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Abstract—The main goal of any benchmark is to guide
decisions through system ranking, but surprisingly little research
has been focused so far on providing means to gain confidence on
the analysis carried out with benchmark results. The inclusion
of a back-to-back testing approach in the benchmark analysis
process to compare conclusions and gain confidence on the final
adopted choices seems convenient to cope with this challenge.
The proposal is to look for the coherence of rankings issued from
the application of independent multiple-criteria decision making
(MCDM) techniques on results. Although any MCDM method
can be potentially used, this paper reports our experience using
the Logic Score of Preferences (LSP) and the Analytic Hierarchy
Process (AHP). Discrepancies in provided rankings invalidate
conclusions and must be tracked to discover incoherences and
correct the related analysis errors. Once rankings are coherent,
the underlying analysis also does, thus increasing our confidence
on supplied conclusions.

I. INTRODUCTION

Since the seminal research carried out during the DBench
European project more than 10 years ago [1], lots of efforts
have been done in dependability benchmarking resulting in
the current availability of a wide variety of dependability,
security and resilience benchmarks. The similarities among
existing proposals is not surprising, since most of them rely
on the DBench experimental framework, which is adapted
and extended in each proposal attending to the variety of
constraints imposed by each particular system, application
domain and/or context of use.

Despite the interest for comparing different component and
system implementations, configurations and parametrisations,
dependability benchmarking has attained so far a limited indus-
trial adoption. Discussing the root causes of this situation falls
beyond the scope of this paper but what seems quite clear is
that, in some cases, the requirements imposed to dependability
benchmarks by the academia are different from those expected
by the industry. Approaches, like the SPEC Research IDS
Benchmarking Working Group [2], aims at mitigating that
problem by fostering innovative research through exchange
of ideas and experiences between academia and industry,
although there exists a long way to go.

The vision of industrials of what is a dependability bench-
mark is usually quite pragmatic; they consider such type of
benchmarks as tools to support, or automate to some extent,
the process of selecting the most suitable components for the

particular type of systems they produce. As a result, they ask
for the provision of a limited number of results (if possible one)
in order to accelerate and simplify the final selection/decision
process underlying any benchmarking effort. On the other
hand, researchers prefer to provide the so-called necessary
(sometimes large) number of measures to establish a precise
and well-reasoned ranking among all benchmarked targets. It
must be noted that this approach is not a problem by itself.
The problem is that different rankings and conclusions can be
issued from the analysis of the very same set of benchmarking
measures. One of the aspects leading to that situation is the
lack of any explicit representation of the analysis procedure
followed to issue conclusions, which limits in practice the
repeatability of such procedure. This situation should not be
a surprise for the reader since analysing benchmarks results
refers to a well-known and subjective multi-attribute analysis
process [3]. As a result, and despite the pertinence and correct-
ness of conclusions, the analysis performed must be always
studied attending to the particular subjective (judgmental)
analysis criteria used by the decision maker.

The use of multiple-criteria decision-making (MCDM)
techniques provides means to explicitly represent the analysis
process followed when interpreting (benchmarking) results
under the form of a multi-attribute decision model, also
called quality model. Multicriteria decision problems may
have different goals that are very close to those pursuit
when analysing dependability benchmarks results [3]: i) to
eliminate a number of worst alternatives, or ii) to choose a
number of best alternatives, or ii) to rank the alternatives.
In the problem of elimination or choice, the order between
the eliminated or chosen alternatives could be also important.
In this case we have a mixed problem of iv) choice and
ranking. It must be noted that the consideration of MCDM
techniques in the definition of dependability benchmarks is
not something new [4] [5]. However, existing proposals limit
their purpose to the use of MCDM techniques to make explicit
the quality model followed to analyse benchmarking measures.
This eliminates uncertainties in the process followed to analyse
measures, thus improving its repeatability.

This paper makes an step forward in that direction and
exploits the differences existing among various MCDM tech-
niques in order to diversify the analysis process and gain
confidence in conclusions. It must be underlined that the ap-
proach is not useful for checking the correctness of the analysis



process itself. The proposal limits its scope to the comparison
of the conclusions issued from applying two different MCDM
techniques, attending to the same analysis criteria, despite its
correctness, to an existing set of benchmarking measures. By
checking the existence of discrepancies in the conclusions, one
can detect misuses of MCDM techniques, thus being able to fix
existing interpretation errors. Once conclusions issued from the
application of MCDM techniques are coherent, one can gain
confidence on the consistency of reported conclusions, even if
such conclusions are not correct because of a problem in the
interpretation of input requirements.

This paper is structured as follows. First, section II intro-
duces the case study that will illustrate the proposal all through
the rest of the paper. It will also exemplify the application of
an MCDM technique named Logic Score of Preferences (LSP)
to the considered case study. Then, section III provides a high
level view of the approach, details how to apply an alternative
MCDM technique, called Analytic Hierarchy Process (AHP)
to the same case study, and describes the process followed to
detect inconsistencies between rankings promoted by LSP and
AHP techniques. Finally, section IV shows the usefulness of
the approach, section V discusses benefits and drawbacks of
the proposal, and section VI closes the paper.

II. CASE STUDY

Wireless Mesh Networks (WMNs) are a particular type of
ad hoc networks which is currently being used, among other
things, to provide cheaper and more flexible access to Internet
than their wired counterparts to isolated or remote areas. As
these networks may be deployed in very different scenarios,
they may be subjected to a wide range of perturbations (both
accidental faults and malicious attacks). Accordingly, and tak-
ing into account that a single perturbation has been considered
as the most important for each scenario, the aim of this case
study is to determine in which of the five proposed scenarios it
could be more interesting to deploy that network. Results will
be analysed by means of a multiple-criteria decision-making
(MCDM) method, the Logic Score of Preferences (LSP), to
score and rank the different considered scenarios.

A. Experimental set up and results

The considered WMN consists of 16 static nodes deployed
as shown in Fig. 1. REFRAHN, the Resilience Evaluation
FRamework for Ad Hoc Networks supporting this experi-
mentation, makes use of real devices as network nodes, but
emulates their visibility by packets filtering. So, the exper-
imental platform for this case study comprises 10 Linksys
WRT54GL routers (200 MHz MIPS processor, 16 MB of
RAM, IEEE 802.11b/g Broadcom BCM5352 antenna) running
a WRT distribution (White Russian), and 6 HP 530 laptops
(1.46 GHz Intel Celeron M410 processor, 512 MB of RAM,
internal IEEE 802.11b/g Broadcom WMIB184G wireless card,
4 Li-Ion cells battery (2000 mAh)) running an Ubuntu 7.10
distribution.

Communications are managed by olsrd (www.olsr.org), the
most extended implementation of the popular Optimized Link
State Routing (OLSR) protocol, in its version 0.4.10. The
applicative traffic addressed to exercise the network is defined
in terms of synthetic UDP Constant Bit Rate (CBR) data flows

Fig. 1. Wireless mesh network topology

of 200 Kbps, similar to those observed in daily scenarios [6].
The workload then consists in three of these data flows being
exchanged among network nodes.

The perturbations considered in this study (fault- and
attack-load) is a subset of the most harmful faults in the domain
of WMNs [7]. These perturbations define the five different sce-
narios considered for this case study: one in which accidental
faults, like ambient noise (A), are the most predominant, and
the rest where the routing protocol faces various malicious
attacks, such as selective forward (S), jellyfish (J), tampering
(T), and flooding (F) attacks. Only one of this perturbations
will be injected in each of the five considered scenarios, so it
could be possible to determine the impact of such particular
perturbation on the network. The target data flow for all the
considered perturbation is the 3-hop communication between
nodes A and F in Fig. 1. Whenever a perturbation requires the
participation of a malicious node to perpetrate the attack, node
M in Fig. 1 will play that role.

The set of measures that will be used to characterise the
behaviour of the network in presence of perturbations consists
of 5 different measures: i) the average amount of traffic
effectively received during experimentation (throughput), ii)
the average packets delay in milliseconds (delay), iii) the
percentage of the time the routes are available for inter nodes
communication (availability), iv) the percentage of packets
whose data remain unaltered (integrity), and v) the average
energy consumed by nodes (energy).

For each of the considered scenarios, including a perturba-
tion free one, a total of 15 experiments were executed with a
duration of 9 minutes each. The average results obtained from
all the experiments performed in each scenario are presented
in Table I.

As can be seen, the interpretation of the whole set of
results listed in Table I is not straightforward, and multiple-
criteria decision-making (MCDM) methods are really helpful
to guide the comparison among different scenarios [8]. Our
prior research focused on integrating one of these methods,

TABLE I. EXPERIMENTAL RESULTS FOR EACH SCENARIO

Scenario Throughput Delay Availability) Integrity Energy
(Kbps) (ms) (%) (%) (J)

(A)mbient noise 145.2 48.2 73.6 92.12 8.2
(S)elective forwarding 121 42 91.2 97.53 8
(J)ellyfish 184.8 1086.5 88.7 98.54 10.3
(T)ampering 183.6 39.7 93.1 5.2 10.6
(F)looding 149 62.9 72.1 97.56 15.4



the Logic Score of Preferences (LSP) in particular, into the
common dependability benchmarking flow [9] [4].

B. Multiple-criteria decision-making: LSP as an example

LSP aims at characterising each system through a single
0-to-100 score which could be used to easily compare and
rank eligible alternatives. The final score of the system is
obtained by the successive aggregation of intermediate scores
according to a defined criteria tree hierarchy. Each aggregation
takes into account the particular contribution (weight) of each
subcriterion to the upper level criterion and the intensity of
their relation (operator). The scores for the base level criteria
are obtained by normalising the obtained results according to
a given minimum and maximum values (thresholds). All these
elements, hierarchy tree, weights, operators, and thresholds,
constitute the so called quality model. The scores for the rest
of upper level criteria are computed by using the generalised
power mean (see Equation 1).

score =
∑number of

subcriteria
i=1 (weightiscoreoperator

i )
1

operator /
∑number of

subcriteria
i=1 weighti = 1 (1)

The quality model for a given system should be specified
prior to experimentation, so its definition is not influenced by
experimental results. The constituent elements of the quality
model should faithfully reflect the requirements the system
must meet. This is the available information for the considered
case study: “The main concern of the deployed WMN focuses
on the dependability of supported communications, as sensitive
information that should not be altered will be exchanged
among network nodes. Thus, preserving the integrity of ex-
changed packets is of primary importance, whereas the avail-
ability of the routes although still of interest is a secondary
matter. The network performance also contributes to provide
a good quality service, but is not as much important as its
dependability. Increasing the network throughput is the main
priority to increase the network performance, whereas the
delay of the packets is not so important as long as they finally
reach their destination. As the nodes of the network will be
continuously powered, reducing their energy consumption can
be considered as a nice bonus, but not a strong requirement.”
Taking all this into account, the quality model reflecting our
criteria and optimisation goals for the considered WMN is
depicted in Fig. 2. It must be noted that, although not included
for space constraints, the thresholds used to normalise the
measures, and the required normalisation functions, should
also be extracted from the requirements, existing literature,
or practical experience.

Fig. 2. LSP quality model for the considered case study

After applying the proposed quality model to the results
listed in Table I, the scores obtained for each of these scenarios
lead to the following ranking (from best to worst): J (83.44),
S (73.83), T (68.76), A (62.61), F (49.65). Accordingly, the
considered WMN is best suited to be deployed in scenarios
facing jellyfish and selective forwarding attacks, whereas it is
not really usable in scenarios facing flooding attacks.

C. Limitations of the approach

As shown, MCDM methods, like LSP used in this case
study, are powerful tools to ease the comparison among dif-
ferent alternatives to select that optimising the defined criteria.
However, some values of the multiattribute decision models,
like the weights, operators, and thresholds in the quality model
presented in Fig. 2, are often subjective (judgemental). Lack
of precision and accuracy when specifying the requirements of
the system (criteria and goals), like the vague natural language
description presented in this case study, the misinterpretation
of these requirements, or their mapping into quality model
attributes, are very important sources of uncertainty. As final
rankings provided by MCDM methods are sensitive to changes
in their input parameters [10], those uncertainties may lead to
very different decisions.

Accordingly, the question of which is the level of confi-
dence that can be placed on the ranking provided by MCDM
methods when applied to dependability benchmarks arises.
Any variation in the quality model attributes, either due to
misinterpretations or vague specifications, may result in wrong
decisions which may greatly comprise the dependability of
target systems. Hence, the provision of mechanisms to detect
and even diagnose any potential inconsistency in the ranking
obtained via MCDM methods is indispensable to increase our
confidence on provided conclusions.

III. PROPOSAL

The main problem once conclusions are provided by the
selected MCDM method is that there is no way of determining
whether they are right, or at least they seem coherent, taking
into account the existing sources of uncertainty in the definition
of the required quality model. However, in this context, tech-
niques like back-to-back testing may prove useful to detect and
possibly diagnose potential flaws in the conclusions obtained.

Back-to-back testing involves cross-comparison of all
responses obtained from functionally equivalent compo-
nents [11]. If any of the comparisons signals a difference
the problem is further investigated and, if necessary, a cor-
rection is applied. Translating this approach into the consid-
ered dependability benchmarking context involves i) applying
different MCDM methods to analyse the results issued from
experimentation, and ii) comparing the provided rankings to
detect existing inconsistencies. If those rankings are coherent,
although their correctness cannot be completely guaranteed,
the confidence that can be placed on them highly increases. In
concrete, this case study promotes the use of a MCDM method
called Analytic Hierarchy Process (AHP) [12], in parallel with
LSP, to achieve this goal.

Next sections describe in detail the AHP technique and
the process defined to find out any meaningful dissimilarities
between LSP and AHP conclusions.



Fig. 3. AHP quality model for the considered case study

A. AHP as an alternative MCDM

AHP [12] is a MCDM method that, instead of a final score,
provides a priority for each considered alternative reflecting
its contribution to the goals optimisation. It shares procedural
similarities with LSP, as it also makes use of a hierarchical
quality model to aggregate subcriteria into higher level criteria.
Accordingly, the very same criteria tree hierarchy may be used
for both LSP (see Fig. 2) and AHP (see Fig. 3) techniques,
although the parameters used to characterise the model are
not exactly the same and are determined in a different way.
This similarity will later ease the comparison between final
rankings.

As Fig. 3 depicts, the AHP quality model just considers the
contribution of each subcriterion to the upper level criterion
through their relative priorities. These priorities are obtained
by means of the pairwise comparison of all the subcriteria con-
tributing to a given criterion. Those comparisons are assigned
a number (intensity) stating how many times more important or
dominant one criterion is over another regarding the criterion
with respect to which they are compared. Table II [13] lists
the different values (from 1 to 9) denoting the intensity of the
importance of criterion A with respect to criterion B.

The pairwise comparison of all the criteria contributing
to a given criterion is represented in a matrix form, in such
a way that if the intensity of criterion A with respect to
criterion B is X , then the intensity of criterion B with respect
to criterion A is 1/X. Table III shows the resultant matrix
for the pairwise comparison of Performance, Consumption,
and Dependability, with respect to the Wireless Mesh Network
according to the requirements expressed in Section II-B. In this
case, Dependability is considered more important than Per-
formance, and absolutely more important than Consumption,
whereas Performance is considered just much more important
than Consumption. Resulting priorities can be derived from
the principal right eigenvector of the matrix. However, a fair

TABLE II. THE FUNDAMENTAL SCALE OF ABSOLUTE NUMBERS FOR
PAIRWISE COMPARISON

Definition Description Intensitya

Equal A and B are equally important 1
Moderate A is somewhat more important than B 3
Strong A is much more important than B 5
Very strong A is very much more important than B 7
Extreme A is absolutely more important than B 9
a Intensities of 2, 4, 6 and 8 can be used to express intermediate values.

Very close importance values can be represented with 1.1–1.9.

TABLE III. PAIRWISE COMPARISON MATRIX OF THE MAIN CRITERIA
WITH RESPECT TO THE GOAL

Wireless Mesh Network
Performance Dependability Consumption Row’s GeoMean Priority

Performance 1 1/3 7 1.326 0.29
Dependability 3 1 9 3 0.655
Consumption 1/7 1/9 1 0.251 0.055

SUM 4.577

estimation can be obtained through a more straightforward
procedure that will be used in this case study: i) compute the
geometric mean for each row of the matrix, ii) sum up the
geometric mean obtained for each row, and iii) divide each ge-
ometric mean by the total sum. After applying this procedure,
shown in Table III, the contribution of each criterion to the
final goal is of 0.29 for Performance, 0.655 for Dependability,
and 0.055 for Consumption.

This procedure is recursively applied to compute the pri-
orities for subcriteria with respect to the upper level criterion.
Table IV lists the resulting matrices for Performance and
Dependability.

Finally, the pairwise comparison is performed among the
different alternatives to determine their contribution to the base
level criteria defined in the tree hierarchy. Table V lists the
resulting matrices for Throughput, Delay, Energy, Availability,
and Integrity.

When defining these matrices, it is important keeping the
consistency of the pairwise comparisons. For example, if the
intensity of criterion A with respect to criterion B is 3, and
the intensity of criterion B with respect to criterion C is 3,
then to keep the consistency, the intensity of criterion A with
respect to criterion C should be more than 3. The consistency
of the pairwise comparison matrices is computed by the so
called Consistency Index (CI) [12] and, although it will not
be described here due to space constraints, all the matrices
defined in this case study proved to be consistent.

Priorities must be understood at two levels: local priorities
to their upper criterion, directly obtained from the defined
matrices, and global priorities with respect to the goal, com-
puted as the local priority multiplied by the global priority of
its upper level criterion. For example, Throughput and Delay
have a local priority of 0.75 and 0.25 respectively, computed
from the matrix defined in Table IV. This is their priority
with respect to Throughput. However, their global priority
with respect to the final goal is 0.75 × 0.289 = 0.217 and
0.25× 0.289 = 0.072, respectively. Fig. 3 depicts all the local
and global priorities for the defined criteria.

This very same procedure is then applied for the prior-
ities obtained for each alternative with respect to the base
level criteria. For instance, Scenario A has a local priority
of 0.120 with respect to Throughput and a global priority
of 0.120 × 0.217 = 0.026 with respect to the global goal

TABLE IV. PAIRWISE COMPARISON MATRICES FOR THE SUBCRITERIA
WITH RESPECT TO PERFORMANCE AND DEPENDABILITY

Performance
Throughput Delay

Throughput 1 3
Delay 1/3 1

Dependability
Availability Integrity

Availability 1 1/3
Integrity 3 1



TABLE V. PAIRWISE COMPARISON MATRICES FOR ALTERNATIVES WITH RESPECT TO THE BASE LEVEL CRITERIA

Throughput
A S J T F

A 1 2 1/3 1/3 1
S 1/2 1 1/5 1/5 1/2
J 3 5 1 1 3
T 3 5 1 1 3
F 1 2 1/3 1/3 1

Delay
A S J T F

A 1 1 9 1 3/2
S 1 1 9 1 3/2
J 1/9 1/9 1 1/9 1/9
T 1 1 9 1 3/2
F 2/3 2/3 9 2/3 1

Availability
A S J T F

A 1 1/5 1/5 1/5 1
S 5 1 1 1 5
J 5 1 1 1 5
T 5 1 1 1 5
F 1 1/5 1/5 1/5 1

Integrity
A S J T F

A 1 2/3 2/3 9 2/3
S 3/2 1 1 9 1
J 3/2 1 1 9 1
T 1/9 1/9 1/9 1 1/9
F 3/2 1 1 9 1

Energy
A S J T F

A 1 1 2 2 4
S 1 1 2 2 4
J 1/2 1/2 1 1 2
T 1/2 1/2 1 1 2
F 1/4 1/4 1/2 1/2 1

according to its contribution to Throughput. Resulting priorities
for each alternative are then added up to obtained their final
priority. These priorities are then used to rank the alternatives
according to their contribution to the optimisation of the goal.
In this case study, the final ranking from best to worst is: J
(0.2626), S (0.2252), F (0.1861), A (0.1632), and T (0.1629).
So, the target WMN is best suited to be deployed in scenarios
facing jellyfish and selective forwarding attacks, whereas it
should not be considered for scenarios suffering ambient noise
or tampering attacks.

B. Detecting inconsistencies in provided rankings

The use of two different MCDM methods enables the
comparison of the provided rankings to increase de confidence
that can be placed on the provided conclusions. Basically,
the rankings obtained by applying the LSP and AHP quality
models to the results of the dependability benchmark are
compared to check whether they are coherent or not. As
both techniques follow a different procedure to compute final
rankings any misinterpretation of the requirements, procedural
errors, or simple transcription mistakes may probably reflect
on the provided output (ranking). But, as both techniques
are based on the same criteria hierarchy tree, this enables
the possibility of tracking inconsistencies down the tree to
look for their origin. So not only potential problems may be
detected but, in some cases, also diagnosed. The flow diagram
representing the procedure to be followed for the back-to-back
testing of LSP and AHP rankings is depicted in Fig. 4.

The very first step consists in comparing the rankings for
the root of the criteria hierarchy tree (goal). In case that no
meaningful inconsistencies are found, then the process ends
and the rankings are considered coherent. This is what happens

Fig. 4. Flow diagram for back-to-back testing LSP and AHP rankings

in this case study, as alternative scenarios are sorted as J-S-F-
A-T from best to worst by both techniques. It must be noted
that very small inconsistencies may appear due to the different
nature of the considered MCDM methods. For instance, two
alternatives may present very close scores/priorities but take
reversed positions in both rankings. This probably does not
invalidate the provided rankings, but points out that these
alternatives are really so close to optimise the goal that they
could be considered as interchangeable. In case that more
meaningful inconsistencies are found it is necessary to go
down the hierarchy tree to look for their origin.

The rankings for the next level subcriteria are also check
for inconsistencies. If no meaningful inconsistencies are found
this means that, probably, the problem is related to the weights
(LSP)/priorities (AHP) computed for the upper level criterion,
which should be checked against the requirements. Otherwise,
it is necessary to go further down the hierarchy tree in a
recursive way.

Finally, in case that the lowest level criteria are reached,
and no discrepancies are found, this probably means that
thresholds (LSP)/weights (AHP) are not correctly defined at
this level, which should be checked against the requirements.
If this check is inconclusive, then the problem is likely related
to the function used to normalise the measures (LSP).

If all these checks are fruitless, then it is not possible
to diagnose the origin of the inconsistency to correct it but,
al least, a potential problem in the provided conclusions is
detected and signalled. Likewise, it is not possible to ensure
the correctness of the provided rankings but the confidence
that can be placed on its correctness is largely increased.

IV. VALIDATION OF THE PROPOSED APPROACH

The proposed back-to-back testing approach to check the
consistency of rankings computed from dependability bench-
marks results offers a promising procedure to increase the
confidence that can be placed on such conclusions. However,
it is necessary to determine whether that procedure is robust
enough to detect and even diagnose inconsistencies in those
rankings derived from different sources of uncertainty when
determining the parameters of the defined quality models.

To show the feasibility of this approach, three different LSP
quality models have been proposed (M1, M2, M3), in addition
to the two original LSP (M0) and AHP models previously
defined in this case study. The first new LSP quality model
(M1) includes a misinterpretation (or different interpretation)
of the requirements specified in Section II-B in a vague natural
language, in such a way that the contribution of Performance,
Dependability, and Consumption to the goal is now 0.3, 0.5,
and 0.2, respectively. The second quality model (M2) presents
a simple transcription error, as the contribution of Availability
and Integrity to Dependability has been reversed (0.7 and 0.3,
respectively). Finally, another source of uncertainty, related to



TABLE VI. SCORES/PRIORITIES OBTAINED FOR ALL CRITERIA AFTER APPLYING THE DEFINED LSP/AHP QUALITY MODELS. SCORING DIFFERENCES
WITH RESPECT TO THE ORIGINAL LSP MODEL (M0) ARE HIGHLIGHTED IN LIGHT GREY.

Scenario/Subcriterion Measure LSP score AHP Subcriterion LSP score AHP LSP goal score AHP goal
M0, M1 & M2 M3 priority M0 & M1 M2 M3 priority M0 M1 M2 M3 priority

A

Throughput 145.2 36 36 0.0261 Performance 54.66 54.66 0.1509

0.1632
Delay 48.2 98.22 100 0.0176 55.2

Availability 73.6 38.857 38.857 0.0096 Dependability 65.05 65.05 0.1565
Integrity 92.12 76.28 76.28 0.0929 50.08

Energy 8.2 78.67 78.67 0.0169 Consumption 78.67 78.67 78.67 0.0169

62.61 64.66 52.89 62.77

S

Throughput 121 1.428 1.428 0.0140 Performance 30.87 30.87 0.1093

0.2252
Delay 42 99.56 100 0.0176 31

Availability 91.2 89.143 89.143 0.0482 Dependability 93.194 93.194 0.2696
Integrity 97.53 94.93 94.93 0.1285 90.879

Energy 8 80 80 0.0169 Consumption 80 80 80 0.0169

73.83 71.86 72.33 73.87

J

Throughput 184.8 92.571 92.571 0.0755 Performance 64.8 64.8 64.8 0.2674

0.2626
Delay 1086.5 0 0 0.0020

Availability 88.7 82 82 0.0482 Dependability 93.489 93.489 0.2696
Integrity 98.54 98.413 98.413 0.1285 86.92

Energy 10.3 64.67 64.67 0.0084 Consumption 64.67 64.67 64.67 0.0084

83.44 79.12 79.17 83.44

T

Throughput 183.6 90.571 90.571 0.0755 Performance 93.6 93.6 93.6 0.3215

0.1629
Delay 39.7 100 100 0.0176

Availability 93.1 94.571 94.571 0.0482 Dependability 28.371 28.371 0.0936
Integrity 5.2 0 0 0.0132 66.2

Energy 10.6 62.67 62.67 0.0084 Consumption 62.67 62.67 62.67 0.0084

49.65 54.8 74.24 49.65

F

Throughput 149 41.428 41.428 0.0261 Performance 57.51 56.51 0.1509

0.1861
Delay 62.9 95.021 74.2 0.0176 51.26

Availability 72.1 34.571 34.571 0.0096 Dependability 76.895 76.895 0.2108
Integrity 97.56 95.03 95.03 0.1285 52.710

Energy 15.4 30.67 30.67 0.0042 Consumption 30.667 30.667 30.667 0.0042

68.76 61.83 53.05 66.89

the definition of the thresholds used to normalise the obtained
measures is considered in the third quality model (M3). In
this case, the thresholds for the Delay have been tighten in
excess ([50, 100] instead of [40, 500]). The different scores
and priorities obtained by means of all these quality models
are listed in Table VI. According to these figures, Table VII
lists the final ranking provided by these quality models for the
different considered criteria.

As the rankings for AHP and M0 have been already proved
to be consistent in Section III-B, let us move to comparing
rankings for AHP and M1. As Table VII shows Scenarios F
and A swap positions in the provided rankings, thus pointing
out a potential inconsistency in the defined quality models.
Following the proposed diagram flow (see Fig. 4), the rankings
for the criteria at the next level are also checked. In this case
no further discrepancies are found, so the problem should be
related to the weights/priorities (pairwise comparison matrices)
defined for the highest level of the hierarchy. Whether the
parametrisation of one or the other model, or neither of them,
faithfully represents the requirements of the system is for the
benchmark analyser to decide. Corrective actions at this level
are required and new rankings should be compared again.

Great inconsistencies are also found when comparing rank-
ings for AHP and M2, as the worst scenario for AHP is
considered the second best for M2. As in the previous example,
the rankings for the criteria at the next level are also examined
to search for further discrepancies. In this case, the ranking
for the Dependability criterion also presents inconsistencies.
According to the proposed diagram flow, now it is time to
check the next (lowest in this case) level of the hierarchy.

TABLE VII. BEST TO WORST RANKING OF CONSIDERED SCENARIOS.
DIFFERENCES WITH RESPECT TO AHP RANKING ARE IN BOLDFACE

Quality model Performance Dependability Consumption WMN
AHP T-J-F/A-S J/S-F-A-T S/A-J/T-F J-S-F-A-T

LSP

M0 T-J-F-A-S J-S-F-A-T S-A-J-T-F J-S-F-A-T
M1 T-J-F-A-S J-S-F-A-T S-A-J-T-F J-S-A-F-T
M2 T-J-F-A-S S-J-T-F-A S-A-J-T-F J-T-S-F-A
M3 T-J-A-F-S J-S-F-A-T S-A-J-T-F J-S-F-A-T

No discrepancies are found for Availability and Integrity,
so the problem should be related to the weights/priorities
assigned at the Dependability level. The requirements specified
in Section II-B clearly state that “preserving the integrity [...]
is of primary importance, whereas the availability [...] is a
secondary matter,” so it is easy to determine that the weights
for M2 are wrong. After correcting the error, new rankings
must also be compared again.

Finally, when comparing rankings for AHP and M3, no
inconsistencies can be found according to the proposed dia-
gram flow (see Fig. 4). However, the rankings at Performance
and Delay levels present some discrepancies, and the question
of whether this approach is really sound arises. It must be
noted that, as stated in Section II-C, MCDM methods are
sensitive to input parameters. This means that variations in the
input parameters may vary the final ranking. However, this
also means that there exist different value ranges for these
parameters that do not affect the provided ranking. This is
clearly the case of the variation induced in the thresholds for
Delay. The contribution of the Delay to the final goal is not so
important, and the dispersion of the measures for each scenario
is so small, that the inconsistency is just filtered or masked by
the quality model. Obviously, this issue could also be signalled
to benchmark analysers, but it seems fairly simpler to make
it transparent to them as it really does not affect the final
conclusion. The sensitivity of MCDM methods will be further
discussed on Section V.

As the considered examples have shown, the proposed
approach is able to properly track ranking inconsistencies
down the criteria hierarchy tree to find the source of these
discrepancies. Hence, back-to-back testing the final rankings
provided by MCDM methods prove to be a feasible solution
to guide the analysis of dependability benchmarking results
and increase the confidence that can be placed on drawn
conclusions.



V. DISCUSSION

MCDM, as a subdiscipline of operational research, has
been supporting decision-making processes for many years in
very different application domains. Despite its long tradition,
there still exists a recognised fundamental paradox in MCDM.
Every single MCDM method claims to offer the best decision
but, when different methods are taken into account, not all of
them select the same alternative [14]. Accordingly, determining
which is the most suitable MCDM method to analyse de-
pendability benchmarking results in a given context could also
required the use of another MCDM method, leading to another
paradox. One possible option is considering rank reversals.

Rank reversals [15] are a particular problem of some
MCDM methods which, when subjected to small variations
in their inputs or quality model parameters, may produce
contradictory rankings. Special tests are usually defined to
detect whether this problem affects the solution provided by
a given MCDM method, and alternative methods should be
then considered. For example, let us assume that two different
routing protocols are being benchmark to select the most
suitable to be deployed in a given WMN. Protocol A exhibits
more Throughput than protocol B, but its overall quality
is lower. So, a decision maker could sacrifice the network
quality if he considers that is utterly important to obtain the
highest possible Throughput. However, if a third protocol C
is benchmarked, which presents much lower Throughput than
B but with a very similar overall quality, then the perception
of the decision maker may be biased and see protocol B as
a more attractive option. As can be seen from the example,
rank reversals may also be caused by rational decisions, so
they are not always indicative of a faulty decision-making
process. Distinguishing whether rank reversals are due to one
or the other cause is still a hot topic in the operational research
community.

That is why, the back-to-back testing of different MCDM
methods to detect any potential inconsistencies in the conclu-
sions provided appears as a sensible option to increase our
confidence on final rankings. It is not necessary to determine
which is the best MCDM method in absolute terms, but just
that provided rankings are consistent with the requirements
used to interpret dependability benchmark results. In this pro-
posal, LSP and AHP methods have been selected, as they both
can share the same criteria hierarchy tree for their respective
quality models. This feature enables the navigation through the
different levels of the hierarchy to diagnose the possible source
of detected inconsistencies. Obviously, not all MCDM share
this feature, but some of them are likely to share other features
that could make them compatible to be also used for back-to-
back testing. Classifying existing MCDM methods according
to shared features, thus enabling the application of different
sets of MCDM methods according to, for instance, target ap-
plication domains, number of considered criteria, or sensitivity
to obtained experimental results, is a very interesting topic for
further research [16].

As previously mentioned, MCDM methods present differ-
ent degrees of sensitivity to variations in incoming data or
quality model parameters [17]. Those methods with a high
sensitivity are more likely to exhibit rank reversal behaviours
due to intrinsic sources of uncertainty when defining the
quality model and, thus, should not be considered for back-

to-back testing when more reliable methods are available. Not
so sensitive methods are of great interest, as the uncertainty
induced in the quality model (like thresholds, weights, and
operators), can be reduced or even masked by the model itself.
Accordingly, by estimating the sensitivity of proposed quality
models in advance it could be possible to determine and select
the least sensitive models, or which parameters should be
carefully tuned so as to prevent later inconsistencies. This is
also a hot topic requiring further research.

VI. CONCLUSIONS

This practical experience report proposes the exploitation
of the diversity existing between different multiple-criteria
decision making (MCDM) techniques in order to gain con-
fidence on conclusions issued from the analysis of benchmark
measures.

The proper comparison of different techniques’ results is
quite challenging since the diversity existing in the techniques
is translated to their related quality models. A concrete ap-
proach is proposed to compare the quality model defined by
the Logic Score of Preferences (LSP) technique with the one
induced, applying the same criteria hierarchy, by the Ana-
lytic Hierarchy Process (AHP) method. When rankings issued
from both techniques are incoherent, one can detect potential
sources of errors in the analysis process and, sometimes, fix
them. When they are coherent, one gains confidence on the
consistency of drawned conclusions. However, it must be un-
derlined that, despite the coherence of the rankings provided by
considered MCDM techniques, conclusions may be incorrect
in cases, like where the functional or non-functional require-
ments of the target systems have been incorrectly captured.

We cannot currently state that this approach applies re-
gardless the couple of MCDM techniques selected for anal-
ysis, since their related quality models may exhibit different
levels of sensitivity to parameters and input data, which can
result in rank reversals. Classifying existing MCDM methods
according to their features in order to enable their combined
or complementary use attending to aspects relating to the con-
sidered application domain, number of criteria, or sensitivity
to existing benchmarking measures, remains today an open
topic requiring further research. Since the final goal of any
benchmark is to drive decisions based on scores and rankings,
the final goal of this research is to integrate the use of decision
making techniques in the analysis process of dependability
benchmarks, something that is today neglected and left in the
hands of decision makers acting as benchmark users.
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