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Abstract In the framework of a left–right model contain-
ing mirror fermions with gauge group SU(3)C ⊗ SU(2)L ⊗
SU(2)R⊗U(1)Y ′ , we estimate the neutrino masses, which
are found to be consistent with their experimental bounds
and hierarchy. We evaluate the decay rates of the Lepton
Flavor Violation (LFV) processes μ → eγ , τ → μγ and
τ → eγ . We obtain upper limits for the flavor-changing
branching ratios in agreement with their present experimen-
tal bounds. We also estimate the decay rates of heavy Ma-
jorana neutrinos in the channels N → W±l∓, N → Zνl and
N → Hνl , which are roughly equal for large values of the
heavy neutrino mass. Starting from the most general Majo-
rana neutrino mass matrix, the smallness of active neutrino
masses turns out from the interplay of the hierarchy of the
involved scales and the double application of seesaw mech-
anism. An appropriate parameterization on the structure of
the neutrino mass matrix imposing a symmetric mixing of
electron neutrino with muon and tau neutrinos leads to tri-
bimaximal mixing matrix for light neutrinos.

1 Introduction

The evidence for neutrino oscillations obtained in experi-
mental results from atmospheric, solar, reactor and acceler-
ator neutrinos leads one to conclude that the neutrinos have
a mass different from zero. The current neutrino experimen-
tal data (SuperKamiokande, SNO, Kamland, K2K, GNO,
CHOOZ) can be described by neutrino oscillations via three
neutrino mixings [1–7]. The present data give the solar neu-
trino lepton mixing angle tan2 θ12 = 0.45 ± 0.05, the at-
mospheric angle sin2 2θ23 = 1.02 ± 0.04 and sin2 2θ13 =
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0 ± 0.05 [8–10]. The complex phase has not yet been mea-
sured.

The experimental information on neutrino masses and
mixing points out new physics beyond the Standard Model
(SM) of particle physics, with a great activity on the conse-
quences. Among the possible mechanisms of neutrino mass
generation, the most simple and attractive one is the see-
saw mechanism [11–20], which explains the smallness of
the observed light neutrino masses through the exchange of
superheavy particles; an alternative explanation is given by
extra dimensions beyond the usual three ones [21]. It has
been suggested that right-handed (RH) neutrinos experience
one or more of these extra dimensions, such that they only
spend part of their time in our world, with apparently small
masses. At the present, it is not known whether neutrinos are
Dirac or Majorana fermions.

Models with heavy neutrinos of mass of order 1 TeV
can give rise to significant light-heavy mixing and devi-
ation from unitarity of the Pontecorvo–Maki–Nakagawa–
Sakata (PMNS) matrix [22–24]. The nonunitarity nature of
the neutrino mixing matrix due to mixing with fields heavier
than MZ

2 can manifest in tree-level processes like π → μν,
Z → ν̄ν, W → lν or in charged lepton decays μ → eγ ,
τ → μγ , etc. which are flavor violating and rare and pro-
ceed at one loop level [22–26]. The TeV scale seesaw mod-
els are interesting because they can have signatures in the
CERN Large Hadron Collider (LHC) in the near future [27–
29].

Neutrinos also are important in astrophysics and cosmol-
ogy [30] and probably they contribute to hot dark matter in
the Universe and in its evolution.

Parity P violation was one of the greatest discoveries of
particle physics [31–33]. Before this observation, according
to Fermi’s hypothesis it was believed that weak interactions
have purely vectorial V or axial vectorial (V–A) parity con-
serving Lorentz structure [34, 35]. The theory of Lee and
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Yang in 1956 [36] proposed a fermion current with V and
A structure. It is known that in the standard model (SM)
the electroweak interactions have a V–A form, with only
left-handed (LH) (ordinary) fermions coupling to the weak
gauge boson W±. But one can include also mirror fermions
[37] with a V + A coupling, such that P is conserved. In this
sense, the term “mirror fermion” is equivalent to “vector-
like fermion”, where for a theory with gauge group G, in a
representation R one has sets of LH and RH fermions.

In the literature a second meaning of that term is used.
G is extended to a G × G gauge theory, and for every mul-
tiplet (R,1) a mirror partner (1,R) is added, such that there
is no gauge invariant mass term connecting the LH and RH
multiplets [38–41]. Thus it is natural to consider the exis-
tence of mirror generations.

Masses of mirror particles arise from symmetry breaking;
for mirror generation they may lye below one TeV, and feasi-
ble to be discovered in Fermilab Tevatron Collider and LHC.

A solution to the strong CP problem has been proposed
within a L–R symmetric context [46, 47]. The electroweak
group is extended to SU(2)L ⊗ SU(2)R ⊗ U(1) including
mirror fermions. These fermions are conjugated to the ordi-
nary ones with respect to the gauge symmetry group such
that a fermion representation including both of them is real
and the cancelation of anomalies is automatic [48].

In this paper we consider a L–R model with mir-
ror fermions (LRMM) with gauge group G ≡ SU(3)C ⊗
SU(2)L ⊗ SU(2)R ⊗ U(1)Y ′ . We discuss in Sect. 2 the
formalism of mixing between standard and new exotic
fermions In Sect. 3 we present the model and discuss the
symmetry breaking process with two scalar doublets.

In Sect. 4 we write the gauge invariant Yukawa couplings
which after spontaneous symmetry breaking give the most
general Majorana neutrino mass matrix. With a double ap-
plication of the type I seesaw approximation we estimate
the light neutrino masses in terms of free Yukawa couplings
assuming textures for the light and mirror matrices, obtain-
ing consistent normal hierarchical values for masses and
a tri-bimaximal mixing for light neutrinos. We discuss in
Sect. 4 the mixing between standard and mirror fermions. In
Sect. 5 we include the radiative decays μ → eγ , τ → μγ

and τ → eγ and estimate bounds for their branching ratios.
Finally, we calculate such ratios for the heavy Majorana neu-
trinos decays N → W+l−, N → Zνl and N → Hνl , getting
a smooth variation with the heavy neutrino mass, even when
it is much larger than any of the involved masses.

2 Fermion mixing and flavor violation

To consider the mixing of fermions, we shall follow [22–
24], grouping all fermions of electric charge q and helicity
a = L,R into na +ma vector column of na ordinary (o) and

ma exotic (e) gauge eigenstates, i.e. ψo
a = (ψo

na
,ψo

me
)Ta . The

ordinary fermions include the SM ones, whereas the exotics
include any new fermion with sequential (mirror or singlet)
properties beyond the SM.

The relation between the gauge eigenstates and the cor-
responding light (l) and heavy (h) charged mass eigenstates
ψa = (ψl,ψh)

T
a , a = L,R is given by the transformation

ψ0
a = Vaψa, a = L,R, (1)

where

Va =
(

Aa Ea

Fa Ga

)
. (2)

In (2), Aa is a matrix relating the ordinary weak states and
the light-mass eigenstates, while Ga relates the exotic and
heavy states. Ea and Fa describe the mixing between the
two sectors.

From the unitary of V

VaV
+
a = 1, a = L,R (3)

it follows that the submatrix Aa is not unitary. The term
F+

a Fa , which is second order in the small light–heavy
fermion mixing, will induce flavor-changing transitions in
the light–light sector.

The vacuum expectation values (VEV) of the neutral
scalars produce the SM fermion mass terms, which together
with the exotic mass and mixing matrices lead to the mass
matrix M which takes the form

M =
(

K μ̂

μ K̂

)
, (4)

where K denotes the SM fermion mass matrix and K̂ cor-
responds to the fermion mass matrices associated with the
exotic sector, while μ, μ̂ correspond to the mixing terms
between ordinary and exotic fermions.

The diagonal mass matrix Md can be obtained through a
biunitary rotation acting on the L and R sectors, namely

Md = V +
L MVR =

(
ml 0
0 Mh

)
, (5)

where ml , mh denote the light and heavy diagonal mass ma-
trices, respectively. The form of the mass matrix will depend
on the type of exotic fermion considered.

The scalar-fermion couplings within some specific Higgs
sector are not diagonal in general, and one can see that the
couplings are not diagonal in general; thus new phenomena
associated with flavor-changing neutral currents (FCNC)
will be present in such model.
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3 The model

In this and next sections we follow closely [42–45]. The
LRMM formulation is based on the gauge group SU(2)L ⊗
SU(2)R ⊗ U(1)Y ′ . In order to solve different problems such
as the hierarchy of quark and lepton masses or the strong CP
problem, different authors have enlarged the fermion content
to the form

l0
iL =

(
ν0
i

e0
i

)
L

, e0
iR, ν0

iR,

l̂0
iR =

(
ν̂0
i

ê0
i

)
R

, ê0
iL , ν̂0

iL,

Q0
iL =

(
u0

i

d0
i

)
L

, u0
iR, d0

iR,

Q̂0
iR =

(
û0

i

d̂0
i

)
R

, û0
iL, d̂0

iL,

(6)

where the index i runs over the three fermion families and
the superscripts 0 denote gauge eigenstates. The quantum
numbers of these fermions under the gauge group G defined
above are given by

l0
iL ∼ (1,2,1,−1)iL, ν0

iR ∼ (1,1,1,0)iR,

e0
iR ∼ (1,1,1,−2)iR, ν̂0

iL ∼ (1,1,1,0)iL,

ê0
iL ∼ (1,1,1,−2)iL, l̂0

iR ∼ (1,1,2,−1)iR

u0
iR ∼

(
3,1,1,

4

3

)
iR

, d0
iR ∼

(
3,1,1,

2

3

)
iR

û0
iL ∼

(
3,1,1,

4

3

)
iL

, d̂0
iL ∼

(
3,1,1,

2

3

)
iL

Q0
iL ∼

(
3,2,1,

1

3

)
iL

, Q̂0
iR ∼

(
3,1,2,

1

3

)
iR

,

respectively, and the last entry corresponds to the hyper-
charge (Y ′) with the electric charge defined as Q = T3L +
T3R + Y ′

2 .
A model with gauge group SU(2)L ×SU(2)R ×U(1)V ×

SU(3)H and the fermion content (6) was originally sug-
gested in Z.G. Berezhiani [49] as the “universal seesaw”
model which generated masses of charged fermions as well
as of the neutrinos. He also worked on a SU(5) × SU(3)H

model for extension to SO(10) or Pati–Salam [50, 51], pre-
dicting for instance mνe = O(10) eV. At low (electroweak
scale) energies the model simulates the standard SU(3)C ×
SU(2)L × U(1)Y model, and FCNC are suppressed natu-
rally.

3.1 Symmetry breaking

The “Spontaneous Symmetry Breaking” (SSB) is achieved
following the stages:

G −→ GSM −→ SU(3)C ⊗ U(1)Q, (7)

where GSM = SU(3)C ⊗ SU(2)L ⊗ U(1)Y is the “Standard
Model” group symmetry, and Y

2 = T3R + Y ′
2 . The Higgs sec-

tor to induce the SSB in (7) involves two doublets of scalar
fields:

Φ = (1,2,1,1), Φ̂ = (1,1,2,1), (8)

where the entries correspond to the transformation proper-
ties under the symmetries of the group G, with the “Vacuum
Expectation Values” (VEV’s)

〈Φ〉 = 1√
2

(
0
v

)
,

〈
Φ̂

〉 = 1√
2

(
0
v̂

)
. (9)

The most general potential that develops this pattern of
VEV’s is

V = −(
μΦ†Φ + μ̂Φ̂†Φ̂

) + λ1

2

[(
Φ†Φ

)2 + (
Φ̂†Φ̂

)2]

+ λ2
(
Φ†Φ

)(
Φ̂†Φ̂

)
. (10)

In the last expression the terms with μ, μ̂ are included
so that the parity symmetry (P)is broken softly, i.e., only
through the dimension-two mass terms of Higgs potential.
The scalar Lagrangian for the model is written as

Lsc = (DμΦ)+(DμΦ) + (
D̂μΦ̂

)+(
D̂μΦ̂

)
, (11)

where Dμ and D̂μ are the covariant derivatives for the SM
and the mirror parts, respectively. The gauge interactions of
quarks and leptons can be obtained from the Lagrangian

Lint = ψ̄iγ μDμψ + ¯̂
ψiγ μD̂μψ̂. (12)

The VEV’s v and v̂ are related to the masses of the
charged gauge bosons W and Ŵ by MW = 1

2gLv and
M

Ŵ
= 1

2gRv̂, where gL and gR are the coupling constants of
SU(2)L and SU(2)R , and gL = gR if we require L–R sym-
metry.

4 Generic Majorana neutrino mass matrix

With the fields of fermions introduced in the model, we may
write the gauge invariant Yukawa couplings for the neutral
sector:1

hij
¯̂νiLνjR + λij l̄iLΦ̃νjR + ηij

¯̂
liR

˜̂
Φν̂jL

1To simplify notation we drop the “0” superscript.
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+ M̂ij
¯̂νiL(ν̂jL)c + σij l̄iL(ν̂jL)cΦ̃

+ χij ν̄iR(νjR)c + πij
¯̂
liR(νjR)c

˜̂
Φ + h.c., (13)

where i, j = 1,2,3, Φ̃ = iσ2Φ
∗, ˜̂

Φ = iσ2Φ̂
∗, hij , M̂ij , χij

have dimensions of mass, and σij , ηij , λij and πij are di-
mensionless Yukawa coupling constants. When Φ and Φ̂

acquire VEV’s we get the neutrino mass terms

hij
¯̂νiLνjR + v√

2
λij ν̄iLνjR + v̂√

2
ηij

¯̂νiRν̂jL

+ M̂ij
¯̂νiL

(
ν̂jL

)c + v√
2
σij ν̄iL

(
ν̂jL

)c

+ χij ν̄iR(νjR)c + v̂√
2
πij

¯̂νiR(νjR)c + h.c., (14)

which are written in the generic Majorana matrix form

(
Ψ νL,Ψ c

νL

)(
ML MD

MT
D MR

)(
(Ψ c

ν )R
(Ψν)R

)
(15)

where

(Ψν)L,R =
(

νi

ν̂i

)
L,R

,
(
Ψ c

ν

)
L,R

=
(

(νc
i )

(ν̂c
i )

)
L,R

, (16)

ML =
(

0 v√
2
σ

v√
2
σT M̂

)
, MR =

(
χ v̂√

2
π

v̂√
2
πT 0

)
,

(17)

MD =
(

v√
2
λ 0

h v̂√
2
η

)
, (18)

with h, M̂ , χ , σ , η, λ and π unknown matrices of 3 × 3
dimension. By assuming the natural hierarchy |(ML)ij | �
|(MD)ij | � |(MR)ij | for the mass terms, the mass matrix in
(15) can approximately be diagonalized, yielding

(
Ψ ′

νL,Ψ ′c
νL

)(
Mν 0
0 MR

)(
(Ψ ′c

ν)R
(Ψ ′

ν)R

)
, (19)

where, neglecting O(MDM−1
R ) terms, we may write in good

approximation [52] Ψ ′
νL,R ≈ ΨνL,R , and Ψ ′c

νL,R ≈ Ψ c
νL,R .

The Majorana mass matrix for the left-handed neutrinos
may be written in this seesaw approximation as

Mν ≈ ML − MDM−1
R MT

D. (20)

We assume a scenario where the dominant contribution for
the active known neutrinos comes from the ML matrix hav-
ing the same structure of a Type I seesaw. Then in this sce-
nario the eigenvalues for the light neutrinos may be obtained
by applying again the seesaw approximation, that is,

M light = −
(

v√
2
σ

)
M̂−1

(
v√
2
σ

)T

. (21)

Taking advantage of the fact that all σij and M̂ij entries
in (21) are free parameters, we propose the following pa-
rameterizations for M̂ and M light neutrino mass matrices:

M light = Y 2v2

2m̂

⎛
⎝1 + b b b

b 1 + b + c b − c

b b − c 1 + b + c

⎞
⎠ ,

M̂ = m̂Diag(Y1, Y2, Y3),

(22)

where Y , Y1, Y2, Y3, b, c are dimensionless coupling con-
stants and m̂ represents the mirror scale. This parameteriza-
tion for the light neutrinos mass matrix imposes a symmetric
mixing of electron neutrino with muon and tau neutrinos in
the first row and column of (M light)ij , and the 2 × 2 subma-
trix i, j = 2,3 generate maximal mixing for muon and tau
neutrinos. This structure for M light makes possible the diag-
onalization of light neutrinos by the so called “tri-bimaximal
mixing matrix” [57], i.e.

UT
TBM lightVTB = −UT

TB

(
v√
2σ

)
M̂−1

(
v√
2σ

)T

UTB

= Diag(m1,m2,m3), (23)

with

UTB =

⎛
⎜⎜⎜⎜⎝

2√
6

1√
3

0

− 1√
6

1√
3

− 1√
2

− 1√
6

1√
3

1√
2

⎞
⎟⎟⎟⎟⎠ (24)

and the light neutrino mass eigenvalues

(m1,m2,m3) = Y 2v2

2m̂
(1,1 + 3b,1 + 2c). (25)

The suppression by the mirror scale m̂ in (25) provides a nat-
ural explanation for the smallness of neutrino masses. The
allowed range of values for the square neutrino mass differ-
ences reported in PDG [56]:

m2
2 − m2

1 ≈ 7.6 × 10−5 eV2,

m2
3 − m2

2 ≈ 2.43 × 10−3 eV2,
(26)

with the input for normal hierarchy of the neutrino masses

(m1,m2,m3) = (0.0865,0.0870, .1) eV, (27)

fix the parameter values as b = 0.00168 and c = 0.07757.
These neutrino masses are consistent with the bounds
mν < 2 eV [56], and set the mass differences

m2
3 − m2

1 ≈ 2.5 × 10−3 eV2. (28)

So, from (25), (27)

Y 2v2

2m̂
≈ 8.65 × 10−2 eV. (29)
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Therefore, assuming m̂ = mν̂ = 100 GeV and v = 246 GeV
we obtain

Y ≈ 5.34 × 10−7. (30)

The matrix ML in (17) may be diagonalized by using a uni-
tary transformation,

U†MLU = Diag(m1,m2,m3, m̂1, m̂2, m̂3), (31)

where the mixing matrix U compatible with our framework
is written in good approximation as

U6×6 ≈

(
UTB

v√
2
σM̂−1

−( v√
2
σM̂−1)T I3×3

)
. (32)

The particular numerical solution congruent with the above
scenario for the neutrino masses and mixing is

v√
2
σ ≈ 93041.9 eV

⎛
⎝−1.2001 0.6355 1.2952

0.6355 −1.2702 1.3006
1.2952 1.3006 0.5389

⎞
⎠ ,

(33)

M̂ = 100 GeV Diag(3.4918,3.2643,3.6043), (34)

and

v√
2
σM̂−1 ≈ 9.3 × 10−7

⎛
⎝−0.3437 0.1946 0.3593

0.1819 −0.3891 0.3608
0.3709 0.3984 0.1495

⎞
⎠

(35)

for light ν–mirror mixing. Since the light–mirror mixing is
very small, the mixing matrix for light neutrinos behaves in
good approximation as the UTB, (24). It is worth to men-
tion here that in the limit of very small light–mirror charged
lepton mixing, (F

†
LFL)ij , (E

†
LEL)ij � 1, we may approach

UTB as the usual UPMNS lepton mixing matrix for three gen-
erations. Then, we obtain (UPMNS)e2 � 1√

3
, (UPMNS)e3 � 0,

and (UPMNS)μ3 � 1√
2

, which give for the solar and the atmo-

spheric neutrino mixing angles θ12 � 35.20 and θ23 � 450,
with θ13 � 0 in good agreement with current data, although
recent evidence [58, 59] shows that θ13 may have a value
different from zero.

In earlier papers on the study of neutrinos and left–
right symmetry [60–63] appear similar representations of
the fermions and mass matrices as our in (18), but these
authors obtain masses for the standard and mirror neutri-
nos some orders of magnitude different from ours. On the
other hand, the mass generation in the LRMM here consid-
ered is achieved with the scalar fields Φ and Φ̂ , (3), (4),
transforming as doublets under SU(2)L and SU(2)R , respec-
tively, with a mirror scale much lower than 1012–1013 GeV.

5 Radiative decays

In this section we analyze the lepton flavor violation pro-
cesses μ → eγ , τ → μγ and τ → eγ arising in the model
by the existence of gauge invariant mixing terms between
ordinary leptons and with the mirror counterparts. The
lower order contribution to theses decays mediated by the
neutral scalar fields comes from the Feynman diagrams
where the photon is radiated from an internal line. The
corresponding amplitude is proportional to the operator
u(p2)σ

μνqνεμu(p1), where q = p1 − p2 and εμ is the pho-
ton polarization [53–55].

In the limit me � mμ � mτ the rate decay is given by

Γ (li → lj + γ ) = α

512π4

(
GF m2

li

)2 m5
li

M4
H

∣∣∣∣
(

ln
M2

H

m2
li

− 4

3

)
εij

−
∑

k

xνk
VL,jkV

+
R,ki

∣∣∣∣
2

, (36)

where xνk
≡ m2

νk

M2
W

, εij = |A+
LAR|ij represents the flavor-

changing couplings, and the second term is the very small
contribution from the light neutrino propagating inside the
loop.

In the limit α � 1 and MH � M
Ĥ

the branching ratios
are, respectively,

B1(μ → e + γ ) = 3αm4
μ

8M4
H

∣∣∣∣
(

ln
M2

H

m2
μ

− 4

3

)
εeμ

−
∑

k

xνk
VL,ekV

+
R,kμ

∣∣∣∣
2

, (37)

B2(τ → μ + γ ) = 3αm4
τ

8M4
H

∣∣∣∣
(

ln
M2

H

m2
τ

− 4

3

)
εμτ

−
∑

k

xνk
VL,μkV

+
R,kτ

∣∣∣∣
2

(38)

and

B3(τ → e + γ ) = 3αm4
τ

8M4
H

∣∣∣∣
(

ln
M2

H

m2
τ

− 4

3

)
εeτ

−
∑

k

xνk
VL,ekV

+
R,kτ

∣∣∣∣
2

. (39)

By using the constraints εij < 1, i �= j for the parameters in
(37), (39), required by unitarity of V , see (2), (3), one gets
for the above branching ratios

B1 < 2.2 × 10−13, B2 < 5 × 10−9 and B3 < 5 × 10−9

(40)
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which is congruent with the experimental bounds [56]
B(μ → e + γ ) < 1.2 × 10−11, B(τ → μ+ γ ) < 4.4 × 10−8

and B(τ → e + γ ) < 3.3 × 10−8 PDG [56].

6 Heavy neutrino signals

Possible new neutrinos can be detected in various ways in
colliders. If these neutrinos are heavy they will be unstable
and may be detected directly in their decay products.

Next generation of large colliders will probe Nature up
to TeV scales with high precision, probably discovering new
heavy particles. Thus, it will be a window to any new physics
near the electroweak scale which couples to the SM. Such
colliders can be used to produce new heavy neutrinos at an
observable level to improve present limits on their masses
and mixings [64–67]. These fermions with new interactions,
like in the left–right models [68], can be produced by gauge
couplings suppressed by small mixing angles. For the anal-
ysis of the heavy neutrinos signals it is necessary to know
their decay modes, which are different in the Dirac and Ma-
jorana cases.

Heavy Majorana neutrino singlets can be produced in the
process [69, 70]

qq̄ ′ → W ∗ → l±H (41)

with l = e,μ, τ , which cross sections depend on MN and the
small mixing VlN . Heavy Majorana neutrino decays in the
channels N → W±l∓, N → Zνl and N → Hνl . The partial
widths for the N decays are

Γ
(
N → W+l−

)
= Γ

(
N → W−l+

)

= e2

64πs2
θw

|UlN |2 m3
N

M2
W

(
1 − M2

W

m2
N

)(
1 + M2

W

m2
N

− 2
M4

W

m4
N

)
,

(42)

Γ (N → Zνl)

= e2

64πs2
θw

c2
θw

|UlN |2 m3
N

M2
Z

(
1 − M2

Z

m2
N

)

×
(

1 + M2
Z

m2
N

− 2
M4

Z

m4
N

)
, (43)

Γ (N → Hνl) = e2

64πs2
θw

|UlN |2 m3
N

M2
W

(
1 − M2

H

m2
N

)2

, (44)

where UlN is the light–mirror neutrino mixing v√
2
σM̂−1,

(35). From (32), (35) the contributions come from terms of
the order |VlN | � 10−7. From these expressions we can con-
clude that the total branching for each of the four channels is

independent of the heavy neutrino mixing, determined only
by mN and the gauge and Higgs boson masses.

Heavy neutrino signals are limited by the small mixing
of the heavy neutrino required by precision constraints [73]
and masses of order 100 GeV are accessible at LHC. For this
mass range, SM backgrounds are larger and, since produc-
tion cross sections are relatively small, heavy neutrino sin-
glets are rather difficult to observe. The branching ratios for
different values of mN read as in Table 1 (MH = 130 GeV);
and in all these cases

∑
Bi ≈ 1. Here

BW± = Br

(
N → W±l∓

)
, BZ = Br(N → Zνl),

BH = Br(N → Hνl).
(45)

Table 1 shows that these decays are not so sensitive to the
heavy neutrino mass, such that for heavy neutrino signals it
is not necessary to have center of mass energies much larger
than a hundred GeV.

Among the possible final states given by (42)–(44), only
charged current decays give final states which may in prin-
ciple be detected. For mN < MW these two body decays are
not possible and N decays into three fermions, mediated by
off-shell bosons.

Other simple production processes like

qq̄ ′ → Z∗ → νN, (46)

gg → H ∗ → νN (47)

give l± and l+l− final states which are unobservable due to
the huge backgrounds. For the pair production

qq̄ → Z∗ → NN (48)

the cross section is suppressed by |VlN |4, phase space and
the Z propagator, and is thus negligible.

Three signals are produced in the two charged current
decay channels of the heavy neutrino

l+N → l+l−W+ → l+l−l+ν̄, (49)

l+N → l+l+W− → l+l+l−ν (50)

and small additional contributions from τ leptonic decays.
Heavy neutrino signals in the final state l±l± are given

in the lepton number violating neutrino decay and subse-
quent hadronic W decay, or leptonic decay when the lep-

Table 1 Branching ratios for different values of mN

mN (GeV) BW± BZ BH

100 0.34 0.1 0.2

390 0.3 0.306 0.09

780 0.3 0.297 0.107

� MW ,MZ,MH 0.293 0.3 0.111
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ton is missed. LHC present energies are enough to discover
heavy Majorana neutrino with very small VeN [71, 72].

7 Conclusions

Here the LRMM with gauge group SU(3)C ⊗ SU(2)L ⊗
SU(2)R ⊗ U(1)Y ′ is applied in order to find closer values
for neutrino masses fitted to experimental data. We have
worked with Majorana neutrinos, which mass matrix was
written in terms of blocks that stand for standard and mir-
ror mass terms. The large number of parameters involved
induces to make some simplifications on the structure of the
matrix. A double seesaw approach method is used and diag-
onalization is performed, and with the help of neutrino data
we accommodate neutrino masses with normal hierarchy of
the order of (m1,m2,m3) ≈ (0.0865,0.0870,0.1) eV. So,
we have found a consistent smallness hierarchy for the neu-
trino masses. With the LRMM we have also analyzed the
radiative decays μ → e + γ , τ → e + γ and τ → μ + γ

for a Higgs mass of 130 GeV, obtaining bounds for the
branching ratios congruent with the experimental ones. De-
cay rates for heavy neutrinos N were calculated for differ-
ent channels, and we found that their BR are nearly equal
for MN � MW,MZ,MH and also that they do not change
too much for other values of MN . To find heavy Majorana
neutrinos one has only a few parameter dependence (for neu-
trino singlets, the heavy neutrino mass and its mixing angle)
and also the mass scale could be accessible at the LHC.
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