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Spatial gradients in a refractive index are used extensively in acoustic metamaterial applications to
control wave propagation through phase delay. This study reports the design and experimental realization
of an acoustic gradient-index lens using a sonic crystal lattice that is impedance matched to water over a
broad bandwidth. In contrast to previous designs, the underlying lattice features refractive indices that are
lower than the water background, which facilitates propagation control based on a phase advance as
opposed to a delay. The index gradient is achieved by varying the filling fraction of hollow, air-filled
aluminum tubes that individually exhibit a higher sound speed than water and matched impedance.
Acoustic focusing is observed over a broad bandwidth of frequencies in the homogenization limit of the
lattice, with intensity magnifications in excess of 7 dB. An anisotropic lattice design facilitates a flat-
faceted geometry with low backscattering at 18 dB below the incident sound-pressure level. A three-
dimensional Rayleigh-Sommerfeld integration that accounts for the anisotropic refraction is used to
accurately predict the experimentally measured focal patterns.
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I. INTRODUCTION

Metamaterial lattices composed of subwavelength scat-
tering components have been used increasingly in recent
years to control the propagation of both electromagnetic
and acoustic waves through two and three dimensions.
One primary goal of acoustic metamaterial design is to
achieve effective fluid, or “metafluid,” material properties
that minimize shear coupling and propagation. The cou-
pling between a fluid-borne acoustic wave and a composite
elastic material at off-normal incidence results in mode
mixing of dilatation and shear modes that complicates the
interaction. For underwater applications requiring strong
acoustic coupling, compliant materials such as rubbers are
a standard material used for coupling and encapsulation due
to their relatively close impedance match with water and low
shear moduli. Traditional compliant materials often have
larger densities and/or lower dilatation moduli than water,
making them useful for applications requiring a low relative
sound speed. For example, a sonic crystal lattice of rubber
cylinders with a gradient filling fraction was recently used to
achieve an underwater omnidirectional absorption coating
[1], which requires a radially decreasing sound speed [2,3].
Metafluids with complementary material properties

compared to rubbers, e.g., high relative sound speeds with
matched impedance, are more difficult to achieve in
underwater applications, because they require high stiffness

but low relative density. Sonic crystal lattices feature
metafluid functionality in the homogenization limit of
the lattice, including shear decoupling and broadband
performance, and hence they have the potential to expand
the range of realizable metafluid material properties to
include high sound speeds. Thin-walled, hollow elastic
shells have been recently proposed as high-sound-speed
sonic crystal components in water [4]. By carefully tuning
the wall thickness of the shell, an impedance-matched
condition can be obtained, assuming the shell material has a
higher impedance than the background fluid. Additionally,
by using shell elements which are individually impedance
matched, it has been shown that any phononic crystal
configuration of the elements will also be impedance
matched in the homogenization limit of the crystal lattice
[4]. Given that local variations in the element filling fraction
create a variation in the refractive index, acoustically trans-
parent devices with tunable wave-guiding capability should
be achievable using hollow-shell elements. The concept of
hollow-shell elements is also extended to include structural
components inside the shells to improve control over the
material properties [5].
Here we report the design and experimental demonstra-

tion of an acoustically transparent gradient-index (GRIN)
lens that focuses sound by advancing the phase of waves
propagating through an aqueous background. GRIN geom-
etries are utilized for a broad range of metamaterial
applications including scattering reduction [6,7], wave
focusing [8–16], and bending [1–3,17,18]. In contrast to*theodore.martin@nrl.navy.mil
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previous lens designs, we present a lens composed of
impedance-matched, hollow-shell elements with sound
speeds higher than water. The higher sound speed enables
the phase of propagating waves to be advanced beyond
what is possible in the background propagation medium,
which is important to a number of metamaterial applica-
tions (for a review, see Refs. [19,20]). The lens is intended
as a proof of concept to demonstrate that both transparency
and broadband wave-guiding functionality can be achieved
simultaneously using a lattice of noncompliant, low-
refractive-index scattering elements.

II. LENS DESIGN

The GRIN lens is constructed using cylindrical, air-filled
aluminum tubes arranged in a lattice that function as a
broadband, uniform effective medium at wavelengths λ
larger than the lattice spacing a (λ > 4a). With a wall
thickness of 1=20th the diameter, each individual cylin-
drical tube scatters sound as an impedance-matched effec-
tive fluid cylinder [4], resulting in negligible backscattering
over the lattice as a whole. An anisotropic lattice spacing
is used to vary the filling fraction similar to what was
proposed by Lin, Tittmann, and Huang [14]. The aniso-
tropic design simplifies the lens construction by using a
single cylindrical tube geometry and features a flat lens

facet. While the objective of many metafluid applications is
to achieve anisotropy in the wave speed, the transparency of
the lattice results in an approximately isotropic scattering
configuration despite the underlying anisotropy of the
design. Our design goal is to tune the anisotropy to produce
a convex refraction gradient that focuses sound while
simultaneously minimizing lens aberration.
Figure 1(a) shows the rectangular unit cell of the cylinder

lattice. A variable refractive index can be achieved by
lengthening one of the lattice constants ay compared to the
lattice constant ax in the orthogonal direction. Phase speeds
c̄xx and c̄yy in the primary Cartesian directions are shown
in Fig. 1(b) as a function of the anisotropy ratio ay=ax for
a fixed aluminum tube outer radius R ¼ 0.4ax. The double
index on the phase speeds delineates components in an
anisotropic tensor. Phase speeds c̄ with an overbar are
normalized to the water background, which is assumed to
have density ρb ¼ 1000 kg=m3 and sound speed cb ¼
1480 m=s. The phase speeds are derived from the longi-
tudinal dispersion bands of the acoustic band structure
calculated for each anisotropy ratio. The anisotropy in
phase speed can also be derived by considering multiple
scattering effects in the lattice [21].
Examples of the acoustic band structure are shown in

Figs. 1(c) and 1(d). Blue and red lines, with slopes
corresponding to the phase speeds in Fig. 1(b), demonstrate
that the longitudinal bands have linear dispersion up to an
upper cutoff frequency ωax=2πcb ≃ 0.3. The cutoff fre-
quency is constrained by the wrapping of the longitudinal
band at the Brillouin zone boundary in the ΓY direction for
the highest anisotropy ratio considered. The longitudinal
band in the ΓM direction in Fig. 1(c) has a slowness that
deviates slightly from circularity due to the underlying cubic
symmetry. In addition to the longitudinal bands, narrow
resonance bands arising from the core-shell architecture of
the unit cell are predicted at various frequencies [5]. While
we do not observe evidence of coupling to these bands in
our measurements, the resonant bands should not, in general,
be overlooked depending on the lattice geometry.
Our lens design consists of a constant lattice spacing in

the x direction, which produces a flat lens facet, while a
prescribed lattice anisotropy in the y direction produces the
convex GRIN profile [see Fig. 2(b)]. The primary impact of
increasing the anisotropy ratio is to decrease the effective
sound speed irrespective of the propagation direction. As is
evident in Fig. 1(b), the difference between c̄xx and c̄yy is
small even at ay=ax ¼ 2, resulting in approximately iso-
tropic acoustic transport over the entire Brillouin zone.
Therefore, an approximate, isotropic sound speed c̄avg ¼
ðc̄xx þ c̄yyÞ=2 is used to initially guide the design of the
GRIN geometry. A number of GRIN profiles that result
in convex lensing are commonly used in the literature; our
design combines two common refraction profiles in order to
minimize lens aberration in the asymptotic (ray) transport
limit:

FIG. 1. (a) Schematic unit cell of the anisotropic lattice with
ay ¼ 2ax. (b) Phase speeds in the homogenization limit of the
lattice plotted as a function of anisotropy ratio ay=ax. Lines are
fits to the data based on Ref. [21]. (c) Acoustic band structure
calculated using the finite-element method for an isotropic lattice
with tube outer radius R ¼ 0.4ax. Blue lines plot the acoustic
sound speed in the ΓX direction. (d) Acoustic band structure
calculated for an anisotropic lattice with tube outer radius
R ¼ 0.4ax. Blue and red lines plot the acoustic sound speed
in the ΓX and ΓY directions, respectively. Insets show the
directions of the bands in k space.
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n̄2ðyÞ ¼ 1

½c̄avgðyÞ�2

¼
�
β

c̄20
1 − ðα1yÞ2

þ ð1 − βÞc̄20ðcosh α2yÞ2
�−1

; ð1Þ

α1 ¼ ð2=hÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ðc̄0=c̄hÞ2

q
; ð2Þ

α2 ¼ ð2=hÞarccoshðc̄h=c̄0Þ; ð3Þ

where h is the lens height in the gradient direction, c̄0 ¼
c̄avgð0Þ and c̄h ¼ c̄avgðh=2Þ are the extremal sound speeds
obtained from the chosen range of the anisotropy ratio
ay=ax, and β is a parameter that mixes the two GRIN
profiles. The two GRIN profiles produce complementary
aberrations: One causes ray trajectories that originate at the
edge of the aperture to converge farther out along the focal
plane, while the other causes rays from the aperture edge to
converge closer in toward the lens. Mixing of the two GRIN
profiles facilitates a condition where the rays can converge at
a single point on the focal plane.
Lens aberration is commonly considered in the asymp-

totic limit of wave transport, where the aperture size is large
and the index gradient is slowly varying compared to the
acoustic wavelength. Although the lower portion of our
operational bandwidth is close to the aperture diffraction
limit, we utilize a ray-tracing routine in our design process

for two specific purposes. First, we provide a recipe that
details how our anisotropic lattice design can account
for aberration assuming a targeted operational bandwidth
that is closer to the aperture asymptotic limit. Second, we
use ray trajectories, in parallel with the Huygens-Fresnel
principle, to approximate the spatial distribution of the
amplitude and phase of the acoustic signal over the surface
of the lens facet. We demonstrate below that integration of
this amplitude and phase information can accurately predict
the impact of our finite aperture size on the focal patterns
produced by the lens.
An iterative ray-tracing routine based on the eikonal

approximation [22] is used to determine the optimal value
of β that minimizes the lens aberration. The isotropic
refraction gradient in Eq. (1) prescribes c̄avgðyÞ and hence
the lattice geometry ay=ax for a given value of β; however,
to optimize β, an eikonal approximation that accounts for
the anisotropic sound speeds in the lattice is employed to
more accurately predict the ray trajectories on the focal
plane and hence the degree of aberration. The differential
equation governing the eikonal function ξðxÞ in the
presence of anisotropy can be derived for acoustic meta-
fluids in a similar manner to the electromagnetic case [22]:

c̄2xxξ2x þ c̄2yyξ2y − 2c̄2xyξxξy ¼ 1; ð4Þ
where ξ½x;y� ¼ dξ=d½x; y�. The off-diagonal sound speed c̄xy
can be calculated from the band structure or by considering
multiple scattering effects [21]. The off-diagonal term is
found to be negligible compared to the on-diagonal terms
for each anisotropy ratio in our lattice.
Figure 2(a) shows the ray paths derived using Eq. (4) for

a GRIN lens insonified by a plane wave after optimizing
the parameter β. The lens has thickness 10ax, height
h ¼ 27.1ax, and lattice spacing ax ¼ 15.6 mm; these
parameters are also used to manufacture the physical lens.
The choice of β ¼ 0.65 produces a focal point at xf ≃
1.2 m from the center of the lens with minimal aberration
of the ray trajectories. The β optimization iterates within the
interval β ¼ ½0; 1� to identify the value that minimizes
aberration. The optimization starts with the average sound
speed profile c̄avgðyÞ as input and converts to the aniso-
tropic phase speeds from Fig. 1(b). Anisotropic ray tracing
is then used to predict the convergence of the ray trajecto-
ries on the focal plane. Note that, because the refraction
gradient is produced by lengthening the lattice constant, the
optimal GRIN profile described by Eqs. (1)–(3) must also
be self-consistent with a discretization into lattice sites
ayðyÞ that map back onto the analytic profile. This con-
strains the lens height h to certain values that produce a
GRIN profile with minimal aberration while simultane-
ously conforming to a physically realizable lattice spacing.

III. EXPERIMENT

A schematic of the upper half of the β-optimized lens
design is shown in Fig. 2(b). The full lens is symmetric

FIG. 2. (a) Ray paths through the lens (blue lines), which
originate from a plane wave at normal incidence, are calculated
using an eikonal approximation in the xy plane; the red box
indicates the location of the lens. Only rays incident on the upper
half-plane of the lens are shown. (b) Schematic showing the
locations of the lattice sites in the upper half-plane of the lens; the
resulting sound-speed profile is plotted to the right. The lattice
sites are symmetric about y ¼ 0. (c) Photograph of the assembled
lens composed of 1-m-long, hollow aluminum cylinders arranged
in the desired lattice pattern.
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about the y axis. A photograph of the assembled lens is
shown in Fig. 2(c). The lens is constructed of identical
1-m-long hollow aluminum cylinders with air inside. Each
cylindrical tube has a diameter of 12.5 mm and a nominal
wall thickness of 0.625 mm. Rubber end caps are adhered
to both ends of each cylinder to prevent water infiltration.
Additionally, approximately 2.5 cm of foam is inserted into
the tube ends to damp the excitation of axial modes. The
tubes are mounted on Plexiglas end plates into which holes
with the designed lattice pattern are drilled. Two additional
rows of cylinders with spacing ay ¼ ax are placed at the top
and bottom of the lens to help mitigate the sharp transition
where the edge of the lens (c̄avg ¼ 1.36) meets the open
water (c̄avg ¼ 1).
The lens is submerged at the center of a 6 × 6 × 4 m3

water tank. Acoustic waves are produced by a 0.1-m-
diameter spherical source located in the plane that bisects
the lens midpoint in the axial direction (z axis). In order to
demonstrate the lens directionality, two in-plane source
locations are considered at ðx; yÞ ¼ ð−1.6; 0Þ m and
ðx; yÞ ¼ ð−1.6; 0.43Þ m corresponding to incident angles
of 0° and 15°, respectively, from the lens central axis
(x axis). Wave propagation is measured using hydrophones
at a sampling rate of 0.8 MHz. Hydrophones are mounted
on a three-axis translation positioning system to record
measurements of the sound-pressure levels Pðx; yÞ and
P0ðx; yÞ in the presence and absence of the lens, respec-
tively. Measurements are taken at 10-mm increments. The
sound-pressure level is measured at individual frequencies
by averaging over a 10-cycle pulse in the transmission
region (as indicated in Figs. 3 and 4) and a 20-cycle pulse

in the reflection region. The longer pulse cycle used in the
reflection region ensures overlap between the incident and
reflected waves so that the measured total field can be
properly compared with simulations. The length of the
incident pulses are short enough to isolate reflections from
the tank walls.
Measurements are performed in the xy plane

perpendicular to the cylindrical axis of the lens over a
broad range of frequencies ωax=2πcb < 0.3. Examples of
the measured and numerically modeled pressure intensity
ðjPj=jP0jÞ2 in the vicinity of the lens are shown in
Figs. 3 and 4 for frequencies ωax=2πcb ¼ 0.077, 0.138,
and 0.256. In both the measured and predicted results, the
pressure intensity is normalized (at each position) to that
of the source intensity in the absence of the lens. Given the
symmetry of the lens about the y axis, measurements are
obtained over the bottom half of the scattering plane with a
small overlap into the upper half-plane to detail the on-axis
forward-scattering pattern. The regions scanned in the
measurement are also outlined in the upper panels in
Figs. 3 and 4 for ease of comparison with the numerical
predictions. Note that, although the measurements at
ωax=2πcb ¼ 0.077 and 0.256 lie within two of the reso-
nance bands identified in Fig. 1, no obvious additional
resonant features are observed in the intensity maps that can
be attributed to these resonance bands.
We do not expect to observe attenuation due to viscous

or thermal loss. For our measurement temperature of 293 K
and the lowest operational frequency of 5 kHz, the viscous
and thermal boundary layers in water are calculated to be 8
and 3 μm, respectively. These boundary layers are less than
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FIG. 3. Sound-pressure intensity in the vicinity of the lens at ωax=2πcb ¼ 0.077 (7.27 kHz), 0.138 (13.05 kHz), and 0.256
(24.24 kHz) for a source location on the x axis. (a)–(c) Pressure intensity calculated using 2D MST. (d)–(f) Measured pressure intensity.
(g)–(i) Pressure intensity calculated using a 3D Rayleigh-Sommerfeld approximation. Gray boxes show the position of the lens. Red
outlines indicate the experimentally mapped areas. The reduced observational range of the reflected signal at 24.24 kHz is due to a
limited overlap between the incident and reflected signals in the time domain at high frequency.
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0.3% of the smallest cylinder separation in our lattice, a
value that is much lower than the approximately 5%
threshold that was recently demonstrated to impact acoustic
performance in small channels [23]. The impact of vis-
cosity and heating is also derived for sonic crystal lattices
composed of rigid [24] and elastic [25] scatterers, and the
application of this theory to our lattice geometry under a
rigid approximation results in a negligible dissipation factor
of one part in a thousand.

IV. SIMULATIONS

The upper panels [(a)–(c)] in Figs. 3 and 4 show a
prediction of the transmitted and reflected pressure inten-
sity calculated using the two-dimensional multiple scatter-
ing theory (2D MST) [4,21]. The MST accounts for elastic
scattering in the cylindrical tubes and assumes insonifica-
tion by a cylindrical monopole source located at positions
that match the experiment. Note that the MST predicts the
acoustic pressure solely based on scattering from the lattice
of tubes; it does not rely on approximations or ray tracing.
The experimentally measured acoustic intensities in panels
(d)–(f) show good qualitative agreement with the MST-
predicted results. The reflected signalR¼20log10½ðP−P0Þ=
P0Þ� is estimated relative to the incident amplitude P0 using
the sound-pressure level Pmeasured in front of the incident
face of the lens (regions to the left of the lens in Figs. 3 and
4). The measured reflection is at or below 13% of the
incident amplitude (R ≤ −18 dB) over the range of opera-
tional frequencies, which demonstrates significant trans-
parency and is commensurate with recent Fresnel lens
designs in air [26,27]. The measured reflection includes
additional constructive interference compared to the MST
due to diffraction from the finite aperture size in the axial
direction.
In the forward direction, a focusing peak is observed that

strengthens in intensity and moves out away from the lens
with increasing frequency. The frequency dependence of
the focusing peak is expected. At very low frequencies, the

aperture is diffraction limited; as is the case for optical
lenses [28], there is a focal shift toward the lens aperture as
the Fresnel number N ¼ h2=4λxf tends to zero. As the
frequency increases, the transmission approaches the
asymptotic limit of ray acoustics where a focusing peak
would be located beyond the focal point predicted by the
ray tracing in Fig. 2(a). At the lowest example frequency,
ωax=2πcb ¼ 0.077 [panels (a) and (d)], the lens is close
to the diffraction limit with height-to-wavelength ratio
h=λ < 2. As the frequency is further reduced, the focusing
peak intensity becomes significantly suppressed. Therefore,
an operational bandwidth can be identified ranging between
ωax=2πcb ≈ 0.05 and 0.30, where the lower cutoff is
constrained by the diffraction limit and the upper cutoff
by the homogenization limit of the lattice.
It is apparent in Figs. 3 and 4 that the 2D MST does not

accurately predict the precise location of the intensity
maxima nor the small-scale, near-field interference features
in the forward direction. The discrepancy is due to the
assumption of infinite cylinders in the 2D theory compared
to the finite size of the lens aperture in the experiment.
The diffractive corrections arising from the finite size in the
axial direction can be predicted using a three-dimensional
(3D) Rayleigh-Sommerfeld integral assuming knowledge
of the acoustic amplitude and phase on the lens aperture.
The pressure at a position ðx; y; zÞ in front of an acoustic
aperture located at x ¼ 0 can be calculated by integrating
over the aperture surface [29]:

Pðx; y; zÞ ¼ x
iλ

Z Z
A

~Pðy0; z0Þ e
ikr

r2
dy0dz0; ð5Þ

~Pðy0; z0Þ ¼ ψðy0; z0Þeiϕðy0;z0Þ; ð6Þ

r2 ¼ x2 þ ðy − y0Þ2 þ ðz − z0Þ2; ð7Þ

where ψðy0; z0Þ and ϕðy0; z0Þ are the real-valued acoustic
amplitude and phase of the complex pressure ~Pðy0; z0Þ on
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FIG. 4. Sound-pressure intensity in the vicinity of the lens at ωax=2πcb ¼ 0.077 (7.27 kHz), 0.138 (13.05 kHz), and 0.256
(24.24 kHz) for a source positioned at a 15° angle with respect to the x axis. (a)–(c) Pressure intensity calculated using 2D MST.
(d)–(f) Measured pressure intensity. Gray boxes show the position of the lens. Red outlines indicate the experimentally mapped areas.
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the aperture facet, respectively, and λ and k are the
wavelength and wave number, respectively. Here the
integration aperture is simplified by the flat facet of our
lens design, with the integration carried out over a simple
rectangular area at the forward face of the lens.
The pressure on the aperture facet ~Pðy0; z0Þ can be

estimated using anisotropic ray tracing under the eikonal
approximation of Eq. (4). Although the eikonal approxi-
mation assumes a slowly varying refractive index on the
scale of the wavelength, our results indicate reasonable
empirical agreement with the experiment even at the lower
frequencies close to the diffraction limit. A schematic in
Fig. 5(a) depicts the ray trajectories of wave fronts that
emerge from the spherical source and become incident on
the lens aperture; integration vectors to a position ðx; y; zÞ
on the measurement plane are also depicted. The phase
function ϕðy0; z0Þ on the forward facet is determined by
advancing the phase of each ray along the path lengths
defined by ξðxÞ, where the path length is the sum of
the trajectory from the source to the rear facet plus the
trajectory taken within the lens to the forward facet.
The calculation iterates over a discrete set of rays that
enter the rear facet (i.e., the incident face) at equally
spaced intervals. Note that the effective path length is
altered by the spatially dependent local sound speed in the
lens. A constant phase is assumed at the surface of the
spherical source.
The phase difference Δϕ ¼ ϕðy0; z0Þ − ϕð0; 0Þ on the

aperture surface is shown in Fig. 5(b), where positive or

negative values represent a phase advance or delay,
respectively, relative to the phase ϕðy0 ¼ 0; z0 ¼ 0Þ on
the lens central axis. The phase is calculated using the
experimental source position on the lens central axis. Given
the symmetry of the lens, only one quadrant is shown.
Curve fits in Fig. 5(d) indicate that Δϕ is approximately
quadratic in both the y and z directions. The amplitude
function ψðy0; z0Þ is inversely related to the square root of
the local areal density of the rays. This is approximated by
calculating the average nearest-neighbor separation of rays
intersecting the forward facet; a relative amplitude
ψ̄ðy0; z0Þ ¼ ψðy0; z0Þ=ψð0; 0Þ can then be estimated from
the inverse of this nearest-neighbor separation. Figure 5(c)
shows the variation in ψ̄ðy0; z0Þ after normalizing to the
predicted amplitude in the absence of the lens. It is clear
that the lens refraction has a minimal impact on the
amplitude (<3%) and that the diffractive correction is
primarily influenced by the change in phase over the
aperture.
Following a similar procedure as used by Gao et al. [28],

Eq. (5) is evaluated numerically within the 2D plane of the
measurement using quadratic approximations to ϕðy0; z0Þ
and ψðy0; z0Þ. Intensity maps produced by the Rayleigh-
Sommerfeld integration are shown in Figs. 3(g)–3(i) and
demonstrate significantly improved quantitative agreement
with the experiment. As is the case for the measurement
and MST modeling, the Rayleigh-Sommerfeld-based pres-
sure intensities are normalized to the pressure intensity of
the spherical source in the absence of the lens. The 3D

FIG. 5. (a) Schematic showing the ex-
perimental setup; blue lines indicate ray
paths emerging from the spherical source
and Rayleigh-Sommerfeld integration
vectors from the forward facet of the
lens to hydrophone locations in the meas-
urement plane. (b) Change in phase
Δϕðy0; z0Þ (degrees) over the forward
facet (due to symmetry, only the first
quadrant is shown). Blue regions re-
present a phase delay; red regions re-
present a phase advance. (c) Normalized
amplitude ψ̄ðy0; z0Þ over the forward facet,
where normalization is with respect to the
amplitude of the spherical wave in the
absence of the lens. (d) Red and blue lines
show the phase change Δϕ plotted as a
function of position along the y0 and z0
axis, respectively. Data points are calcu-
lated by advancing the phase along ray
paths based on an eikonal approximation;
lines are quadratic fits to the data.
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Rayleigh-Sommerfeld integration more accurately predicts
both the location of the focal positions and their magnitude.
The measured magnification in sound-pressure level ranges
between 4.5 and 7.3 dB over the operational bandwidth.
The 2D MST predicts magnifications that are as much as
40% lower than the measured values, whereas the magni-
fications predicted by the Rayleigh-Sommerfeld integration
agree to within 10%. We emphasize that the 2D lattice
focuses only along one axis (y axis), resulting in lower
magnifications than would be produced by axisymmetric
3D designs [26,27]. The magnification can be increased by
extending our 2D design to three dimensions using tubes
bent into a toroid configuration [12,15].

V. CONCLUSIONS AND OUTLOOK

We now place our results in context with other recent
metamaterial design concepts. Traditional underwater and
ultrasound applications have achieved an impedance match
by utilizing rubbers that have sound speeds less than water.
While rubbers are used as components in transparent
metafluid lattices [1], there have been other recent advances
in acoustic impedance-matched designs. For example,
negative-index complementary metamaterials are proposed
to significantly enhance the transparency through aberrat-
ing materials [30]. Superfocusing from a flat lens geometry
was recently explored in elastic plates where pulsed exci-
tation is demonstrated to significantly improve the focal
resolution below the diffraction limit [31,32]. Given that this
technique relies on the interference of resonant lattice modes
in the time domain, it should be readily applicable to flat-
faceted acoustic lenses similar to our design.
A class of metafluids based on the concept of space

coiling have also featured prominently in the literature
[33–36]. Space-coiled Fresnel lens designs are reported that
show significant focusing while utilizing a thin aperture
compared to the wavelength [26,27]. Although the strength
of the space-coiling design is the ability to significantly
modify a phase within a confined space, there is a drawback
that it can only delay the phase over a lengthened path;
similar to rubbers in water, the effective sound speed of these
devices is less than the background fluid. The space-coiling
design has not yet been demonstrated in water, where
common solids such as steel that might be used to confine
the coils cannot be assumed to be perfectly rigid due to their
significantly smaller density contrast with water—thus
introducing the challenge of elastic coupling [37] that must
be incorporated into any design strategy. Although the
kinematic viscosity of water is less than that of air [23],
recent measurements of air-borne space-coiled metamateri-
als [36] demonstrate significant attenuation, and we caution
that viscous effects should not be neglected in aqueous
designs.
Our design extends the reach of aqueous transparent

metafluids to include the option of phase advance and
decreased effective path length. While not necessarily

required for traditional lensing, there are metamaterial
applications that require higher sound speeds compared
to the propagation medium [17–20,38], the most prominent
of which is scattering reduction. The requirement of higher
relative sound speeds features prominently in scattering-
reduction designs based on both coordinate transformation
[39–41] and scattering cancellation [42,43]. The realization
of a high-sound-speed, transparent GRIN lens represents an
important proof of concept: It demonstrates that phase-
advance metafluids can be constructed with significant
tunability in both sound speed and impedance, including
the option of matched impedance. Given that the concept of
core-shell lattice components has now been extended to
also include core modification [5], a wide range of GRIN
and anisotropic designs should be achievable in water
based on metafluid lattices.
This work is supported by the Office of Naval Research.
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