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Abstract

The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in
a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic
nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such
as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios
of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous
media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the
possibility of engineer a medium in order to get a particularwaveform. Examples of this include the design of media
with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented
ideas open a way towards the control of acoustic wave propagation in nonlinear regime.
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1. Introduction

One of the most celebrated effects of wave propagation in periodic media is the appearanceof forbidden propaga-
tion regions in the energy spectrum of electrons, or band-gaps. Most of the physics of semiconductors, and therefore
many electronic devices, are somehow based on this concept [1]. In the late 80’s, these ideas where extended by
Yablonovich and John [2] to light waves (electromagnetic waves in general) propagating in materials where the op-
tical properties like the index of refraction were distributed periodically. These materials were named, by analogy
with ordered atoms in crystalline matter, as photonic crystals. The typical scale of the periodicity is given by the
wavelength. Actually, not only light but any wave propagating in a periodic medium may experience the same effects,
and acoustic waves are not an exception. Sound wave propagation in periodic media has become very popular in the
last 20 years in acoustics, after the introduction of the concept of sonic crystals [3]. Exploiting the analogies with
other type of waves many interesting effects, as the mentioned forbidden propagation bands (band-gaps), but also
focalization, self-collimation, negative refraction, and many others have been proposed. We consider in this paper
the simplest case plane waves propagating in a 1D structure,formed by a periodic alternation of layers with different
properties. Depending on the context, such a structure has been named a multilayer, a superlattice (particularly in the
context of semiconductors) or a 1D phononic crystal (this include more exotic structures, as the granular crystal or
lattice [4]). The huge majority of the studies considered sofar have assumed a low-amplitude (linear) regime, neglect-
ing the nonlinear response of the medium. Intense wave propagation in nonlinear periodic media, and in particular
the case of sound waves, is almost unexplored. In this paper we present different examples of new phenomena related
to sound wave propagation in 1D periodic media, where each ofthe layer has a nonlinear quadratic elastic response.
Nonlinear acoustical effects in such structure have been studied only in a few works. In [5] the harmonic genera-
tion process is described in a fluid/fluid multilayered structure (water/glycerine), based in a nonlinear wave equation.
Also, acoustic solitons in solid layered nonlinear media have been presented in [6]. More recently, the complementary
action of nonlinearity and periodicity has been consideredin [7], where an asymmetric propagation device (acoustic
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Figure 1: Layered acoustic system with two different layers and second harmonic generation scheme. Here the lattice period isa = a1 + a2.

diode) was proposed. There, the nonlinearity and the periodicity act at different locations and its effect is considered
separately. The effects discussed in this paper are the result of the interplay between nonlinearity and periodicity.
Here we describe how the geometrical and acoustic parameters of the structure can be used to control the harmonic
distortion processes in a multilayer. The conditions required to selectively act on the nonlinearly generated spectrum,
and therefore manipulate the waveform in the desired way, are obtained and discussed.

The theory presented here has been developed for fluid-fluid (scalar) structures, however the main conclusions are
extendable to fluid-solid or to solid-solid multilayers, ifparticular conditions are given. Also, the main conclusions
of this paper are independent on the regime of the waves (audible, ultrasound,...), and therefore on the size or scale of
the structure. Specially interesting is the domain when ultrasound waves belong to the Terahertz regime, where these
ideas may find a great potential. The progress in miniaturization and the technological development allows currently to
create phononic multilayers at scales even in the nanometerrange (each layer contains then a small number of atoms).
This structures are usually made of semiconductors and are often used in particular applications as phononic mirrors
to form phonon nanocavities [9], or microcavities to obtaina strong optomechanical coupling [10] (for a revent survey,
see [8]). In a remarkable recent achievement, acoustic amplification was realized in doped GaAs/AlAs superlattices,
where a SASER (Sound Amplification by the Stimulated Acoustic phonon Radiation) was demonstrated, in a device
including a superlattice gain medium and GaAs/AlAs SLs acoustic mirrors [11].

The structure of the paper is as follows: In Sec. 2 we present the model for nonlinear propagation of acoustic
waves in periodic media. The next Sec. 3 describes the process of harmonic generation in homogeneous media,
and how it is modified by the presence of periodicity. In Sec. 4the possibility of manipulating the spectrum of a
propagating sound wave by tuning the parameters of the layered medium is discussed, showing examples of particular
situation, as the case of a cubic-effective medium made out of quadratically nonlinear layers. Finally, Sec. 5 presents
the conclusions.

2. The model

2.1. The medium and its dispersion relation

We consider a periodic medium made of an arrangement of homogeneous fluid layers of thicknessa1 anda2

with different material properties. For the shake of simplicity onlylongitudinal waves under normal incidence are
considered. A scheme of the medium is shown in Fig. 1.

The propagation of small amplitude waves in an infinite periodic system is completely described by its dispersion
relation, often known as band structure, that for 1D systemsas in Fig. 1 can be expressed analytically as [12]

cos(ka) = cos(k1a1) cos(k2a2) −
1
2

(

k1

k2
+

k2

k1

)

sin(k1a1) sin(k2a2) (1)
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Figure 2: Dispersion relation of the two-layers system for layer proportionα = 0.5 and for differentc2/c1 ratio. Left: real wavenumbers. Right:
imaginary part of the complex wavenumber.

also known as the Rytov formula, wherek is the Bloch wave-number,a = a1 + a2 is the lattice period, andki = ω/ci

is the local wavenumber, withci the sound speed in thei layer. For a wave of frequencyω incident in a medium with
known acousticalci and geometricalai parameters, the above equation results in a band structure of propagating and
nonpropagating (bandgap) regions, as shown in Fig. 2. Thus,using Eq. (1), we can estimate the effect of periodicity
on the different harmonics of the incident wave as they propagate through the multilayer, which is the main premise
of this work. The ratio between layer thickness can be definedasα = a1/a, leading toa2 = (1− α)a.

An example of dispersion relation plot is shown in Fig. 2 for normalized parametersa = 0.5 and for different sound
speed ratiosc1/c2. Increasing the impedance ratio between layers increases the reflected intensity in the trans-layer
propagation, while the transmitted energy of the multiple internal reflections diminishes. As can be seen, due to these
scattering processes band-gaps are progressively opened around the wavenumberk = nπ/a with n = 1, 2, .... Thus,
the bandwidth of these band-gaps also increases when the impedance ratio grows.

On the other hand, its imaginary part increases in amplitudewith c1/c2, leading to shorter evanescent propagation
inside the band-gap for high sound speed contrast layers, while remains zero (no attenuation) in the propagation
band. We recall that the system is conservative: the physical interpretation of the complex wavenumber is not energy
absorption, but back-reflection of the incident wave. Thus,at band-gap frequencies the waves penetrate only a short
distance into the medium with a forward evanescent mode, andif the medium is perfectly periodic and lossless the
energy is back-reflected (it behaves as a mirror).

2.2. Nonlinear constitutive mode

The nonlinear propagation of sound in the acoustic inhomogeneous media, and in particular in multi-layered
media can be described by several models, with different levels of accuracy. Here, we use the equations of continuum
mechanics for ideal fluids with space dependent parameters.These are the continuity equation for mass conservation
[13]:

∂ρ

∂t
+ ∇ · (ρv) = 0 . (2)

and the equation of motion that follows from conservation ofmomentum

ρ
Dv
Dt
+ ∇p = 0 , (3)

whereρ is the total density,v is the particle velocity vector over a Eulerian reference frame,p is the acoustic pressure,
t is the time andD is the material derivative operator.

For non homogeneous media, the ambient properties of the fluid in the absence of sound are space dependent,
so the total density becomesρ(t, x) = ρ′(t, x) + ρ0(x), whereρ0(x) is the spatially dependent ambient density and
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ρ′(t, x) is the perturbation of the density or acoustic density, that is space and time dependent. Then, using the material
derivative, Eq. (3) becomes

ρ0
∂v
∂t
+ ∇p = −ρ′

∂v
∂t
−

(

ρ′ + ρ0
)

(v · ∇) v , (4)

In this equation, the first two terms in the left-hand-side account for linear acoustic propagation, where the terms
in the right-hand-side introduce nonlinearity in the Eulerian reference frame through momentum advection processes.

On the other hand, we can expand Eq. (2) for nonhomogeneous media as

∂ρ′

∂t
+ ρ0∇ · v + v · ∇ρ0 = −ρ

′∇ · v − v · ∇ρ′ . (5)

Here, the first two terms on the left-hand-side account for linear acoustic propagation, the third, also linear, ac-
counts for the magnitude of the changes in the ambient layer properties. Note this term is space dependent but only
changes at the interface between adjacent layers. For density matched layers,ρi = ρi−1, this terms vanishes. The terms
on the right-hand-side are nonlinear and accounts for mass advection.

Finally, a fluid thermodynamic state equationp = p(ρ, s) is needed to close the system, withs the entropy. The
local nonlinear medium response relating density and pressure variations, retaining up to second order terms, can be
written as

p = c2
0ρ
′ +

B
2A

c2
0

ρ0
ρ′

2
, (6)

whereB/A(x) is the quadratic nonlinear parameter andc0(x) is the sound speed, that can be also spatially dependent.
In this system of equations, quadratic nonlinearity appears in the equation of motion (4) and in the continuity

equation (5), in the momentum and mass advection terms respectively, and also in the equation of state, Eq. (6), re-
lating pressure and density acoustic perturbations. We note that here we only take into account nonlinear processes
through the layer’s bulk. The nonlinear effects at the boundary between adjacent sheets are neglected.These nonlinear
boundary effects include cavitation processes, that in the case of fluidswith very different compressibility can be very
important. In the case of solid layers, other local nonlinear effects relative to boundaries, e.g. clapping phenomena be-
tween surfaces, can lead to nonlinearities that are orders of magnitude in importance compared to thebulkcumulative
nonlinearities.

2.3. Second-order model

For moderate amplitudes, the system of Eqs. (4-6) can be simplified. For that aim, we use a perturbative method
with same ordering scheme as in [14], whereO(ε), O(ε2) andO(ε3) represents the terms of generic smallness param-
eterε. The derivation of a second-order nonlinear wave equation requires the substitution of the linearized acoustic
approximations (first order) into second order terms of Eq. (4, 5). This substitution procedure will give third order
errors, so the final nonlinear wave equation will be a second order approximation of the full constitutive relations.

These equations can be combined to form a single nonlinear wave equation valid for nonhomogeneous media up
to second order approximation

∇2p−
1

c2
i

∂2p
∂t2
−

1
ρ0
∇ρ0∇p = −

β

ρ0c4
0

∂2p2

∂t2
−













∇2 +
1

c2
0

∂2

∂t2













L + O(ε3) . (7)

where we introduced the coefficient of nonlinearityβ = 1+ B
2A that accounts for material and mass advection quadratic

nonlinearities. It is worth noting here that the second-order Lagrangian density vanish for plane progressive waves due
to the first order relationp = uc0ρ0 that leads toL = 0. In this case, Eq. (7) simplifies to the well-known Westervelt
equation for inhomogeneous media

∇2p−
1

c2
0

∂2p
∂t2
−

1
ρ0
∇ρ0∇p = −

β

ρ0c4
0

∂2p2

∂t2
+ O(ε3) . (8)

In general, the Lagrangian density term can be discarded based on the distinction of cumulative and local non-
linear effects. In this way, for progressive quasi-plane wave propagation in homogeneous media the nonlinear local
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Figure 3: Harmonic generation in the layered medium at low frequencies (numerical results), and its comparison with analytical expressions
(Fubini) for an homogeneous medium.

effects become insignificant in comparison to the nonlinear cumulative effects, where in most practicals situations,
beyond a distance of only few wavelengths away from the source local nonlinear effects can be neglected. However,
local nonlinear effects can become significant in other complex situations including standing-wave fields and finite
amplitude acoustic waveguides. Concerning the layered media, in this work we solve numerically the full constitutive
relations, and the effect of the Lagrangian term is shown to be negligible under theconditions of our study.

3. Harmonic generation in layered media

We will study the response of the layered system for plane-harmonic wave excitation. Then, as sketched in Fig. 1,
the source is placed at one boundary of the layered system, and the acoustic relevant magnitudes are calculated
along space and time. As the wave propagates, cumulative nonlinear effects generate harmonics of the fundamental
frequency,ω0, and due to the multiple scattering processes into the layers, local nonlinear effects also distorts the
wave. However, the high dispersion of the layered system have a strong impact on the nonlinear harmonic generation.
Dispersion modify the resonance conditions between fundamental and second harmonic wave, and also for other
nonlinearly generated higher frequencies. In this way, nonlinear energy transfer efficiency from one component to
another is modified in a wide variety of configurations, leading to the possibility of engineering and controlling the
nonlinear wave processes by tuning the dispersion relation.

Depending of the frequency of the input wave, different scenarios can be observed, as reported in the following
subsections.

3.1. Nondispersive (Fubini) regime

We start studying the propagation in the layered system for harmonic excitation in the very low frequency regime,
where we assume thatka≪ 1 holds. As the Rytov’s Eq. (1) predicts, in the very low frequency regime the slope of
theω(k) curve is nearly constant. The dispersion of all the spectral components is negligible, and they all propagate at
nearly the same velocity and are correspondingly phase-matched. Thus, in the absence of dispersion and attenuation
process, the system of Eqs. (2-3) and (6) can be reduced for a harmonic-plane wave to a Burger’s evolution equation
expressed in traveling coordinates with effective parameters, namely ˜c0, ρ̃0 andβ̃. An analytic solution of this equation
in terms of thenth-harmonics of the fundamental wave of frequencyω and initial amplitudep0 is known as the Fubini
solution,

p(σ, τ) = p0

∞
∑

n=1

2
nσ

Jn (nσ) sin(nωτ) , (9)

whereJn is the Bessel function of ordern, andσ = x/xs is the propagation coordinate, normalized to the shock
formation distance,xs = 1/β̃ε̃k, with the effective match number ˜ε = u/c̃0 and the effective wavenumberk = ω/c̃0,
that can be also found from Eq. (1). This celebrated solutionis valid forσ < 1 (pre-shock region).
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Simulations were carried out using a full-wave constitutive relations solver. Thus, we shall define the normalized
reference frequency asΩ0 = πc̃0/a (located in the first band-gap). The source frequency was settoω = 0.1Ω0.

Figure 3 shows the analytical and numerical solutions for the low frequency limit of the layered system, where
an excellent agreement is obtained between Fubini and numerical solutions in the pre-shock region,σ < 1 and for
low excitation frequencies. As commented above, when the fundamental frequency is increased the higher harmonics
fall in dispersive region of the frequency bands, and thus its wave speed is reduced. In this situation, phase matching
conditions are no longer fulfilled and therefore the energy transfer from fundamental to higher harmonics is mod-
ified. Thus, the Fubini solution can be only applied as an ideal solution for the low-frequency limit or as a good
approximation for the first harmonics and for frequencies below ω . 0.1Ω0.

3.2. Dispersive regime

For frequencies above the (idealized) homogeneous-Fubiniregime, finite (weak and strong) dispersion effects are
observed. The dispersive effects of the layered system deeply affects harmonic generation processes.

As intense waves propagate through a quadratic nonlinear medium, their frequency components interact with each
other and new frequencies arise at combination frequencies, including higher harmonics. The cumulative energy trans-
fer from the interacting waves to the harmonics is dependenton the resonance conditionsω1±ω2 = ω3, k1± k2 = k3.
Note these conditions express the laws of conservation of energy (~ω) and momentum (~k) in the quantum descrip-
tion for the disintegration and merging of quanta [13]. These conditions can be satisfied in a variety of situations.
The most simple case is observed in nondispersive media and for collinear waveski = ωi/c0. In this situation the
resonance conditions are fulfilled all over the spectra and alarge number of harmonics interacts synchronously: when
there exist in the system afreewave with velocityω3/|k3| that matches the excited (forced) waveω1 ± ω2/|k1 ± k2|,
the freewave is excited in a resonant way. The resonant interaction leads therefore to synchronous (phase matched),
cumulative energy transfer from the initial wave to the secondary wave fields.

In the case of an initial monochromatic wave, the main wave generates its second harmonic. The resonant condi-
tions in this situation read 2ω1 = ω2, 2k1 = k2, that holds true for nondispersive collinear waves, leading to the simple
relation 2k(ω1) = k(2ω1). However, in the case of dispersive media this condition is, in general, not fulfilled and the
forcedandfreewaves interact asynchronously. Figure 4 shows such situation for a layered media with a fundamental
wave in the first dispersion band.

In order to study asynchronous second harmonic generation processes, we recall here for the lossless second-
order wave equation Eq. (8), for one-dimensional propagation. This equation does not include dispersion by itself,
dispersion arises from the solution of the linearized wave equation with the layered media boundary conditions, where
the eigenvalue problem leads to the Rytov’s dispersion relation Eq. (1).
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In the following, we apply a perturbation method to obtain anapproximate solution for the second harmonic field.
We expand the pressure field as sum of contributions of different orders, i.e.p = p(1) + εp(2) + · · · , whereε is the
smallness perturbation parameter, which we identify with the acoustic Match number. Thus,p(1) is the first order
(linear) solution of the problem andp(2) its the second order contribution. By substituting the expansion in the second
order wave Eq. (8), assuming constant density1 and neglectingO(ε3) terms we get a coupled set of equations that
can be solved recursively. The solution of the first order equation corresponds to a monochromatic plane wave of
frequencyω

p(1) = p0 sin(ωt − k1x) (10)

wherek1 = k(ω) is the wave vector associated with the primary frequencyω, and p0 is the excitation pressure
amplitude. Substitution of the first order solution into theequation obtained at the next order in the expansion, leads
to an inhomogeneous equation for the second harmonic field:

∂2p(2)

∂x2
−

1

c2
0

∂2p(2)

∂t2
= −

4βω2p2
0

ρ0c4
0

sin(2ωt − 2k1x) . (11)

The general solution of the this equation is the sum of the solution of the homogeneous equation (p0 = 0), and
the particular solution of the inhomogeneous equation (p0 , 0). Therefore the field for the second harmonic can be
expressed asp(2) = p(2)

h + p(2)
f , where the corresponding waves for this two solutions are the free, andforcedwaves

respectively. Such homogeneous and particular solutions are:

p(2)
h = p(2)

h

∣

∣

∣

x=0
sin(2ω1t − k2x), (12)

p(2)
f =

A
(k2 + 2k1)(k2 − 2k1)

sin(2ω1t − 2k1x) , (13)

wherek2 = k(2ω1) is the wavenumber of thefree wave at second harmonic frequency, and the constantA =
−4βω2

1p2
0/ρ0c4

0. It is worth noting here that as long 2k1 , k2, the forced and free waves in dispersive media have
different phase speed, i. e. theforcedand free waves are phase mismatched as can be seen in the argument of the
sin function in Eq. (12-13). Imposing the boundary condition, that the second harmonic must be absent atx = 0, the
second harmonic field can be expressed as

p(2) =
A

k2∆k
sin

(

∆k
2

x

)

cos
(

2ω1t − k′2x
)

, (14)

where the effective wave number isk′2 = (k2+2k1)/2 ≈ k2 and the detuning parameter that describes the asynchronous
second harmonic generation is defined as

∆k = k2 − 2k1 = k(2ω) − 2k(ω). (15)

Equation (14) describes the well-known effect in second harmonic generation in dispersive media, thatis the
beatings in space of the second harmonic field when the resonant conditions are not fulfilled. Thus, as∆k increases,
the beating spatial period and also its maximum amplitude decreases. The position of the maximum of the beating,
also called the coherence length, can be related to the second-harmonic phase-mismatching frequency as

xc =
π

|∆k|
=

π

|k(2ω) − 2k(ω)|
. (16)

This length corresponds to the half of the spatial period of the beating, where the maximum of the field is located.
It can be expressed also for other higher harmonics simply asxc(n) = π/|∆kn| = π/|k(nω) − nk(ω)|.

In the limiting case of∆k → 0, the second harmonic field is generated synchronously and accumulates with
distance, so a linear growth is predicted. In this case, phase matching conditions are fulfilled and thefree wave is

1. We neglect the ambient density variations for the sake of simplicity. Dispersion arise also for sound speed variations, that are assumed to be
implicit in the boundary conditions.
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(continuous line) and imaginary part (dotted line) in function of the normalized frequency.

excited synchronous to theforced wave. Note here that in the derivation of Eq. (14) only second order processes are
taken into account and therefore, only second harmonic is predicted. This leads to overestimate the second harmonic
field: as long no energy is transferred to third harmonic, second harmonic predicted by Eq. (14) in the absence of
dispersion grows indefinitely. The validity of this model can be explored expanding the Bessel functions of Fubini
series near the source. A simple comparison between the fullFubini solution and linear second harmonic growth gives
a reasonable approximation for distancesσ < 0.5 or for second harmonic field values ofp(2ω) < p0/4.

Figure 5 shows three different simulations in the dispersive regime of the layered media where the wave amplitude
and frequency has been selected to matchxc/xs = 1, 1/4 and 1/8. The higher beating spatial period waves corresponds
to lower frequencies. The analytical solution for the second harmonic matches the full-wave numerical solution.
However, differences can be observed in the second harmonic amplitude estimation for xc/xs = 1 (Fig. 5 (a). This
overestimation by the analytical solution can be related tothe absence of energy transfer to higher harmonics, that is
not considered by the perturbation solution but is includedin the simulation and also in the Bessel-Fubini solution.
Therefore, this model is specially suitable in situations where the third harmonic does not grow cumulative with
distance. In the lossless layered media, this situations include frequencies that leads to very high-third harmonic
detuning and also when the third harmonic falls in band gap.

3.3. Second harmonic in band gap

Waves with frequencies falling into the band-gap of the dispersion relation are evanescent due the non negligible
imaginary part of its complex wave number. Thus, its amplitude decays exponentially with distance. If the nonlinearly
generated second harmonic falls into a band-gap, its amplitude does not decay but reaches a constant value [5]. Figure
6 shows this case for two different frequencies. The constant amplitude value of the second harmonic wave depends
on the imaginary part of the wave vector.

This effect can be understood in terms of thefree and forcedwaves. If the second harmonic is evanescent (as
follows from the dispersion relation), the wave will not accumulate with distance. The fundamental wave is “pumping”
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energy to the second harmonic field at every point in space. Thus, the second harmonic field is generated locally and
remains trapped inside the layered media. It reaches a constant level that depends on three main factors. In first place,
the ”pumping” rate, characterized by the fundamental wave amplitude and medium nonlinearity, or more strictly the
ratio between the layer thickness and the shock distancea/xs. Secondly, it also strongly depends on the magnitude of
the imaginary part of the complex wave number, i.e. the ratiobetween its characteristic exponential decay length and
the shock distance in a layer. The characteristic decay length of the evanescent propagation is always shorter when the
second harmonic is in the middle of the band-gap, leading to aweaker second harmonic field in this frequency region,
as seen in Fig. 6. Finally, it depends also on the detuning of real part of the wave number, where for the first band-gap
is minimum at the center. The first factor can be isolated and studied separately. However, the two last factors are
linked through the specific dispersion relation of the medium.

Figure 6(c) shows the detuning of the second harmonic and theimaginary part as a function of the frequency for
a medium withα = 1/2 andc1/c2 = 1/2, showing that at the middle of the band-gap these two factors have opposite
effects: detuning is null (phase matching) when evanescent decay is nearly maximized, and viceversa. However, the
magnitude of the effects can be very different. As the rate of the second harmonic generation (see theinitial slope
in Fig. 5) is independent on the detuning, and the evanescence implies that the wave decays after few layers, there
not exist a practical compensation of the effects at the center of the band-gap. However, the situation isdifferent for
frequencies around the limits of the band-gap, where the coherence length is of the order of the exponential decay
characteristic length. Thus, for frequencies just above bad-gap and for amplitudes with shock distance comparable
to the evanescent characteristic decay length, the beatings can be also observed, as shown in Fig. 6 (a). Then, if
frequency is increased the characteristic decay length becomes shorter than the shock wave distance and beatings
cannot be observed, leading to to the characteristic constant second harmonic field shown in Fig. 6.

3.4. Fundamental harmonic in band gap

When the fundamental frequency of the wave lies within the band-gap, small amplitude waves propagate evanes-
cently. Essentially, the same applies to finite amplitude harmonic waves. In general, if the shock distance is large
compared to the characteristic decay length of the evanescent wave, the nonlinear effects have no chance to accumu-
late and harmonic amplitude is negligible. Since the characteristic exponential decay is about few lattice sites, this
means that the initial amplitude necessary to achieve nonlinear effects in this configuration is much higher than those
in the preceding sections. Figure 7 shows the evolution of the first and second harmonic waves for a fundamental
frequency at the Bragg frequency, 2ω0 = 1Ω0, and with a frequency just above but into the band-gap,ω0 = 0.87Ω0

for a layered media ofα = 1/2 andc1/c2 = 1/2. In the first case, the imaginary part of the wave vector is remarkable
high and the waves decay fast after few lattice units. Due to this fast decay, the second harmonic interacts only over
a short distance with the first, and its amplitude is very limited. After a few lattice units, the fundamental wave can
be treated as a small-amplitude evanescent-wave. The second harmonic, that also falls in bandgap (but in the second
band gap) also decays exponentially.

On the other hand, if the fundamental frequency is set just above the band-gap, where the imaginary part of
the wave-vector is smaller, the amplitude of the fundamental wave decays more slowly, penetrating deeper into the
material. The interaction region with the second harmonic is larger, and nonlinear effects result in a more efficient
generation of the second harmonic. Furthermore, as long thedifferent (higher order) bandgaps in the layered media
can have different bandwidth, in this configuration atω0 = 0.87Ω0 second harmonic does not fall inside a bandgap.
Therefore, the generated second harmonic wave at the beginning of the lattice propagates through the medium essen-
tially without amplitude change. Due to the evanescence of the fundamental wave, there is onlyforcedwave at the
beginning of the medium. Therefore, although in this configuration waves are phase mismatched, beatings are not
present: only thefreewave propagates through the medium.

4. Nonlinear acoustic field management

4.1. Tuning nonlinearity with dispersion

In the preceding sections we have explored the fundamental behavior of nonlinear waves generated inside the
layered media. But also, medium parameters can be designed to provide specific conditions. The material parameters
can be tuned to get coherence at one frequency of interest, e.g. at one of the harmonics of the fundamental wave, or
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Figure 7: (a) Evolution of the fundamental harmonic wave field with its fundamental frequency falling just above into band-gap,ω0 = 0.87Ω0,
(continuous line), and in the middle of the bad-gap, 2ω0 = 1Ω0 (dotted line). (b) Corresponding second harmonic field, where for ω0 = 1Ω0
(dotted line) second harmonic frequency falls in the 2nd band band-gap while forω0 = 0.87Ω0, (continuous line) lies into a propagating band.

to get detuning or evanescent propagation at other specific harmonics. Using these mechanisms the layered medium
can be used to provide a balance of the harmonic amplitudes, or to obtain specific nonlinear waveforms, providing a
control of the nonlinear process inside the medium.

In the design of a system for this purpose, the coherence length is a useful control parameter. For this aim, the
analytic Eq. (1) is used, which is shown to provide an excellent framework to tune the layered parameters to obtain the
desired balance between detuning, evanescent propagation, synchronous generation and, at the same time, it allows
to find those conditions for a specific phase/group speed. Figure 9(a,b) shows an example of a dispersion relation, the
coherence length for the second and third harmonic. The resulting harmonic amplitudes when phase matching of all
harmonics is achieved is shown in Figure 8. This happens for aset of frequenciesω0 = (0, 1.75, 2.333, ...)/Ω. On the
other hand, there also exist frequencies at which there exist coherence for the second but a non-negligible detuning is
observed for the third. The opposite effect can be also obtained, where coherence is achieved for thethird harmonic
but second harmonic presents strong dispersion. Finally, other interesting regions are those where second harmonic
component is almost phase matched and for the same frequencythird harmonic falls into a band-gap.

In the following subsections, we propose and analyze different configurations of the layered medium with specific
balance between detuning, evanescent propagation and synchronous generation.

4.2. Enhanced second harmonic generation

One can expect that second harmonic generation is maximizedin homogeneous nondispersive media. However,
in nondispersive media coherence is achieved not only at second harmonic frequency, but also in the higher spectral
components. As a result, energy is transferred from second harmonic field to higher spectral components and therefore
second harmonic field does not grow indefinitely. Moreover, shock waves are formed and nonlinear absorption reduces
wave intensity forσ > π/2 even in lossless media [14].

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

σ

|p
/
p
0
|

 

 

p(ω0)
p(2ω0)
p(3ω0)

Figure 8: Harmonic distribution for the frequencyω0 = 1.75/Ω. Coherence is recovered for at least the lowest spectral components. Blackstock
solution (dotted lines).
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Figure 9: (a) Dispersion relation for a layered media ofc1/c2 = 1.33 andα = 1/2. (b) Coherence length for second (red) and third (blue) harmonics
as a function of the fundamental frequency. Phase matched frequencies are those withxc → ∞, while asynchronous generation is predicted for
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third harmonic are marked in dashed lines.(c) Harmonic distribution forω0 = 1.668Ω0 where a coherence is achieved for second harmonic while
the frequency of the third harmonic falls into the bad-gap. (d-g) (continuous lines) Waveforms at different distances forω0 = 1.668Ω0. At σ = 3.3
second harmonic generation field is maximize and can be seen the period doubling in the waveform. Then, atσ = 7.8 due to second harmonic
detuning nearly sinusoidal wave is recovered. Analytic Fubini-Blackstock solution for the harmonics (red dotted lines) are plotted for comparison.

The dispersion of the layered system can be used to modify this situation by including phase mismatches that alter
the higher harmonic cascade processes, while maintaining coherence for the second harmonic. Figure 8 shows an
example of a dispersion relation where forω0 = 1.668Ω0 it can be observed that there exist a reasonable coherence
for the second harmonic (xc/a ≈ 1000), while the third harmonic falls in a band-gap. Figure 9shows the harmonic
distribution in this situation. Here, energy is transferred to second harmonic field that grows almost linearly forσ < 2.
On the other hand, the energy transferred from second to third harmonic is not cumulative and its amplitude does
not grow with distance. Third harmonic experiment evanescent propagation due to the imaginary part of the complex
wave-vector at this frequency. A constant field, as studied in Sec. 3.3, is obtained for the third harmonic.

The total amount of the second harmonic amplitude in nondispersive media isp2|max ≈ 0.36p0, while in the
example of Fig. 9 a maximum second harmonic amplitude ofp2|max ≈ 0.75p0 is predicted. As can be shown the
decreasing of the first harmonic follows the analytic nondispersive Blackstock solution forσ / 3. Thus, in this
regime all the energy of the first harmonic is being transferred to the second harmonic field. However, due to finite
detuning of the second harmonic a long spatial beating is produced, with normalized period 8σ, and energy is returned
back to the first harmonic component.

It is worth noting here that at distanceσ ≈ 3 sawtooth profile is observed in the nondispersive media. Incontrast,
only second and first harmonic have remarkable amplitude into the layered media. Waveforms are shown in Fig. 9(d-
g). Near the source, where the amplitude of higher harmonicsin not relevant the nondispersive waveform (in red
dotted) is well approximated by the fundamental and its second harmonic of the layered medium. However, due to
the evanescent propagation of the third harmonic for longerdistances the nonlinear solution of the layered medium is
mainly composed by the fundamental and its second harmonic.The maximum second harmonic in this configuration

11



−1 0 1

−1

0

1

2

−1 0 1

−1

0

1

2

−1 0 1

−1

0

1

2

−1 0 1

−1

0

1

2

t f
0

t f
0

t f
0

t f
0

|p
/
p
0
|

|p
/
p
0
|

|p
/
p
0
|

|p
/
p
0
|

σ=0.5 σ=2 σ=8 σ=12

0 2 4 6 8 10 12

0

0.2

0.4

0.6

0.8

1

σ

 

 

0 0.5 1 1.5 2
10

0

10
5

ωa/c
0
π

k
a
/π

x
c/
a

ωa/c
0
π

0 0.5 1 1.5 2
0

0.5

1

(a)

p
1

p
3

p
2

(b)

(c)

(d) (e) (f) (g)
|p
/
p
0
|

Figure 10: (a) Dispersion relation for a layered media ofc1/c2 = 1/3 andα = 0.3. (b) Coherence lengths for second (red) and third (blue)
harmonics, (c) Harmonic distribution forω0 = 0.529/Ω where a coherence is achieved for second harmonic while the frequency of the third
harmonic falls into the bad-gap. Bottom: (continuous lines) Waveforms at different distances forω0 = 0.529/Ω. At σ = 3.3 second harmonic
generation field is maximize and can be seen the period doubling in the waveform. Then, atσ = 7.8 due to second harmonic detuning nearly
sinusoidal wave is recovered. Analytic Fubini-Blackstocksolution for the harmonics (red dotted lines) are plotted for comparison.

is observed atσ = 3.3, as it can be appreciated in the waveforms of Fig. 9 the period doubling. Moreover, due to
finite detuning of the second harmonic the process is not cumulative for all distances and atσ = 7.8 the energy is
restored in the first harmonic again and a sinusoidal wave is obtained. Note that not all the energy is restored to the
first harmonic in Fig. 9 atσ = 7.8, leading to a sinusoidal wave of different amplitude as can be observed in Fig. 9.
The energy loss is mainly due to the artificial (numerical) viscosity necessary to nonlinear convergence[14]. For these
simulations the total distance is 1200 lattice sites and therefore the effects of attenuation are not negligible. However,
the main nonlinear effects related to strong lattice dispersion still appreciated. An analogous effect has been also
studied [13] where instead of dispersion, selective absorption at specific frequencies is used to modify and enhance
harmonic generation.

4.3. Enhanced third harmonic generation

In the first band (ω < Ω0), coherence is always lower for the third harmonic than for the second. However, in
the superior bands the layered medium parameters can be tuned to obtain higher coherence for the third than for the
second harmonic. Essentially we follow same ideas on the preceding section but for the third harmonic. In this case,
the lattice is designed forcing the second harmonic to fall in bandgap. A the same time, perfect coherence can be
found for the third harmonic atω = 1.4Ω0. This situation is illustrated on Fig. 10 aroundω = 1.4Ω0. In this case, the
dispersion relation was obtained for a layered medium with parametersα = 0.3 andc2/c1 = 1/3.

In this situation, as Fig.10 shows, the second harmonic waveattains a constant value of about 0.04p0. As discussed
in Sec.3.3, this constant field does not grow with distance and is related to the evanescent solution of thefreewave
and the local nonlinear “pumping”. On the other hand, due to the coherence of the third harmonic, all the energy
transferred form second to third is accumulated with distance. Therefore, near the source the rate of energy transfer
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from second to third harmonic is constant. Thus, third harmonic start to grow almost linearly with distance, opposite
to quadratically in homogeneous media.

Numerical simulations also show fourth and fifth harmonics grow (not shown in Fig. 10), but only fifth harmonic
harmonic reach a remarkable amplitude, growing near the source almost quadratically with distance. Therefore, the
entire system behaves as an artificially cubic-like nonlinear medium formed by quadratic nonlinear layers.

The corresponding waveforms measured atσ = (0.5, 2, 8, 12) are shown in Fig. 10(d-g). Forσ = 0.5 and 2, it can
be observed how the wave steepens with the characteristic shape of cubic nonlinearity. No shock waves are formed as
long as strong dispersion is present for high frequency harmonics. It is worth noting here a remarkable fact: it steepens
in the positive time axis direction (to the right in the figure), opposite than the quadratic nonlinearity plotted in red
dotted as a reference. This effect, i.e. the steepening on the opposite side of the propagation direction, is characteristic
of materials with negative parameter of nonlinearity. Therefore, the effective nonlinear behavior observed by the
simulations in this conditions can be described as negative-cubic-like nonlinearity.

5. Conclusions

The interplay of dispersion and nonlinearity in multilayered periodic media, such as one-dimensional phononic
crystals or superlattices is shown to have a strong impact onthe acoustic waves propagating through the structure.
Nonlinearly generated harmonics propagating at different velocities are phase-mismatched, modifying the transfer of
energy between the different harmonics, and therefore the waveform itself. Shock formation, typical of nonlinear
homogeneous media, is in this way avoided. We propose a modeland some particular solutions to study this problem,
and report examples of configurations that result in an effective control of the spectrum of nonlinear acoustic waves
by tuning the dispersion relation of the medium. Selective enhancement of second or third harmonic is demonstrated,
leading in some cases to situations where the structure behaves with an effective nonlinearity different from that of its
constitutive elements.

The work was supported by Spanish Ministry of Economy and Innovation and European Union FEDER through
project FIS2011-29731-C02-02. A. Mehrem acknowledges Generalitat Valenciana the support from Santiago Grisolia
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