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Abstract 
This paper presents a method of equilibrium that calculates the deflection of certain space 
frames in an exact manner, without needing to solve equation systems. For this purpose, the 
unknown quantity of the deflection is considered to be a combination of other partial 
deflections that can be immediately determined and that are subject to some partial 
conditions of the loads, the addition of which constitutes the load conditions of the 
problem. The procedure to calculate the partial conditions of the loads considers the 
hypotheses of manual calculations. An example is carried out to complete this exposition. 
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1. Introduction 
Under a linear system and according to the first-order theory, the present manual method of 
equilibrium analyses rigid space frames having rigid nodes with an independent 
displacement when punctual static actions act on their nodes such as the example in fig.1a. 
The deflection of the structure has been considered as the addition of partial deflections, 
each one of them being determined by the independent movement of any of its nodes. The 
load condition that produces a partial deflection has been called “primary state”, which has 
been defined by means of an active action and several restrictive ones. The active action 
applied on a node N can be a momentum a

NM  or a force a
NF , which cause a rotation Nθ  or 

displacement Nδ  of the structure, the values of which in an X direction are respectively: 
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The denominator in the first equation is the addition of the flexural and torsional rigidities 
of all the i and j beams that concur in N, respectively, in relation to X. The denominator in 
the second equation is the addition of the shear forces that are produced in the k beams that 
rotate due to x

Nδ . Fig.1b shows the rigidities (torsional and flexural) of three concurrent 
beams at any N node and the location of its three possible rotations. In accordance with 
fig.1b, fig.1c shows a sketch of the previous space frame (fig.1a) where the values of the 
expressions (1) in all the nodes have been calculated on the basis of the rigidities of the 
beams when the active actions are equal to one. In a primary state, the restrictive actions of 
N ( r

NM , r
NF ) depend numerically on the active action and prevent the movement of all the 

nodes, except for that produced by the active action (figs.2b,c,d). Therefore, an A load 
condition of the space frame is a B group of primary states expressed in function of the 
active actions, which when applied in (1), give the deflection. The objective of this 
exposition is to assess a

NM  and a
NF . For this purpose, we begin with a C group of primary 

states that have been chosen specifically. Based on this, we calculate new D primary states, 
which, added to C, define a load condition that increasingly approaches the condition A. 
The D primary states are arranged into groups, each of which forms an iteration. The 
deflection is determined with the active actions of C+D. 

 
Figure 1. Space frame with beams of square section: a) Geometry, applied actions and 

criterion of positive signs; b) Diagram to calculate rotations on a node; c) Diagram of the 
frame with the rotations and the displacement in f(1/EI) by active unitary actions. 
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Previously, two other ways of calculating the active actions of condition A were proposed 
in [1] and [2]. These were calculated approximately, by means of iterations, as it is 
described in [1]. The proposal seemed adequate provided that there were few nodes in the 
space frame and that the frame was undisplaceable or had an only displacement. 

 
Figure 2. Analysis of a portico by means of decomposition of the loads: a-d) 
Decomposition under primary states; e-m) Calculation of the active actions. 

A subsequent modification [2] allowed an exact calculation of the active forces on the basis 
of the active momentums, obtained approximately by means of a smaller number of 
iterations. This way, it was possible to analyse structures with several displacements and a 
greater number of nodes. The process applied to fig.2a consists of decomposing the load 
condition into two conditions (fig.2e and fig.2h). The momentums of fig.2e are replaced in 
fig.2f by its active momentums aq

B
aq
A MM , . 1r

AF  is applied on the fictitious support, which is 
eliminated adding the load condition in fig.2g. The active actions of fig.2g and fig.2h are 
calculated from fig.2i, which is decomposed into figs.2j and 2k. If we solve fig.2k like 
fig.2e, we obtain 2r

AF  (fig.2l), which is smaller than the unit. 2r
AF  is cancelled adding 

fig.2m, that is "" 2r
AF  times fig.2i. Repeating these operations, we obtain the active force 

1a
AF  of fig.2i: 
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, from which are obtained the total active actions: 
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In this paper, a complementary methodology a [2] is presented that determines the exact 
values of the active momentums. To begin with, an explanation of how to obtain the active 
momentums of a continuous beam with four points of support (fig.3a) is given, since the 
typology of the space frames is comparable to a continuous beam with horizontal 
displacement. After this, the space frame in fig.1a is studied by means of some 
mnemotechnic rules different from to those used in [1] and [2]. The error that can be made 
is only caused by the rounding off resulting from the manual performance of the operations. 

2. Exact calculation of the active momentums in a continuous fixed-
ended beam with four points of support 
They are obtained by adding the active momentums produced by each M momentum of the 
load condition. The active and restrictive momentums are designed, respectively as, a

IJM  
and r

IJM . They are caused by an M momentum on a generic point of support I and are 
applied on a node J. In sections 2.1 and 2.2 the calculation of a

IJM  is explained in function 
of the position of I. In both sections, it has been considered that M is equal to the unit. In 
2.3, a practical procedure is explained to calculate a

IJM . 

2.1. Calculation of the a
IJM  when I is a lateral support (fig.3) 

The a
IJM  momentums of fig.3a are calculated from the active momentums of the partial 

beams in figs.3b,c,d when some unitary momentums are applied on the lateral supports 
B,C, and D. By means of an iterative procedure, the exact value of a

IIM  of each partial 
beam is calculated adding up all the possible iterations. As described in (2), said sum is 

Ir−1
1 , where Ir  is the ratio that relates two consecutive iterations. Ir  is smaller than the 

unit and it is calculated applying the following load conditions to the unloaded beam: 
-Load condition 1. It is a primary state formed by a unitary active momentum on I and by 
another restrictive momentum on the adjacent point of support. 
-Load condition 2. It can be a primary state or not. It eliminates the restrictive momentums 
of load condition 1 and applies a restrictive momentum on I, with value Ir . 

-Load condition 3. It is "" Ir  times load condition 1, and, therefore: 
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When K and L are any two contiguous nodes, KL is defined as the restrictive momentum 
due to a unitary momentum applied on a node K and is located on a node L. Its value is 

KL
K L

EI
⎟
⎠
⎞

⎜
⎝
⎛ 21θ , 1

Kθ  being the rotation of K by the unitary momentum. Next, we calculate the 

a
IJM  of the beams in figs.3b,c,d: 

2.1.1. Partial beam 1: Beam with a point of support having M=1 in B (fig.3b) 
It is a particular case where 1== a

BBMM . r
BCM  is worth BC . 

2.1.2. Partial beam 2: Beam with two points of support having M=1 in C (fig.3c) 
-Load condition 1. It is defined with a unitary momentum on C and with a restrictive one 
CB  
-Load condition 2. It has an active momentum CB  that eliminates the restrictive one in load 
condition 1. It also has a restrictive momentum CB.BC. 
-Load condition 3. It is "." BCCB  times load condition 1. CrBCCB =. , and the a

IJM  are: 
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a
CBM  is negative since it is the opposite of the restrictive momentum in B. The factors ""CD  

and "" BA  multiplied by a
CCM  and a

CBM  are, respectively, r
CDM  and r

BAM . These factors are 
represented under the directrix of the beam and, under the nodes, a

IJM . 

2.1.3. Partial beam 3: Beam with three points of support having M=1 in D (fig.3d) 
-Load condition 1. It is formed by a unitary momentum on D and by another restrictive one 
DC. 
-Load condition 2. It is formed by a DC momentum and by another restrictive one CD.DC. 
In the position of equilibrium, this condition produces on the beam some active 
momentums that are "" DC  times those of fig.1.c, and, the momentum in D is )( CDMDC a

CC . 

-Load condition 3. It is )"(" CDMDC a
CC  times load condition 1. D

a
CC rCDMDC =)(  and, 

according to (4), 
D

a
DD r

M
−

=
1

1 . The active momentums to the right of D are worth 

"" DCM a
DD−  times those in fig.1.c, whereas the restrictive momentum in E is worth 
DEM a

DD . 
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2.1.4. Beam with four points of support having M=1 in E (fig.3e) 
The approach is repeated in the same manner as in the previous cases. Load condition 3 is 

)"(" DEMED a
DD times load condition 1. Therefore, E

a
DD rDEMED =)(  and 

E

a
EE r

M
−

=
1

1 . 

From a
EEM  we have calculated the active momentums in the rest of the points of support, 

which depend on those in fig.3d. When the unitary momentum operates on the extreme 
right point of support, the way of proceeding is the same (figs.3f-i). 
 

 
 
 

Figure 3: Active momentums in continuous beams when I is a lateral support 
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2.2. Calculation of the a
IJM  when I is an intermediate point of support (fig.4) 

The a
IJM  are obtained from the active momentums calculated in 2.1. For example, to 

determine the a
IJM  produced by a unitary momentum on D (fig.4a), the following load 

conditions are applied on the unloaded beam (fig.4b): 
-Load condition 1. It is formed by a unitary active momentum on D y and by two restrictive 
ones DE and DC. 
-Load condition 2. It is not a primary state. It cancels the restrictive momentums of load 
condition 1 and applies a restrictive momentum on D, which is the DR  addition of 
momentums i

DR  and d
DR  that are produced in figs.4c,d, calculated, respectively, from 

figs.3f,c. 

-Load condition 3. It is "" DR  times load condition 1 and therefore: 
D

a
DD R

M
−

=
1

1 . 

The active momentums to the right of D are "." DCM a
DD−  times those in fig.3c, and the 

active momentum on E is "." DEM a
DD−  times the one in fig.3f. 

 

 
 
 

Figure 4. Active momentums on continuous beams if I is an intermediate point of support 
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The operations described in 2.1 and 2.2 can be performed systematically using a calculation 
table together with some mnemotechnic rules. They have been used to calculate the active 
momentums of the beam with four points of support. The following steps have been carried 
out: 
2.3.1. Representation of the beam and of the calculation table (fig.5) 
-Draw the beam, indicating its flexural rigidities under the sections. 
-Calculate 15,0 Nθ−  under each N node, using (1). 

-Draw a table under 15,0 Nθ−  (fig.5a). The contents of the boxes/cells are described to the 
right of each row. Fig.5b shows the numbering of the rows and columns in the table. 

 
Figure 5. Calculation table of active momentums of a continuous beam: a) Diagram of the 
table and contents of the boxes; b) Numbering of the rows and columns and situation of the 

boxes that calculate the f coefficients 
2.3.2. Filling in the table using mnemotechnic rules 
-Arrange the boxes in row a, multiplying the rigidity of each beam by 15,0 Nθ− , according to 
what is indicated by the arrows. 
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-Multiply between themselves the terms of row a that are comprised under each beam and 
arrange them in boxes c3, c6 and c9. Place a "1"  in cells c1 and c11. Multiply box c11 by c9 
and put the result in b6, according to the indications of the arrows. Calculate a

CCM
b

=
− 61
1  

and put the result in c8. Repeat this operation multiplying c8 by c6 and place it in b4. 
Calculate a

DDM
b

=
− 41
1  and put the result in c5. Repeat this operation, parting from c1 and 

c3, until reaching box c7. 
-Multiply between themselves the c boxes, according to the arrows and place the results in 
cells d2,4,5,7,8 and 10. 
-Add the d boxes related to the diagonals in the diagram. 

-Calculate with each NR  the expression 
NR−1

1  and put the result under NR . These values 

are the a
IIM  in any of the beam’s point of support. 

The a
IJM  are calculated with a

IIM  and with the IJf  coefficients, by means of the expression 
a
IJIJ

a
II MfM =⋅ . The IJf  coefficients are obtained multiplying between themselves the 

boxes of rows a and c, which are related by arrows in the diagram of fig.5b. The following 
[ ]A  matrix is calculated with the values of a

IIM  and IJf : 
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Each row represents the active momentums produced on the points of support by a unitary 
momentum applied on one of them, and each column represents the total active momentum 
that is produced on a point of support. If we multiply the load matrix [ ]B  by [ ]A , the exact 
active momentums are finally obtained: 
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Figure 6. Calculation of the active actions in a space frame: a,b) Initial conditions; c,d) 

Restrictive actions on a plane from aM  and aF  defined with mnemotechnic rules; e,f,g) 
Calculation tables of active momentums on planes OX, OY y OZ, respectively 
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3. Calculation of the exact deflection of a space frame (fig.6) 
The deflection in fig.1a is calculated like in fig.2. According to figs.2.e,j, we start from 
figs.6.a,b. With the mnemotechnic rule described in fig.6.c, and using (1), we obtain the 
restrictive action in A by generic active momentums applied on a plane of the space. In (8) 
we see the results when the active momentums are found, respectively, on planes OX and 
OZ. 
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Fig.6.d describes a mnemotechnic rule that obtains, using (1), the restrictive momentums on 
a plane caused by an active unitary force applied on A. The restrictive momentums obtained 
in fig.6b are the following: 
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Figs 6.e,f,g are tables to determine the exact active momentums on the directions of the 
space X, Y, Z. The torsion has been considered in figure 6f. The data obtained are collected 
in the matrixes [ ] [ ] [ ]zyx AAA ,,  of (10). The active momentums produced by the momentums 
of figs.6a,b have been calculated in (10), in accordance with (7). 
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If we apply the results obtained in (10) in (8), we obtain some reactions in A. Their value is: 
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From here we obtain the total active force: 
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Applying a

AF  and the data of (11) in (3), we obtain the following results: 

 
 ).( mNM ax

N  ).( mNM ay
N  ).( mNM az

N  )/1( EIx
Nθ  )/1( EIy

Nθ  )/1( EIz
Nθ  

A 174,62 0 191,1 97,01 0 94,37 
B 171,06 27 1302,1 69,34 10,94 483,78 
C -46,93 1000 137,1 -19,0 405,4 50,97 
D 1202,62 27 334,1 668,1 11,2 164,98 

Table 1. Final results: active momentums and rotations 

4. Conclusions 
It is possible to determine the exact deflection of certain space frames without having to 
solve equation systems and without doing a limited number of iterations. Comparing with 
previous methods, this approach described here is more adequate when the number of 
nodes is elevated. 
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