
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1140/epjd/e2010-10118-y

http://hdl.handle.net/10251/67192

EDP Sciences

Sadykova, SP.; Ebeling, W.; Tkachenko Gorski, IM. (2011). Static and dynamic structure
factors with account of the ion structure for high-temperature alkali and alkaline earth
plasmas. European Physical Journal D. 61(1):117-130. doi:10.1140/epjd/e2010-10118-y.



EPJ manuscript No.
(will be inserted by the editor)

Static and Dynamic Structure Factors with Account of the Ion

Structure for High-temperature Alkali and Earth-alkali Plasmas

S. P. Sadykova1a, W. Ebeling1b and I. M. Tkachenko2c

1 Institut für Physik, Humboldt Universitat zu Berlin, Newtonstr. 15, 12489 Berlin, Germany

2 Department of Applied Mathematics, Polytechnic University of Valencia, 46022 Valencia, Spain

Received: date / Revised version: date

Abstract. The e− e , e− i, i− i and charge-charge static structure factors have been calculated for Alkali

and Be2+ plasmas using Gregori’s method [14]. The dynamic structure factors for Alkali plasmas have

been calculated using Adamjans’ et al method [52], [53]. In both methods the screened Hellmann-Gurskii-

Krasko potential, obtained on a base of Bogoljubow method, has been used taking into account not only

the quantum-mechanical effects but also the ion structure [13].

PACS. 52.38.Ph X-ray scattering – 52.27.Aj Alkali and Earth-alkali Plasmas

1 Introduction

The structure and thermodynamic properties of Alkali and

earth-alkali plasmas are of basic interest and of impor-

tance for high-temperature technical applications. In the

enviroment of the critical point the materials are in the

thermodynamic state of a strongly coupled plasma. Here

we will go far beyond the critical point to the region of

nearly fully ionised plasmas which is T ≥ 30000K for

Alkali and T ≥ 100000K for earth-alkali plasmas. The

a e-mail: saltanat@physik.hu-berlin.de
b e-mail: ebeling@physik.hu-berlin.de
c e-mail: imtk @ mat.upv.es

investigation of thermodynamic properties in Alkali plas-

mas under extreme conditions is not only important for

basic research. There are many applications, e.g. in ma-

terial sciences, geophysics and astrophysics. Furthermore,

these studies throw light on the complex picture of phase

transitions in metal vapors which play an outstanding role

in technology.

Over the past years a considerable amount of effort has

been concentrated on the experimental [1]-[5] and theoret-

ical [6]-[9] investigation of the behavior of Alkali metals in

the liquid and plasma state expanded by heating toward
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Table 1. The ionization energies Ii (eV ) of Alkali and Be

atoms

H Li Na K Rb Cs Be

I1 13.595 5.39 5.138 4.339 4.176 3.893 9.306

I2 - 75.62 47.29 31.81 27.5 25.1 18.187

the liquid-vapor critical point. High-temperatures Alkali

plasmas are widely applied in many technical projects.

For instance, Li is an Alkali metal of considerable tech-

nological interest. Lithium is planned to be used in iner-

tial confinement fusion, solar power plants, electrochemi-

cal energy storage, magnetohydrodynamic power genera-

tors and in a lot of further applications. Recent advances

in the field of extreme ultraviolet EUV lithography have

revealed that laser-produced Li plasmas are source can-

didates for next-generation microelectronics [11], [12]. For

this reason we believe that the study of basic properties

of Alkali plasmas, like the microfield distributions are of

interest. In the previous work we studied Li+ plasma [13].

In this work, we consider Li+, Na+, K+, Rb+, Cs+ and

Be2+ plasmas. For simplicity of the calculations we take

into account here only single ionization for Alkali plasmas

(ne = ni) and doubled for Beryllium plasma (ne = 2ni),

where ne, ni are the concentrations of electrons and ions

respectively. Li, Na, K, Rb, Cs atoms have one outer elec-

tron and Be2+ has two outer electrons. In the table 1 the

ionization energies of Alkali atoms and Berillium atom

are presented. Correspondingly we will study tempera-

tures around 30000K and 100000K, where most of outer

electrons are ionized, but the rest core electrons are still

tightly bound.

Recently, X-ray scattering has proved as a powerful

technique in measuring densities, temperatures and charge

states of warm dense matter regimes. In inertial confine-

ment fusion and laboratory astrophysics experiments the

system experiences a variety of plasma regimes and of high

interest are the highly coupled plasmas Γii ≥ 1, Γii =

z2e2/(4ε0kBTrii) with rii = (3/4πni)
1/3 and the electron

subsystem exhibiting partial degeneracy. Such regimes can

be often found during plasma-to-solid phase transitions.

Recent experiments with a solid density Be plasma have

shown high ion-ion coupling regimes and their interpreta-

tion must account for significant strong coupling effects.

The present study is devoted to the study the of the static

and dynamic structure factors for Alkali and Be2+ plas-

mas at temperatures T ≥ 30000K and T ≥ 100000K. The

structure factors are the fundamental quantity that de-

scribes the X-ray scattering cross-section from a plasma.

Since they are related to the density fluctuations in the

plasma, they directly enter into the expressions for the to-

tal cross-section. In the case of a weakly coupled plasma

SF can be obtained from the Debye-Hückel theory or the

random phase approximation (RPA), while at moderate

coupling the RPA fails to predict the correct spatial cor-

relations. However, recent work (Gregori et al, Arkhipov

et al.) has shown that the technique developed in the clas-

sical work of Bogoljubov provides good expresses of SF for

moderately coupled plasmas.

For determination of the static and dynamic structure

factors one needs to have a screened pseudopotential as
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an essential input value. The semiclassical methods al-

low to include the quantum-mechanical effects by appro-

priate pseudopotentials which resolve divergency problem

of the electric fields at small distances. This method was

pioneered by Kelbg, Dunn, Broyles, Deutsch and others

[20] - [24] and later significantly improved [25],[26]. These

models are valid for highly temperature plasmas when

the ions are bare or there is no significant influence of

the ion shell structure. In order to correctly describe Al-

kali plasmas at moderate temperatures one needs to take

into account the ion structure. For example, for the be-

haviour of Alkali plasmas the short range forces between

the charged particles are of great importance. For Alkali

plasmas at small distances between the particles devia-

tions from Coulomb law are observed which are mainly

due to the influence of the core electrons. The method of

model pseudopotentials describing the ion structure was

pioneered by Hellmann. Hellmann demonstrated, using

the Thomas-Fermi model, that the Pauli exclusion prin-

ciple for the valence electrons can be replaced by a non-

classical repulsive potential [27]. This method was later

rediscovered and further developed for metals by Heine,

Abarenkov and Animalu [28]-[30]. Heine, Abarenkov pro-

posed a model, where one considers two types of interac-

tion: outside of the shell, where the interaction potential

is Coulomb and inside, where it is the constant. Param-

eters of this model potentials were determined using the

spectroscopic data. Later on the different pseudopoten-

tial models were proposed . For the more detailed review

we refer a reader to [30]. All these models have the one

disadvantage. Their Fourier transforms (formfactor) are

not sufficiently convergent when the Fourier space coor-

dinate goes to infinity. Gurskii and Krasko [31] proposed

a model potential which eliminates this problem and pro-

vides smoothness of the pseuopotential inside the shell

giving its finite value at small distances. First attempt

to construct the model for Alkali plasmas taking into ac-

count ion structure was made in works [33]-[35] where the

Hellmann type pseudopotentials were used. In this work

we use Hellmann-Gurskii-Krasko pseudopotential model

for electron-ion interactions and its modified version of

ion-ion interactions. There is also a high interest to con-

struct a pseudopotential model of particle interaction in

the dense plasma taking into an account not only the

quantum-mechanical effects including ion shell structure

at short distances but also screening field effects. In the

work [13] the screened Hellmann-Gurskii-Krasko potential

was derived by using Bogoljubow’s method as described

e.g. in [36], [37], [38] and [39].

We consider Li+, Na+, K+, Rb+, Cs+ and Be2+ plas-

mas of a TCP with the charges Ze− = −e+ and masses

mi >> me and the densities ne = Zni (Z = 1, 2). We will

calculate here the static and dynamic structure factors in

TCP, including quantum effects and the ion shell structure

using Hellmann-Gurskii-Krasko pseudopotential (HGK)

and find the corresponding radial distribution functions.

For determination of the static and dynamic structure fac-

tors we use the screened Hellmann-Gurskii-Krasko poten-

tial obtained in [13]. The method which is used for the

calculation of the static structure factor is the Gregori et
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al.while for dynamic - the V.M. Adamjan et al. for two-

component plasmas [52], [53]. We would like to underline

again that the inclusion of both components into the the-

ory and a correct account of the short-range electron-ion

interactions, is very essential for an understanding of the

structure factors in the plasma.

2 Pseudopotentials taking into account the

ion structure. Hellmann-Gurskii-Krasko

potential

Clearly, the Coulombic law is not applicable to the forces

between the charges in Alkali plasmas since there are strong

deviations from Coulombs law at small distances due to

the influence of core electrons.

In many problems of atomic and molecular physics one

can divide the electrons of the system into valence and core

electrons. Often the important physical properties are de-

termined by the valence electrons. In a series of pioneering

papers Hellmann attempted to develop a computational

model in which the treatment of such atoms and molecules

is reduced to the treatment of valence electrons [27]. Hell-

mann demonstrated that the Pauli exclusion principle for

the valence electrons can be replaced by a nonclassical

potential (Abstossungspotential) which is now called the

pseudopotential. Hellmann’s idea was to replace the re-

quirement of orthogonality of valence orbital to the core

orbitals by the pseudopotential what made the respective

mathematical calculations much simpler.

For the actual purpose of atomic and molecular cal-

culations Hellmann suggested a simple analytic formula.

Let ϕ be the sum of electrostatic, exchange, and polar-

ization potentials, representing the interaction between a

valence electron and the core of an atom. Let ϕp be the

Abstossungspotential. The potential ϕH = ϕ + ϕp may be

expressed:

ϕH
ei(r) = − ze2

4πε0r
+

e2

4πε0r
A exp(−αr), (1)

Here z is the ionic charge of the core; that is, if the nu-

cleus contains Z positive charges and the core contains

N electrons then z = Z − N . The constants A and α

are determined from the requirement that the potential

ϕH should reproduce the energy spectrum of the valence

electron as accurately as possible. Later on several mod-

ifications were introduced by Schwarz, Bardsley etc. into

the determination of the Hellmann potential parameters

without changing the basic analytic form of the potential

[42]. For instance, Schwarz improved the determination of

the potential parameters of the second Be+, Mg+, Ca+,

Sr+, Zn+ and first Li, Na, K, Rb, Cu periodic families

considerably obtaining the better fit to the empirical en-

ergy levels [43].

However, all the mentioned above pseudopotentials have

one drawback. They are usually described in r space by a

discontinuous function or have a relatively hard core as in

a case of Hellmann potential. As a result, their Fourier-

transforms (formfactors) at q → ∞ do not provide the

sufficient convergence of series and integrals of the per-

turbation theory. Alternatively, Gurskii and Krasko con-

structed a pseudopotential model excluding the mentioned
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shortcoming by introducing a continuous in r space pseu-

dopotential. On a base of smoothness of the obtained elec-

tron density distribution in an atom, Gurskii and Krasko

proposed the following electron-ion model pseudopotential

[31], [44]:

ϕHGK
ei(r) = − ze2

4πε0r

[

1 − exp

(

− r

RCei

)]

+
ze2

4πε0

a

RCei

exp

(

− r

RCei

)

, (2)

where z− valency, RCei = rCeirB and a are determined

experimentally using the ionization potential and the form-

factor of the screened pseudopotential at the first sites of

the reciprocal lattice. rCei is defined as a certain radius

characterizing the size of the region of internal electron

shells. If such measurements are not available, the sec-

ond condition is replaced by the constraint that P = 0

at T = 0 in the equillibrium lattice. The magnitudes are

given in SI system of units. In this work values of a, rCei

are taken from [32]. One needs to make a remark that the

first two terms are identical with the potential of Hell-

mann [27]. Due to this fact we call this pseudopotential

as Hellmann-Gurskii-Krasko potential. The results of cal-

culation of bound energy and phonon spectra with the

help of Hellmann-Gurskii-Krasko (HGK) potential were

found in a good agreement with the experimental data

and can be used in a wide range of investigation of ther-

modynamic properties of Alkali plasmas. Unfortunately

there are no availbale HGK parameters for Be2+ element.

That is why we have found the parameters but for an al-

ternative pseudopotential namely Fiolhais et al. [57]. The

Fiolhais potential has the following view:

ϕF
ei(r) = − ze2

4πε0rc

1

R
{1 − (1 + βR) exp(−αR)}, (3)

with R = r/rc, rc being a core decay length, α > 0,

β = (α3 − 2α)/4(α2 − 1) and A = α2/2 − αβ. In [57]

there are two possible choices of parameters - “universal”

and “individual”. We made a fit for the“universal” param-

eters of HGK to the Fiolhais et al., which are a = 3.72,

r = 0.22. In [57] the universal parameters were chosen to

obtain the best agreement between calculated and mea-

sured structure factors of Alkali metals. In the Fig. 1 the

comparison between the electron-ion Fiolhais et al., HGK

and Coulomb potentials for Be2+ plasma are shown. One

can easily see that HGK almost coincided with the Fiol-

hais et al. potential. In the Fig. 2a one can see the com-

parison between the different pseudopotential of different

Alkali plasmas, where by electron-ion Hellmann-Gurskii-

Krasko potential the minimum appears. The Hellmann

type pseudopotentials were proposed in works [33]- [35] to

use for Alkali plasma.

The Hellmann-Gurskii-Krasko model for an ion-ion

interaction shown in Fig. 2b for Alkali plasmas is the fol-

lowing:

ϕHGK
ii(r) =

z2e2

4πε0r

[

1 − exp

(

− r

RCii

)]

+
z2e2

4πε0

a

RCii

exp

(

− r

RCii

)

, (4)

Here values of rCii, a are not given in literature. rCii is

taken hypothetically as the doubled value of that taken

for e − i interaction rCii = 2rCei taking in this way both

ions cores (closed shells) into account. We will study this

in more detail and compare with the hard-core potential



6 S. P. Sadykova et al.: Stat. and Dyn. Struc. Factors with Account of the Ion Structure

0 1 2 3 4 5
0

1

2

3

ii(R
), 

H
a

R=r/rB

Li +

Na+ 
K +

Rb+

Cs+

Coulomb

a)

0,0 0,5 1,0 1,5 2,0 2,5 3,0 3,5 4,0 4,5 5,0

0

1

2

3

ei
(R

), 
H

a

R=r/rB

Li +

Na+ 
K +

Rb+

Cs+

Coulomb

b)

Fig. 2. Comparisons among the different HGK potentials of different Alkali plasmas. As the length scale we use the atomic

system of units.

Table 2. The parameters of the Hellmann-Gurskii-Krasko potential given in a.u. Here, in the case z = 2 the given parameters

correspond to the interaction of the double charged ion with the electron.

Li Na K Rb Cs Be Mg Ca Sr Br

z 1 1 1 1 1 2 2 2 2 2

a 5.954 3.362 2.671 2.293 2.214 3.72 2.588 2.745 2.575 2.870

rcei 0.365 0.487 0.689 0.779 0.871 0.22 0.427 0.571 0.644 0.698

rcii 0.73 0.974 1.948 1.558 1.742 0.44 0.854 1.142 1.288 1.396

described in [34]. In the table 2 the parameters of the

Hellmann-Gurskii-Krasko potential for Alkali elements and

elements of the second periodic family are presented. Here,

we note that ϕHGK
ei(r) potential describes the interac-

tion of a valence electron with the corresponding ion core

of a charge z and radius RCei, while ϕHGK
ii(r) describes

the interaction between the two ion cores of a charge z

with the common radius RCii.

In [34] it was proposed to describe the ion-ion interac-

tion by the model of charged hard spheres with the crys-

tallographic radii Ri. The electrical part of the ion-ion

interaction is to be described by a pseudopotential:

ϕHC
ii(r) =











ze2

4πε0r , r > 2Ri

∞, r < 2Ri

(5)
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Fig. 1. Comparisons among the e− i HGK, Fiolhais et al. and

Coulomb potentials for (a) Be2+. As the length scale we use

the atomic system of units.

In principle the choice of the parameters for the ion-ion

interaction should be based on methods similar to those

in [32]. As a simple approximation we propose to use the

crystallographic ion radii Ri [45] in the first constituent

of the potential:

ϕSC
ii(r) =

z2e2

4πε0r

[

1 − exp

(

− r

Ri

)]

+
z2e2

4πε0

a

RCii

exp

(

− r

RCii

)

, (6)

Furthermore, on a base of our calculations we came to the

conclusion that the potential is not sensitive with respect

to the a parameter of the ion-ion interaction. That is why

a is taken the same as for electron-ion interaction. In the

Figure 3a, b the comparison between the HGK model and

Hard Core (HC) model is shown.

The pseudopotentials which are used in our calcula-

tions were originally developed for applications in the elec-

tronic band structure and binding energies in Alkali met-

als. However the derivation used by Hellmann and his fol-

lowers is basically working with wave functions of a few

particles and not N-particle wave functions of the solid

state. For this reason we can not see strong arguments

against applications to the two-particle interactions in the

plasma state. Of course this is a working assumption which

needs further justification. Anyhow we are convinced that

application of pseudopotentials of Hellmann-type is much

nearer to reality than the use of pure Coulomb potentials

or hard-core potentials. Further we would like to argue

that the experimental investigations of Alkali metals near

to the critical point did not show the existence of deep dif-

ferences between the two particle interactions in the liquid

and the gaseous state [1], [2]. What is clearly different are

the multi-particle interactions, however multi-particle ef-

fects are less relevant at the densities we consider here.

2.1 Screening of the Hellmann-Gurskii-Krasko

potential

To determine the thermodynamic and transport proper-

ties of semiclassical fully ionized plasma effective poten-

tials simulating quantum effects of diffraction and symme-

try [20] - [24] and later significantly improved potentials

[25,26] are widely used. In particular, Deutsch and co-

workers [46], [47] have obtained the following form of ef-

fective interaction potential of charged particles in plasma

medium:

ϕee =
e2

4πε0r

[

1 − exp

(

− r

λee

)]

+kBT ln 2 exp

(

− r2

λ2
ee ln 2

)

,

(7)

where e is the electric elementary charge, λee = ~/
√

mekBT

is the electron thermal de-Broglie wavelength. The pseu-
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Fig. 3. Comparisons among the i − i HGK, Hard Core, Soft Core and Coulomb potentials for (a) Na+ and (b) Cs+ plasmas.

As the length scale we use the atomic system of units.

dopotential (7) does not take into account collective events

in plasmas. In the works [38], [39] it was proposed to use

the e − e effective potential (7), corresponding e − i and

i− i potentials at short distances and the screened poten-

tial, treating three particle correlations at large ones. The

transition from one potential curve to another was real-

ized at the intersection point by the spline-approximation

method.

The pseudopotential model (7) was developed only

for highly ionized plasmas. Since most experimental data

available refer to partially ionized plasmas at moderate

temperatures when the ions partially retain their inner

shell, it is of a high interest to construct the pseudopoten-

tial model which takes into account not only the quantum-

mechanical and screening field effects but also the ion shell

structure. In order to include the screening effects, in pre-

vious work [13], we applied the method developed in [37]

and [39]. In [39] the authors developed the classical ap-

proach based on the chain of Bogoljubow equations [36]

for the equilibrium distribution functions where the poten-

tial (7) was taken as a micropotential. In our paper [13] we

derived the Fourier transforms of the screened HGK eq.

(11)-(14) therein using the e − i, i − i Hellmann-Gurskii-

Krasko pseudopotentials (2), (4) and e−e Deutsch poten-

tial (7) as micropotentials.

In the work [13] there was obtained the following screened

HGK : In Fourier space this system of integral-differential

equations turns into a system of linear algebraic equations:

Φab(k) = ϕab(k)− 1

kBT
[neϕae(k)Φeb(k) + niϕai(k)Φib(k)]

(8)

where a, b = i, e. Solving the system (8) for two-component

plasma one can derive the following expressions for the

Fourier transform Φab(k) of the pseudopotential Φab(r):

Φei(k) =
Ze2

ε0∆

(2a − 1)Rcei
2k2 − 1

k2(1 + k2Rcei
2)2

, (9)
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Φee(k) = e2

ε0∆

{

1
k2(1+k2λee

2)

+ 1
k4rDi

2

[

(2a+1)Rcii

2k2+1
(1+k2λee

2)(1+k2Rcii
2)2

−
(

(2a−1)Rcei

2k2
−1

(1+k2Rcei
2)2

)2
]

+ A
(

1 + (2a+1)Rcii

2k2+1
k2rDi

2(1+k2Rcii
2)2

)

exp
(

−k2

4b

)}

, (10)

Φii(k) = Z2e2

ε0∆

{

(2a+1)Rcii

2k2+1
k2(1+k2Rcii

2)2

+ 1
k4rDe

2

[

(2a+1)Rcii

2k2+1
(1+k2λee

2)(1+k2Rcii
2)2

−
(

(2a−1)Rcei

2k2
−1

(1+k2Rcei
2)2

)2
]

+ A (2a+1)Rcii

2k2+1
k2rDe

2(1+k2Rcii
2)2

exp
(

−k2

4b

)}

, (11)

here rDe, rDi are the Debye radius of electrons and ions

respectively, where 1/rDi
2 = Z2e2ni/(ε0kBT ),

1/rDe
2 = e2ne/(ε0kBT ), b = (λee

2 ln 2)−1,

A = kBT ln 2π3/2b−3/2ε0/e2 and ∆ is:

∆ = 1 + 1
k2rDe

2(1+k2λee
2)

+ (2a+1)Rcii

2k2+1
k2rDi

2(1+k2Rcii
2)2

+ 1
k4rDe

2rDi
2

[

(2a+1)Rcii

2k2+1
(1+k2λee

2)(1+k2Rcii
2)2

−
(

(2a−1)Rcei

2k2
−1

(1+k2Rcei
2)2

)2
]

+ A
rDe

2

(

1 + (2a+1)Rcii

2k2+1
k2rDi

2(1+k2Rcii
2)2

)

exp
(

−k2

4b

)

(12)

The pseudopotential Φab(r) can be restored from (9-

12) by Fourier transformation

Φab(r) =
1

2π2r

∫

Φab(k)k sin(kr)dk (13)

The present approximation is restricted to the constraint

Γ . 1 due to the use of linearisation process at the deriva-

tion of the solved integral-differential equation .

In the Figure 4 the e − i and i − i HGK and screened

HGK and i − i S.S. Dalgic et al. potentials are presented

for comparison. One can easily see that with increasing

of Γ the curves shift in the direction of its low absolute

values due to the increasing role of the screening effects.

As we have stressed above there is no available pa-

rameter for the ion -ion interaction potential 4. That is

why we have looked for alternative pseudotentials. One of

them is the screened ion-ion potential determined by S.

S. Dalgic et al. [58] on a base of the second order pseu-

dopotential perturbation theory using the Fiolhais et al.

potential ϕF
ei(r):

ΦD
ii (k) =

4πZ2e2

4πε0k2
+ χ(k)|ϕF

ei(k)|2, (14)

where ϕF
ei(k) is the pseudopotential local form factor. In

the present work we use instead the HGK ΦHGK
ii (k) poten-

tial with the fitted to Fiolhais et al. potential parameters.

χ(k) is the response of the electron gas:

χ(k) =
χ0(k)

1 − ( 4πe2

4πε0k2 )[1 − G(k)]χ0(k)
, (15)

where χ0(k) is the Lindhard response of a non-interacting

degenerated electron gas.

χ0(k) = −kF me

2π2~2

[

1 +
1 − x2

2x
ln

∣

∣

∣

∣

1 + x

1 − x

∣

∣

∣

∣

]

, (16)

and G(k) is the local field correction (LFC), which ac-

counts for the interactions between the electrons. For its

determination we used a LFC which satisfies the com-

pressibility sum rule at finite temperatures obtained by

Gregori et al. for strong coupling regimes [15].

2.2 Static Structure Factor

Within the framework of the density response formalism

for a two component plasma, we can calculate the screened

HGK interaction potentials using the semiclassical ap-

proach suggested by Arkhipov and Davletov [39], which

is based on a HGK pseudopotential model for the inter-

action between charged spheres-particles to account for

ion structure, quantum diffraction effects i.e., the Pauli
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Fig. 4. The screened e-i HGK Φei and i-i HGK Φii for Beryllium plasma (Be2+). a)1: Screened HGK at Te = Ti = 40eV ,T ′

e =

42.17eV , Γee = 0.346; 2: Screened HGK at Te = Ti = 20eV , T ′

e = 24.06eV , Γee = 0.606, 3: Screened HGK at Te = Ti = 13eV ,

T ′

e = 18.65, Γee = 0.782, 4: HGK; b) 1: S.S. Dalgic et al. at Te = Ti = 13eV , T ′

e = 18.65, Γee = 0.782,2: Screened HGK at

Te = Ti = 40eV , T ′

e = 42.17eV , Γee = 0.346; 3: Screened HGK at Te = Ti = 20eV , T ′

e = 24.06eV , Γee = 0.606,4: Screened HGK

at Te = Ti = 13eV , T ′

e = 18.65, Γee = 0.782, 5: HGK. As the length scale we use the atomic system of units.

exclusion principle and symmetry. Quantum diffraction is

represented by the thermal de Broglie wavelength λrs =

~/
√

2mrskBT ′

rs with µ′

rs = mrms

mr+ms

the reduced mass of

the interacting pair r − s, and r , s = e (electrons) or i

(ions). The effective temperature T ′

rs is given by ,

T ′

rs =
mrT

′

s + msT
′

r

mr + ms
,

where T ′

e = (T 2
e +T 2

q )1/2 with Tq = TF /(1.3251−0.1779
√

rs),

rs = ra/rB and T ′

i = (T 2
i + γ0T

2
D)1/2, TD = Ωpi~/kB

is the Bohm-Staver relation for Debye temperature with

Ω2
pi = ω2

pi/(1 + kDe/k2), ωpi =
√

ze2ne/(ε0mi) with mi

ion mass, kDe =
√

e2ne/(ε0kBT ′

e) is the Debye wave num-

ber for the electron fluid (TD ≈ 0.16eV , TF ≈ 14.5eV for

Be2+). Since, in the Debye model, phonon modes with

wavelength up to a fraction of the lattice spacing are con-

sidered, in [14] it is set k ≡ kmax = (2/z)1/3kF with

kF = (3π2ne)
1/3 Fermi wave number. Due to the large

mass difference between ions and electrons, T ′

ei = T ′

ee. All

the parameters considered here are beyond the degenera-

tion border (neλ
3
ee < 1).

As described in [14] by Gregori et al. the fluctuation-

dissipation theorem may be still a valid approximation

even under nonequilibrium conditions if the temperature

relaxation is slow compared to the electron density fluc-

tuation time scale. A common condition in experimental

plasmas for this to occur is when mi >> me so that the

coupling between the two components takes place at suf-

ficiently low frequency. Using a two-component hypernet-

ted chain (HNC) approximation scheme, Seuferling et al.
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[16] have shown that the static response under non-Local

Thermodynamic Equillibrium (LTE) takes the form:

Srs(k) = δrs −
√

nrns

kBT ′

rs

Φrs − δerδes(
T ′

e

T ′

i

− 1)
|q(k)|2

z
Sii(k)

(17)

where q(k) =
√

zSei(k)/Sii(k) and for Φrs the expression

(9-12) have been used.

In the Figures 5 (a), (b), (c), (d) the static structure

factors Srs (SSF) in dependence on kDe for a Beryllium

plasma with the introduced above different temperatures

Ti = Te, Ti = 0.5 · Te, Ti = 0.2 · Te and coupling pa-

rameter Γee = e2/(4ε0kBT ′

eree), Γii = z2e2/(4ε0kBT ′

i rii)

with rii = (3/4πni)
1/3, ree = (3/4πne)

1/3 are shown. For

typical conditions found in laser plasma experiments with

solid density beryllium, we have ne ≈ 2.5 · 1023cm−3 and

z ≈ 2. This gives TF ≈ 14.5eV and TD ≈ 0.17eV . In the

Figure 5 (c) a minimum arises which defines the size of an

ion core. One can see that in the Figure with increasing

of Γ one can notice that a minimum becomes less pro-

nounced.

In the Figure 5 (a) Sii, shown as the blue line, was de-

termined with the help of potential (14) described above.

On a base of this potential described by Dalgic et al.

E. Apfelbaum calculated SSF of Cs and Rb in the re-

gion of liquid-plasma transition [59]. The author showed

that calculated data were in agreement with the mea-

sured SSF. In a screened OCP the effective response of

the medium is described by the charge-charge correlation

function [51]:

Szz(k) =
(See + ZSii − 2

√
ZSei)

1 + Z
(18)
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Fig. 6. The charge-charge static structure factors Szz for

a beryllium plasma with ne ≈ 2.5 · 1023cm−3, z ≈ 2, and

Te = 20eV , T ′

e = 24.06eV . Black set of lines represents the

screened Deutsch model obtained here on a base of Gregori et

al.[14] , while the red one - the screened HGK model. Solid line:

Ti/Te = 1 (Γii = 2.31, Γee = 0.61). Dashed line: Ti/Te = 0.5

(Γii = 4.63, Γee = 0.61). Dotted line: Ti/Te = 0.2 (Γii = 11.57,

Γee = 0.61).

It is of high interest to study the influence of the ion

structure on the static structure factors. For this reason in

the Figures 5 (a)-(d) and further on we compare the SSF,

obtained from equations (17) and (18) with the help of

the screened HGK potentials (9-12), with the correspond-

ing SSF obtained with the help of the screened Deutsch

potential [39], on a base of the modified RPA developed

by Gregori et al. [14] where no ion structure is taken into

account.

In the Figure 6 the static charge-charge structure fac-

tor for a beryllium plasma with ne ≈ 2.5·1023cm−3, z ≈ 2,

Te = 20eV and Ti = Te, Ti = 0.5 · Te, Ti = 0.2 · Te is

shown. In the Figure 7 (a) - (d) we compare our results
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Fig. 5. Static structure factors and screening charge q(k′) for Be2+ plasma at Te = 20eV , T ′

e = 24.06eV , Z = 2 and

ne = 2.5× 1023cm−3. Black set of lines represents the screened Deutsch model obtained by Gregori et al.[14] , while the red one

- the screened HGK model. Solid line: Ti/Te = 1 (Γii = 2.31, Γee = 0.61). Dashed line: Ti/Te = 0.5 (Γii = 4.63, Γee = 0.61).

Dotted line: Ti/Te = 0.2 (Γii = 11.57, Γee = 0.61). (a) The blue solid line: SSF calculated according to the eq.(17) with (14).

(d) The solid line: Ti/Te = 1. The filled squares: Ti/Te = 0.5. The hollow circles: Ti/Te = 0.2.

of charge-charge SSF for Alkali plasmas with the results

obtained in the present work for Alkali (Hydrogen-like)

plasmas considered in a frame of the screened Deutsch

model at the various densities and temperatures. All the

curves obtained in a frame of the screened Deutsch model

converge due to the negligible influence of an ion mass on

λab entering the equations.As one can easily see with an

increase of Γ the peaks become more pronounced and the

difference among curves becomes significant. We see that

strong coupling and the onset of short-range order appear

in Szz as a first localized peak, shown in a amplified scale,

at the different k′ for every Alkali species and the position

of the peaks shifts in a direction of the small k′ value. This
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Fig. 7. The charge-charge static structure factors Szz for Alkali plasmas (Li+, Na+,K+, Rb+, Cs+) in a frame of the screened

HGK model and results obtained in the present work for Hydrogen-like plasmas in a frame of the screened Deutsch model on a

base of Gregori et al.[14]. (a) Te = Ti = 60000K, T ′

e = 60204K, Γee = 0.398, Γii = 0.399; (b) Te = Ti = 30000K, T ′

e = 30407K,

Γee = 0.789, Γii = 0.8; (c) Te = Ti = 30000K, T ′

e = 31471K, Γee = 1.14, Γii = 1.2; (d) Te = Ti = 30000K, T ′

e = 37806K,

Γee = 1.58, Γii = 2. As the length scale we use the inverse electron Debye radius.

phenomenon was also reported in [15].

3 Dynamic Structure Factor. Method of

Moments

Extensive molecular-dynamic simulations of a Coulomb

system over a wide range of plasma parameters Γ and

Θ = EF /kBT ( EF is the Fermi energy) have been carried

out by Hansen et al [51]. Hansen et al. studied dynamic

and static properties of OCP and TCP plasmas and binary

ionic systems. In the work of V. M. Adamjan, et al. [52],

[53] a new “method of moments” based on exact relations

and sum rules for calculating of dynamical characteristics

of OCP and of the charge-charge dynamic structure factor
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for the model semiquantal two-component plasma (TCP)

was proposed. The “method of moments” proved to pro-

duce the best agreement with the MD data of Hansen et

al. The dynamic structure factor Szz(k, ω) is defined via

the fluctuation-dissipation theorem (FDT) as

Szz(k, ω) = − ~ℑε−1(k, ω)

πΦ(k)[1 − exp (−β~ω)]
, (19)

where Φ(k) = e2/ε0k
2, ~ is the reduced Planck constant

and ε−1(k, ω) is the inverse longitudinal dielectric func-

tion of the plasma. In order to construct the inverse

longitudinal dielectric function one needs to consider the

frequency moments of the loss function −ℑε−1(k, ω)/ω:

Cν(k) = −π−1

∫

∞

−∞

ων−1ℑε−1(k, ω)dω, (20)

The Nevanlinna formula of the classical theory of mo-

ments [54] expresses the response function

ε−1(k, ω) = 1 +
ωp

2(ω + q)

ω(ω2 − ω2
2) + q(ω2 − ω1

2)
, (21)

in terms of an R-function q = q(k, ω). The frequencies ω1

and ω2 are defined as respective ratios of the moments Cν ,

ω1
2 = C2/C0 = ωp

2[1 − ε−1(k, 0)]−1,

ω2
2 = C4/C2 = ωp

2[1 + Q(k)], (22)

where ε−1(k, 0) can be determined from the classical form

(~ → 0) of the FDT (thermal equillibrium) eq. (19) and

the Kramers-Kronig relation [55]:

ℜε−1(k, ω) = 1 +
1

π
P.V.

∫

∞

−∞

ℑε−1(k, ω)

ω′ − ω
dω′ (23)

In this way, we get the following expression :

ℜε−1(k, 0) = 1 − 2Szz
kDe

2

k2
, (24)

where ℜε−1(k, 0) = ε−1(k, 0) = ε−1(k), and

Szz(k) =
1

ne + Zni

∫

∞

−∞

Szz(k, ω)dω

=
See − 2

√
ZSei + ZSii

2
, (25)

where T ′

e = T ′

i = Te = T , T ′

ei = T ′

ee = T ′

e, ne = Zni.

Q(k) = K(k) + L(k) + H (26)

represents the TCP correction with the kinetic contribu-

tion for a classical system

K(k) = 3(
k

kD
)2, (27)

where kD
2 = kDe

2 = kDi
2 = 4πnee

2/kBT (ne = ni) the

contribution due to electron-ion HGK correlations,

H =
1

6π2
√

neni

∫

∞

0

p2Sei(p)ζeidp, (28)

with Φab(k) = Φ(k)ζab(k), α, β = e, i given in (9-12) and

L(k) =
1

2π2ne

∫

∞

0

p2[See(p) − 1]f(p, k)dp, (29)

which takes into account the electronic correlations,

f(p, k) =
∫ 1

−1
(ps−k)2

p2
−2psk+k2 ζee(

√

p2 − 2pks + k2)ds
2 − ζee(p)

3 ,

(30)

In the equations (28), (29) the static structure factor is

defined in (17) with the potentials given in (9-12). The au-

thors suggested to approximate q(k, ω) by its static value

q(k, 0) = ıh(k), connected to the static value Szz(k, 0) of

the dynamic structure factor through eq. (19),

h(k) =
(ω2

2 − ω1
2)ωp

2

πβφ(k)ω1
4Szz(k, 0)

, (31)

with

Szz(k, 0) = S0
zz(k, 0)|ε−1(k, 0)|2, (32)
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where S0
zz(k, 0) = ne

k

√

m
2πkBT [56] so that the normalized

dynamic factor gets the following form:

Szz(k, ω)

Szz(k, 0)
=

β~

[1 − exp (−β~ω)]

× ωh2(k)ω1
4

ω2(ω2 − ω2
2) + h2(k)(ω2 − ω1

2)
, (33)

with the more simplified expressions for h(k):

h(k) =
ε0k

7ωp
2(ω2

2 − ω1
2)

πβnee2ω1
4
√

m
2πkBT (k2 − Szz(k)kDe

2)2
, (34)

ω1(k), ω2(k):

ω1
2 = C2/C0 =

ωp
2k2

kDe
2Szz(k)

,

ω2
2 = C4/C2 = ωp

2[1 + K(k) + L(k) + H], (35)

The Figure 8 shows the behaviour of h, w1, w2 given for

Na+ plasma.

As one can see in the Figures 10, 11 the curves for Al-

kali plasmas are different from those given for Hydrogen-

like (Coulomb) model of Adamjan et al., where the ion

structure is not taken into account. In a case of Alkali

plasma the curves split. This can be explained by that fact

that Alkali ion structure influences the dynamic structure

factor. In the Figure 10 (a) the position of peaks almost

coincides but the intensity in Alkali plasma is damped.

We presume that the curves shift in the direction of high

k compared to the Adamjan’s curves. In the Figure 11 (b)

the position of the second peak ω ≈ 1.2 is different and

shifted in a low ω direction, while the intensity is shifted in

a low k direction compared to the Adamjan’s curves. The

Na+ curve has three peaks compared to the rest curves.

At small Γ and higher k or higher Γ and lower k the

difference between the present curves and the curves ob-

tained by Adamjan et al. becomes drastic. In the Figure

10 (b) the curve for K+ splits into two very sharp peaks,

the curve for Rb+, Cs+ into three while the Na+ curve has

only one wide peak. With an increase of outer electrons

from K+ the intensity decreases and the curves shift from

each other. In the Figure 11 (a) the position of peaks shift

in a direction of low absolute value of ω and the intensity

grows with an increase of number of outer electrons. This

discrepancy could be also explained by that fact that the

considered parameters are extreme, i. e. either high tem-

perature or density and for Γ = 0.5, rs = 0.4 the degener-

ation condition is neλee = 0.335, while for Γ = 2, rs = 1

the degeneration condition is neλee = 0.678.

In the Figures 12 and 13 the dynamic SF at the mod-

erate temperatures T = 30000K and concentrations ne =

1.741 · 1020 − 1022cm−3 but providing the same Γ are

shown.

Now, lets us consider the different definition of the de-

scribed above the H function in eq. (28):

H =
hei(r = 0)

3
=

gei(r = 0) − 1

3
, (36)

and L(k), where the f(p, k) function in eq. (29) will change

f ′(p, k) =

∫ 1

−1

(ps − k)2

p2 − 2psk + k2
ζee(

√

p2 − 2pks + k2)
ds

2
−ζ ′ee(p)

3
,

(37)

where ζ ′ee(p) is to be determined from eq. (7) and the

following like it was made in [55]:

ϕee(p) = Φ(p)ζ ′ee(p), (38)

In a frame of the screened HGK model the H in eq.

(36) will turn into −1/3 because we consider the ion struc-

ture, that means that the electron can not approach ion
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Fig. 9. The h/wp, w1
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2, w2
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2 for Na+ plasma at T = 30000K, ne = 1.11·1022cm−3, Γee = 2, rs = 5.24, ωp = nee
2/ε0me.

at r = 0 distance. If we take all this into account then we

will get the plots shown in 14-15. Having compared the

12 (b) with the 14 (b) one can notice the drastic differ-

ence between the Figures and slight difference among the

rest Figures, meaning that H,L definition influences the

Figures.

4 Conclusions

The work has been fulfilled at the Humboldt University at

Berlin (Germany).
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