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Abstract—Social circles detection is a special case of com-
munity detection in social network that is currently attracting
a growing interest in the research community. In this paper,
we propose a two-step technique, making emphasis on the
mapping of the data by Restricted Boltzmann Machines (RBMs).
Social circles are subsequently inferred by k-means over the
preprocessed data. We define different vectorial representations
from both structural egonet information and user profile features,
and perform a set of tests to adjust the optimal parameters
of the RBMs. We study and compare the performance on the
ego-Facebook dataset of social circles from Facebook from the
Stanford Large Network Dataset Collection. We compare our
results with several different baselines.

I. INTRODUCTION

Nowadays, users in social networks tend to organize the
contacts in their personal networks by means of social circles,
a tool already implemented by the major companies, like
for instance Facebook lists or Google+ circles. However,
this labelling is still mostly done manually and, therefore, a
growing interest has risen in the automatic detection of these
circles. In addition, this problem is related to the more general
task of community detection in graphs, or the identification of
subnetworks in a given network. The main difference between
both problems is the use of information from users’ profiles,
apart from information from the network structure itself.

Despite the lack of a precise and well-accepted definition of
community, there is a wide variety of methods and techniques
designed to cope with community detection [1], [2]. More-
over, some techniques specifically designed for social circles
detection are being developed currently [3], [4]. In this article,
we present a novel two-step method to tackle this problem.
First, we map the data by means of Restricted Boltzmann
Machines (RBMs). Second, we cluster the preprocessed data
using the classical k-means algorithm. The work takes into
account different representations of both structural network
information and user profile information, and a comprehensive
set of tests has been designed to find the optimal parameters
for the RBMs.

The rest of the paper is structured as follows. In Section
Two, we present previous works on community detection and
social circles detection. In Section Three, we describe the
Restricted Boltzmann Machine, a generative architecture of
which we make use in our research. In Section Four, we
describe thoroughly our methodology, from the different data
representations proposed to the RBM topologies we defined
and the use of k-means for social circles detection. In Section

Five, we comment the experiments we have conducted, includ-
ing a presentation of the dataset and the evaluation measure,
and we discuss the obtained results. Finally, we draw some
conclusions and propose future work.

II. PREVIOUS WORK

A. Community Detection in Networks

From an abstract point of view, a network is equivalent
to a graph, defined by a set of nodes connected by edges.
Nevertheless, from the point of view of researchers devoted
to a diversity of fields, the concept of network has addi-
tional connotations. Networks can represent real structures
such as social networks, biological networks (neural synaptic
networks, metabolical networks), technological networks (the
Internet, the World Wide Web), logistic networks (distribution
networks), etc. There is no well-accepted formal definition of
community in general networks. However, there is a consensus
on the fact that it consists of a group of nodes that are more
densely connected to each other than to the nodes outside. The
relation of membership in a community usually has an extra
meaning, and the vertices in a community will probably share
common properties or play similar roles within the graph.

Community detection is the task of automated identification
of the communities of a network. A considerable number
of methods have been developed to solve this problem [1],
[2]. The most traditional methods include graph partitioning,
hierarchical clustering, partitional clustering and spectral clus-
tering. Graph partitioning consists in dividing the vertices in
a fixed number of groups of predefined size, minimizing the
number of edges lying between the groups. One of the earliest
of those methods, still frequently used, is the Kerninghan-
Lin algorithm [5], whereas another significant method is
described in [6]. Hierarchical clustering [7] is adequate when
a hierarchical structure underlies the graph, with small clusters
falling recursively within larger clusters. Partitional clustering
separates the nodes of the network into a fixed number of
clusters by optimizing a cost function based on a predefined
distance between points. The most popular partitional tech-
nique is k-means clustering [8], [9], in which we base our
work. Spectral clustering techniques [10] are based on the use
of the eigenvectors of matrices.

Divisive algorithms form another important family of al-
gorithms for the task of community detection, consisting its
methodology on the removal of the edges that connect nodes of
different communities, called local bridges. The most famous
of them is the Girvan and Newman algorithm [11], [12], based



on a modularity measure introduced as a stopping criterion.
As high values of modularity indicate good partitions, it
has become the most used and best known quality function.
As a consequence, modularity optimization would produce
a good solution to the problem. Unfortunately, modularity
optimization is an NP-complete problem [13], but there are
several algorithms able to find fairly good approximations of
the modularity maximum in a reasonable time [14], [15].

In real networks nodes are often shared among different
communities. The most popular technique to detect overlap-
ping communities is the clique percolation method [16]. Given
a graph, a k-clique is defined as a complete subgraph of size
k. Clique percolation consists in the identification of k-clique
communities, defined as the union of all k-cliques that can be
reached from each other through a series of adjacent k-cliques.
Despite of the good performance of this technique, clique
percolation remains a hard computational problem: new and
improved implementations still scale worse than some other
overlapping community finding algorithms. Multi-assignment
clustering (MAC) [17], [18] provides an alternative based on
a decomposition of the data matrix into a matrix containing
the clusters prototypes and a matrix representing the degree to
which a particular user belongs to the different clusters. The
model parameters are inferred by deterministic annealing [19],
[20].

B. Application to Social Networks and Social Circles Detec-
tion

The study of social networks is a research topic with
a history of decades and it has been recently revitalized
by the appearance of new information and communication
technologies which have opened new ways of interacting.
Clustering of this social content has been studied designing
several procedures. Some approaches base the clustering on the
network links [2], while others consider the semantic content
of social interactions [21]. In between both methodologies,
there has also been work on combining the links and the
content for doing the clustering [22], [23]. Very recently, a new
technique studied the characteristics of community structures
formed around topical discussion clusters, using modularity
maximization algorithms [24].

Social circles detection is a special case of this framework.
Within a social network, an ego network or egonet is defined
as the subgraph of the contacts of a particular user (called
the ego). Thus, it includes all the contacts of the ego and
the contact relationship between every pair of them. Then, the
social circles of an ego can be considered as clusters of the
egonet. Social circles may overlap (share nodes), for example
university friends who were high school friends as well; and
they may also present hierarchical inclusion (the nodes of a
circle totally included into another), for example university
friends into a generic friends category. Apart from the links of
the egonet, user profile information may also be considered in
this task. New techniques are currently being developed, being
the one appearing in [3], [4] one of the most successful. In it,
the authors propose a generative model that considers circle
memberships and a circle-specific profile similarity metric. In
addition, existing methods, like MAC [3], [4], [17], [18], are
being adapted and tested for social circles detection [25].

Fig. 1. Graphical representation of an RBM model. The grey and the white
units correspond to the hidden and the visible layers, respectively.

III. RESTRICTED BOLTZMANN MACHINE

In this section, we are going to introduce the genera-
tive model employed to map the input data, the Restricted
Boltzmann Machine. Like in every generative model, its goal
is to approximate the probability density function (pdf) of
the data in an unsupervised manner, i.e. without any label
information. Once the parameters of the generative model have
been learned, the model can be used to obtain likely samples.
RBMs make one of the simplest generative models, and are
often used as the building block for more complex ones.

We part from the fact that it may be useful to extract data
representations that capture the probability density function
P (x) of the available data. An RBM is a generative model
that deals with such a probability distribution in order to
extract feature representations that maximize the likelihood
of the samples. In the context of a classification problem,
these representations can facilitate the modelling of the real
discriminative target distribution P (y|x). However, they are
useful on their own, not necessarily having to be in relation
to a classification problem. Moreover, RBMs can be used
as the elementary units of more complex Deep Learning
architectures.

An RBM is an energy model with two different sets of
variables. The visible variables, denoted by v, are related to
the data x. On the other hand, the hidden variables, denoted by
h, are used to increase the expressiveness of the model. The
RBM is characterized by a function that defines a probability
distribution over all possible pairs of visible and hidden
variables by assigning low energy values to high probability
samples. This relation is defined by:

p(v,h) =
1

Z
e−E(v,h) (1)

where the partition function Z is given by summing over all
possible pairs of visible and hidden variables, so that p(v,h)
is a probability distribution.

This generative model can be implemented as a neural
network with two layers. The visible layer is the input of the
network, so that each unit vi represents the i-th component of
a data sample x. Figure 1 shows a graphical representation of
an RBM. Originally, RBMs were designed to work with binary
visible and hidden variables. In this case, the energy function
is defined by:

ERBM (v,h) = −
∑
i∈vis

aivi −
∑
j∈hid

bjhj −
∑
i,j

vihjwij (2)

where vi,hj are the binary states of the visible unit i and hidden
unit j, ai,bj are their respective biases and wij is the weight
that connects both units.



A nice property of the RBM models is that the hidden
units are mutually independent given the visible units and vice-
versa. Therefore, the conditional distribution over the hidden
units can be factorized given the visible units:

p(hj = 1|v) = σ(bj +
∑
i

wijvi) (3)

where σ(x) is the transfer function. For binary units, σ(x)

takes the form of the sigmoid function (1 + e−x)
−1. Likewise,

the conditional distribution over the visible units given the
hidden units also factorizes:

p(vi = 1|h) = σ(ai +
∑
j

wijhj) (4)

During the training process, the parameters of the model
are adjusted, so that the log-likelihood of the training data
is maximized. Let L (θ,D) be the log-likelihood of the data
defined as:

L (θ,D) =
∑
x∈D

log p (x) (5)

where θ are the parameters of the model and x is a sample of
the training set D. It is important to note that the log-likelihood
definition does not require the samples to be labelled, and
so the training process of the RBM model is completely un-
supervised. The log-likelihood is maximized using stochastic
gradient descent with a random initialization of the model
parameters. In the case of an RBM, this leads to a very simple
update rule (see [26] for details):

∆wij = ε
(
〈vihj〉data − 〈vihj〉model

)
(6)

where ε is a learning rate, 〈vihj〉data is the frequency of the
visible unit i and hidden unit j being jointly active when the
model is driven by samples of the training set, and 〈vihj〉model
is the corresponding frequency when the model is let free
to generate likely samples (not driven by data). A simplified
version of the same learning rule is also used for the biases.
The first term, 〈vihj〉data is very easy to obtain using Eq. 3,
Eq. 4 and feeding the model with random training samples.
However, it is much more difficult to obtain an unbiased
sample of 〈vihj〉model since the model has to be started with a
random state of the visible layer and then perform alternating
Gibbs sampling for a very long time until the model reaches
equilibrium.

A much faster learning procedure called Contrastive Di-
vergence (CD) was proposed by [26]. This method basically
uses two tricks to speed up the learning process. On the one
hand, the process is initialized by setting a training example in
the visible layer. On the other hand, CD does not wait for the
sampling process to converge, i.e. samples are obtained after
only k-steps of the Gibbs sampling. In practice, k = 1 has
been shown to work well for most applications.

As we have said before, the standard RBM model uses
binary units in both visible and hidden layers with the sigmoid
transfer function. However, many other types of units can
be used as well. For instance, for image data, binary units
are not adequate to represent pixel values. A solution to this
problem is to replace the binary visible units with Gaussian
units. The transfer function for Gaussian units is the identity
function. Another type of units, that have been demonstrated

some improvements recently are the Rectified Linear Units
(ReLU) [27]. In this case, the transfer function is given by
f(x) = max(0, x), where x is the input of the neuron. The
main advantage of these units is that they do not have more
parameters than an ordinary binary unit, but they are much
more expressive.

For additional details about the characteristics of the RBM
model and its training procedure the reader is encouraged to
check [28].

IV. METHODOLOGY

A. Using Restricted Boltzmann Machines to Map the Input
Data

The authors of [29] have already highlighted the adequacy
of RBMs as an unsupervised data mapping technique. One of
their main advantages is that, in contrast to other approaches
which only permit a reduction of dimensionality, RBMs can
project the data into spaces of higher dimensionality, as well.
In addition, the object of our study is not the comparison
of different data mapping techniques, but to undertake the
problem of social circles detection. For these reasons we
decided to use RBMs to map the data in our experiments.

The experiments presented in this paper rely on the use
of RBMs to map the training data samples into new represen-
tations of a fixed dimension d. These representations will be
later supplied to a k-means clustering algorithm. This 2-step
method will finally provide the predictions of the social circles
of the given egos. The data samples are composed both of
structural network information of the correspondent egonets s
and user profile features of its members p. So, our data samples
x are formed as a concatenation of these kinds of information:
x = (s,p). Several representations were designed for both
s and p. They are explained in high detail in the following
subsections.

As a step towards this objective, we design RBMs with
a visible layer (v) composed of a number of units equal to
the dimension of the data vectors, and a hidden layer (h)
composed of a number of units equal to the desired, given
dimension d. Both visible and hidden units are binary, with a
sigmoid transfer function. Once the topology of the network is
defined, the RBMs are trained for a certain number of cycles,
using the Contrastive Divergence process defined formerly. In
this regard, we perform only 1 step of the Gibbs sampling
(CD1). After the training process, we have an RBM that, given
a data vector of dimension | v |, provides a representation of
dimension d. So we can obtain representations of dimension
d of the original data.

Additional experiments were conducted using a system of
two stacked RBMs. In this case, we define a first RBM with a
visible layer v1 and a hidden layer h1. The dimension of v1 is
the dimension of the data vectors, and the dimension of h1 is
equal to | h1 |=

√
| v1 | ×d, being d the final dimension we

want to achieve. After training, the output representation of this
RBM will be the visible layer v2 of the second RBM, whose
hidden layer h2 has dimension d. Both RBMs are trained
independently for the same number of cycles. This can be
interpreted as an RBM with 2 hidden layers h1 and h2



B. Predicting Social Circles by k-means Clustering

Apparently, soft-clustering strategies such as fuzzy clus-
tering are the most well-suited for social circles detection.
However, in practice, some studies show that partitional or
spectral clustering approaches provide better results [30], [31].
This especially applies with the error measure that we consider
for our study. Motivated by these facts, we have chosen the
partitional technique k-means as the clustering strategy for
our work. In addition, it is illustrative for our aim to check
whether or not the predictions improve when we perform the
data mapping.

K-means is a classical partitional clustering method. It
divides the dataset into k clusters by minimizing the Sum
of Squared Errors, SSE =

∑
c

∑
x∈Xc

‖x − mc‖2, between
the samples x and their respective cluster means mc. In the
framework of this study, we perform k-means on the samples.
As a result, we obtain a partition of the data set into k clusters,
which we interpret as social circles.

We must notice that this technique classifies every user into
a circle, whereas in reality some users are isolated and do not
belong to any circle. In addition, it does not allow for overlap
or hierarchical inclusion of circles, both being phenomena that
are present in a number of egonets. However, as we have
proclaimed, it is a well-suited technique for our purposes.

C. Structural network representation

In this subsection, we present the different representations
of the structural network information that have been consid-
ered. All of them transform graph links into the vectors s.
Being | u | the number of users in the ego-network, we use
the following concepts:

• Friendship ranks: when there is a link between two
users, we say they are direct friends or rank 1
friends. When two users are not direct friends but
have a common direct friend, we say they are rank
2 friends. Friendship ranks of greater levels can be
further defined. In this study we consider up to rank
3 friends. There is a value in s for every friendship
rank and user in the egonet. An element of s is 1
if the considered users are friends of such rank, and
0 otherwise. Obtaining in total 3 × | u | structural
features for each user.

• Weighting: the data is weighted depending on the
friendship rank it represents. Rank 1 friendship is left
with 1, whereas rank 2 friendship is weighted to 0.5
and rank 3 friendship is weighted to 0.25. Like in the
previous case, obtaining in total 3 × | u | structural
features for each user.

• Aggregation: for every user, the different friendship
ranks are aggregated into just one value. This is
obtained by calculating the maximum weighted friend-
ship rank. Reducing the number of structural features
to | u |.

From these concepts we define the representations shown in
Table I.

TABLE I. REPRESENTATIONS OF STRUCTURAL NETWORK
INFORMATION

Representation Definition

r1 Rank 1
r12 Ranks 1 and 2
r123 Ranks 1, 2 and 3
r12w Ranks 1 and 2, weighted

r123w Ranks 1, 2 and 3, weighted
r12a Ranks 1 and 2, aggregated
r123a Ranks 1, 2 and 3, aggregated

D. User profile representation

There are up to 27 profile features for every user in
the data corpus we used for the experiments. Nonetheless,
some of them are very seldom informed whereas others are
redundant or not relevant for the task. As a consequence, we
have selected the 3 most informative features which appear for
every egonet and we use only these. The selected features are:
hometown, schools and employers. Each of these features can
take different discrete values from a finite set.

We define as | f | the number of features considered, and
as | n | the total number of values of the considered features
that are taken by at least one user in the egonet. We encode
the profile features information in the vectors p, for which the
following representations have been defined:

• Explicit: There is an element of p for every different
value of the considered features. An element of p is 1
if the considered user takes the column value for the
respective feature, and 0 otherwise. Obtaining in total
| n | profile features for each user.

• Intersection: There is one element of p for every user
in the egonet and every considered profile feature.
An element of p is 1 if the sets of values of the
considered users, for that particular feature, intersect.
It is 0 otherwise. In this case, obtaining | f | × | u |
profile features for each user.

• Weighted: There is just one element of p for every
user in the egonet. An element of p represents the
proportion of features for which the considered users
share at least one value. It is calculated as |s||f | , where
| s | is the number of features shared between both
users. Reducing the number of profile features to | u |.

V. EXPERIMENTS AND RESULTS

The corpus used for the experiments is the ego-Facebook
dataset of social circles from Facebook from the Stanford
Large Network Dataset Collection [32]. The data consist of 10
hand-labelled friendship egonets from Facebook and a set of
profile features for every node in those networks which varies
depending on the ego. Out of the 10 egonets, the smallest one
contains 59 users and the largest one contains 1,045 users.
All of them altogether comprise 4,039 users, with 88,234
connections between them.

We have performed a battery of tests, not only considering
the variations of the data representations, but also trying
different values of the dimension d ∈ {16, 32, 64}, and the



TABLE II. RESULTS OF THE EXPERIMENTS

Baseline EDM
Results in [3], [4] 5024

Only k-means 4412

Data representation RBM parameters

Structural Profile d = 16 d = 32 d = 64

i = 500 i = 1000 i = 500 i = 1000 i = 500 i = 1000

r1 Not used 4416 4326 4252 4378 4396 4612
r1 Explicit 4410 4414 4490 4402 4366 4390
r1 Weighted 4786 4536 4834 4368 4720 4668

r12 Not used 4522 4258 4448 4430 4274 4242
r12 Explicit 4486 4408 4308 4288 4596 4346
r12 Weighted 4444 4554 4374 4250 4384 4572

r12w Not used 4362 4314 4274 4278 4310 4358
r12w Explicit 4374 4368 4294 4222 4290 4324
r12w Weighted 4522 4424 4374 4220 4584 4478

r123w Not used 4532 4466 4262 4366 4456 4354
r123w Explicit 4320 4252 4310 4382 4510 4390
r123w Weighted 4374 4476 4784 4926 4278 4234

r12a Not used 4348 4320 4386 4324 4398 4296
r12a Explicit 4372 4238 4162 4450 4236 4512
r12a Weighted 4462 4594 4552 4400 4764 4514

r123a Not used 4412 4316 4288 4232 4332 4256
r123a Explicit 4412 4308 4336 4356 4310 4204
r123a Weighted 4900 4760 4914 4682 4860 4788

2 3 4 5 6 7 8
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M

(a) Variation of EDM in relation to the number of circles

16 32 64
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Dimension of RBM mapped data samples

E
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M

(b) Variation of the EDM in relation to the new dimen-
sion d

Fig. 2. Comparison of the performance of the method varying the number of circles and the dimension of the new data representations. The rest of variables
are set as in the best performing experiment of Table II

number of training cycles i ∈ {100, 500, 1000}. We do not
include any prediction technique for the number of circles
within the egonets. Instead, we predict a minimum of 2 circles
and a maximum of 8 circles for every experiment and check
which one works best. A lower number of circles seems to
provide better results with this technique.

The evaluation measure of our experiments is the one
proposed at the Kaggle competition on learning social circles
in networks [30]. We preferred it over other possible evaluation
measures, like those based on the calculation of the Balanced
Error Rate (BER) [33] or the F1 score of pairs of circles, as
it penalizes more heavily the incorrect inclusion of users into
circles. It is calculated as follows:

An evaluation measure for every egonet e is computed as an
edit distance between the ground truth circles (ge) and the
predicted circles (pe): EDMe = d(ge, pe). Four basic edit

operations are considered: adding a user to an existing circle,
creating a circle with one user, removing a user from a circle
and deleting a circle with one user; every one of them at cost
1. The evaluation measure of the whole dataset is the sum of
the edit distances obtained for all the egonets.

EDM =
∑
e∈E

EDMe, (7)

being E the set of the egonets in the corpus. The smaller EDM
is, the better the performance of the prediction.

We compare our results to the ones obtained in [3], [4].
In this regard, we calculated the Kaggle measure of the
predictions obtained using the authors’ method. We must
remark that the technique employed in this work does allow for
overlapping and hierarchical inclusion of circles. In addition,



a user is not necessarily classified into any circle. So, a priori
their results should be closer to the ground truth than the
ones obtained by k-means. Moreover, we conducted all the
experiments mentioned in the previous section without the
RBM data mapping, as well. The best performing of these
tests using k-means clustering over the original data serves us
as the second baseline. The results obtained using RBMs with
2 hidden layers are not better than the ones resulting from the
use of only 1 hidden layer, and so we have discarded them.

The evaluation of the baselines and our experiments, in
terms of the edit distance EDM, is shown in Table II. Note
that only predictions of 5 circles, k = 5, are included, as they
have given the best performance. The k-means only baseline
is based on k = 5, as well. An example of this behaviour is
found in Figure 2a, where the value of the evaluation measure
is compared when considering different numbers of predicted
circles. A similar comparison for the dimension d is shown in
Figure 2b, although it is not so representative of all the cases.
The structural network representation r123, the profile features
representation intersection, and predictions obtained from 100
RBM training cycles are also omitted in the table due to the
reason that their results are poorer than the ones shown.

Every result appearing in the table outperforms the one
in [3], [4]. A selection of them are also more accurate than
the best one obtained without the preprocessing of data by
RBMs. The best result has been obtained when considering
friendship of ranks 1 and 2, aggregated; an explicit profile
features representation; and mapping the original data into
representations of dimension d = 32 by an RBM with a 500
cycles training process.

VI. CONCLUSIONS AND FUTURE WORK

RBM mapping of data samples improves the results of k-
means clustering for social circles detection. In particular, the
combination of friendship information of first and second rank,
and an explicit representation of the profile features, seems to
give the best performance. After a thorough experimentation
(we required to do an optimal adjustment of the parameters
of the RBMs) we obtain results that beat the two proposed
baselines. Our approach outperforms the generative model
proposed in [3], [4], designed to produce clusters in principle
more similar to social circles.

This work might be extended in several ways. We defined
a fixed value of the dimension of the RBM mapped data
representations for every egonet in the dataset. However, it
could be made dependant on the size of the original data of
each egonet, thus allowing for more flexibility in the samples
mapping. A more complex extension would be to use the
RBMs themselves for prediction and not only for obtaining
new data representations.
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