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Abstract

The propagation of intense acoustic waves in a one-dimealagihononic crystal is studied. The medium consists in
a structured fluid, formed by a periodic array of fluid layeithvalternating linear acoustic properties and quadratic
nonlinearity coéficient. The spacing between layers is of the order of the eaggth, therefore Braggfects such

as band-gaps appear. We show that the interplay betweergsispersion and nonlinearity leads to new scenarios
of wave propagation. The classical waveform distortioncpes typical of intense acoustic waves in homogeneous
media can be strongly altered when nonlinearly generateddracs lie inside or close to band gaps. This allows the
possibility of engineer a medium in order to get a particwaveform. Examples of this include the design of media
with effective (e.g. cubic) nonlinearities, or extremely lineadimgwhere distortion can be cancelled). The presented
ideas open a way towards the control of acoustic wave prajmaga nonlinear regime.
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1. Introduction

One of the most celebrateétfects of wave propagation in periodic media is the appearafifocebidden propaga-
tion regions in the energy spectrum of electrons, or barb.gslost of the physics of semiconductors, and therefore
many electronic devices, are somehow based on this co@}eptr{ the late 80's, these ideas where extended by
Yablonovich and Johlﬂ[Z] to light waves (electromagnetiza@gain general) propagating in materials where the op-
tical properties like the index of refraction were disttibdi periodically. These materials were named, by analogy
with ordered atoms in crystalline matter, as photonic afgst The typical scale of the periodicity is given by the
wavelength. Actually, not only light but any wave propaggtin a periodic medium may experience the saffects,
and acoustic waves are not an exception. Sound wave propagaperiodic media has become very popular in the
last 20 years in acoustics, after the introduction of theceph of sonic crystals [3]. Exploiting the analogies with
other type of waves many interestinffexts, as the mentioned forbidden propagation bands (bapsgbut also
focalization, self-collimation, negative refraction,damany others have been proposed. We consider in this paper
the simplest case plane waves propagating in a 1D strudtureed by a periodic alternation of layers withférent
properties. Depending on the context, such a structureders fiamed a multilayer, a superlattice (particularly in the
context of semiconductors) or a 1D phononic crystal (thidude more exotic structures, as the granular crystal or
lattice Q]). The huge majority of the studies consideretbstave assumed a low-amplitude (linear) regime, neglect-
ing the nonlinear response of the medium. Intense wave pgaedjwam in nonlinear periodic media, and in particular
the case of sound waves, is almost unexplored. In this pap@resent dferent examples of new phenomena related
to sound wave propagation in 1D periodic media, where eathedfayer has a nonlinear quadratic elastic response.
Nonlinear acousticalféects in such structure have been studied only in a few wonkg5]ithe harmonic genera-
tion process is described in a flyfidid multilayered structure (watgylycerine), based in a nonlinear wave equation.
Also, acoustic solitons in solid layered nonlinear medieghzeen presented in [6]. More recently, the complementary
action of nonlinearity and periodicity has been considéme[ﬂ], where an asymmetric propagation device (acoustic
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Figure 1: Layered acoustic system with twdéeient layers and second harmonic generation scheme. Helattibe period ie = a; + ap.

diode) was proposed. There, the nonlinearity and the pieifpéct at diferent locations and itdfect is considered
separately. Theftects discussed in this paper are the result of the interptayden nonlinearity and periodicity.
Here we describe how the geometrical and acoustic parasngftéine structure can be used to control the harmonic
distortion processes in a multilayer. The conditions resglito selectively act on the nonlinearly generated spegtru
and therefore manipulate the waveform in the desired wayobtained and discussed.

The theory presented here has been developed for fluid-Hoaddr) structures, however the main conclusions are
extendable to fluid-solid or to solid-solid multilayerspiéirticular conditions are given. Also, the main conclusion
of this paper are independent on the regime of the waveshyditrasound,...), and therefore on the size or scale of
the structure. Specially interesting is the domain wherastiund waves belong to the Terahertz regime, where these
ideas may find a great potential. The progress in miniattiozand the technological developmentallows currently to
create phononic multilayers at scales even in the nanomsatge (each layer contains then a small number of atoms).
This structures are usually made of semiconductors andftae ased in particular applications as phononic mirrors
to form phonon nanocavities [9], or microcavities to ob&strong optomechanical coupli@[lO] (for arevent survey,
see IES]). In a remarkable recent achievement, acousticificaibn was realized in doped Ga#dAs superlattices,
where a SASER (Sound Amplification by the Stimulated Acaustionon Radiation) was demonstrated, in a device
including a superlattice gain medium and G&XNés SLs acoustic mirrors’.ﬂl].

The structure of the paper is as follows: In Sec. 2 we presentrtodel for nonlinear propagation of acoustic
waves in periodic media. The next Sec. 3 describes the paifesarmonic generation in homogeneous media,
and how it is modified by the presence of periodicity. In Sedhelpossibility of manipulating the spectrum of a
propagating sound wave by tuning the parameters of theddyaedium is discussed, showing examples of particular
situation, as the case of a cubiffextive medium made out of quadratically nonlinear layensally, Sec. 5 presents
the conclusions.

2. The model

2.1. The medium and its dispersion relation

We consider a periodic medium made of an arrangement of henemys fluid layers of thickness and a,
with different material properties. For the shake of simplicity dolygitudinal waves under normal incidence are
considered. A scheme of the medium is shown inHig. 1.

The propagation of small amplitude waves in an infinite plidsystem is completely described by its dispersion

relation, often known as band structure, that for 1D systasis Fig[l can be expressed analyticall [12]
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Figure 2: Dispersion relation of the two-layers system &yer proportionr = 0.5 and for diferentcy/c; ratio. Left: real wavenumbers. Right:
imaginary part of the complex wavenumber.

also known as the Rytov formula, whétés the Bloch wave-numbea, = a; + &, is the lattice period, ankl = w/c;

is the local wavenumber, witt) the sound speed in théayer. For a wave of frequeneyincident in a medium with
known acousticat; and geometricad; parameters, the above equation results in a band strudtpremagating and
nonpropagating (bandgap) regions, as shown in[fig. 2. Tusilsg Eq. (L), we can estimate théeet of periodicity
on the diferent harmonics of the incident wave as they propagate ghrthe multilayer, which is the main premise
of this work. The ratio between layer thickness can be defasad= a;/a, leading toa, = (1 — a)a.

An example of dispersion relation plot is shown in FEig. 2 formalized parametees= 0.5 and for diferent sound
speed ratiog; /c,. Increasing the impedance ratio between layers increbse®flected intensity in the trans-layer
propagation, while the transmitted energy of the multipteiinal reflections diminishes. As can be seen, due to these
scattering processes band-gaps are progressively opemattidhe wavenumbée = nr/awith n = 1,2, .... Thus,
the bandwidth of these band-gaps also increases when tleelampe ratio grows.

On the other hand, its imaginary part increases in amplituittec; /c,, leading to shorter evanescent propagation
inside the band-gap for high sound speed contrast layeriée wdmains zero (no attenuation) in the propagation
band. We recall that the system is conservative: the phyisiegpretation of the complex wavenumber is not energy
absorption, but back-reflection of the incident wave. Tlaidand-gap frequencies the waves penetrate only a short
distance into the medium with a forward evanescent modejfahd medium is perfectly periodic and lossless the
energy is back-reflected (it behaves as a mirror).

2.2. Nonlinear constitutive mode

The nonlinear propagation of sound in the acoustic inhomeges media, and in particular in multi-layered
media can be described by several models, wiffecént levels of accuracy. Here, we use the equations ofraqunti
mechanics for ideal fluids with space dependent paramdikese are the continuity equation for mass conservation

[13]:

9
£+V-(pv)=0. )
and the equation of motion that follows from conservatiomofmentum
Dv
— +Vp=
o tVP=0. 3)

wherep is the total densityy is the particle velocity vector over a Eulerian referenerfe,p is the acoustic pressure,

tis the time and is the material derivative operator.
For non homogeneous media, the ambient properties of thiifitthe absence of sound are space dependent,

so the total density becomest, X) = p’(t, X) + po(X), wherepo(x) is the spatially dependent ambient density and



0’(t,x) is the perturbation of the density or acoustic density, ithspace and time dependent. Then, using the material
derivative, Eq.[(B) becomes

poy + TP =5~ (' +p0) (v TIV, @

In this equation, the first two terms in the left-hand-sidecamt for linear acoustic propagation, where the terms
in the right-hand-side introduce nonlinearity in the Eidlareference frame through momentum advection processes.
On the other hand, we can expand Edg|. (2) for nonhomogeneatia me

’

a—'[;+p0V V+V-Vpg=—p'V-v—v.-Vp'. (5)

Here, the first two terms on the left-hand-side account feedr acoustic propagation, the third, also linear, ac-
counts for the magnitude of the changes in the ambient laygrepties. Note this term is space dependent but only
changes at the interface between adjacent layers. Fortglemsiched layers; = pj-1, this terms vanishes. The terms
on the right-hand-side are nonlinear and accounts for nthascton.

Finally, a fluid thermodynamic state equatipr= p(p, s) is needed to close the system, witthe entropy. The
local nonlinear medium response relating density and presariations, retaining up to second order terms, can be
written as

B
P=cp + 5aop ()

whereB/A(x) is the quadratic nonlinear parameter ag¢k) is the sound speed, that can be also spatially dependent.

In this system of equations, quadratic nonlinearity appé&athe equation of motiori(4) and in the continuity
equation[(b), in the momentum and mass advection termsatsgg, and also in the equation of state, Hd. (6), re-
lating pressure and density acoustic perturbations. We thatt here we only take into account nonlinear processes
through the layer’s bulk. The nonlinedtects at the boundary between adjacent sheets are negl€btsk nonlinear
boundary &ects include cavitation processes, that in the case of fluitisvery different compressibility can be very
important. In the case of solid layers, other local nonliregizcts relative to boundaries, e.g. clapping phenomena be-
tween surfaces, can lead to nonlinearities that are ordensagnitude in importance compared to thdk cumulative
nonlinearities.

2.3. Second-order model

For moderate amplitudes, the system of Elgi.] (4-6) can bdifizdp For that aim, we use a perturbative method
with same ordering scheme as[14], whéXe), O(s?) andO(<®) represents the terms of generic smallness param-
etere. The derivation of a second-order nonlinear wave equagquires the substitution of the linearized acoustic
approximations (first order) into second order terms of Eg3). This substitution procedure will give third order
errors, so the final nonlinear wave equation will be a secoddrapproximation of the full constitutive relations.

These equations can be combined to form a single nonlinesr aguation valid for nonhomogeneous media up
to second order approximation

1 92
c3 ot

where we introduced the cfirient of nonlinearitys = 1+ 5 that accounts for material and mass advection quadratic
nonlinearities. Itis worth noting here that the secondeotdagranglan density vanish for plane progressive waves du
to the first order relatiop = ucypp that leads taZ = 0. In this case, Eq[{7) simplifies to the well-known Westérve
equation for inhomogeneous media

Vp- = — - inon = —i—p - (VZ += ]L + O(£%). (7)
po 5 o

1 ﬁ %p?
V2p— = — — ZVpoVp = i 3.
p g VPO P 4 2t O(e) (8)

In general, the Lagrangian density term can be discardeaﬂjtms the distinction of cumulative and local non-
linear efects. In this way, for progressive quasi-plane wave prof@ya homogeneous media the nonlinear local
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Figure 3: Harmonic generation in the layered medium at lasgdencies (numerical results), and its comparison wittlyacal expressions
(Fubini) for an homogeneous medium.

effects become insignificant in comparison to the nonlinearutative dfects, where in most practicals situations,
beyond a distance of only few wavelengths away from the solaal nonlinear #ects can be neglected. However,
local nonlinear &ects can become significant in other complex situationsi@iol standing-wave fields and finite
amplitude acoustic waveguides. Concerning the layeredaniedhis work we solve numerically the full constitutive
relations, and thefBect of the Lagrangian term is shown to be negligible undectralitions of our study.

3. Harmonic generation in layered media

We will study the response of the layered system for plarreabaic wave excitation. Then, as sketched in Eig. 1,
the source is placed at one boundary of the layered systednth@nacoustic relevant magnitudes are calculated
along space and time. As the wave propagates, cumulatid@eanefects generate harmonics of the fundamental
frequencywop, and due to the multiple scattering processes into the $ayecal nonlinear #ects also distorts the
wave. However, the high dispersion of the layered systera hatrong impact on the nonlinear harmonic generation.
Dispersion modify the resonance conditions between furaéah and second harmonic wave, and also for other
nonlinearly generated higher frequencies. In this way/inear energy transferfigciency from one component to
another is modified in a wide variety of configurations, leadio the possibility of engineering and controlling the
nonlinear wave processes by tuning the dispersion relation

Depending of the frequency of the input waveffelient scenarios can be observed, as reported in the fotiowin
subsections.

3.1. Nondispersive (Fubini) regime

We start studying the propagation in the layered systemdonbnic excitation in the very low frequency regime,
where we assume thka < 1 holds. As the Rytov's Eql{1) predicts, in the very low freqay regime the slope of
thew(K) curve is nearly constant. The dispersion of all the spectraponents is negligible, and they all propagate at
nearly the same velocity and are correspondingly phasehmdt Thus, in the absence of dispersion and attenuation
process, the system of EqSI[(2-3) and (6) can be reduced fannzohic-plane wave to a Burger’s evolution equation
expressed in traveling coordinates witfeetive parameters, namady, 5, and3. An analytic solution of this equation
in terms of thenth-harmonics of the fundamental wave of frequenand initial amplitudeyg is known as the Fubini
solution,

00

p(o, ) = po Z %Jn (no) sin(nwr) , 9)

n=1

whereJ, is the Bessel function of order, ando = X/Xs is the propagation coordinate, normalized to the shock
formation distancexs = 1/Bk, with the dfective match number = u/& and the &ective wavenumbek = w/&,
that can be also found from E@l (1). This celebrated solusiaalid foro < 1 (pre-shock region).
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Figure 4. Scheme of the phase miss-matching situation. Tingafnental wave vectds at frequencyw generates orcedwave X; at frequency
2w. Thefreewave that the system allows to propagatkislocated in the dispersion relation curve. Due to dispersi # 2k;, thus there exist a
phase mismatchyk, between both waves and the generation is therefore asyrmlso

Simulations were carried out using a full-wave constititiglations solver. Thus, we shall define the normalized
reference frequency &% = n¢p/a (located in the first band-gap). The source frequency wat® set= 0.1Q.

Figure[3 shows the analytical and numerical solutions ferlthw frequency limit of the layered system, where
an excellent agreement is obtained between Fubini and ricatheolutions in the pre-shock regiom, < 1 and for
low excitation frequencies. As commented above, when thddmental frequency is increased the higher harmonics
fall in dispersive region of the frequency bands, and thaisvdve speed is reduced. In this situation, phase matching
conditions are no longer fulfilled and therefore the energpdfer from fundamental to higher harmonics is mod-
ified. Thus, the Fubini solution can be only applied as anlidektion for the low-frequency limit or as a good
approximation for the first harmonics and for frequencidewes < 0.1Qo.

3.2. Dispersive regime

For frequencies above the (idealized) homogeneous-Frggime, finite (weak and strong) dispersidteets are
observed. The dispersivéfects of the layered system deepfieats harmonic generation processes.

As intense waves propagate through a quadratic nonlinediumetheir frequency components interact with each
other and new frequencies arise at combination frequeno@sding higher harmonics. The cumulative energy trans-
fer from the interacting waves to the harmonics is depenadlettte resonance conditioas + w; = ws, k1 + ks = K.
Note these conditions express the laws of conservationefygrfiw) and momentum/k) in the quantum descrip-
tion for the disintegration and merging of quarital [13]. Thesnditions can be satisfied in a variety of situations.
The most simple case is observed in nondispersive mediacarabllinear waves; = wj/cp. In this situation the
resonance conditions are fulfilled all over the spectra dady number of harmonics interacts synchronously: when
there exist in the systemfeee wave with velocityws/|ks| that matches the excitetb(ced wavew; + w,/|ky + Ko,
thefreewave is excited in a resonant way. The resonant interaatiaad therefore to synchronous (phase matched),
cumulative energy transfer from the initial wave to the setary wave fields.

In the case of an initial monochromatic wave, the main waveegges its second harmonic. The resonant condi-
tions in this situation readu?; = wo, 2k; = K», that holds true for nondispersive collinear waves, legttirthe simple
relation X(w;) = k(2w;). However, in the case of dispersive media this conditipmigeneral, not fulfilled and the
forcedandfreewaves interact asynchronously. Figlie 4 shows such situéti a layered media with a fundamental
wave in the first dispersion band.

In order to study asynchronous second harmonic generatmregpses, we recall here for the lossless second-
order wave equation Ed.](8), for one-dimensional propagatThis equation does not include dispersion by itself,
dispersion arises from the solution of the linearized wape¢ion with the layered media boundary conditions, where
the eigenvalue problem leads to the Rytov’s dispersioniogidq. [1).
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In the following, we apply a perturbation method to obtairegproximate solution for the second harmonic field.
We expand the pressure field as sum of contributions féérint orders, i.ep = p®Y + ep@ + ..., wheres is the
smallness perturbation parameter, which we identify wlig acoustic Match number. Thug!? is the first order
(linear) solution of the problem argl? its the second order contribution. By substituting the @sien in the second
order wave Eq.[{8), assuming constant deIEIsimd neglecting)(£%) terms we get a coupled set of equations that
can be solved recursively. The solution of the first orderatign corresponds to a monochromatic plane wave of
frequencyw

p® = posin(wt — ki) (10)

wherek; = k(w) is the wave vector associated with the primary frequancynd py is the excitation pressure
amplitude. Substitution of the first order solution into #rgiation obtained at the next order in the expansion, leads
to an inhomogeneous equation for the second harmonic field:

62 p(2) i 62 p(2) o 4;3(/)2 pé

2 2 o2 pocd

sin(2wt — 2k; X) . (112)

The general solution of the this equation is the sum of thetswl of the homogeneous equatiqn (= 0), and
the particular solution of the inhomogeneous equatinA 0). Therefore the field for the second harmonic can be
expressed ap® = p® + p'®, where the corresponding waves for this two solutions aedréfe, andforcedwaves

respectively. Such homogeneous and particular solutians a

oY = Al sin(aunt ~ koX), (12
A .
p(f2) — sin(2wit — 2k1X) , (13)

(k2 + 2k1)(k2 - 2|(1)

wherek, = k(2w;) is the wavenumber of th&ee wave at second harmonic frequency, and the constaat
—%wipg/pocé. It is worth noting here that as lonkg # k», the forced andfree waves in dispersive media have
different phase speed, i. e. tfugced andfree waves are phase mismatched as can be seen in the argumeat of th
sin function in Eq.[(DI2-T3). Imposing the boundary conditithat the second harmonic must be absent-at0, the
second harmonic field can be expressed as

A . [AK ,
p@ = PV sm(7 x) cos(2w1t — k5X) , (14)
where the fective wave number is, = (ko +2k;)/2 ~ k; and the detuning parameter that describes the asynchronous
second harmonic generation is defined as

Ak = ko — 2Ky = K(2w) — 2K(w). (15)

Equation [T4) describes the well-knowffezt in second harmonic generation in dispersive media,ishtite
beatings in space of the second harmonic field when the resooaditions are not fulfilled. Thus, as increases,
the beating spatial period and also its maximum amplitudeedeses. The position of the maximum of the beating,
also called the coherence length, can be related to the dd@monic phase-mismatching frequency as

_ T _ T
AK [k(2w) - k(@)
This length corresponds to the half of the spatial periodheftteating, where the maximum of the field is located.
It can be expressed also for other higher harmonics simpky(ay = 7/|Aky| = 7/k(nw) — nk(w)|.
In the limiting case ofAk — 0, the second harmonic field is generated synchronously ecuhaulates with
distance, so a linear growth is predicted. In this case,eha@stching conditions are fulfilled and tfree wave is

Xc (16)

1. We neglect the ambient density variations for the sakéngblgcity. Dispersion arise also for sound speed variatjdhat are assumed to be
implicit in the boundary conditions.
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Figure 5: Second harmonic evolution fey/xs = (1, 1/4 and 1¥8) obtained using Eq_{14) (continuous line), numericalijite circles), nondis-
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Figure 6: Evolution of the second harmonic field propagaimigang-gap for second harmonic frequencies (a) just abamd-gap 29 = 0.84Q,
(b) in the middle of the bandgapJd = Qp. All results for a layered medium witta = 1/2 andc; /c; = 1/2. (c) Detuning of the second harmonic
(continuous line) and imaginary part (dotted line) in fuoctof the normalized frequency.

excited synchronous to tHerced wave Note here that in the derivation of Eg.{14) only second ppilecesses are
taken into account and therefore, only second harmonic@igted. This leads to overestimate the second harmonic
field: as long no energy is transferred to third harmonicpedcharmonic predicted by Ed.(14) in the absence of
dispersion grows indefinitely. The validity of this modehdae explored expanding the Bessel functions of Fubini
series near the source. A simple comparison between thieuiihi solution and linear second harmonic growth gives
a reasonable approximation for distanees 0.5 or for second harmonic field values pf2w) < po/4.

Figure® shows three fierent simulations in the dispersive regime of the layeredian@here the wave amplitude
and frequency has been selected to mag¢Rs = 1, 1/4 and /8. The higher beating spatial period waves corresponds
to lower frequencies. The analytical solution for the secbarmonic matches the full-wave numerical solution.
However, diferences can be observed in the second harmonic amplitidegsh for x./xs = 1 (Fig.[3 (a). This
overestimation by the analytical solution can be relatetti¢oabsence of energy transfer to higher harmonics, that is
not considered by the perturbation solution but is incluhethe simulation and also in the Bessel-Fubini solution.
Therefore, this model is specially suitable in situatiortseve the third harmonic does not grow cumulative with
distance. In the lossless layered media, this situatiodsidie frequencies that leads to very high-third harmonic
detuning and also when the third harmonic falls in band gap.

3.3. Second harmonic in band gap

Waves with frequencies falling into the band-gap of the €lisjpn relation are evanescent due the non negligible
imaginary part of its complex wave number. Thus, its amgktdecays exponentially with distance. If the nonlinearly
generated second harmonic falls into a band-gap, its ampliloes not decay but reaches a constant vdlue [5]. Figure
shows this case for two fiierent frequencies. The constant amplitude value of thensklearmonic wave depends
on the imaginary part of the wave vector.

This dfect can be understood in terms of thiee andforcedwaves. If the second harmonic is evanescent (as
follows from the dispersion relation), the wave will not aowulate with distance. The fundamental wave is “pumping”
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energy to the second harmonic field at every point in spacas,the second harmonic field is generated locally and
remains trapped inside the layered media. It reaches aargnevel that depends on three main factors. In first place,
the "pumping” rate, characterized by the fundamental wawmpléude and medium nonlinearity, or more strictly the
ratio between the layer thickness and the shock distafice Secondly, it also strongly depends on the magnitude of
the imaginary part of the complex wave number, i.e. the tagitoveen its characteristic exponential decay length and
the shock distance in a layer. The characteristic decayHesfghe evanescent propagation is always shorter when the
second harmonic is in the middle of the band-gap, leadingiteaker second harmonic field in this frequency region,
as seen in Fid.]16. Finally, it depends also on the detuningalfprart of the wave number, where for the first band-gap
is minimum at the center. The first factor can be isolated andiesd separately. However, the two last factors are
linked through the specific dispersion relation of the madiu

Figure[®(c) shows the detuning of the second harmonic anifrtaginary part as a function of the frequency for
a medium withe = 1/2 andc;/c,; = 1/2, showing that at the middle of the band-gap these two fat¢tave opposite
effects: detuning is null (phase matching) when evanescealydeaearly maximized, and viceversa. However, the
magnitude of the féects can be very fferent. As the rate of the second harmonic generation (seeitlz slope
in Fig.[8) is independent on the detuning, and the evanesdemglies that the wave decays after few layers, there
not exist a practical compensation of théeets at the center of the band-gap. However, the situatiditfesrent for
frequencies around the limits of the band-gap, where thereoite length is of the order of the exponential decay
characteristic length. Thus, for frequencies just abovedep and for amplitudes with shock distance comparable
to the evanescent characteristic decay length, the bsatiang be also observed, as shown in Elg. 6 (a). Then, if
frequency is increased the characteristic decay lengtbrbes shorter than the shock wave distance and beatings
cannot be observed, leading to to the characteristic constgond harmonic field shown in Fig. 6.

3.4. Fundamental harmonic in band gap

When the fundamental frequency of the wave lies within thedbgap, small amplitude waves propagate evanes-
cently. Essentially, the same applies to finite amplituderfomic waves. In general, if the shock distance is large
compared to the characteristic decay length of the evanese@we, the nonlinearfiects have no chance to accumu-
late and harmonic amplitude is negligible. Since the cltarastic exponential decay is about few lattice sites, this
means that the initial amplitude necessary to achieve meati€fects in this configuration is much higher than those
in the preceding sections. Figurk 7 shows the evolution effiitlst and second harmonic waves for a fundamental
frequency at the Bragg frequencyy@= 1Qg, and with a frequency just above but into the band-gap= 0.87Q
for a layered media af = 1/2 andc;/c; = 1/2. In the first case, the imaginary part of the wave vectorrisarkable
high and the waves decay fast after few lattice units. Dukitofast decay, the second harmonic interacts only over
a short distance with the first, and its amplitude is verytieui After a few lattice units, the fundamental wave can
be treated as a small-amplitude evanescent-wave. Thedeaomonic, that also falls in bandgap (but in the second
band gap) also decays exponentially.

On the other hand, if the fundamental frequency is set jusvalthe band-gap, where the imaginary part of
the wave-vector is smaller, the amplitude of the fundamemse decays more slowly, penetrating deeper into the
material. The interaction region with the second harmasilaiger, and nonlineartects result in a moreficient
generation of the second harmonic. Furthermore, as londiffexent (higher order) bandgaps in the layered media
can have dferent bandwidth, in this configuration@ap = 0.87Q¢ second harmonic does not fall inside a bandgap.
Therefore, the generated second harmonic wave at the begiofthe lattice propagates through the medium essen-
tially without amplitude change. Due to the evanescencaéeftindamental wave, there is orityrcedwave at the
beginning of the medium. Therefore, although in this corfigion waves are phase mismatched, beatings are not
present: only théreewave propagates through the medium.

4. Nonlinear acoustic field management

4.1. Tuning nonlinearity with dispersion

In the preceding sections we have explored the fundameateuior of nonlinear waves generated inside the
layered media. But also, medium parameters can be desigmedvide specific conditions. The material parameters
can be tuned to get coherence at one frequency of intergstatone of the harmonics of the fundamental wave, or
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Figure 7: (a) Evolution of the fundamental harmonic wavelfiglth its fundamental frequency falling just above into Gayap,wo = 0.87Q,
(continuous line), and in the middle of the bad-gapp 2= 1Qg (dotted line). (b) Corresponding second harmonic field, reHer wg = 1Qg
(dotted line) second harmonic frequency falls in the 2ndddzend-gap while fowg = 0.87Q0, (continuous line) lies into a propagating band.

to get detuning or evanescent propagation at other speeifindnics. Using these mechanisms the layered medium
can be used to provide a balance of the harmonic amplitudés,abtain specific nonlinear waveforms, providing a
control of the nonlinear process inside the medium.

In the design of a system for this purpose, the coherencéhes@ useful control parameter. For this aim, the
analytic Eq.[() is used, which is shown to provide an exaéfimmework to tune the layered parameters to obtain the
desired balance between detuning, evanescent propagsficchronous generation and, at the same time, it allows
to find those conditions for a specific phageup speed. Figufé 9(a,b) shows an example of a dispedation, the
coherence length for the second and third harmonic. Thdtigharmonic amplitudes when phase matching of all
harmonics is achieved is shown in Figlite 8. This happens$et af frequenciesg = (0, 1.75,2.333 ...)/Q. On the
other hand, there also exist frequencies at which theré exfierence for the second but a non-negligible detuning is
observed for the third. The oppositfext can be also obtained, where coherence is achieved faritHéharmonic
but second harmonic presents strong dispersion. FindHgranteresting regions are those where second harmonic
component is almost phase matched and for the same freqtiertchiarmonic falls into a band-gap.

In the following subsections, we propose and analyffeint configurations of the layered medium with specific
balance between detuning, evanescent propagation ankdreyiotis generation.

4.2. Enhanced second harmonic generation

One can expect that second harmonic generation is maxirmzegmogeneous nondispersive media. However,
in nondispersive media coherence is achieved not only ansklcarmonic frequency, but also in the higher spectral
components. As a result, energy is transferred from secamddnic field to higher spectral components and therefore
second harmonic field does not grow indefinitely. Moreovesck waves are formed and nonlinear absorption reduces
wave intensity foo- > 7/2 even in lossless media [14].

Figure 8: Harmonic distribution for the frequeney = 1.75/Q. Coherence is recovered for at least the lowest spectrapeoemts. Blackstock
solution (dotted lines).
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Figure 9: (a) Dispersion relation for a layered mediagt, = 1.33 anda = 1/2. (b) Coherence length for second (red) and third (bluenbaics

as a function of the fundamental frequency. Phase matclegiéncies are those with — oo, while asynchronous generation is predicted for
X — 0. Frequencies at which the fundamental frequency is in {gmpdare are marked in gray regions, while band-gap regmnseicond and
third harmonic are marked in dashed lines.(c) Harmonigitigion for wg = 1.668&2y where a coherence is achieved for second harmonic while
the frequency of the third harmonic falls into the bad-galg) (continuous lines) Waveforms atiirent distances fapg = 1.668&2. At o = 3.3
second harmonic generation field is maximize and can be seepetriod doubling in the waveform. Then,cat= 7.8 due to second harmonic
detuning nearly sinusoidal wave is recovered. AnalyticifitBlackstock solution for the harmonics (red dotted $ihare plotted for comparison.

The dispersion of the layered system can be used to mod#ituiation by including phase mismatches that alter
the higher harmonic cascade processes, while maintaimihgrence for the second harmonic. Figure 8 shows an
example of a dispersion relation where foy = 1.6680Q it can be observed that there exist a reasonable coherence
for the second harmonix{/a ~ 1000), while the third harmonic falls in a band-gap. Figu€h®ws the harmonic
distribution in this situation. Here, energy is transfdri@ second harmonic field that grows almost linearlydfot 2.

On the other hand, the energy transferred from second td i@rmonic is not cumulative and its amplitude does
not grow with distance. Third harmonic experiment evanespmpagation due to the imaginary part of the complex
wave-vector at this frequency. A constant field, as studie8eic[3.B, is obtained for the third harmonic.

The total amount of the second harmonic amplitude in nordipe media igzmax & 0.36py, while in the
example of Fig[® a maximum second harmonic amplitud@xfax ~ 0.75pq is predicted. As can be shown the
decreasing of the first harmonic follows the analytic nopéisive Blackstock solution far < 3. Thus, in this
regime all the energy of the first harmonic is being transito the second harmonic field. However, due to finite
detuning of the second harmonic a long spatial beating idymred, with normalized period8 and energy is returned
back to the first harmonic component.

It is worth noting here that at distance~ 3 sawtooth profile is observed in the nondispersive mediaohtrast,
only second and first harmonic have remarkable amplitudetive layered media. Waveforms are shown in Eig. 9(d-
g). Near the source, where the amplitude of higher harmadnic®t relevant the nondispersive waveform (in red
dotted) is well approximated by the fundamental and its sédwarmonic of the layered medium. However, due to
the evanescent propagation of the third harmonic for lodggances the nonlinear solution of the layered medium is
mainly composed by the fundamental and its second harm®h&maximum second harmonic in this configuration
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Figure 10: (a) Dispersion relation for a layered mediecgfc, = 1/3 anda = 0.3. (b) Coherence lengths for second (red) and third (blue)
harmonics, (c) Harmonic distribution fasg = 0.529/Q where a coherence is achieved for second harmonic whileréggiéncy of the third
harmonic falls into the bad-gap. Bottom: (continuous l)né&veforms at dterent distances fapg = 0.529/Q. At o = 3.3 second harmonic
generation field is maximize and can be seen the period dwublithe waveform. Then, at = 7.8 due to second harmonic detuning nearly
sinusoidal wave is recovered. Analytic Fubini-Blackstackution for the harmonics (red dotted lines) are plottecctamparison.

is observed atr = 3.3, as it can be appreciated in the waveforms of Eig. 9 the getaabling. Moreover, due to
finite detuning of the second harmonic the process is not tative for all distances and at = 7.8 the energy is
restored in the first harmonic again and a sinusoidal wavetaimed. Note that not all the energy is restored to the
first harmonic in FiglR at- = 7.8, leading to a sinusoidal wave offi#irent amplitude as can be observed in Eig. 9.
The energy loss is mainly due to the artificial (numericadpeisity necessary to nonlinear convergdﬂe[M]. For these
simulations the total distance is 1200 lattice sites ancefoee the &ects of attenuation are not negligible. However,
the main nonlinear féects related to strong lattice dispersion still apprediatAn analogous féect has been also
studied ] where instead of dispersion, selective alisnr@t specific frequencies is used to modify and enhance
harmonic generation.

4.3. Enhanced third harmonic generation

In the first band ¢ < Qg), coherence is always lower for the third harmonic than lfier econd. However, in
the superior bands the layered medium parameters can be timobtain higher coherence for the third than for the
second harmonic. Essentially we follow same ideas on theedirg section but for the third harmonic. In this case,
the lattice is designed forcing the second harmonic to fabandgap. A the same time, perfect coherence can be
found for the third harmonic ab = 1.4Qg. This situation is illustrated on Fig. 110 arouad= 1.4Q. In this case, the
dispersion relation was obtained for a layered medium wattameters = 0.3 andcz/c; = 1/3.

In this situation, as Fig.10 shows, the second harmonic ataés a constant value of aboudfp,. As discussed
in Sed.3.B, this constant field does not grow with distanakiamelated to the evanescent solution of fiee wave
and the local nonlinear “pumping”. On the other hand, duéhtodoherence of the third harmonic, all the energy
transferred form second to third is accumulated with distaTherefore, near the source the rate of energy transfer
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from second to third harmonic is constant. Thus, third harimstart to grow almost linearly with distance, opposite
to quadratically in homogeneous media.

Numerical simulations also show fourth and fifth harmoniesig(not shown in Fig_10), but only fifth harmonic
harmonic reach a remarkable amplitude, growing near thece@almost quadratically with distance. Therefore, the
entire system behaves as an artificially cubic-like nomimaedium formed by quadratic nonlinear layers.

The corresponding waveforms measured at (0.5, 2, 8,12) are shown in Fig.-10(d-g). For= 0.5 and 2, it can
be observed how the wave steepens with the characteriafpesif cubic nonlinearity. No shock waves are formed as
long as strong dispersion is present for high frequency bares. It is worth noting here a remarkable fact: it steepens
in the positive time axis direction (to the right in the figyrepposite than the quadratic nonlinearity plotted in red
dotted as a reference. Thifect, i.e. the steepening on the opposite side of the projpagiitection, is characteristic
of materials with negative parameter of nonlinearity. Hfiere, the &ective nonlinear behavior observed by the
simulations in this conditions can be described as negatibéc-like nonlinearity.

5. Conclusions

The interplay of dispersion and nonlinearity in multilagemperiodic media, such as one-dimensional phononic
crystals or superlattices is shown to have a strong impathemcoustic waves propagating through the structure.
Nonlinearly generated harmonics propagating iedent velocities are phase-mismatched, modifying thestesuof
energy between the fiierent harmonics, and therefore the waveform itself. Shockétion, typical of nonlinear
homogeneous media, is in this way avoided. We propose a rmadedome particular solutions to study this problem,
and report examples of configurations that result in f@ctive control of the spectrum of nonlinear acoustic waves
by tuning the dispersion relation of the medium. Selectiveamcement of second or third harmonic is demonstrated,
leading in some cases to situations where the structurevbeldth an &ective nonlinearity dterent from that of its
constitutive elements.

The work was supported by Spanish Ministry of Economy anavation and European Union FEDER through
project FIS2011-29731-C02-02. A. Mehrem acknowledges@G#itat Valenciana the support from Santiago Grisolia
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