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Highlights

1. We conduct a feasibility study with 14 individuals with cerebral palsy
(CP) to evaluate their control of two online Brain-computer interfaces.

2. Eight of the individuals with CP were able to control at least one of
the BCIs at a statistically significant level of accuracy.

3. Analysis of the results reveals that BCIs may be controlled by some
individuals with CP.
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Abstract

Objective

Brain-computer interfaces (BCIs) have been proposed as a potential as-
sistive device for individuals with cerebral palsy (CP) to assist with their
communication needs. However, it is unclear how well-suited BCIs are to
individuals with CP. Therefore, this study aims to investigate to what extent
these users are able to gain control of BCIs.

Methods

This study is conducted with 14 individuals with CP attempting to con-
trol two standard online BCIs (1) based upon sensorimotor rhythm modula-
tions, and (2) based upon steady state visual evoked potentials.
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Results

Of the 14 users, 8 are able to use one or other of the BCIs, online, with
a statistically significant level of accuracy, without prior training. Classifica-
tion results are driven by neurophysiological activity and not seen to correlate
with occurrences of artifacts. However, many of these users’ accuracies, while
statistically significant, would require either more training or more advanced
methods before practical BCI control would be possible.

Conclusions

The results indicate that BCIs may be controlled by individuals with CP
but that many issues need to be overcome before practical application use
may be achieved.

Significance

This is the first study to assess the ability of a large group of different
individuals with CP to gain control of an online BCI system. The results
indicate that six users could control a sensorimotor rhythm BCI and three a
steady state visual evoked potential BCI at statistically significant levels of
accuracy (SMR accuracies; mean ± STD, 0.821± 0.116, SSVEP accuracies;
0.422± 0.069).

Keywords: Cerebral palsy, Brain-computer interface, Steady-state visual
evoked potential, Motor imagery, Mental task, Sensorimotor rhythm
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1. Introduction

Cerebral palsy (CP) is a non-progressive condition caused by damage to
the brain during the early developmental stages, i.e. from the early stages of
pregnancy through to 3 years old, and resulting in motor, and other, impair-
ments (Holm, 1982; Odding et al., 2006). CP is caused by a one-time event
and classified as ”non-progressive” meaning the condition does not get worse
with time (Badawi et al., 2008). However, specific symptoms may change
over time as the individual’s body grows and develops (Panteliadis et al.,
2004).

CP can result in a range of symptoms and may be considered to be an
umbrella term for any disabilities of movement, coordination, balance, pos-
ture, muscle tone regulation etc. resulting from damage during the brain’s
early development (Fong, 2005; Badawi et al., 2008). Individuals with CP
may have a range of difficulties related to motor control including executing
intended movements, automatic movements, and controlling postures (Krig-
ger, 2006). Additionally, the brain damage may also in some cases result in
problems with speech, comprehension, or mental retardation (Miller, 2004).
In some cases CP may render the individual completely paralysed, in others
frequent muscle spasms may occur (Krigger, 2006).

Individuals with CP may encounter a range of difficulties in everyday life.
Communication may be very difficult as speech may be severely impaired or
impossible (Miller, 2004). Additionally, individuals with CP may have severe
restrictions on their independence and may have to rely on care-givers for
many of their activities of daily living (Panteliadis et al., 2004).

A potential tool proposed to help with the communication and indepen-
dent living needs of individuals with CP is a Brain-computer interface (BCI)
(Neuper et al., 2003; Mir, 2009).

BCIs are devices which allow control of a computer, or other device, via
either the controlled modulation of neurological activity or the evocation
of electro-potential changes. As such they can allow their users to con-
trol external devices for communication (Wolpaw et al., 2002), locomotion
(Leeb et al., 2007), neuroprosthesis control (Müller-Putz et al., 2006; Neu-
per et al., 2006), environmental control (Aloise et al., 2011), entertainment
(Nijholt et al., 2009), or rehabilitation (Prasad et al., 2009; Ang et al., 2010;
Kaiser et al., 2012).

BCI control often uses the electroencephalogram (EEG) to measure brain
activity and is most commonly based upon one of three paradigms; P300
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event-related potentials (ERPs), steady state visual evoked potentials (SSVEPs),
or sensorimotor rhythm (SMR) changes. P300 ERPs are changes in ampli-
tude in on-going EEG in response to a particular stimulus or event and may
be used to identify which option from a set of choices a BCI user is attending
to (Farwell et al., 1988).

SMR BCIs base control upon the modulation of on-going oscillatory ac-
tivity in response to a range of mental tasks (Pfurtscheller et al., 2001).
For example, these can include motor imagery in which the user imagines
movement in some part of their body (Pfurtscheller et al., 2001), mental
arithmetic in which the user attempts some mentally engaging arithmetic
task, and word association in which the user attempts to recall words that
begin with a specified letter (Millan et al. (2002); Obermaier et al. (2001);
Faller et al. (2012a); Friedrich et al. (2012)).

SSVEPs are a response to attention by the user to a regularly oscillating
visual stimuli (Calhoun et al., 1995, 1997; Jones et al., 1998; Ming et al.,
1999; Middendorf et al., 2000). When attending to such a stimuli oscillatory
activity at the corresponding frequency in the EEG recorded from the users
occipital cortex increases in magnitude. Thus, by inspecting the power spec-
tra of the EEG recorded over this region it is possible to discern which of a
range of target stimuli the user is attending to (Middendorf et al., 2000).

There is only a small amount of previous work attempting to investigate
the potential use of BCIs by individuals with CP. One previous study, (Neu-
per et al., 2003), investigated the long term use of a BCI by a single individual
with CP and found that BCI control was possible for this individual. A mo-
tor imagery based BCI was provided and, over a period of several months,
the individual was trained to use it, achieving an average level of accuracy
of above 70%. However, there are no studies exploring the potential use of
BCIs by populations of individuals with CP between whom particular mo-
tor function impairments, neurological damage, and other, individual specific
conditions such as degrees of spasticity may vary greatly. Additionally, the
nature of the brain damage in individuals with CP and related symptoms
makes it unclear whether such individuals will be able to (1) generate the
necessary modulations in their neurological activity to control a BCI, and
(2) produce EEG with a small enough amount of artifacts for use in BCI.

Therefore, to begin to answer these questions a feasibility study is con-
ducted. Fourteen adults with CP are engaged in experimentation with two
different online BCI systems in order to investigate if they are able to achieve
online control and to assess the quality of their EEG. Two commonly used
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BCIs are chosen, the sensorimotor rhythm (SMR) based BCI and the steady
state visual evoked potential (SSVEP) based BCI. Note, P300 BCIs were
not investigated at this stage as prior pilot studies with a small group of 6
individuals with CP showed more users were able to produce a significant
SSVEP response than P300. Additionally, users indicated a preference for
either SSVEP or SMR BCIs over P300 based BCIs.

The two BCIs used in this study represent very different control paradigms
involving different cognitive processes and different cortical regions. SMR-
based BCIs involve attempting mental tasks, with cortical activation pri-
marily located in the motor cortex regions. In contrast, SSVEP BCIs involve
attending to oscillatory stimuli with neurophysiological responses located pri-
marily in the occipital cortex. Therefore, these two BCIs allow individuals
with CP to attempt two diverse control paradigms.

We set out to investigate whether individuals with CP are able to gain
control over either an SSVEP or a SMR-based BCI.

2. Methods

2.1. Subjects

Fourteen individuals with CP voluntarily participated in this study (seven
male, age range 20 to 58 with a median age of 36, SD = 10.97). Institutional
review board (IRB) ethical approval was obtained for all measurements. De-
tails of the participants are summarised in table 1.
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2.2. Recording

EEG was recorded from 16 electrode channels via the g.tec GAMMAsys
system with g.LADYbird active electrodes (g.tec, Austria). Channels were
arranged primarily over the motor and parietal cortical areas according to
the international 10/20 system.

We used channels AFz, FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, CP4,
PO3, POz, PO4, O1, Oz, and O2. The reference electrode was placed on
either the right or left ear according to the particular condition of each subject
and the ground electrode was placed either behind the left ear at either TP7,
TP9 or at FPz (again according to particular subject conditions).

Accelerometer sensors were used to record the subjects head movements
in the x, y and z dimensions by placing a PLUX accelerometer at position Fz
(xyzPLUX triaxial accelerometer). Additionally, for some subjects, a PLUX
blood pressure sensor was placed on one finger of either the left or right
hand (bvpPLUX). The hand and finger used varied from subject to subject
according to comfort and the particular condition of each individual with
CP.

Synchronisation of signal timing between the EEG and the accelerome-
ter was achieved via the TOBI signal server (Müller-Putz et al., 2011; Bre-
itweiser et al., 2011). EEG data was sampled at a frequency of 512Hz and
saved to file during both training and feedback runs while the accelerometer
and blood pressure were both sampled at a rate of 128Hz. Only the EEG
signals were used in this study with the other physiological signals retained
for future analyses.

2.3. BCI systems

Two online BCI systems were implemented to test the ability of individ-
uals with CP to control either an SSVEP or an SMR based BCI. Users were
shown demonstrations of each BCI prior to beginning the measurements.
This was to familiarise them with the tasks and make sure they understood
what was required.

Individuals with CP who participated in our pilot study reported that
they felt more comfortable and secure when given some measure of control
over the experimental setting. Thus, users were free to choose which system
they would like to try. After each run they were again asked if they would
like to (1) continue with the current system, (2) try the other system, or
(3) stop. Users reported that giving them these choices helped them stay
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motivated and allowed them to feel more secure and comfortable in the novel
setting of the EEG measurement environment.

When given free choice of which paradigm to choose, it was hypothesised
that users may exhibit strong preferences for one paradigm. This preference
may bias the results. For example, if the SSVEP paradigm was chosen first
by all users then lower results at the SMR BCI may be explained, in part,
by subject fatigue from first attempting the SSVEP BCI.

To determine if there was such a bias in choice, either in terms of a
preference for one or the other of the BCI paradigm types or in the order
paradigms were selected, two tests were applied. First, the number of times
each paradigm type was chosen was assessed against the null hypothesis of
equal probability of each paradigm being chosen. Second, the fraction of
times each paradigm was chosen within each of the first three runs (subse-
quent runs were not completed by enough users for valid statistical testing)
was assessed against the same null hypothesis. Rejection of the null hypoth-
esis in the first test would indicate a significant preference for one or other
of the paradigms by the subjects. Rejection of the null hypothesis in one
or more of the runs in the second task would indicate that there is some
preference for the order of the runs exhibited by the subjects.

2.3.1. SSVEP

The SSVEP paradigm consisted of four square targets in the form of
four red boxes arranged on a computer screen in a quadrangle. Stimuli were
rapidly changed between red and black colours at frequencies of (clockwise
from top left) 6.66Hz, 8.57Hz, 12Hz, and 15Hz. These frequencies were
chosen based upon pilot experiments with three healthy subjects. Users
were periodically cued to attend to one of the targets via an arrow placed
in the centre of the screen and remaining in place for 6 s. Additionally, a
fifth null condition was cued by a cross appearing for 6 s in the centre of the
screen. Feedback about successful accomplishment of the task was provided
immediately by highlighting a selection frame around the target. Inter-trial
intervals were uniformly distributed between 3 – 5 s.

Each condition was randomly chosen from a uniform distribution for each
trial. Trials were grouped into runs and one SSVEP run consisted of 20 trials
with equal numbers of trials for each class.

Classification was performed via the canonical correlation analysis (CCA)
method described in (Seber, 1984) and applied in (Horki et al., 2010). Corre-
lations were found between two sets of data (1) the EEG recorded on multiple

9



channels arranged over the occipital cortex and (2) the SSVEP stimulation
frequencies. The largest correlation coefficient was used to identify the stim-
uli the user was attending to. Thresholding was used to test for the null
condition that the user was not attending to a stimuli. Thresholds were ini-
tially set to 0.2 for each of the four SSVEP stimulation frequencies based
upon a prior pilot study with 3 healthy subjects.

CCA was applied in a sliding window to segments of the EEG of length
2 s with a step size of 0.0625 s. Feedback was presented to the user if the
output of the CCA method exceeded the threshold for 0.5 s consecutively.

In addition to the classification accuracy it is interesting to ask in what
percentage of trials the users manage to achieve correct feedback. Thus, the
”hit rate” (HR) was measured as the percentage of trials for which a user
managed to produce a sufficiently large SSVEP response to achieve correct
feedback.

2.3.2. Sensorimotor rhythms

The sensorimotor rhythm paradigm - based upon work in (Faller et al.,
2012b) - consisted of an initial calibration phase followed by an online feed-
back phase.

During the calibration phase the user was asked to perform four different
mental tasks in response to a cue. The tasks were:

1. Kinaesthetically imagined movement of either hand

2. Kinaesthetically imagined movement of the feet

3. Mental arithmetic

4. Mental word-letter association

No feedback was provided during this initial phase. Instead the system
used the data recorded to select the two of the four tasks which were best
suited for individual control.

The timing of individual trials was as follows.
Second 0: a fixation cross appeared in the centre of the screen and re-

mained there for the duration of the trial.
Second 1.5: a cue appeared on screen indicating which task to perform.

This cue remained until second 3.5.
Remaining time: the time from the appearance of the cue to the end of

the trial at second 8 was designated as the imagery period and the user was
instructed to perform the cued task during this time and halt when the cross
disappeared.
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One of the four different conditions was randomly chosen from a uniform
distribution for presentation to the user during each trial.

After sufficient trials were recorded in the calibration phase for accurate
estimation of the class boundaries the BCI automatically proceeded to the
feedback phase. The two most discriminative classes were selected for use
and randomly presented to the user, following the same timing as used in
the calibration phase, during each trial.

During the imagery period in the feedback phase a bar was displayed
on screen indicating the LDA classifier distance estimated from attempting
to classify features from the users SMR strength. Increased LDA classifier
distance causes the bar to fill from left to right. Additional feedback in the
form of a smiley face was presented to the user in the case of the classifier
prediction matching the true class label for more than 50% of the duration
of the imagery period in the trial.

An individual run in both the training and feedback phases contained
32 trials. The number of trials per class was balanced per run, thus, in the
training run there were 8 trials per class and in the feedback run there were
16 trials per class.

The exception to this arose when sufficient trials for classification were
gathered from the calibration phase in the middle of a run. In this case the
run changed from the calibration to the feedback phase immediately and the
run may therefore be said to have contained both calibration and feedback
trials.

During the feedback phase the distribution of the EEG components re-
lated to the tasks continued to be estimated to attempt to further improve
the accuracy with which the system responded to the user.

During both the calibration phase and feedback phase artifacts in the
EEG were automatically identified and labelled. This allowed comparisons
to be made between the classifier outputs and any patterns or repetitions
found in the generation of artifacts. Artifacts were automatically identified
via the thresholding of a number of key metrics from the EEG as described
in (Faller et al., 2012b).

There were four stages to the classifier setup outlier rejection, feature
selection, segment selection, and classifier training. Outlier rejection was
based upon thresholding kurtosis, probability, and statistical properties of
the features. Logarithmic band power features were then extracted from the
EEG in the bands 9-14, 13-17, 16-24, and 23-29Hz. During the calibration
phase the feature that showed the highest between-class discriminability (as
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measured by Fischer’s score) and the time period (within the activity period)
that scored the highest median accuracy after leave-one-out cross-validation,
was used for training the LDA classifier applied during the online feedback
phase.

The LDA classifier was applied in a sliding window approach during online
classification. A window of width 1 s was used with a step size of 1 sample.
This is further detailed in (Faller et al., 2012b).

2.4. Performance

Online classification performance is reported for both the SSVEP and
SMR BCI systems. The statistical significance of the performance was cal-
culated at each time point against the null hypothesis of equal probability of
each class being selected by the classifier. The subsequent significance level
(p < 0.05) is illustrated against the plots of performance accuracy over time.

Additionally, it may be argued that there was a multiple comparisons
issue related to the calculation of the significance on a sample by sample
basis. However, this was a non-trivial problem as there was a large amount
of dependency between subsequent EEG sample points. Thus, a Bonferroni
multiple comparisons correction was not appropriate. To this end the mean
area under the accuracy curves for each BCI system was also calculated.
The area was calculated during the imagery period for the SMR BCI and
during the SSVEP stimulation period for the SSVEP BCI. The significance
of this area under the accuracy curve was then estimated via a bootstrapping
approach.

Multiple bootstrap replications of the performance curves were generated
via first shuffling the class labels prior to calculating classification accuracy.
Mean areas under the accuracy curves were then calculated from each boot-
strap replication and used the estimate the distribution of mean areas under
accuracy curves under the null hypothesis of random classification. From
this the significance of the observed accuracy curve was estimated.

2.5. Relationships between subject details and performance

It is interesting to ask if there is a relationship between any of the subject
details, such as age, CP type etc., and their performance with each of the
BCIs. For example, if some sub-group of subjects (e.g. some age group) per-
form better at one type of BCI then this could inform and guide the design
of future BCI systems for sub-groups of individuals with CP. To this end
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stepwise multi-linear regression was performed with subject details as pre-
dictor variables and the resulting accuracies at controlling each of the BCIs
online as the criterion variables. Two separate regression analyses were per-
formed (1) for the criterion variable SSVEP performance accuracies and (2)
for the criterion variable SMR performance accuracies. The predictor vari-
ables used were subject gender, age, Gross motor function classification sys-
tem (GMFCS) score, orthopaedic disorders, CP type, sensory disturbances,
and dominant hand.

3. Results

3.1. Run order

Table 2 lists the orders of runs selected by each user.
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It is worth noting that all users tried both tasks with no observable
preferences. This is confirmed by the tests for bias in paradigm selection
performed. Over all runs and subjects null hypothesis (that there is equal
probability of each paradigm being chosen) is not rejected (p = 0.104). Table
2 lists the p values of probabilities of rejecting the null hypothesis that each
paradigm is equally likely to be chosen during each run. Note, for run three
the null hypothesis is rejected (p = 0.035). However, is may be argued that
it is necessary to apply multiple comparisons correction to correct for the
three runs. When Bonferroni correction is applied the null hypothesis is no
longer rejected as p = 0.035 is greater than the adjusted significance level of
p = 0167.

Users commented on the first day of measurements that false positive
selections of SSVEP stimuli were distracting. Therefore, from the second
day of measurements onwards (users 4 to 14) the thresholds, used by the
CCA method to identify the SSVEP stimulation frequency the users were
attending to, were adjusted from 0.2 to 0.3 for each stimulation frequency.
This had the effect of reducing the number of false postive identifications as
desired. However, it also reduced the number of true positive identifications,
making it harder for the users to produce any feedback.

3.2. SSVEP

During attempted online control of a BCI via SSVEP, 5 users were able
to achieve control at a statistically significant level (p < 0.05). Figure 1
illustrates online classification accuracies achieved by the best performing
user for each stimuli who was able to control the SSVEP BCI at statistically
significant accuracies (p < 0.05). Table 3 then lists the peak and mean online
accuracies over all stimuli achieved by each user when attempting to control
the 5-class SSVEP BCI online along with the HR, the percentage of trials
for which users were able to achieve correct feedback.

However, it’s important to note that a multiple comparisons correction
may be necessary to adjust for the multiple subjects in the study. Bonferroni
correction may be used to do this. The alpha significance level is adjusted
by 1/N were N indicates the number of comparisons and in this case equals
13. After applying Bonferroni correction we observe that three users exhibit
significant (p < 0.05) peak and mean classification accuracies.

Accuracies may be listed on a per stimulation frequency (class) basis
using a one-vs-rest classification scheme. The balanced accuracy and Cohen’s
kappa are reported to adjust for the bias in the number of trials. Mean
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(c) Bottom left, 12 Hz
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(d) Bottom right, 15 Hz

0 2 4 6 8 10

−0.2

0

0.2

0.4

0.6

0.8

Time (s)

C
oh

en
’s

 k
ap

pa

(e) Null condition, the cross in the centre
of the screen

Figure 1: Online classification results achieved by the best performing user (user 5) when
attempting online control of the SSVEP based BCI. Each plot illustrates the Cohen’s
kappa coefficient for each of the four SSVEP stimulation frequencies positioned in each
corner of the screen and the null condition. Cohen’s kappa is used due to the imbalance
in class numbers entailed in reporting results for one class against the rest. The abscissa
shows the time course over the trial starting from the onset of the visual cue (vertical,
dashed line).
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User Peak accuracy p Mean acc. Trials HR

01 0.400 0.002 * 0.234 40 56.2
02 0.350 0.067 0.168 20 56.2
03 0.366 0.002 * 0.219 60 62.5
04 0.325 0.035 0.208 40 50.0
05 0.500 0.000 * 0.296 60 60.4
06 0.350 0.067 0.219 20 50.0
07 0.400 0.023 0.235 20 50.0
08 0.200 0.525 0.194 60 00.0
09 0.250 0.327 0.201 20 00.0
10 0.200 0.545 0.191 20 00.0
11 0.200 0.545 0.187 20 00.0
12 0.200 0.522 0.189 80 00.0
13 - - - - -
14 0.200 0.532 0.191 40 00.0

Table 3: Columns two and three list peak online classification accuracies for control of the
SSVEP based BCI by each user and the corresponding p-value against the null hypothesis
of equal chance of each of the 5 classes (4 stimuli and the no-target condition) been
classified. Asterisks (*) indicate users who achieved statistically significant (p < 0.05
adjusted via Bonferroni to p < 0.0038) accuracies as measured via the bootstrapping
significance test. Columns four and five list mean accuracies during the stimulation period
and the number of trials attempted by each user. Additionally, the HR (the percentage of
trials for which the user was able to attain the correct feedback) is listed. Note, user 13
attempted SSVEP control but because of the position of their head rest was pressing on
the occipital electrodes no usable signals could be recorded for this paradigm.

and standard deviations of balanced accuracy values for each stimulation
frequency and the null condition (when the user does not look at any stimuli)
are listed in table 4. A 2x2 Anova with the factor stimulation frequency
revealed no significant effect of frequency on performance F(4,69) = 0.57, p =
0.683.

Note, users 1 – 3 had CCA thresholds set to 0.2 while the remaining users
had thresholds set to 0.3. Significant classification accuracy is achieved by
some users with each threshold value.
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Condition Accuracy (mean ± std) Kappa (mean ± std)

6.66 Hz stimuli 0.606± 0.112 0.191± 0.204
8.57 Hz stimuli 0.639± 0.165 0.209± 0.259
12 Hz stimuli 0.603± 0.135 0.176± 0.195
15 Hz stimuli 0.586± 0.116 0.202± 0.266
No stimuli 0.571± 0.090 0.176± 0.215

Table 4: Mean and standard deviation of balanced accuracies and Cohen’s kappa related
to attending to each SSVEP stimulation frequency and the null condition (attending to
no stimuli).

3.3. Sensorimotor rhythms

During attempted online BCI control clear sensorimotor rhythms are vis-
ible in 12 users with artifacts contaminating the spectra in the remainder.
Examples of good, artifact free, spectra generated by a user are illustrated
in figure 2. ERD/S spectra are illustrated on common average referenced
(CAR) channels FC3, FCz, FC4, C3, Cz, C4, CP3, CPz, and CP4 for each
of the 4 mental tasks employed.

The online classifier identifies enough trials to be trained with 10 users
and online classification is statistically significant (p < 0.05) in 8 of those
users. Of those users, two exhibit significant correlations between the clas-
sifier output and the automatically identified artifacts present in the signal.
Thus, of the 14 users who attempted online BCI control via SMR modulation
6 were successful.

Online classification accuracies achieved by the 6 users able to control
the SMR based BCI at statistically significant accuracies, without significant
correlations found with the automatically identified artifacts, are illustrated
in figure 3. The peak online classification accuracy for each user during
the SMR based BCI control in the period 2 - 6 s relative to the cue, the
corresponding p-values, and the correlation R-values and p-values between
the classifier output and the automatically identified artifacts are listed in
table 5. Additionally, the hit rate (HR), the percentage of trials for which
each user is able to achieve a smiley feedback, is listed.
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(a) Hand imagery

10

20

30

40

F
re

qu
en

cy
 (

H
z)

10

20

30

40

0 2 4 6

10

20

30

40

Time (s)
0 2 4 6 0 2 4 6

(b) Feet imagery
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(c) Mental arithmetic
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(d) Word association

Figure 2: Examples of SMRs, from a user with relatively clean EEG, relating to each
condition, (hands / feet imagery, mental arithmetic, and word association). Each plot is
split into 9 subplots illustrating the common average referenced channels FC3, FCz, FC4,
C3, Cz, C4, CP3, CPz, and CP4. Red colours indicate significant periods of ERD and
blue significant periods of ERS. Significance is determined via the bootstrapping approach
described in (Graimann et al., 2002). The vertical line at 0 s denotes the cue presentation
time.
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(c) User 08
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(d) User 09
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(e) User 11
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(f) User 14

Figure 3: Online classification accuracies achieved by users who were able to achieve
statistically significant (p < 0.05) classifier accuracies when attempting online control of
an SMR based BCI and for whom there is not a significant correlation betwen classifier
results and artifacts. Times are listed relative to the cue presentation time (denoted by
the veritical dashed line) and the horizontal dotted line illustrates the significance level
at (p < 0.05). Note, the position of this line varies dependent upon how many trials each
user completed in the feedback phase.
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3.4. Signal quality

During the online measurements considerable EMG and movement re-
lated artifacts were observed in 3 users with transient EMG observed in
another 8 users. The remaining 3 users exhibited relatively clean EEG with
only occasional blinks and EOG. In two users classification results were sig-
nificantly correlated with artifacts (one of whom produced statistically sig-
nificant online peak control accuracies). In the remainder (12 users) this was
not the case. The following further general observations may be made on the
EEG recorded from individuals with CP.

Considerable EMG and other artifacts are present on occipital channels
in the majority of individuals. These arise from neck muscles and/or head
supports exerting pressure on the occipital electrodes. While efforts were
made to prevent head supports exerting pressure on occipital electrodes this
was not always feasible for the complete duration of the measurement session.
Periods of short-lived transient EMG may also be observed over the whole
head in many users. However, these are often short lasting (< 10 s). Elec-
trode pop artifacts also occur frequently due to involuntary head movements
causing pulling at leads in some users.

The active electrode system used has a better signal to noise ratio (SNR)
on the cable between the electrode and the amplifier, potentially leading
to less noise in the signal. However, in 2 users (user 6, 2 runs, user 12,
1 run) problems with the ground channel disconnecting due to large head
movements introduced large line noise artifacts in some runs and rendered
the signals un-usable. These runs were removed from the dataset prior to
analysis and are not incorporated into the classification results.

3.5. Relationships between subject details and performance

The small number of subjects involved in this study means the impact
of the statistical analysis of the relationships between subject details and
their performance is limited and should be interpreted with caution. The
results of the multi-linear stepwise regression analysis reveal a statistically
significant (p < 0.05) relationship between the predictor variable subject
gender and the criterion variable, the subjects performance at the SMR BCI
with feedback provided (r2 = 0.501, p = 0.0136). Further analysis reveals the
accuracies achieved by male users and female users are seen to be significantly
different (female user accuracies, mean ± SD (number of subjects); 0.849±
0.112 (5), male user accuracies; 0.681±0.071 (5)), with female users achieving
significantly higher accuracies p = 0.022 when compared via a paired t-test.
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4. Discussion

It has been shown that some users with CP are able to volitionally mod-
ulate their neurological activity in order to control a BCI at statistically
significant levels of accuracy. Although the levels of accuracy are too low
to demonstrate usability this result indicates that some individuals with CP
can, with no prior training or experience, control a BCI and could potentially,
in future, be able to use BCIs as assistive devices in selected circumstances.

The suitability of each BCI paradigm for each user depends on individual
circumstances. Many users were observed to exhibit poor signal quality on
occipital channels resulting from uncontrolled neck muscles and / or their
head supports exerting pressure on the occipital electrodes. For this reason
the suitability of SSVEP - and potentially also P300 - BCI control is limited
and dependent upon either these users being able to control their neck mus-
cles, and do without head support, or on suitable artifact removal methods
being developed. By contrast SMR based BCIs could be controlled by 6 out
of 14 users with task related SMRs observable in 12 users.

The SSVEP accuracies illustrated in figure 1 are observed to exhibit differ-
ences in granularity at different frequencies. Some explanation is needed for
this. Inspecting the a-posteriori probabilities for each stimulation frequency
reveals large differences for different stimulation frequencies. The mean a-
posteriori probabilities are 0.49, 0.15, 0.29, 0.05 and 0.02 for the stimulus
types null condition, 6Hz, 8Hz, 12Hz, and 15Hz respectively. Thus, the
classifier is biased towards lower frequencies resulting in outputs at these
frequencies being more frequently presented and finer grained plots resulting
from greater numbers of switches at these stimulation frequencies.

The bias towards lower stimulation frequencies in the classifier may be
physiological. Indeed in a pilot study performed on a small number of individ-
uals with CP prior to the work reported here it was observed that the power
spectrum of occipital EEG from individuals with CP exhibited larger spikes in
response to lower stimulation frequencies then higher stimulation frequencies.
Although it’s important to note the well-known high inter-subject variability
in EEG responses and the relatively small number of subjects in this study
mean stronger conclusions cannot currently be drawn.

Peak accuracies, along with time courses of accuracy, are used to report
performance at each of the BCI systems. This is common practice in BCI
research and provides some measure of both the best performance and the
performance over time (Treder et al., 2011; Fazli et al., 2012; Allison et al.,
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2010a). However, it may be argued that peak accuracy alone does not provide
a complete measure of statistically significant performance. To this end mean
accuracies are also reported and their significance checked via a bootstrapping
method. This reveals that users who achieve significant peak accuracies with
the SSVEP BCI also achieve significant mean accuracies. However, two users
(09 and 11) who achieved significant peak accuracies with the SMR BCI
did not exhibit significant mean accuracies. This may be due to the small
number of trials with user 09 (19 trials) or an unstable performance with a
large period of false classifier results (user 11). By way of contrast, users
01, 02, 13, and 14 exhibit significant mean accuracies despite not exhibiting
significant peak accuracies.

The hit rate (HR) records the percentage of trials for which the user
achieves correct feedback. While correct feedback alone is not enough to
indicate feasible BCI control it does give some measure of how successful
control appears to be to the user and it is encouraging to see that for 7 of
the SSVEP BCI users HRs of 50.0 and above are achieved. Although this
must be contrasted with the remaining users who were not able to produce
any correct feedback.

When inspecting the time courses of the classification accuracies achieved
by each of the 6 users successful in controlling the SMR BCI at statistically
significant levels of accuracy users 8, 9, and 11 achieve sustained levels of
significant control. However, users 2, 3, and 14 only achieve significant control
for transient periods of time or, in the case of user 3, the user attempted
so few trials (9) that the impact of the results is very low. Users 2 and 14
completed 23 and 21 trials respectively. It’s conceivable that with more trials
a more sustained period of significant classification could emerge. However,
this is currently only speculative and sustained, significant BCI control can
currently only be seen to be achieved by 3 users.

The choice of which two out of the four classes are chosen for the online
feedback condition over all users shows a slight preference for the feet motor
imagery condition (chosen 8 times). Other classes are chosen similar numbers
of times to one another (hand imagery 3 times, mental arithmetic 4 times,
and word-letter association 5 times). The reason for this observed preference
could be that the feet motor imagery condition produces an SMR pattern
in these users which is more distinct and, therefore, differentiable then the
other classes. However, this will require further research to verify due to the
relatively small number of subjects involved in this study.

The users involved in this study received no prior BCI training. It
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is, therefore, interesting that a number of them were none-the-less able to
achieve significant levels of control with one or other of the BCIs they at-
tempted. Furthermore, it is interesting to note that this was achieved with
BCIs which were not optimised for individuals with CP. Training sessions
with the users - either BCI training or training at meditation - could im-
prove the performance of BCI control with a number of users and, poten-
tially, allow more users to achieve significant levels of control (Tan et al.,
2009; Mahmoudi et al., 2006).

However, it’s important to note that statistically significant levels of accu-
racy do not mean usable BCI control may be achieved. Useable BCI control
may be defined as a sufficient level of control to allow users to complete a
reasonable number of desired tasks. For binary control this is defined as 70%
accuracy, based upon the results of two patients described in (Kübler et al.,
2001). During attempted online control of the two-class SMR BCI 5 out of
the 6 users who achieved significant control are seen to produce either brief
or sustained control above the 70% threshold. However, a larger number of
trials would allow for further confirmation of this result.

Additionally, the use of more sophisticated signal processing methods,
machine learning methods, and / or feature types may, potentially, also help
to improve performance in a number of users with CP. It may be possible to
allow some users who are not currently able to control a BCI at a statistically
significant level of accuracy to do so. Investigations into improved methods
are an on-going topic of research in BCI and have the potential to yield
impressive results in future work.

The active electrodes used in this study have a considerably shorter setup
time, when compared to the passive electrode systems more commonly used
in BCI studies. However, this comes at the expense of potentially poorer
signal quality due to the lack of an impedance measure in the particular
amplifier system used. None-the-less, this was a successful decision as during
online control no major problems with setup time were encountered and the
proportion of usable signals is similar to that observed with passive electrode
system used in other studies. In future work it may be possible to measure
the signal quality during BCI operation via the use of alternative metrics
which work in situations where impedance measures are not available, such
as that proposed in (Daly et al., 2012).

Other issues encountered during measurements include EMG, head move-
ment, electrode pops (short lasting sharp amplitude changes caused by move-
ment of the electrode), EOG, and eye blink artifacts, which are frequently
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observed, although this varies considerably between users. Users with spas-
ticity exhibited considerably more EMG artifacts in their EEG than users
without. However, correlation analysis between classifier outputs and au-
tomatically detected artifacts revealed statistically significant classification
accuracy was based upon artifacts in only 1 case.

No formal survey of user experiences was conducted in this study. This
was due to two reasons (1) many of the users became tired quickly and an
additional survey conducted before, during, or after the measurements would
have been an additional source of fatigue and (2) the users exhibited widely
differing abilities to communicate (from normal speech to eye gaze commu-
nication via letter boards) which were prohibitive to attempts to administer
a formal survey.

Many users became fatigued during use of the BCIs. This could, in part,
be resolved by a more engaging paradigm. In particular some users com-
plained that the mental arithmetic task was particularly difficult and the
SSVEP stimuli were ”annoying”. This may be contrasted with the motor
imagery tasks which were described by some users as ”enjoyable”. A pro-
posed solution is the use of context aware BCIs, as proposed in (Zander et al.,
2012; Scherer et al., 2012), in which the BCI is augmented by additional infor-
mation relating to the subject and/or environment (e.g. measures of subject
engagement).

Analysis of the relationship between subject details and performance with
the SSVEP and SMR BCIs reveals a significant relationship between subject
gender and their performance with the online SMR BCI. However, it’s worth
noting that only 10 of the 14 subjects were able to attempt online control
of the SMR BCI. Of these 10 users 5 were male and the females achieved
higher classification accuracies. However, with only 10 subjects and differing
numbers of trials over subjects (no significant difference was found in the
number of trials between males and females, (p = 0.852), paired t-tests) it is
not, at this stage, clear how generalisable this finding is to a wider population
of individuals with CP. Future work will explore whether further statistical
relationships emerge with more subjects.

The results reveal that not all approaches work for every user. Indeed,
6 of the 14 users can control the SMR BCI at above significant levels of
accuracy and 3 can control the SSVEP BCI at above significant levels of
accuracy, with one user overlap. This leaves 6 users who could not control
either BCI at a statistically significant level.

This finding may be considered alongside a large meta-analysis performed
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by (Kübler et al., 2008) in which the efficacies of three different types of
BCI for use as communication and control devices with a range of patient
populations were assessed. The three BCIs assessed were SMR, slow cor-
tical potential, and ERP based BCIs. Individuals with spinal cord injury,
amyotrophic lateral sclerosis, brain stem stroke, multiple sclerosis, traumatic
brain injury, and post-anoxic encephalography were considered. Subjects
were ranked in terms of impairment and no statistical relationship was found
between their performance and their degree of impairment when completely
locked in subjects were excluded from the analysis.

Our results also show that for the individuals with CP involved in our
study no statistical relationship was found between the degree of impairment
and their ability to control a BCI. Thus, our findings add to and support those
reported in (Kübler et al., 2008).

When considering the performance of the SSVEP paradigm the result is
somewhat surprising. SSVEP accuracies are generally relatively high when
compared to other BCI paradigms. For example, (Allison et al., 2010b) re-
ports a mean accuracy of 91.85% over 106 healthy subjects using an SSVEP
BCI. However, when one considers the particular conditions of individuals
with CP, in particular that a number of individuals exhibit spasticity and
have problems controlling their neck muscles or require head rests, it is not
so surprising that this particular user group exhibits considerably lower ac-
curacies with the SSVEP task then might be expected from healthy subjects,
or even other BCI target user groups.

Ultimately, the large degrees of differences in individual needs and results
achieved indicate that BCIs need to be tailored to meet each user’s needs and
requirements. Doing so offers the possibility of producing BCIs which could
be controlled by a number of individuals with CP. However, the results at
this stage ultimately indicate that providing BCIs that are useful as assistive
devices to this user group presents a significant challenge. Nevertheless, the
fact that BCI control was achieved by some näıve untrained individuals with
CP is an encouraging initial finding.
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Aloise F, Schettini F, Aricó P, Leotta F, Salinari S, Mattia D et al.
P300-based brain-computer interface for environmental control: an asyn-
chronous approach. J Neural Eng 2011;8:025025

Ang KK, Guan C, Chua KSG, Ang BT, Kuah C, Wang C, et al. Clinical
study of neurorehabilitation in stroke using EEG-based motor imagery
brain-computer interface with robotic feedback. in: Conf Proc IEEE Eng
Med Biol Soc 2010

Badawi N, Watson L, Petterson B, Blair E, Slee J, Haan E, et al. What
constitutes cerebral palsy? Dev Med Child Neurol 2008;40:520-527

Breitweiser C, Neuper C, Müller-Putz G. TOBI Interface A (TiA) - A Stan-
dardized Interface to Transmit Raw Biosignals. Int J Bioelectromagnetism
2011;13:64-65

Calhoun G, McMillan G. EEG-based control for human-computer interac-
tion. in: Proc Annu Symp Human Interaction with Complex Systems
1997;pp. 4-9

Calhoun GL, McMillan GR, Morton PE. Control of functional electrical stim-
ulation with a direct brain interface. in: Proc RESNA 1995;pp. 696-698

Daly I, Pichiorri F, Faller J, Kaiser V, Kreilinger A, Scherer R, et al. What
does clean EEG look like? in Conf Proc IEEE Eng Med Biol Soc 2012

Faller J, Vidaurre C, Friedrich E, Costa U, Opisso E. Automatic adaptation
to oscillatory EEG activity in spinal cord injury and stroke patients. in:
Proc TOBI workshop 2012;pp. 7-8

28



Faller J, Vidaurre C, Solis-Escalante T, Neuper C, Scherer R. Autocalibration
and recurrent adaptation: Towards a plug and play online ERD-BCI. IEEE
Trans Neural Syst Rehabil Eng 2012;20:313-319

Farwell LA, Donchin E. Talking off the top of your head: towards a mental
prosthesis utilizing event-related brain potentials. Electroencephalogr Clin
Neurophysiol 1988;70:510-523

Fazli S, Mehnert J, Steinbrink J, Curio G, Villringer A, Müller KR, Blankertz
B. Enhanced performance by a hybrid NIRS-EEG brain computer inter-
face. NeuroImage 2012;59:519-529

Fong HD. Focus on Cerebral Palsy Research. Nova Publishers, 2005

Friedrich EVC, Scherer R, Neuper C. The effect of distinct mental strate-
gies on classification performance for braincomputer interfaces. Int J Psy-
chophysiol 2012;84:86-94

Graimann B, Huggins JE, Levine SP, Pfurtscheller G. Visualization of sig-
nificant ERD/ERS patterns in multichannel EEG and ECoG data. J Clin
Neurophysiol 2002;113:43-47

Holm VA. The causes of cerebral palsy. A contemporary perspective. JAMA
1982;247:1473-1477

Horki P, Neuper C, Pfurtscheller G, Müller-Putz GR. Asynchronous steady-
state visual evoked potential based BCI control of a 2-DoF artificial upper
limb. Biomed Tech (Berl) 2010;55:367-374

Jones KS, Middendorf MS, Calhoun G, McMillan G. Evaluation of an
Electroencephalographic-Based Control Device. in: Proc of the 42nd An-
nual Mtg of the Human Factors and Ergonmics Society 1998;42:491-495

Kaiser V, Daly I, Pichiorri F, Mattia D, Müller-Putz G, Neuper C. On the
relationship between electrical brain responses to motor imagery and motor
impairment in stroke. Stroke 2012;43:2735-2740

Krigger KW. Cerebral palsy: an overview. Em Fam Physician 2006;73:91-100
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