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Abstract. It is the aim of this paper to investigate a suitable approach to compute solutions

of the powerful Michaelis-Menten enzyme reaction equation with less computational effort. We

obtain analytical-numerical solutions using piecewise finite series by means of the differential

transformation method, DTM. In addition, we compute a global analytical solution by a modal

series expansion. The Michaelis-Menten equation considered here describes the rate of depletion

of the substrate of interest and in general is a powerful approach to describe enzyme processes.

A comparison of the numerical solutions using DTM, Adomian decomposition and Runge-Kutta

methods is presented. The numerical results show that the DTM is accurate, easy to apply and

the obtained solutions retain the positivity property of the continuous model. It is concluded that

the analytic form of the DTM and global modal series solutions are accurate, and require less

computational effort than other approaches thus making them more convenient.
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Introduction

Enzymes are proteins that catalyze all chemical reactions essential for living
organisms. As any catalyst, they do not modify the products or the chemical
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equilibrium but only the velocity of these reactions. A set of several enzymes
appears at every step of the basic metabolic cycle: the citric acid cycle or Krebs
cycle and according to some biologists their role in these cycles was crucial
in the origin of life in the so called “metabolism first” scenario [24]. Some
enzymes such as β-lactamases have become the objective of extensive studies
because they catalyze hydrolyzing mechanisms for antibiotics and, consequently
make some bacteria such as Escherichia coli resistant against traditional treat-
ment [25]. For these reasons, understanding the kinetics of enzyme reactions
is very important from a fundamental point of view in biology and medicine.
In modern science, all enzymes, pathways and whole-cell models are created,
analyzed and simulated using computers. These analyses gave rise to enzyme
kinetics, metabolic control analysis and pathway modeling and are now part of
the field of systems biology. Simultaneous experimental (in vitro measurements),
theoretical (ODE, regression analysis) and informatics (peer review journals,
libraries) achievements were all required for scientific progress.

The Michaelis-Menten equation has been widely used to describe the kinet-
ics of enzyme-catalyzed reactions. For instance in [5] it is investigated the
Michaelis-Menten enzyme kinetics on low-dimensional lattices by means of
Monte Carlo simulations where the formulation of the reaction scheme is mod-
eled by evolution rules. Kinetic studies on enzymes are among the most im-
portant tools for understanding biological interactions at the molecular level. In
combination with new approaches in genetic engineering and structure determi-
nation, there have been major efforts in recent years to develop more sensitive
and precise techniques for characterizing the kinetics of enzyme reactions [7].

The Michaelis-Menten equation has proven to be a simple yet powerful ap-
proach to describe enzyme processes. Its power resides in the time-independent
hyperbolic relation of the initial velocity with initial substrate concentration that
leads to a linear double reciprocal, from which the reaction parameters, namely
the rate constant Km and maximum velocity Vm can be determined.

Evoking the pseudo-steady state approximation, the Michaelis-Menten
equation reduces to a single first-order nonlinear ordinary differential equation
which describes the rate of depletion of the substrate of interest [21]. While this
equation can be readily integrated, the resulting expression is implicit in the
substrate concentration. Thus, it is common to compute the substrate concen-
tration by root-solving techniques such as the bisection and Newton-Raphson
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methods [13]. Alternatively, substrate concentration can be estimated by nu-
merically integrating the differential form of the Michaelis-Menten equation as
shown in several studies [14, 15]. In [12] the estimation of enzyme kinetic
parameters by nonlinear fitting reaction curves was compared to the integrated
Michaelis-Menten rate equations. Here we are interested in improving the afore-
mentioned methods to compute the substrate concentration in the Michaelis-
Menten equation. Algebraic solutions provides a simpler alternative to numerical
approaches such as differential equation evaluation and root-solving techniques
that are currently used [21]. An explicit closed-form solution to the Michaelis-
Menten equation has been proposed only recently [9]. This solution is based
on the Lambert W function [11]. Having an accurate closed-form solution to
the Michaelis-Menten equation opens up the possibility of examining the utility
of other non-conventional solution techniques to solve the Michaelis-Menten
equation.

In order to improve the computation of the substrate concentration in the
Michaelis-Menten equation we rely on DTM and a global modal series. Start-
ing from a differential equation system with initial conditions, the DTM leads
to a system of algebraic equations whose solutions are the coefficients of a
series solution. In this work the DTM is numerically compared with the multi-
stage Adomian decomposition, Runge-Kutta method and the global modal series.
The classical Adomian method has been used in the past to obtain solutions to
the Michaelis-Menten ordinary differential equation [16, 17, 18]. In [21] the
Adomian decomposition with domain split has been applied successfully to the
Michaelis-Menten ordinary differential equation.

It is important to remark that numerical comparisons are made regarding two
issues: accuracy and computation time. Computation time is important since in
several cases the kinetic parameters are estimated by minimizing the residual sum
of squares error between experimental and calculated substrate concentration
data [21, 13, 12, 20]. Thus a faster computation time will improve overall
estimating procedure time [21]. It should be mentioned that analytic forms
are obtained with the DTM, Adomian and modal series methods. However, with
Runge-Kutta methods and nonlinear solvers only discrete solutions are obtained.

The organization of this paper is as follows. In Section 2, basic definitions and
properties of the differential transform method are presented. In Section 3 the
DTM is applied to the Michaelis-Menten ordinary differential equation. Sec-
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tion 4 is devoted to the application of the modal series in order to obtain a global
solution. In Section 5 comparisons between DTM, the fourth-order Runge-Kutta
(RK4) method, multistage Adomian method and a nonlinear solver based on the
Adomian method are included. Finally in Section 6 conclusions are presented.

1 Basic definitions and properties of differential transformation method

Given a system of differential equations and related initial conditions, these are
transformed into a system of recurrence equations that finally leads to a system
of algebraic equations whose solutions are the coefficients of a power series
solution. The numerical solution of the system of differential equation in the
time domain can be obtained in the form of a finite-term series in terms of a
chosen basis system. The advantage of this method is that it is not necessary to
do linearization or perturbations. Furthermore, large computational work and
round-off errors are avoided. For the sake of clarity in the presentation of the
DTM and in order to help to the reader we summarize the main issues of the
method that can be found in [8].

Definition 1.1. Let x(t) be analytic in the time domain D, and if X (k) is defined

as

X (k) = M(k)

[
dk x(t)

dtk

]

t=ti

(1)

where k ∈ Z+ ∪ {0}, then the function x(t) can be described as

x(t) =
1

q(t)

∞∑

k=0

(t − ti )k

k!

X (k)

M(k)
, (2)

where M(k) 6= 0 and q(t) 6= 0. M(k)is the weighting factor and q(t) is regarded
as a kernel corresponding to x(t).

Definition 1.2. Let [0, H ] the interval of simulation with H the time horizon of

interest. We take a partition of the interval [0, H ] as {0 = t0, t1, . . . , , tn = H}

such that ti < ti+1 and Hi = ti+1 − ti for i = 0, . . . , n. Let M(k) =
Hk

i
k! ,

q(t) = 1 and x(t) be a analytic function in [0, H ]. It then defines the differential

transformation as

X (k) =
H k

i

k!

[
dk x(t)

dtk

]

t=ti

where k ∈ Z+ ∪ {0}, (3)
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and its differential inverse transformation of X (k) is defined as follow

x(t) =
∞∑

k=0

(
t

Hi

)k

X (k), for t ∈ [ti , ti+1]. (4)

In order to obtain a globally accurate solution we divide the time domain H
in n subdomains. In this way, the differential equation can then be solved in
each subdomain to obtain a piecewise finite series solution [6, 3, 2]. The main
advantage of domain split process is that only a few series terms are required
to construct the solution in a small time interval Hi , where H =

∑n
i=1 Hi .

Considering the function x(t) in the i-th sub-domain (ti−1 ≤ t ≤ ti ), the one
dimensional differential transformation is given by

x(t) =
n∑

k=0

(
t

Hi

)k

Xi−1(k) , where Xi−1(0) = xi−1(ti−1). (5)

The operation properties of the differential transformation. We consider

q(t) = 1, M(k) =
Hk

i
k! and x1(t), x2(t) two uncorrelated functions of time t .

LetD be the differential transformation operator. Thus, Xi (k) = D[xi (t)]. The
properties of the differential transformation can be seen in Table 1.

Original function Transformed functions

D[c1x1(t) ± c2x2(t)] c1 X1(k) ± c2 X2(k)

D[c] cδ(k)

D
[ dx1(t)

dt

]
(k+1)

Hi
X1(k + 1)

D
[
z(t) = x1(t)/x2(t)

] X1(k)−
k−1∑

l=0
Z(l)X2(k−l)

X2(0)

Table 1 – Basic operations for differential transformation method.

2 Solution of Michaelis-Menten equation by DTM

In this section, the differential transformation technique is applied to solve the
Michaelis-Menten ordinary differential equation. The Michaelis-Menten equa-
tion (6) considered here describes the rate of depletion of the substrate of interest.

ṡ(t) = −
Vms(t)

Km + s(t)
, (6)
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where s(t) is the substrate concentration, and Vm and Km are the limiting rate
and Michaelis constant, respectively.

In the next Section numerical simulations are performed with Vm = 1, Km = 1
and initial condition s0 = 10. However, in some simulations these values are
modified but are clearly mentioned. From the properties given in Section (1),
the corresponding spectrum for system (6) can be determined as one recurrence
system given by,

S(k + 1) = −
Vm Hi Z(k)

k + 1
, (7)

where Z(k) is the spectrum of z(t) = − s(t)
Km+s(t) , given by

Z(k) =

S(k) +
k−1∑

l=0
Z(l)

(
Kmδ(k − l) + S(k − l)

)

Kmδ(0) + S(0)
, k ≥ 1, (8)

with

Z(0) =
S(0)

Kmδ(0) + S(0)
, (9)

where the initial condition is S(0) = s(0). Thus, from a process of inverse
differential transformation, the solutions can be obtained on each sub-domain
taking n + 1 terms for the power series like equation (5), i.e.,

si (t) =
n∑

k=0

(
t

Hi

)k

S(k), 0 ≤ t ≤ Hi , (10)

provided that the solution holds with:

s(t) =
n∑

i=0

si (t). (11)

3 Solution of Michaelis-Menten equation by modal series

Here we obtain a global analytical solution by the modal series which avoids
the split of time domain in subintervals and produces accurate solutions. This
method is based on the following modal expansion series:

s(t) =
∞∑

k=0

Ake−kωt , ω > 0, (12)
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where the frequencies and the coefficients Ak, k = 2, 3 . . . are determined by a
recurrence relation in terms of A1 and the parameters of the model. For more
details concerning this method, refer to [4]. Indeed, equation (6) can be rewritten
in the following form

Kmṡ(t) + s(t)ṡ(t) = −Vms(t). (13)

Now, from (12) it follows that

ṡ(t) = −
∞∑

k=1

kωAke−kωt = −
∞∑

k=0

kωAke−kωt , (14)

and using the Cauchy product we obtain

s(t)ṡ(t) = −
∞∑

k=0

e−kωt

( k∑

j=0

ω jA jAk− j

)
. (15)

Inserting (12), (14) and (15) into (13) one obtains

∞∑

k=0

(
−KmkωAk −

k∑

j=0

jωA jAk− j + VmAk

)
e−kωt = 0. (16)

Thus, one gets that

−KmkωAk −
k∑

j=0

jωA jAk− j + VmAk = 0, for k = 0, 1, . . ., (17)

where we have taken into account that e−kωt (k = 0, 1, . . .) are a linearly inde-
pendent base of exponential functions. It is clear that A0 = 0, and if we assume
that A1 6= 0, then we have that

−KmωA1 − ωA1A0 + VmA1 = 0, (18)

i.e., ω = Vm/Km . Therefore, we can establish a recurrence formula for Ak as
follows

Ak =

ω
k−1∑

j=1
jA jAk− j

Vm − kωKm
, for k ≥ 2, (19)
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where A1 6= 0 is chosen suitably. The initial condition is related with the
Aks by

s(0) =
∞∑

k=1

Ak . (20)

Moreover, if we put B1 = |A1|, and Bk = |Ak | for k ≥ 2, we obtain the fol-

lowing expression to Bk = 1
Km (k−1)

k−1∑

j=1
jB jBk− j . Thus, one gets the recurrence

relation

B2

B1
=

1

1

B1

Km
=

(1 + 1)0

10

B1

Km
,
B3

B2
=

3

2

B1

Km
=

(1 + 2)1

21

B1

Km
,

B4

B3
=

16

9

B1

Km
=

(1 + 3)2

32

B1

Km
,
B5

B4
=

125

64

B1

Km
=

(1 + 4)3

43

B1

Km
,

B6

B5
=

1296

625

B1

Km
=

(1 + 5)4

54

B1

Km
,
B7

B6
=

16807

7776

B1

Km
=

(1 + 6)5

65

B1

Km
,

B8

B7
=

262144

117649

B1

Km
=

(1 + 7)6

76

B1

Km
, ∙ ∙ ∙

Bk+1

Bk
=

(
1 +

1

k

)k−1 B1

Km
=

(
1 +

1

k

)k( k

1 + k

)
B1

Km
.

If we choose B1 = |A1| ≤ Km
e , thenBk is a monotone decreasing sequence, and

the series
∞∑

k=1
(−1)kBk converges absolutely. Now, if k is even, we have that

Bk+1 =
k + 1

k

1

Km

{
B1Bk + B2Bk−1 + ∙ ∙ ∙ + B k−1

2
B k+3

2
+ B2

k+1
2

}
.

Since Bk < Bk−1 < Bk−2 < ∙ ∙ ∙ , then Bk+1 is lower bounded as follows

Bk+1 >
k + 1

k

1

Km

k+1
2∑

j=1

B j .

Suppose that
∞∑

k=1
Bk > Km , then there exists N such that

N+1
2∑

k=1
Bk > Km + ε,

where ε > 0. Therefore,

BN+1

BN
>

N + 1

N

Km + ε

Km
> 1.
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This contradicts the hypothesis of the statement. Thus,
∞∑

k=1
Bk < Km . The above

analysis allows us to state the following theorem:

Theorem 3.1. If B1 = |A1| ≤ Km
e , and Bk = |Ak | for k ≥ 2, then the series

∞∑

k=1
(−1)kBk converges absolutely, and furthermore

∞∑

k=1
Bk < Km.

Notice that in this case A0 = 0 since limt→∞ s(t) = 0.

4 Numerical results

In this section, numerical comparisons between DTM, multistage Adomian and
Runge-Kutta methods are performed in order to investigate the accuracy and
computation time of each method. Also, we present the numerical results of
the global analytical solution obtained by the modal series in order to show
its efficiency. Since an explicit closed-form solution to the Michaelis-Menten
equation based on the Lambert W function is available we can examine the
absolute errors of each one of the methods used to solve the Michaelis-Menten
equation. The explicit closed-form solution to the Michaelis-Menten equation
is:

s(t) = KmW
(

s0

Km
exp

[
s0 − Vmt

Km

])
, (21)

where W is the Lambert function [11].
First of all in order to illustrate the type of solutions that are obtained with the

multistage Adomian method (MADM) and the DTM, we present Tables 2 and
3. In Table 2 it can be seen the piecewise finite series solution obtained with
the multistage Adomian method for the Michaelis-Menten ordinary differential
equation in the time interval [0, 5] with a time step size h = 1. Table 3 presents
an example of the piecewise finite series solution obtained with the DTM for the
Michaelis-Menten ordinary differential equation.

In Figure 1 a comparison of the numerical solutions of the 4-term DTM with
RK4 methods for Michaelis-Menten differential equation (6) is shown. It can
be seen that the DTM reproduces the correct behavior of the solution for the
Michaelis-Menten ordinary differential equation. Notice that for a time step size
h = 2.8 the well known Runge-Kutta method fails and DTM gives the correct
solution for the same time step size. However, in Figure 2 it can be observed
that both methods give accurate solutions.
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Time M ADM

0.0 ≤ t < 1.0 10.0 − 0.909t + 0.0037t2 + 0.00019t3 + 0.000011t4

1.0 ≤ t < 2.0 10.0 − 0.909t + 0.0037t2 + 0.00018t3 + 0.000015t4

2.0 ≤ t < 3.0 10.0 − 0.909t + 0.0038t2 + 0.00015t3 + 0.00002t4

3.0 ≤ t < 4.0 10.0004 − 0.909t + 0.0041t2 + 0.000067t3 + 0.000029t4

4.0 ≤ t < 5.0 10.002 − 0.912t + 0.0051t2 − 0.00011t3 + 0.000042t4

Table 2 – Piecewise finite series approximate solution obtained with the multistage Adomian

method at different time intervals with Vm = 1, Km = 1.

Time DTM

0.0 ≤ t < 1.0 10.0 − 0.909t + 0.0071t2 + 0.00037t3 + 0.00002t4

1.0 ≤ t < 2.0 10.003 − 0.909t + 0.0037t2 + 0.00018t3 + 0.000015t4

2.0 ≤ t < 3.0 10.003 − 0.909t + 0.0038t2 + 0.00015t3 + 0.00002t4

3.0 ≤ t < 4.0 10.004 − 0.909t + 0.0041t2 + 0.000067t3 + 0.000029t4

4.0 ≤ t < 5.0 10.006 − 0.912t + 0.0051t2 − 0.00011t3 + 0.000042t4

Table 3 – Piecewise finite series approximate solution obtained with the DTM at different time

intervals with Vm = 1, Km = 1.
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Figure 1 – Comparison of the numerical solutions of the 4-term DTM with RK 4 methods

for Michaelis-Menten differential equation (6).
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Figure 2 – Comparison of the numerical solutions of the 4-term DTM with RK 4 methods

with h = 0.2 for Michaelis-Menten differential equation (6).

In Tables 4 and 5 we present the absolute errors for the 2-term DTM solution,
2-term multistage Adomian method and the second-order Runge-Kutta (RK2)
solution when a time step size of h = 0.2 is used in all methods. These results
show the numerical consistency of the DTM. Table 6 shows the absolute errors of
the aforementioned methods but now with 4-terms for the DTM and multistage
Adomian methods, and the fourth-order Runge-Kutta (RK4) solution. Notice
that in Tables 6 and 7 the numerical results for DTM and multistage Adomian
have similar accuracy. Therefore, the more convenient method must be the one
with less computation time. In Table 7 we present the errors of the DTM with
different number of terms. Notice, that as expected the accuracy of the solution
is increased when more terms are implemented. This approach is easy to be
implemented since the code is totally reusable. However, for increasing the
order of Runge-Kutta method it is necessary to implement a new code.

In Table 8 we present the computation time required to obtain an error of
approximately 10−5 at different times using DTM (h = 0.2) and multistage
Adomian method. Computation time is important because in order to estimate
the parameters Vm and Km through synthetic substrate concentration data it is
necessary to solve the Michaelis-Menten ordinary differential equation several
times to minimize the residual sum of squares error between synthetic and cal-
culated substrate concentration data.
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Time DTM RK 2 M ADM

0.2 0.34E − 04 0.93E − 06 0.15E − 05

0.6 0.48E − 04 0.29E − 05 0.49E − 05

1.0 0.61E − 04 0.51E − 05 0.87E − 05

5.0 0.30E − 03 0.48E − 04 0.76E − 04

10.0 0.18E − 02 0.36E − 03 0.43E − 03

Table 4 – Comparison of the errors between the 2-term DTM (Hi = 0.2) with RK 2(h = 0.2) and

2-term M ADM(h = 0.2) methods for Michaelis-Menten differential equation (6) with Km = 1.

Time DTM RK 2 M ADM

0.2 0.16E − 07 0.91E − 08 0.66E − 08

0.6 0.44E − 07 0.27E − 07 0.19E − 07

1.0 0.72E − 07 0.45E − 07 0.32E − 07

5.0 0.34E − 06 0.22E − 06 0.16E − 06

10.0 0.64E − 06 0.42E − 06 0.31E − 06

Table 5 – Comparison of the errors between the 2-term DTM (Hi = 0.2) with RK 2(h = 0.2)

and 2-term M ADM(h = 0.2) methods for Michaelis-Menten differential equation (6) with

Km = 100.

Time DTM RK 4 M ADM

0.2 0.21E − 9 0.12E − 10 0.21E − 9

0.6 0.67E − 9 0.41E − 10 0.67E − 9

1.0 0.12E − 8 0.75E − 10 0.12E − 8

5.0 0.15E − 7 0.11E − 8 0.15E − 7

10.0 0.84E − 7 0.34E − 7 0.84E − 7

Table 6 – Comparison of the errors between the 4-term DTM (Hi = 0.2) with RK 4(h = 0.2) and

4-term M ADM(h = 0.2) methods for Michaelis-Menten differential equation (6).

As it can be seen in Table 8 the DTM is faster than the multistage Adomian
method since it does not require heavy symbolic computation. However, the
Runke-Kutta methods require less computation time in comparison with DTM
and multistage Adomian. In [21] nonlinear solvers have been used as another
approach to numerically obtain the solution of Michaelis-Menten ordinary dif-
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Time 4-term DTM 6-term DTM 8-term DTM

0.2 0.21E − 9 0.29E − 13 0.37E − 17

0.6 0.67E − 9 0.96E − 13 0.12E − 16

1.0 0.12E − 8 0.17E − 12 0.23E − 16

5.0 0.15E − 7 0.29E − 11 0.35E − 15

10.0 0.84E − 7 0.97E − 10 0.68E − 13

Table 7 – Comparison of the numerical results using DTM with different number of terms and

time step size Hi = 0.2 for Michaelis-Menten differential equation (6).

Time DTM M ADM

1.0 0.01 0.34

5.0 0.05 1.05

10.0 0.10 2.19

20.0 0.14 3.80

60.0 0.51 10.85

Table 8 – Comparison of computation time of the DTM (h = 0.2) and multistage Adomian method

(h = 0.2) required to obtain an error of 10−5 at different times.

Time DTM RK 4 M ADM Modal

0.2 0.37465E − 8 0.52E − 8 0.37E − 8 0.7674E − 6

0.6 0.78148E − 8 0.15E − 7 0.11E − 7 0.7441E − 6

1.0 0.26161E − 7 0.23E − 7 0.17E − 7 0.1790E − 6

5.0 0.89055E − 7 0.34E − 7 0.58E − 8 0.1039E − 7

10.0 0.14229E − 7 0.72E − 8 0.29E − 8 0.2818E − 8

Table 9 – Comparison of the errors between the 4-term DTM (Hi = 0.2) with RK 4(h = 0.2),

4-term M ADM(h = 0.2) and modal series (50-term) methods for Michaelis-Menten differential

equation (6) with Vm = 0.5, Km = 1 and initial condition s0 = 0.236755.

ferential equation. The authors found that this approach requires a significantly
higher number of computations. In addition, it is important to remark that for the
nonlinear solvers an initial guess point or interval is needed a priori. If the initial
guess point is far from the true solution, convergence may not be achieved.

Numerical results show that DTM is an accurate approach without long
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computation time to obtain solutions of the Michaelis-Menten ordinary differ-
ential equation. The DTM numerical solutions are comparable with the Runge-
Kutta solutions and their accuracy can be easily improved without a new code
implementation. In addition, the method has the advantage of giving a functional
form of the solution within each time interval. Therefore, no further computation
is necessary if the substrate depletion data is available for different sets where
the experimental observations are not equal. This is not possible in purely nu-
merical techniques like the Runge-Kutta method, which provides solution only
at discrete times.

Finally, the Table 9 shows the absolute errors of the 4-term DTM (Hi =
0.2) with RK 4(h = 0.2), 4-term M ADM(h = 0.2)and modal series (50-
term) methods for Michaelis-Menten differential equation (6) with Vm = 0.5,
Km = 1 and initial condition s0 = 0.236755. These results show the accuracy
of the modal series expansion method which gives a global analytical solution.
It is important to remark that the computation of the modal series can be done
easily with a symbolic computer package and it is done only one time in con-
trast with the multistage Adomian method and the DTM which are applied in
a sequence of time intervals. In this way this method is promising regarding
computation time.

5 Discussion and Conclusions

In this paper piecewise finite series approximate solutions of the Michaelis-
Menten ordinary differential equation using the differential transformation
method DTM, and modal series method has been obtained. The Michaelis-
Menten equation considered here describes the rate of depletion of the substrate
of interest. The time domain has been split in subintervals and the approximating
solutions are obtained in a sequence of time intervals in order to obtain accurate
solutions. However, the accuracy can be increased easily by means of additional
new terms. Starting from a differential equation system with initial conditions,
the DTM leads to a system of algebraic equations whose solutions are the co-
efficients of a series solution. Here we compare the effectiveness of DTM with
multistage Adomian and Runge-Kutta methods. The DTM solutions shown an
excellent agreement with those obtained by the Runge-Kutta methods and with
the analytical solution.
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In addition, we obtain a global analytical solution by a modal series expansion
which avoids the split of time domain in subintervals and produces accurate
solutions. However, this method is restricted to certain initial conditions. In
particular, we have proven the convergence of the modal series for s0 < Km

but, in general, divergent series are found for larger initial concentrations, s(0).
This is the major drawback of the modal series method. Future work includes
the investigation of the feasibility of the extension of the modal series expansion
method to any initial condition.

The numerical results show that the DTM is accurate, easy to apply, and
suggest that the approximate solutions preserve the positivity property of the
Michaelis-Menten ordinary differential equation. Furthermore, high accuracy
can be obtained without using long computation. Moreover, the DTM does
not compute the derivatives or integrals symbolically and this gives advantages
over other methods such Taylor, power series or Adomian method. Finally, the
analytic form of the DTM solution and its relatively high accuracy make this a
competitive approach to solve the Michaelis-Menten equation and can be used
for estimating the parameters Vm and Km through minimizing the residual sum
of squares error between experimental and calculated substrate concentration
data.
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