular pores of ~5 nm that allow the inclusion of molecular catalysts 

inside the hexagonally ordered parallel channels (Maschmeyer et al. 1995; Liu et al. 

1997; Zhou et al. 1998). Active centers are immobilized on the walls by direct grafting. 

Thus, an adequately functionalized metal complex reacts with the Si-OH groups present 

at the surface or, otherwise, the ligands are firstly grafted to the surface and then reacted 

with the metal component (Corma et al. 1991, 1992, 1996). However, it is not unusual 

to find that metal complexes decrease their activity and/or selectivity when supported, 

mainly due to inefficient interfacial mass transfer between the liquid phase and the 

solid, or because undesired interactions between the ligands of the metal complex and 

silanol groups present on the solid surface occur. These problems can be overcome by 

selecting a linker with the appropiate length, by removing the free silanol groups from 

the surface by silylation, or by using the most adequate solvent. For instance, the 

highest activity values ever reported for Friedel-Crafts enantioselective hydroalkylation 

of 1,3-dimethoxybenzene with 3,3,3-trifluoropyruvate using heterogenized metallic 

complexes were obtained with copper(II) bisoxazolines covalently anchored to silica 

(Corma et al. 2002). To achieve this, the anchoring procedure was chosen to minimize 

the presence of uncomplexed copper on the surface and the free surface silanol groups, 

that were not used to anchor the metal complex, were silylated to avoid interactions 

with the complex or substrates (Scheme 1). A similar strategy was used to improve the 

enantioselectivity of a chiral vanadyl Schiff base complex anchored on silica for the 

reaction of benzaldehyde with trimethylsilyl cyanide. The interaction of the complex 
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with the solid was minimized by increasing the length of the linker to a chain with 11 

carbon atoms, and by masking the presence of residual silanol groups with 

trimethylsilyl groups (Baleizao et al. 2003).  

 

Scheme 1. Anchoring of Cu(II) bisoxazoline complex 1 to silica (Corma et al. 2002). 

In recent years, different types of metal complexes have been successfully anchored to 

MCM-41 and related mesoporous materials, resulting in highly efficient immobilized 

catalysts which can duplicate the activitiy of the homogeneous analogues while 

maintaining selectivity. In particular, great advances have been done in the field of 

asymetric catalysis, which is one of the most challenging areas in heterogeneous 

catalysis. A classical approach to create an asymmetric environment around a metallic 

centre able to induce enantioselectivity in catalytic processes, is the use of 

enantiomerically pure ligands containing donor atoms (mainly nitrogen and phosphorus) 

with a defined symmetry (Ojima 2000; Jacobsen 1999). In this sense, multidentate 

ligands containing N-heterocyclic carbene moieties (NHCs) are becoming increasingly 

popular (Cesar et al. 2004) because: a) their electron donor properties can be enhanced, 

b) they tend to be more sterically demanding than phosphine ligands with the same 

substitutents and c) they are more stable toward molecular oxygen and moisture (de 

Fremont et al. 2009; Enders et al. 2007; Diez-Gonzalez et al. 2007). Moreover, in 
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catalytic systems, NHCs have been shown to prevent metal leaching, a problem often 

associated with weak ligand-metal interactions (Collman et al. 1987).  

(NHC)NN-pincer ligands can be synthesized by reacting 2,6-dibromomethylpyridine 

with sub-stoichiometric amounts of 1-substituted imidazole, yielding the corresponding 

pyridine imidazolium salts that are finally converted into the chelating ligands (Figure 

1a) (Boronat et al. 2010; del Pozo et al. 2010). Then, chiral chelating (NHC)NN-pincer 

ruthenium complexes were prepared by transmetalation from intermediate silver(I) 

complexes (Figure 1b) and finally grafted onto MCM-41 (Figure 1c). The introduction 

of the organometallic moieties did not induce drastic changes in the long range 

hexagonal symmetry of host material, but induced a decrease in SBET area from 1030 to 

842 m2 g-1, in agreement with observations in other systems after post-synthesis 

treatments.  

 

Figure 1. Representation of the synthetic route to obtain (NHC)NN-Ru-complexes immobilized 

on MCM-41 (del Pozo et al. 2011). 

 

The efficiency of the immobilized ruthenium complexes for the asymmetric 

hydrogenation of different alkenes and imines was studied and compared with that of 

the homogeneous counterpart. In the hydrogenation of (E)-diethyl 2-

benzylidensuccinate, between 98 and 99% ee was obtained with all catalysts tested, and 

higher TOFs were observed for the heterogenised catalysts (del Pozo et al. 2011). The 

a) Synthesis of ligand precursors b) Synthesis of (NHC)NN-Ru-complexes 

c) Immobilization of Ru-complexes on MCM-41 
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effect of the co-ligand was studied by comparing the reactivity and enantioselectivity of 

the hydride complexes with those derived from p-cymene and, as shown in Figure 2, the 

hydride complexes either homogeneous (3aRu) or heterogenised (3bRuMCM-41, 

4bRuMCM-41 and 4cRuMCM-41) are considerably more active than those derived 

from p-cymene. The grafted (NHC)NN-pincer ruthenium complexes were recovered 

from the reaction mixture by simple centrifugation and washing, and reused for several 

consecutive experiments with no appreciable loss of activity or selectivity. 

 

Figure 2. Kinetic profile of the Ru-catalysed hydrogenation of (E)-diethyl 2-

benzylidensuccinate (del Pozo et al. 2011). 

 

The ease of functionalization of the imidazolium salt proligands allows the 

incorporation of NHCs in polydentate ligand structures, such as chiral di-NHC ligands 

and complexes (Lowry et al. 2008). Recently, the synthesis of stable C2-symmetric 

diimidazolidinylidene ligands bridged by a trans-2,2-dimethyl-1,3-dioxalane backbone 

and their use in catalytic asymmetric transformations has been reported. Different 

chelated gold, rhodium and palladium complexes were prepared and screened for 

catalytic activity in the hydrogenation of prochiral alkenes (Arnanz et al. 2010). The 

manipulation of L-tartaric acid gave access to (4R,5R)-bis(iodomethyl)-2,2-dimethyl-

1,3-dioxolane (2 in Figure 3a) which, when heated with 1-arylimidazoles 1a,b, 

produced quantitative yields of the salts [3a]I, [3b]I as light yellow solids. The 

treatment of these imidazolium iodide salts with Ag2O yielded the silver complexes 

(4S,5S)-3a,3bAg (Figure 3b), that were used as carbene transfer reagents to gold, 

palladium and rhodium (Lin et al. 2009). The reaction of the silver complexes with 
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AuCl(tht) (tht = tetrahydrotiophene), [RhCl(cod)]2 and [PdCl2(cod)] (cod = 2,5-

cyclooctadiene) yielded the corresponding (4S,5S)-3aAu, 3bAu, 3aRh, 3aPd 

complexes (see Figure 3b) in > 80% yield with the formation of AgI precipitate. 

 

Figure 3. Synthesis of Au, Pd and Rh bis-NHC complexes (Arnanz et al. 2010). 

The problem with (NHC)M-catalyzed hydrogenations is the tendency of NHC to suffer 

a reductive elimination to the imidazolium salt [NHC-H]+, but bis-NHC ligands are 

expected to be resistent to this process. The efficiency of the synthesized gold-, 

palladium- and rhodium-complexes in the asymmetric hydrogenation of several (E)-

diethyl 2-R-succinates was investigated, and all complexes showed significant 

activities. In the hydrogenation of (E)-diethyl 2-benzylidenesuccinate, up to 99% ee was 

obtained with the rhodium catalyst, while palladium and gold complexes yielded 

a) Synthesis of ligand precursors 

b) Synthesis of bis-NHC-complexes 
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activities and selectivities comparable to those obtained with diphosphine ligands. 

Moreover, the bis-NHC complexes maintain their activity for at least three months, 

while the activity of the diphosphine [Rh(cod)(DIOP)]+ complex decreases after a week 

(Arnanz et al. 2010).  

New hybrid bidentate ligands in which a chiral dioxalane is functionalized by using a 

powerful -donor NHC and a basic amine group have been synthesized with the aim of 

obtaining highly enantioselective catalysts (Villaverde et al. 2011). These ligands are 

believed to be well-suited for asymmetric catalysis because of the closeness of the chiral 

information to the metal center, the bulky substituents, and the electronic 

differentiation. The hybrid chiral (NHC)-dioxolane-amines (S,S)-4a, 4b were prepared 

following the procedure described in Figure 4. Heating of (4R,5R)-bis(iodomethyl)-2,2-

dimethyl-1,3-dioxolane (2) with one equivalent of 1-arylimidazole 1a or 1b produced 

quantitative yields of the respective mono-salts 3a and 3b as light yellow solids. These 

solids were heated in a microwave reactor with an excess of amine to afford the 

functionalized ligands (S,S)-4a, 4b as light yellow oils. As previously described 

(Arnanz et al. 2010; Lin et al. 2009; Villaverde et al. 2011), the treatment of these 

imidazolium salts with Ag2O gave the corresponding silver complexes that were used as 

carbene transfer reagents to gold, palladium and rhodium (Figure 4b). In a second step, 

the silyloxy-complexes (S,S)-[4aAu, 4bAu, 4aRh, 4bRh, 4aPd, 4bPd] were supported 

on MCM-41 by addition of the corresponding solution to a dispersion of MCM-41 in 

toluene and heating for 24 h. The efficiency of the gold-, palladium- and rhodium-

supported complexes in the asymmetric hydrogenation of diethyl itaconate and (E)-

diethyl 2-benzylidenesuccinate was investigated and compared with that recorded using 

the homogeneous catalysts. The best results were achieved with gold and palladium 

complexes derived from ligand 4b, and with palladium complexes derived from ligand 

4a, all of them showing significant activities for the hydrogenation of (E)-diethyl 2-

benzylidenesuccinate with 99% ee. Recycling studies showed that Rh- and Pd-MCM-41 

materials displayed very similar activities and enantioselectivities after the initial runs, 

while a fractional loss of active gold species with each successive cycle was observed 

with Au-MCM-41 material. However, this problem was minimized by treatment of the 

recovered material with an excess of benzonitrile at 50º for 2h before washing, making 

this catalyst recyclable.  
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Figure 4. Representation of the synthetic route to obtain chiral NHC complexes with dioxolane 

backbone (Villaverde et al. 2011). 

 

3. Hybrid Organic-Inorganic Catalysts: Periodic Mesoporous Materials (PMOs) 

We have seen above the possibility of forming hybrid organic-inorganic catalysts by 

functionalization of preformed ordered inorganic mesoporous materials with specific 

organosilanes. However, these organic-functionalized mesoporous materials exhibit a 

separated heterogeneous bi-phase structure composed of an inorganic main framework 

with an external grafted layer which contains the specific active sites (Corma 2004; 

Margelefsky et al. 2008).  

According to these characteristics, further investigations were undertaken to obtain 

novel crystalline porous materials, with a homogeneous distribution of functional 

groups within the framework of the structured mesoporous catalysts. This was achieved 

by preparing Periodic Mesoporous Materials (PMOs) whose polymeric framework is 

b) Synthesis of (NHC)NN-Ru-complexes 

a) Synthesis of 

chiral mono-NHC 

ligand precursors 

b) Synthesis of chiral mono-NHC complexes 
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composed of both inorganic and organic fragments. Following this, silsesquioxanes, 

which are organic-inorganic precursors, 3(R’O)SiRSi(OR’)3, were used as a silica 

source for the synthesis of hybrid materials that incorporate functional and active 

organic groups directly into the framework,instead of grafting the organic species onto 

the wall surface of the pores(Inagaki et al. 1999; Asefa et al. 1999; Melde et al. 1999. 

Figure 5 shows the general methodology employed to synthesize PMOs (Hoffmann et 

al. 2006), using a self-assembling route in presence of surfactants that act as structure 

directing agents to form structured mesoporous materials. 

The advantages of these PMOs hybrid porous materials rely on the highly ordered 

structures with very uniform pores, homogeneous distributions of active functional sites 

throughout the whole framework, high loadings of functional groups and the absence of 

any severe pore blocking (Inagaki et al. 2002). Within the field of catalysis, the 

possibility to introduce into the organic builders different organocatalysts with well 

defined single-site acid, basic, chiral organocatalysts or even combination of the above, 

could be useful to generate organic-inorganic catalysts with heterogeneized 

functionalities stabilized into the mesoporous framework.  

Figure 5. Self-assembling procedure to obtain PMOs in presence of surfactants. The images are 

artistic representation of PMOs (Hoffmann et al. 2006). 
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PMOs containing acid-single-sites 

Acid sites can be introduced into the structure of PMOs by condensation of 

mercaptosilanes with different bridged silsesquioxanes by one-pot self-assembling 

methods in presence of surfactants (Yang et al. 2002; Kapoor et al. 2003). A post-

synthesis oxidation of the mercapto groups allows the preparation of organic-inorganic 

mesoporous catalysts with acid sulfonic groups and marked hydrophobicity due to the 

presence of one or more organic builders (Yuan et al. 2003). Inagaki et al. performed 

the preparation of this type of catalysts in presence of triblock copolymer Pluronic P123 

surfactants, and inorganic salts as additives. The results obtained showed 

unambiguously the formation of hybrid well-ordered hexagonal mesoscopic structures, 

working in a wide range of alkyl linkers inserted into the mesoporous framework. The 

role of the bridged organic groups was associated with an enhancement of the 

hydrothermal stability, which favors the catalytic activity of –SO3H functionalized 

mesoporous hybrid materials for the esterification of ethanol with acetic acid (Liu et al. 

2005). 

Alternatively, interesting routes have been described to generate sulfonic periodic 

mesoporous organosilicas by the consecutive reduction and oxidation of sulfide builder 

groups introduced into the framework during the synthesis process (Figure 6) (Liu et al. 

2005). The use of only one silsesquioxane precursor bis[3-

(triethoxysilyl)propyl]disulfide (BTPDS) together with nonionic block copolymer 

surfactants as template, facilitates the introduction of a great number of homogenously 

distributed sulfide moieties within the network. The final oxidative post-treatment 

implies the complete transformation of sulfide builders to sulfonic groups without any 

significative structural alteration. These hybrid organic-inorganic acid catalysts were 

used for the esterification of aliphatic acids and ethanol, showing higher yield than 

zeolites and sulfonic acid resins. This fact is associated with the large pore diameter and 

low surface hydrophilicity exhibited by these PMOs (Li et al. 2008). 



11 

 

 

Figure 6. Representation of synthesis methodology to obtain first the PMO containing disulfide 

moieties and finally the sulfonic hybrid PMO by oxidative treatment (Liu et al. 2005). 

PMOs containing ethane builder groups, were also functionalized by grafting with 

perfluoroalkylsulfonic acid units by reacting the porous hybrid, previously formed, with 

1,2,2-trifluoro-2-hydroxy-1-trifluoromethylethane sulfonic acid β-sultone (Figure 7). 

The synthesized solid retains the surface area and porosity, with a high acid site density 

(around 1.30 mmolH+/g) and an exceptional proton conductivity (up to 1.0 x 10-1 S/cm). 

The post-functionalized ethane-PMO showed higher catalytic activity for the alkylation 

of isobutene with 1-butene than perfluoroalkylsulfonic acid in SBA-15, alkylsulfonic 

acid integrated into PMO and zeolite (Shen et al. 2008). The same PMO material was 

also successfully employed as strong acidic heterogeneous catalyst in liquid phase self-

condensation of heptanal, and acetalization of heptanal with 1-butanol, though water 

was formed in both reactions (Dube et al. 2009). 

 

Figure 7. Preparation of perfluoroalkylsulfonic functionalized ethane-PMO by the grafting 

method (Shen et al. 2008). 

Within single-acid-site PMO materials, Polarz et al. have introduced benzoic and 

phenylphosphonic acid structural groups into a novel family of PMOs, named UKON 

by the authors, using 1,3-bis-(trialkoxysilyl)-5-bromobenzene as silsesquioxane 
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precursor. The halogenated aromatic builder compounds allow the functionalization of 

hybrid mesoporous materials by different derivatization reactions, generating interesting 

hybrid materials with acidic properties (Figure 8) (Kuschel et al. 2008). 

 

Figure 8. Mesoporous UKON hybrid materials containing benzoic and phenylphosphonic acids 

as organic builders (Kuschel et al. 2008). 

PMOs containing base-single-sites 

It is possible to generate effective basic PMO catalysts based on the combination of 

bridged silsesquioxanes and functionalized monosilanes. This has allowed the synthesis 

of ordered periodic mesoporous organosilicas with different organic moieties which act 

as builders whilst introducing basic single sites. The molecules containing the base sites 

are, normally, organic molecules with amino groups the will hang from the walls to the 

free channels in the synthesized PMO material (Burleigh et al. 2001; Zhu et al. 2007; 

Kapoor et al. 2006). Amination post-treatments were also carried out on phenylene 

moieties structurally integrated into crystalline PMOs by Inagaki et al. The amine 

modification was achieved in ~28% of total organic linkers, following two consecutive 

transformation steps based on the use of strong acid solutions of HNO3–H2SO4 and 

SnCl2–HCl (Figure 9). The chemical modification of phenylene groups did not imply 

any substantial structural change, preserving both the ordered and crystal-like molecular 

scale periodicity of the starting material. The resultant NH2-Ph-PMO hybrid, 
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successfully catalyzed the Knöevenagel condensation reaction, acting as solid base 

catalyst (Ohashi et al. 2008). 

 

Figure 9. Amination of phenylene builder moieties in crystal-like Ph- PMOs: (i) HNO3–H2SO4 

and (ii) SnCl2–HCl (Ohashi et al. 2008). 

Basic sites can also be included into the bridged silsesquioxanes which act both, as 

builders and active sites conforming the structure of the mesoporous material. In those 

cases, the presence of additional functionalized monosilanes is not required because the 

disilane can facilitate the organic-inorganic structuration and the additional base activity 

useful for catalytic processes. Related with this approach, recently Corma et al. have 

prepared different base-single-site PMOs by the integration of Tröger base or protonic 

sponges as functional builders from the respective bridged silsesquioxane precursors 

(Figure 10). These hybrids showed high activity as base catalysts for the Knoevenagel 

catalytic process and can be recycled without activity loss (Gianotti et al. 2011; Poli et 

al. 2011). The activity of the basic sites in the hybrid catalysts for condensation 

reactions can be increased if a mild acid is introduced to the adequate distance of the 

basic site in the organic component (Boronat et al. 2010; Corma et al. 2011). 
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Figure 10. a) Synthesis of the di-iodo Tröger base derivative (1) and di-silylated precursor (2) 

from iodoaniline; b) synthesis of 1,8-bis(dimethylamino)naphthalene (DMAN) bis-silylated 

precursor (Gianotti et al. 2011 and Poli et al. 2011). 

PMOs containing chiral-single-sites 

The concept of single-site PMOs can be expanded to obtain new type of ordered hybrid 

materials with chirality that can be used as asymmetric catalysts. This emergent topic 

has been explored from different approachs, being the most usual the use of bridged 

silsesquioxane precursors that contain chiral organic linkers which are structurally 

integrated into the specific PMOs. In this way, Corma et al. prepared the first family of 

well-ordered chiral mesoporous organosilicas (ChiMOs) by introducing, in a one pot 

synthesis, chiral vanadyl salen complexes into the walls of hybrid materials with M41S 

periodicity (Figure 11). This specific ChiMO catalyst induced 30% enantioselectivity in 

the cyanosilylation of benzaldehyde (Baleizao et al. 2003, 2004). 

(a) 

(b) 
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Figure 11. Bridged silsesquioxane containing vanadyl salen complex linker employed as 

precursor of ChiMO (Baleizao et al. 2003 and 2004).  

Following this approach, García et al. prepared other attractive chiral periodic 

mesoporous organosilica, ChiMO, using as organic-inorganic precursor bis-silylated 

tartramide derived from L-(+)-dimethyl tartrate (Sharpless and Kagan ligand) (Figure 

12). The organization achieved was the characteristic of M41S materials. It was also 

remarkable that around 12% of silicon atoms were functionalized by the chiral linkers. 

This chiral PMO was successfully used to catalyze the asymmetric oxidation of 

thioanisole, obtaining 70 % sulfoxide yields with induced enantiomeric excess of 31 %, 

after 24 h of reaction. The heterogeneity of the chiral builder was confirmed by 

reutilization of the ChiMO, supporting the effective heterogeneization of a chiral tartrate 

derivative organocatalyst (García et al. 2008). 

Figure 12. Synthesis of bis-silylated chiral tartramide monomer to obtain chiral PMOs (García 

et al. 2008). 

PMOs which contain bridged benzoic acids as builders along the pore walls (UKONs), 

were used to incorporate, by post-synthesis treatments, amino acids such as, for 

instance, alanine. This synthetic route allows to prepare organized mesoporous chiral 

hybrid materials with large surface (>600 m2g-1) (Figure 13). The chirality of the 

surfaces was effectively probed by adsorption of chiral gases on the mesoporous solids 

(Kuschel et al. 2008). 
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Figure 13. Synthesis of a PMO material with L-(+)-alanine introduced into the framework 

(Kuschel et al. 2008).  

Also within the UKON family materials, a novel chiral mesoporous organosilica was 

prepared starting from (S)-1,3-bis-tri-iso-propoxysilyl-5-phenylethanol bridged 

silsesquioxane precursor (Figure 14a). A final post-synthesis modification to attach 

Al(III) as Lewis acid center to the chiral building blocks allows to use the hybrid 

material as enantioselective catalyst for the asymmetric carbonylene reaction (Figure 

14b), showing that the surface-bound Al(III) active site exhibits higher enantiomeric 

excesses than analogous molecular homogenous catalysts. Moreover, the presence of 

secondary surface groups, such as propyl or methyl groups,introduced by sylylation of 

silanol groups, improves the catalytic performance when bulkier groups are 

incorporated to the pore walls, with a beneficial cooperative effect between the 

structural catalytic sites and the close surface groups (Kuschel et al. 2010). 

 

Figure 14. a) Synthesis of mesoporous organosilica containing chiral pore walls.; b) 

Asymmetric carbonylene scheme reaction (Kuschel et al. 2010). 

Interesting approaches to directly generate chiral PMOs during the synthesis process by 

the use of optimal precursors was proposed by Crudden et al., who employed axially 

chiral biphenyl monomers as starting disilanes. This route permitted, for first time, the 

transmission of chirality into the solid PMO material, being possible the detection of 

a) 

b) 
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chiral aggregates within the hybrid material, by means of circular dichroism techniques 

(Figure 15) (MacQuarrie et al. 2008). 

 

Figure 15. Synthesis route to prepare first the chiral monomer and second the derived PMOs 

(MacQuarrie et al. 2008). 

Innovative approaches to obtain chiral periodic organosilicas would be the synthesis of 

well-structured PMOs conformed by chiral channels. In this case the morphology of 

solids and their spatial conformation are essential to prepare PMOs with intrinsic 

chirality. Tatsumi et al. synthesized new chiral PMOs using an achiral fluorinated 

surfactant (FC-4911), generating ordered mesoporous hybrids which contain chiral 

channels (Meng et al. 2007). The chiral solids were conformed by twisted hexagonal or 

spiral hexagonal rods when 1,2-bis(triethoxysilyl)ethene (BTEE) or 1,4-

bis(triethoxysilyl)benzene (BTEB) were used as hybrid silica precursors. It is 

remarkable that the spiral samples obtained with BTEB exhibited high structural 

periodicity, showing a spacing of 0.85 nm in the crystalline mesoporous wall (Figure 

16). However, few reports have been published up to now following this approach, 

though it could be of interest to obtain chiral PMOs catalysts for enantioselective 

reactions. 

Chiral PMO 
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Figure 16. SEM (a and c) and TEM (b and d) micrographs of PMOs obtained with BTEE and 

BTEB precursors, respectively; TEM image (e) of sample containing arylic groups taken with a 

[100] incidence (Meng et al. 2007). 

4. Coordination polymers or Metal-Organic Frameworks (MOFs) 

Metal-Organic frameworks (MOFs), built up from gathering both metallic ionic units 

and bridged organic builders, emerge as an attractive group of ordered porous hybrids, 

featuring unique structural and functional characteristics. Indeed the potential 

applications of these materials received particular attention mainly for adsorption and 

separation, as well as for sensors (Harbuzaru et al. 2008, 2009), and to certain extent in 

catalysis acting as stable single-site active materials (Li et al. 1999; Lebedev et al. 

2005; Corma et al. 2010). Depending if the active sites in the MOFs are part of the 

structural nodes or linkers, or they are generated by post-synthesis modifications in the 

metalorganic frameworks, it is possible to classify MOF catalysts into three principal 

groups: (1) MOFs directly used as catalysts where the metal nodes or organic bridges 

exhibit catalytic activity, (2) MOFs in where active organic molecules or metallic 

nanoclusters are occluded or supported into the channels or cavities and (3) chemically 

modified MOFs by post-synthesis treatments by grafting a homogeneous catalysts 

counterpart onto the metalorganic frameworks, or by covalent post-modification of 

organic builders. 
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MOFS used directly as single-site catalysts 

Because most of the MOFs are build up by self-assembly of transition metals as 

structural nodes and organic linkers with binding centers, each builder unit constitutes a 

potential Lewis acid or Lewis basic site, respectively. The structural ionic metallic 

nanoclusters of different conventional MOFs have been successfully applied as Lewis 

acid catalysts in processes such as cyanosilylations (Fujita et al. 1994; Schlichte et al. 

2004; Horike et al. 2008), acetalizations (Gándara et al. 2008; Lu et al. 2008; Llabrés et 

al. 2007), oxidations (Llabrés et al. 2008), hydrogenations and oxidative self-couplings 

(Xiao et al. 2007), isomerizations and cyclizations (Alaerts et al. 2006), aldolizations 

(Fujita et al. 1994) or Friedel-Crafts alkylations (Ravon et al. 2008). In those cases, 

metallic nodes based on Cd, Co, Cu, In, Mn, Pd or Zn nanoclusters act as active Lewis 

acid sites.  

Metallic nanocluster builders inserted into mono-dimensional metalorganic frameworks 

could perform as Lewis acid catalysts, as evidenced by Brown et al. who 

hydrothermally synthesized a new extended infinite MOF [Cu(H2btec)(bipy)] (H4btec = 

1,2,4,5-benzenetetracarboxylic acid, bipy = 2,2'-bipyridine) (Figure 17). In this hybrid 

material each Cu(II) center has a distorted square planar environment, completed by two 

N atoms from one bipy ligand and two O atoms belonging to two dihydrogen benzene-

1,2,4,5-tetracarboxylate anions (H2btec2-). The [Cu(bipy)]2+ moieties are bridged by 

H2btec2- anions to form an infinite one-dimensional coordination polymer with a zig-zag 

chain structure along the c axis, forming a double-chain structure by H bonds between 

adjacent sinusoidal chains. The MOF was tested as catalyst for the oxidation of 

cyclohexene and styrene, with tert-buthyl hydroperoxide (TBHP) as oxidant. 

[Cu(H2btec)(bipy)] demonstrated higher turnover frequencies (TOF) for cyclohexene 

conversion than for styrene, but with high selectivity towards epoxidation in both cases 

(Brown et al. 2009). 
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Figure 17. Scheme of [Cu(H2btec)(bipy)] shown down the c axis (Brown et al. 2009). 

Following with the catalytic activity of Cu-MOFs, recently Corma et al. have described 

the preparation of copper-containing metalorganic framework as catalysts, such as 

[Cu(2-pymo)2], [Cu(im)2], [Cu3(BTC)2] and [Cu(BDC)] (2-pymo: 2-

hydroxypyrimidinolate, im: imidazolate, BTC: benzene tricarboxylate, BDC: benzene 

dicarboxylate), and their use as active and regioselective catalysts for click reactions 

such as the 1,3-dipolar cycloaddition, being the performance of these MOF catalysts 

comparable to homogeneous Cu catalysts. Specifically, it was found that the activity of 

Cu changes with the organic linker in the MOF, being those containing CuN4 more 

active than CuO4 centers. Remarkably, these Cu-MOF catalysts allowed to perform a 

one-pot two-step process in where the azide is formed in situ and reacted immediately 

with phenylacetylene to form the 1,4-triazole (Figure 18) (Luz et al. 2010). 

 

Figure 18. Formation of triazole compounds, from azide intermediates, using Cu-MOF 

catalysts (Luz et al. 2010). 

Novel metalorganic frameworks featuring both Lewis acidity and shape selectivity 

properties have been recently presented (Gándara et al. 2009). Specifically, a scandium 

metal organic framework conformed by octadecasil zeolitic cages has been synthesized. 

In contrast, zeolitic cages of the AST type were found in the scandium-squarate MOF 

(Sc(C4O4)3). However, in comparison with the zeolitic AST net, in where cages are 
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connected through the 6-rings, the Sc atoms are the only shared knots between the 

cages, resulting in a binodal network with unique topology (Figure 19). The thermal 

stability of these Sc-MOFs was close to 400 °C and it was an efficient heterogeneous 

Lewis acid catalyst for cyanosilylation and acetalization of carbonyl compounds. 

 

Figure 19. Polyhedral representation of the new Sc2(C4O4)3 MOF viewed along the c axis 

(Gándara et al. 2009). 

Now, it will be illustrated how MOFs could also be used directly as catalysts taking 

advantage of the intrinsic Lewis basic properties featured by the organic groups acting 

as linkers in the crystalline structure (Kitagawa et al. 2006). Recently, metalorganic 

frameworks have been prepared with non-coordinated amino groups, IRMOF-3 

(IsoReticular Metal-Organic Framework), and amino-functionalized MIL-53, which are 

stable solid basic catalysts for the Knoevenagel condensation of ethyl cyanoacetate and 

ethyl acetoacetate with benzaldehyde (Figure 20). IRMOF-3 exhibits activities that are 

at least as high as the most active solid basic catalysts reported for this reaction, with 

100% selectivity to the condensation product. In the case of the amino-MIL-53 MOF, 

its poor performance for Knoevenagel condensations is attributed to strong adsorption 

and diffusion limitations in the 1-dimensional pore structure. The performance of the 

IRMOF-3 catalysts demonstrates that the activity of the amino group in aniline 

increases by interaction with the carboxylic groups when it was incorporated in the 

MOF structure. This interaction is claimed to be responsible for an increase in the pKa 

of the basic catalyst, showing a higher activity than their homogeneous counterparts. 

The IRMOF-3 catalysts are stable under the reaction conditions, and could be reused 

without loss of activity. The catalytic performance of IRMOF-3 is closer to that of the 

organocatalysts based on the same basic moieties due to the particular environment of 

the catalytic site and the accessibility through the pores of the IRMOF-3. The higher 

activity can be explained from DRIFTS results that demonstrated the occurrence of 



22 

 

benzaldimine intermediate in the reaction mechanism (Gascón et al. 2009). Moreover, 

leaching of the active sites was observed, being those an intrinsic part of the organic 

linker.  

 

Figure 20. Structure of the synthesized MOFs: (left) IRMOF-3, (right) amino-MIL-53(Al). 

(Oxygen atoms in red, carbon atoms in light gray, nitrogen atoms in blue, and Zn (left) and Al 

(right) in dark gray (Gascón et al. 2009). 

Active catalytic counterpart occluded into Metal-Organic Frameworks  

Another possibility to design single-site MOF catalysts comes from embedding active 

organic moieties into the well-defined cavities for their stabilization into the chemical 

metalorganic environment. This method is currently used to heterogenize different 

organocatalysts to avoid the major drawbacks of homogenous catalysts in terms of 

catalyst separation and recycling. Within this approach, quaternary alkylammoniums 

salts such as Me4NCl, Me4NBr, Et4NBr, Pr4NBr, Bu4NBr were occluded inside MOF-5 

(Zn4O(BDC)3, (BDC = benzene-1,4-dicarboxylate)) and the resulting materials revealed 

excellent catalytic performance for the coupling reaction of CO2 with propylene oxide 

(PO) to produce propylene carbonate (PC). The reasons for the high catalytic activity of 

the MOF-5/nBu4NBr is the high surface area and accessibility to the active site, and the 

synergic effect of the couple MOF-5 and n-Bu4NBr to catalyze the reaction even at low 

CO2 pressure. After easy separation the catalyst can be reused without a noticeable 

decrease in activity and selectivity after being used three times. The MOF-5/Bu4NBr 

catalytic system revealed also high activity and selectivity for the cycloaddition of CO2 
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with other epoxides, such as glycidyl phenyl ether, epichlorohydrin and styrene oxide 

(Song et al. 2009). 

Interestingly, other catalytic systems such as polyoxometalates have been occluded and 

stabilized into the supercavities of different MOFs. Different series of crystalline 

hybrids, such as [Cu2(BTC)4/3(H2O)2]6[HnXM12O40]·(C4H12N)2 (X = Si, Ge, P, As; M = 

W, Mo), were obtained by one-step hydrothermal synthesis of copper nitrate, benzene 

tricarboxylate (BTC), and different Keggin polyoxometalates (POMs). In these 

compounds, the catalytically active Keggin polyanions were alternately distributed as 

non-coordinating guests into the cuboctahedral cages of a Cu-BTC-based metal-organic 

framework (MOF) host (Figure 21). These materials demonstrated the high stability for 

thermal and acid-base conditions. No POM leaching or framework decomposition was 

detected. The catalytic activity of these MOFs, containing occluded PW12 species, was 

tested for the hydrolysis of esters in excess of water, showing high catalytic activity and 

being used in repeated cycles without activity loss (Sun et al. 2009). 

 

Figure 21. View of a (001) sheet with two kinds of pores, A and B, in MOF-PMO. The Cu-

BTC framework and Keggin polyanions are represented by wireframe and polyhedral models. 

Blue, red, and gray represent Cu, O, and C, respectively (Sun et al. 2009). 

Post-modified Metal-Organic Frameworks 

Finally, additional post-synthesis treatments of MOFs have been carried out in order to 

covalently anchor different homogeneous organocatalysts onto the organic builders 

which are hence perfectly stabilized and integrated into the metalorganic framework. 

This methodology open the doors to obtain novel modified single-site catalytic MOFs 

http://pubs.acs.org/action/showImage?doi=10.1021%2Fja807357r&iName=master.img-000.jpg&type=master
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based on active groups grafted on their surface. Moreover, the presence of accessible 

functional groups (for instance, amino, sulphonic or vinyl groups) from the modified 

organic linkers would facilitate additional covalent anchoring of other organic or 

organometallic complexes in successive post-synthesis steps to obtain more specific 

catalysts. In this regard, Farrusseng et al. have modified by post-synthesis treatment 

zinc carboxylate (IRMOF-3) and triazolate (ZnF(Am2TAZ) 8Am = amino, TAZ = 

triazolate) (Savonnet et al. 2009), which were prepared from aminoterephtalic acid 

(Huang et al. 2003; Goforth et al. 2005), both with amino groups pointing to the 

channels (Figure 22). The modification consisted in the acylation of NH2 with nictinoyl 

chloride with the objective of increasing the surface hydrophobicity while maintaining 

the basicity, the pKa of the attached pyridine group being similar to that of aniline as 

precursor.  

 

Figure 22. Diagram of IRMOF-3 (left), functionalised IRMOF-3 (middle) and ZnF(Am2TAZ) 

(right) frameworks. The yellow balls indicate the size of the pore openings (Savonnet et al. 

2009). 

The catalytic performance of these modified MOFs was superior to the non-modified 

MOFs analogues for aza-Michael reaction, probably due to the higher hydrophilicity of 

the former. The resultant catalysts were also more active than their homogeneous 

counterparts due to the stronger adsorption in the micropores of the organic compounds. 

The validity of the post-synthesis modification approach was also demonstrated by 

Corma et al. who incorporate covalently Au(III) Schiff base complexes onto type-

IRMOF-3 metalorganic frameworks previously grafted with salicyladehyde molecules 

(Figure 23a). The Au(III)-containing MOF was highly active and selective for 3D 

coupling and cyclization reactions in liquid phase. Importantly, the catalyst was fully 

recyclable, without leaching or modification during the reaction. More specifically, the 



25 

 

later was the multi-reaction coupling of N-protected ethynylaniline, amine, and 

aldehyde catalyzed by IRMOF-3-SI-Au in dioxane (Figure 23b). This catalyst gave 

higher activity than homogeneous and any gold-supported catalysts reported up to now 

(Zhang et al. 2009). The well-defined Au(III) sites were active for H2 dissociation and 

proved to be active for the gas-phase selective hydrogenation of 1,3-butadiene into the 

butenes. Recently, this type of gold metalorganic frameworks, IRMOF-3-SI-Au, has 

been successfully used as catalyst for the cyclopropanation of alkenes with high chemo- 

and diastereoselectivities, bridging the gap between homogeneous and heterogeneous 

catalysis (Corma et al. 2010). 

 

Figure 23. a) Post-synthesis modification procedure for obtaining MOFs containing Au(III) 

Schiff base complex. Zn: green; O: red; C: light blue; N: deep blue; Au: yellow; Cl: white. H 

atoms are omitted; b) multi-component coupling reaction scheme of N-protected 

ethynylaniline, amine, and aldehyde catalyzed by IRMOF-3- SI-Au catalyst (Zhang et al. 

2009). 

 

 

 

b) 

a) 
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Conclusions 

Different single-site catalysts based on PMOs, MOFs and supported silica materials 

have been presented. They show that the integration of homogenous active compounds 

into the defined and structurated matrixes can increase the performance of molecular 

catalysts. Indeed, the presence of single-site heterogenized active phases in organized 

solids allows to obtain highly specific catalysts, with the advantages of recyclability and 

separation associated to heterogeneous catalysis. Definitively, the presence of single 

isolated sites into the framework of hybrid organic-inorganic structured materials 

bridges the gap between homoneneous and heterogeneous catalysts, and opens the 

possibilities for preparing well defined multisite catalysts for performing cascade type 

reactions with solid catalysts (Climent et al. 2011). 
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