
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1016/j.eurpolymj.2012.12.012

http://hdl.handle.net/10251/67078

Elsevier

Carsí Rosique, M.; Sanchis Sánchez, MJ.; Díaz Calleja, R.; Riande, E.; Nugent, MJD.
(2013). Effect of slight crosslinking on the mechanical relaxation behavior of poly(2-
ethoxyethyl methacrylate) chains. European Polymer Journal. 49(6):1495-1502.
doi:10.1016/j.eurpolymj.2012.12.012.



 1 

Effect of slight crosslinking on the mechanical relaxation behavior 

of poly (2-ethoxyethyl methacrylate) chains  

 

M. Carsí 
a,*

, M. J. Sanchis 
a
, R. Díaz-Calleja 

a 

a 
Energy Technological Institute (ITE), Universitat Politècnica de València, Camino de Vera 

s/n 46022, Valencia, Spain. 

E. Riande 
b  

b 
Institute of Polymer Science and Technology (ICTP), Spanish National Research Council 

(CSIC), Juan de la Cierva 3, 28008, Madrid, Spain.  

M.J.D. Nugent 
c 

c 
Athlone Institute of Technology, Dublin Rd, Athlone, Co. Westmeath, Ireland 

 

Abstract  

 

The synthesis, thermal and mechanical characterizations of uncrosslinked and lightly 

crosslinked poly(2-ethoxyethyl methacrylate) are reported. The uncrosslinked poly(2-

ethoxyethyl methacrylate) exhibits in the glassy state two relaxations called in increasing 

order of temperature, the  gamma and beta processes respectively.  These are followed by a 

prominent glass-rubber or alpha relaxation. By decreasing the chains mobility by a small 

amount of crosslinking, the beta relaxation disappears and the peak maximum associated with 

the alpha relaxation is shifted from 268 K to 278 K, at 1 Hz. An investigation of the storage 

relaxation modulus of the crosslinked polymer indicates two inflexion points that presumably 

are related to segmental motions of dangling chains of the crosslinked networks and to 

cooperative motions of the chains between crosslinking points. Nanodomains formed by side-

groups flanked by the backbone give rise to a Maxwell-Wagner-Sillars relaxation in the 

dielectric spectra that have no incidence in the mechanical relaxation spectra. 
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1. Introduction  

 

Chains dynamics is a flourishing field of research in polymer science due in part to the 

practical applications of these studies in engineering [1]. Furthermore, the prediction of the 

mechanical performance of polymeric structures requires an understanding of the chain 

dynamics of polymers. As is well-known, the glass-rubber or - relaxation that arises from 

segmental motions of molecular chains, freezes at Tg. This characteristic, in conjunction with 

the fact that the  relaxation is the dominant process in chain dynamics until molecular chains 

disentanglement occurs, leads us to consider the glass-rubber relaxation as the precursor of 

the glassy state and the viscous flow. Moreover, the  relaxation also occurs in oligomers of 

low molecular weight, well below the entanglement condition [2-3]. Besides the glass rubber 

relaxation, the relaxation spectra of polymers in the frequency domain present secondary 

relaxations produced by conformational transitions of the chains backbone or motions of 

flexible side-groups [4-6]. Unlike the glass-rubber relaxation and the normal mode process [7] 

that reflects chains disentanglement, secondary relaxations remain operative below Tg. 

Secondary relaxations can have a great impact on the mechanical properties of polymers in 

the glassy state [4-6, 8-9]. For example, chair-inverse-chair conformational transitions of 

cyclohexyl in poly(cyclohexyl methacrylate) produce an ostensible secondary  relaxation 

that causes a significant decrease of the real relaxation modulus of the polymer in the glassy 

state [10-12]. Since to date, while no quantitative theory that describe the glass-rubber 

relaxation and the secondary relaxations in terms of the chemical structure has been 

formulated, (i) the theory of the total dielectric relaxation strength for the -process is well-

established in terms of molecular dipole moments [4-6, 13-22] and (ii) much success has been 

achieved in understanding the characteristic behavior of the dielectric  relaxation through 

computer “molecular dynamics” simulations [23-29]. In this sense, actually the design of 

polymers with specific physical properties relies on empirical rules based on experimental 

studies of the relaxation properties of polymers with different chemical structures. 

Poly(n-alkyl methacrylate)s and poly(n-alkyl acrylate)s have been widely used in the 

study of chain dynamics owing to the great dependence of the properties of the members of 

the series on the length of the alkyl residue [4-9, 30-53]. The first member of the series, 

poly(methyl methacrylate) (PMMA), is widely used in household and automotive applications 

[54]. The fact that PMMA has a glass-transition temperature ca. 100K above that of 

poly(methyl acrylate) (PMA) puts in evidence that hindering of the conformational transitions 
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by effect of the methyl group rigidly attached to the polymer backbone. This results in the 

increase of the Tg of PMMA [4]. Moreover, the tacticity of the PMMA has a significant 

influence in the dynamics of this polymer, thus the Tg value of the isotactic form is lower than 

that corresponding to the syndiotatic form. The  peak is located at somewhat lower 

temperatures for the isotatic polymer than for the sindiotactic polymer. Moreover, the 

magnitude of the -relaxation is also very influenced by tacticity. Thus, whereas the height of 

the  peak is about twice that of the  peak for the convetional polymer, the opposite situation 

exists in the case of the isotatic polymer [4].Moreover, the X-ray spectra of poly(n-alkyl 

methacrylate)s melts with n  2, which shows that these polymers are heterogeneous systems 

formed by nanodomains integrated by side-chain groups flanked by the chains backbone [37, 

44-45]. Cooperative motions of the side chains in the domains produce an EP peak located at 

higher frequencies than the glass-rubber relaxation arising from segmental motion of the 

chains backbone.  

Recently, the dielectric relaxation behavior of poly(2-etoxyethyl methacryate) 

(PEOEMA) was studied [55]. PEOEMA can schematically be obtained by replacing a 

methylene group of poly(pentyl methacrylate) for an ether group. This polymer has been used 

as drug-eluting stent coating for percutaneous coronary interventions, providing durable, 

robust coatings with precise control over rapamycin elution rates [56]. The formation of 

nanodomains visible in the X-ray spectra of poly(n-pentyl methacrylate)s is not detected in 

poly(2-ethoxyethyl methacrylate) (PEOEMA) [40-41, 45]. The X-ray pattern of this polymer 

only shows a single peak that reflects the average distance of side chains groups. However, 

the X-ray spectra of slightly crosslinked PEOEMA exhibit, in addition to the peak appearing 

in the uncrosslinked polymer, another transition presumably arising from correlations 

between the chains backbone [55]. The similarity of these spectra with those of poly(n-alkyl 

methacrylate)s suggests the presence of nanodomains in the crosslinked PEOEMA network. 

Hereinafter, the acronym of crosslinked polymer will be CEOEMA. In view of these 

antecedents, a mechanical-dynamical study was undertaken on PEOEMA and CEOEMA.  

The aim of the study was to determine whether the differences observed in the mesoscopic 

structure of the uncrosslinked and crosslinked polymers, which affect the dielectric spectra of 

these systems, will also affect their mechanical relaxation spectra.  

 

2. Experimental Section 
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Commercial monomer 2-ethoxyethyl methacrylate (Aldrich, 99%) (Figure 1) and the 

cross linker diethylene glycol dimethacrylate (Aldrich, 98%) (Figure 2) were purified by 

distillation under high vacuum. Dioxane (Aldrich; 99%) was distilled twice: the first time 

over sodium hydroxide and the second time over sodium. 2, 2'–Azobisisobutyronitrile (AIBN, 

Fluka; 98%) was recrystallized from methanol and dried under high vacuum at room 

temperature. All other materials and solvents used for the synthesis were commercially 

available and they were used as received unless otherwise indicated.  

Poly 2-ethoxyethyl methacrylate (PEOEMA) was obtained by radical polymerization 

of 2-ethoxyethyl methacrylate in dioxane solution using 2.5 wt% of 2,2'–

azobisisobutyronitrile (AIBN) as initiator. The reaction was carried out in nitrogen 

atmosphere, at 343K, for 5 h. The polymer was precipitated with methanol, washed several 

times with this organic compound and finally dried under high vacuum at room temperature. 

The number and weight average molecular weights of PEOEMA were measured by size 

exclusion chromatography (SEC) in a Perkin-Elmer apparatus with an isocratic pump serial 

200 connected to a differential refractometric detector (serial 200a). Two Resipore columns 

(Varian) were conditioned at 70 ºC and used to elute the samples (1.0 mg/mL concentration) 

at 0.3 mL/min HPLC-grade N,N´-dimethyl formamide (DMF) (Scharlau) supplemented with 

0.1 v/v % LiBr. Calibration of SEC was carried out with monodisperse standard poly(methyl 

methacrylate) samples in the range of 2.9 x 10
3
 to 480 x10

3
 obtained from Polymer 

Laboratories. The values of Mn and Mw were 82600 and 250800 gmol
-1

, respectively. 

CEOEMA was prepared by radical copolymerization of 2-ethoxyethyl methacrylate 

and ethylene glycol dimethacrylate, the mass fraction of the latter comonomer or crosslinking 

agent in the feed being 1wt%. The polymerization reaction took place at 343K in a silanized-

glass mold of about 100 µm thickness, in oxygen free atmosphere. A crosslinked film, 

without bubbles, was obtained which was washed with methanol and further dried at room 

temperature under vacuum.  

In order to characterize the polymer, Fourier Transform Infrared Spectroscopy (FTIR) 

was used to study the structure and complexation of the polymers. Infrared spectroscopy was 

performed on a Nicolet Avator 360 FTIR spectrometer, with a 32 scan per sample cycle. For 

each sample, scans were recorded from 4000 to 400 cm
-1

 with a resolution of 4 cm
-1

. The 

spectra obtained show a signal at 1700 cm
-1

 associated with the C=O stretching vibration of 

carboxylic group, one signal at 2900 cm
-1

 due to CH2 stretching and the signal at 1125 cm
-1

 

associated with C-O-C asymmetric stretching. 
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Differential scanning calorimetry (DSC) of PEOEMA and CEOEMA was carried out 

with a TA Instruments DSC Q-10 differential scanning calorimeter calibrated with indium. 

The measurements were carried out in the range of 193K to 423K at a heating rate of 

10Kmin
-1 

under nitrogen atmosphere.  

Dynamic mechanical measurements of PEOEMA and CEOEMA were performed by 

means of a Dynamic Mechanical Analyzer (TA Instruments DMA Q800) calibrated with steel 

standards. The measurements were carried out in the tension mode on molded probes of 

1070.1 mm over the temperature range from 133K-400K. Before the measurements, 

samples were dried in vacuum oven at 303K to remove moisture. Measurements were carried 

out at 1Kmin
-1

 heating rate, at frequencies of 0.3, 1, 3, 10 and 30 Hz. In the case of 

CEOEMA, the measurements of the Young’s modulus in the frequency domain were 

extended up to 100 Hz.  

 

3. Results 

 

The DSC thermograms for PEOEMA and CEOEMA exhibit well developed 

endotherms associated with the glass transition temperature. The values of Tg of the samples, 

estimated as the temperature at the midpoint of the endotherms, and the heat capacity 

increments (cp) at Tg were 278K, 0.27 J/gK and 268K, 0.28 J/gK for CEOEMA and 

PEOEMA respectively. Thus, the crosslinking agent reduces the number of chains thermally 

activated and the chain mobility and raises the Tg ca 10K, and diminished the change in 

specific heat capacity (cp). This effect can be understood in terms of decreasing free volume.  

Storage and loss moduli isochrones for PEOEMA and CEOEMA, over the 

temperature window 133–400K, are shown in Figures 3 and 4, respectively. The loss 

isochrones corresponding to PEOEMA show three differentiated relaxations zones. Around 

270K (1Hz), the dynamic mechanical response is dominated by the glass-rubber relaxation, 

but at lower temperatures, in the glassy state, a broad absorption centered around 210K is 

evident. This absorption is labeled  relaxation. Finally, the loss isochrones show the presence 

of a -relaxation process below 145K. The three relaxations observed in the isochrones of 

PEOEMA are reduced to two relaxations in the isochrones corresponding to CEOEMA. Thus 

the loss isochrones for the latter system exhibit at 1Hz a sub-glass absorption centered at 

155K ( relaxation) followed in increasing order of temperature by the glass-rubber relaxation 

( process) centered at 280K at the same frequency. As would be expected, the location of the 
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 peak is shifted to higher temperatures as frequency increases, and the intensity of the peak 

increases as the frequency of the isochrones increases. The location of the  relaxation is also 

displaced to higher temperatures as frequency increases, but the intensity of the relaxation 

seems to be independent on the frequency of the isochrone. 

The more significant differences between the mechanical behavior of PEOEMA and 

CEOEMA are the following: (i) the  relaxation of former system is located at slightly lower 

temperature than that of the latter; (ii) the  relaxation detected in the isochrones of PEOEMA 

disappears in CEOEMA, and (iii) as a consequence of the reduction in chains mobility caused 

by crosslinking the location of the  relaxation is shifted to higher temperature, in accordance 

with the DSC results. 

 

4. Discussion 

 

Since the -relaxation in the spectra falls just on the low temperature limit reached by the 

apparatus, it is difficult to estimate the parameters describing the relaxation. Using the 

Heijboer assumption that states that the Arrhenius equation describing the temperature 

dependence of the relaxation times associated with the secondary relaxations of most flexible 

polymers has the same pre-exponential factor 14.5
0  10 s   [10], the activation energies of 

the  relaxations of  PEOEMA and CEOEMA are, respectively, 44.4 kJmol
-1

 and 47.4 

kJmol
-1

  

An alternative method of obtaining directly the activation energies is to express the loss 

relaxation results in terms of compliance data, taking into account that the following 

inequalities: max max max( '' ) (tan ) ( '' )T E T T D 
. 

This means that the loss compliance 

relaxations are shifted to higher temperatures than the loss modulus relaxation processes. As 

can be seen in Figure 5, the compliance  relaxation covers a temperature range that allows 

the estimation of the activation energy, strength and shape parameter of the process.  

Sub-glass relaxations are usually nearly symmetric peaks, and therefore both 

isochrones and isotherms can be characterized by means of the Fuoss-Kirkwood equation [57] 

" "
max

max

1 1
sech aE

mD D
R T T

  
    

  
 (1) 

where Tmax is the temperature where D have a maximum value ( "
maxD ), Ea is the apparent 

activation energy, R is the gas constant, and m is an empirical parameter (0 < m < 1) related to 
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the broadness of the relaxation in the sense that the smaller m, the wider the distribution is. 

The value of m = 1 corresponds to a single relaxation time (Debye peak). The strength of the 

mechanical relaxation peak can be calculated from the relationship D=2Dmax/m [4].  

The parameters of eq (1) fitting the compliance  processes of PEOEMA and 

CEOEMA were determined from a multiple nonlinear regression analysis of the experimental 

results, varying the three characterizing peak parameters (i.e., Dmax, mEa/R, Tmax). In the inset 

of Figure 5, an example of the quality of the fit is shown. In the case of the PEOEMA the  

absorption is followed by the  process. However, the latter process is not well defined 

because the right side of the relaxation overlaps with the low temperature side of the  

absorption. As a consequence, only the parameters that describe the  relaxation were 

estimated and their values are collected in Table I. The errors associated with the parameters 

show the quality of the fit at the frequencies investigated. The parameter m does not show a 

noticeable dependence on frequency. Alternatively, the low values of m are an indication of 

the distributed character of the  process and, as expected, the temperature dependence of the 

relaxation exhibits Arrhenius behaviour (ARRH). The activation energy calculated from the 

Arrhenius plot was 54 kJ·mol
-1

 and 55 kJ·mol
-1

 for PEOEMA and CEOEMA, respectively.  

It is of interest to compare the activation energies of the secondary processes with 

those obtained from dielectric results. The dielectric loss isochrones for PEOEMA and 

CEOEMA, taken from previous work [55], are shown in Figure 6. Arrhenius plots for the 

dielectric  and  relaxations of PEOEMA and for the  relaxation of CEOEMA are shown in 

Figure 7. From these plots, values of 29.90.4 kJmol
-1

 are obtained for the activation 

energies of the dielectric  relaxation of both PEOEMA and CEOEMA and 41.60.3 kJmol
-1

 

for the activation energy of the dielectric  relaxation of PEOEMA. The molecular origin of 

the secondary dielectric relaxation can be qualitatively explained as follows. The ester group 

of the side chains of PEOEMA and CEOEMA has a dipole moment of 1.78 D that forms an 

angle of 153º with the C(CH3)-C(O) bond while the dipole moment of the ether group bisects 

the skeletal CH2-O-CH2 bond and has value of 1.23 D [18]. In all trans conformation both 

dipoles have nearly the same direction and therefore the polarity of the all trans conformation 

of the side groups reaches the maximum value. On the other hand the C(O)-O bonds are 

restricted to the trans states and the O-CH2 bonds strongly prefer the trans conformation. 

However, since the CH2-CH2 bonds prefer the gauche conformation, conformational 

transitions about these bonds produce dielectric activity which can be responsible for the  

relaxation observable in the dielectric and mechanical spectra. It is more difficult to elucidate 
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the origin of the  relaxation appearing in the mechanical and dielectric spectra of PEOEMA. 

However, the fact that this relaxation is absent in the spectra of CEOEMA suggests that it 

proceeds mainly from motions in the polymer backbone which are impeded by crosslinking. 

The fact that the mechanical  relaxation exhibits an activation energy nearly 80% higher than 

the dielectric  process suggests that the molecular motions involved in the mechanical 

process are more complex than in the dielectric one. Combined molecular motions about 

C(CH3)-C(O) and CH2-CH2 bonds of the side groups may be an origin of the mechanical  

process. As for the mechanical  relaxation, the absence of this process in the spectra of 

CEOEMA suggests that the crosslinking suppresses that process. Therefore  the mechanical  

relaxation of PEOEMA must be attributed to local cooperative motions of the backbone. 

The temperature dependence of the mean relaxation time associated with the 

mechanical glass-rubber relaxation was analyzed in the context of the free volume theory by 

means of the Vogel-Fulcher-Tammann-Hesse (VFTH) equation [58-60] 

maxln
v

M
Af

T T

 
   

 
 (2) 

where A and M are constants, vT  is an empirical parameter related to the Kauzmann 

temperature or the temperature at which the conformational entropy is zero and fmax is the 

frequency at which "
E passes through the maximum value. The parameters of eq.(2) that fit 

the Arrhenius plots are A = (31.5.04.2), M = (1514140K, Tv = (233.17.2)K for CEOEMA 

and A = (23.30.2 ), M = (111410)K, Tv = (218.32.2)K, for PEOEMA.  

By comparing eq (2) with the Doolittle expression [61-62], the fraction of free volume 

at the glass transition temperature, g/B, and the free volume expansion coefficient 

(1/ )( / )f pV V T    are estimated from the following expressions  

1

g g v

f

T T

B M

B M










 (3) 

According to the Cohen-Turbull theory, B is a parameter close to the unit related to the ratio 

between the critical volume for a relaxation process to take place and the volume of the 

segments intervening in the process.
 
Assuming B = 1,

 
the values of the relative free volume at 

Tg for PEOEMA and CEOEMA were, respectively,  and , whereas 

the values of f amount to (0.90




 and (0.66





 It is worth 

noting that the values of g and f are nearly twice the values reported for this quantities for 
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most flexible polymers, presumably as consequence of the fact that the relaxation curves only 

extend over a rather limited span of frequencies and temperatures [9]. In spite of that, the 

values of f are very close to the results found from the temperature dependence of the 

dielectric  relaxation, about 0.9  10
-3

 K
-1

 for both systems, whereas the results estimated for 

g from the dielectric experiments are 0.040 and 0.037 for PEOEMA and CEOEMA, 

respectively. 

A detailed inspection of the isochrones corresponding to the storage relaxation 

modulus of CEOEMA shows two inflexion points centered in the vicinities of 250K and 

280K, which apparently reflects the presence of two relaxations. This is confirmed by the 

curve representing the derivative of the real component of E with respect to the temperature. 

The curve dE /dT for CEOEMA, shown in Figure 8, exhibits two peaks in the vicinity of the 

calorimetric glass transition temperature, absent in the curve dE /dT corresponding to 

PEOEMA. The low temperature peak, centered at 250 K cannot be attributed to the  peak 

detected around 200 K in the relaxation loss spectra of PEOEMA. Although the glass 

transition temperature depends on the free volume and temperature, thermodynamical 

considerations have shown recently that the contribution of thermally activated 

conformational transitions to the glass-rubber relaxation is more important than the volume 

[8]. According to Fujimori and Oguni [63], the non-Arrhenius behavior of the  relaxation 

could be interpreted as caused by changes in the activation energy with temperature. The 

value of this parameter can be calculated as a function of temperature using the 

thermodynamic relationship  

 

 

1
ln'

       
1/ )ln '

1
1/ )

   
'

 
l

 
n

TfE

Tf E

T E f 

      
      

     
 (4) 

Since the activation energy is given by the following equation  

'

ln
                       

(1/ )
a

E

f
E R

T

 
  

 
 (5) 

and taking into account the Schwarzl and Struik [64] approximation 

'
''

2 ln

d E
E

d f


  (6) 

the following equations that relates the activation energy to the components of the complex 

modulus is obtained [65-68] 

2 '
                       

2 ''
 a

RT d E
E

E dT


 (7) 
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Curves depicting the variation of the activation energy for PEOEMA and CEOEMA in the 

whole temperature window, evaluated by using eq. (7), at 30 Hz, are shown in Figure 8. 

Figure 8 also shows  the temperature dependence, of the E, E and dE/dT at the same 

frequency. Two well developed peaks are observed for CEOEMA centered at the same 

temperatures as the less defined dE/dT peaks whereas a single peak associated with Tg 

appears in the distribution of activation energies of PEOEMA. Moreover, the temperature 

dependence of the apparent activation energy corresponding to the -relaxation was evaluated 

in terms of the VFTH parameters (     
2

1a vT R M TE T
    

 
) [64]. As we can observe, 

according to the VFTH prediction, the Ea decreases with the temperature increasing, and the 

values obtained near Tg are similar to those one obtained by using eq. (7). In view of these 

results, the first peak, centered at 240K, corresponding to the distribution of activation 

energies in CEOEMA seems to be associated with a low temperature glass rubber relaxation, 

neither detected in the calorimetric thermograms nor in the dielectric relaxations, presumably 

arising from segmental motions of dangling chains in the chemically crosslinked network. 

The location of the network, nearly 15K below the peak associated with the Tg of PEOEMA, 

suggests that the dangling chains have relatively low molecular weight. 

Previous studies showed important differences between the microstructure at 

mesoscopic level of PEOEMA and CEOEMA [55]. Thus the X-ray diffractogram patterns of 

the crosslinked polymer exhibit two peaks centered at q = 5.6nm
-1

 (peak I) and q = 12.8nm
-1

 

(peak II). This pattern reflects the formation of nanodomains formed by the side groups 

flanked by the skeletal bonds in such a way that peak I arises from interaction between the 

skeletal bonds limiting the nanodomains whereas the peak at higher angles is produced by 

interactions between the side groups of the nanodomains. However, the X-ray diffractogram 

of PEOEMA only presents the second peak at high angles (q = 12.8nm
-1

), therefore ruling out 

the presence of nanodomains in the melt of this polymer. The differences in microstructure of 

CEOEMA and PEOEMA are reflected in the dielectric spectra of the respective systems at 

high temperatures, shown in Figure 9. The isochrones corresponding to the dielectric 

modulus of PEOEMA present two well defined peaks: the low temperature peak associated 

with the  relaxation is followed by a rather sharp peak centered at 313K arising from 

interfacial polymer-electrode phenomena. However, the high temperature peak of CEOEMA 

presents in addition to the peak corresponding to the  relaxation an ostensible and wide peak 

that it is the result of two overlapping peaks (centered at 353 and 393K). The low temperature 

peak reflects the MWS relaxation arising from transport of charges in the bulk over a 
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considerable distance with respect to the atomic or segments caused by the heterogeneity of 

the system [69-73]. It can be concluded that the nanodomains to which we alluded before are 

responsible for this relaxation. As in the case of PEOEMA, the deconvoluted high 

temperature peak is produced by interfacial polymer electrode phenomena. Owing to the 

crosslink nature of CEOEMA the loss modulus isochrones for these systems were extended to 

temperatures well-above Tg. The corresponding isochrones plotted in parallel with the loss 

dielectric modulus in Figure 9 do not show an additional absorption above that of the  

relaxation. However the nanodomains present in CEOEMA do not seem to have any 

incidence in the response of the system to mechanical perturbation forces. 

 

4. Conclusions 

 

Uncrosslinked PEOEMA chains exhibit two secondary relaxation processes in the 

glassy state which in increasing order of frequency are called  and  relaxations. The  

relaxation is suppressed by slightly crosslinking the PEOEMA chains with only the  

relaxation remaining. The  relaxation may be produced by conformational transitions about 

the OCH2-CH2O bonds of the alcoholic residue whereas the  relaxation may arise from local 

motions of the polymer backbone. 

The storage relaxation modulus isochrones of CEOEMA present two inflexion points 

in the glass-rubber transition, centered at the peak maxima of the variation of activation 

energy with temperature in the transition. These phenomena, neither detected in the 

calorimetric thermograms nor in the loss dielectric spectra, presumably are associated with 

segmental motions of the dangling chains of the networks (low temperature inflexion point) 

and the segmental motions of the chains between crosslinked points (high temperature 

inflexion).  

The mesoscopic structure of the crosslinked polymer that gives rise to a Maxwell-

Wagner-Sillars relaxation in the dielectric spectra at high temperature does not seem to have 

any incidence in the relaxation mechanical spectra. 
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Figure Caption 

 

Figure 1. Structure of  2 ethoxyethyl methacrylate  (EEMA) 

Figure 2. Structure of diethylene glycol dimethacrylate (DEGDMA) 

Figure 3. Storage and loss Young’s modulus as a function of the temperature for PEOEMA at 

several frequencies (0.3 [square], 1 [circle], 3 [up triangle], 10 [triangle bellow], 30 [diamond] 

Hz).  

Figure 4. Storage and loss Young’s modulus as a function of the temperature for CEOEMA 

at several frequencies (0.3 [square], 1 [circle], 3 [up triangle], 10 [triangle bellow], 30 

[diamond] Hz). 

Figure 5. Temperature dependence of the loss compliance function at several frequencies (0.3 

[square], 1 [circle], 3 [up triangle], 10 [triangle bellow], 30 [diamond] Hz) for (a) CEOEMA 

and (b) PEOEMA. Inset shows the quality of the fit at one temperature for each polymer at 

1Hz. 

Figure 6. Temperature dependence of the loss dielectric permittivity for PEOEMA and 

CEOEMA at several frequencies. 

Figure 7. Arrhenius plots for the  (blue square) and    (green triangle). dielectric 

relaxations.  The temperature dependence of the mechanical  relaxations for PEOEMA and 

CEOEMA are represented for open and filled circles, respectively. 

Figure 8. Plots showing the temperature dependence of '
E (green curve), "

E  (red curve), 

' dTdE  (purple curve) and aE  (blue curve) for (a) PEOEMA and (b) CEOEMA at 30 Hz. 

Figure 9. Mechanical loss Young’s modulus Eand dielectric loss modulus M as a function 

of temperature for (a) PEOEMA and (b) CEOEMA, at 10Hz. 
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Table 1. Values of fit Fuoss-Kirkwood parameters, and m  and D of the  relaxation process 

at different frequencies 

 

 

f (Hz) D”max,   (MPa) mEa/R, K m D (MPa) 

 CEOEMA 

0.3 7.310
-6
1.310

-8
 80513 0.1220.000 1.210

-4
3.410

-7
 

1 7.610
-6
1.110

-8
 88414 0.1340.000 1.110

-4
3.010

-7
 

3 7.510
-6
1.310

-8
 93413 0.1410.000 1.110

-4
7.310

-8
 

10 7.810
-6
8.210

-9
 9169 0.1390.001 1.110

-4
-5.010

-7
 

30 8.210
-6
1.310

-8
 86912 0.1320.000 1.210

-4
1.510

-8
 

 PEOEMA 

1 1.210
-5
2.610

-8
 78019 0.1170.003 2.010

-4
4.0910

-6
 

3 1.210
-5
1.610

-8
 6967 0.1040.004 2.310

-4
8.110

-6
 

10 1.310
-5
1.410

-8
 6615 0.0990.004 2.610

-4
-9.810

-6
 

30 1.410
-5
2.010

-8
 6095 0.0910.003 3.110

-4
1.110

-5
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