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Abstract – Relativistic and correlation contributions to the polarizational energy losses of heavy
projectiles moving in dense two-component plasmas are analyzed within the method of moments
that allows one to reconstruct the Lindhard loss function from its three independently known power
frequency moments. The techniques employed result in a thorough separation of the relativistic
and correlation corrections to the classical asymptotic form for the polarizational losses obtained
by Bethe and Larkin. The above corrections are studied numerically at different values of plasma
parameters to show that the relativistic contribution enhances only slightly the corresponding value
of the stopping power.

Introduction. – Measuring energy losses of charged particles beams is an important
diagnostics tool in both modern condensed matter and plasma physics. In 1930 Bethe [1]
derived a simplified formula for the stopping power that neatly describes the energy losses
of fast projectiles moving in a solid modeled as a system of quantum-mechanical oscillators.
Later, Larkin [2] clearly demonstrated that the following analogous formula remains valid
for fast ions permeating an electron gas

−dE

dx
≃

v≫vF

(
Zpeωp

v

)2

ln
2mev

2

~ωp
, (1)

in which the oscillator frequency was effectively replaced by the plasma frequency ωp =(
4πnee

2/me

)1/2
. Here Zpe and v stand for the electric charge and velocity of the projectile

and the electron gas is characterized by the number density ne with me and −e being the
electron mass and charge, respectively.

Formula (1) is usually engaged to experimentally determine the number density of elec-
trons in a charged particles target traditionally treated as an electron fluid [3–5]. The X-ray
Thomson scattering excepted, this technique remains the only suitable candidate for the
diagnostics of hot and dense (ne & 1019 cm−3) plasmas [5], see also [6] and references
therein.

Further advance was lately made in [7] where it was shown that in a two-component
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completely ionized hydrogen plasma with a weakly damped Langmuir mode of disper-
sion ωL (k), the plasma frequency in the Coulomb logarithm of (1) should be replaced by
the long-wavelength limiting value of ωL (k) , ωL (0) = ωp

√
1 +H with H = hei (0) /3 =

(gei (0)− 1) /3, hei (r) and gei (r) being the electron-ion correlation and radial distribution
functions, respectively. It should be noted that the generalization of [7] to partially ionized
plasmas or plasmas with complex ions and larger number of species is rather straightfor-
ward. At present the described above electron-ion correlation correction to the electron fluid
stopping power might not be observable due to a relatively low accuracy of the experimental
techniques available, but for dicluster heavy ions projectiles [8] that correlation correction
could become more pronounced in order to be experimentally detected.

The problem of stopping power computing for relativistic projectiles has recently arisen
thanks to the reported experiments with protons decelerating from velocities of up to 80%
of the speed of light [9], see also [10]. The main goal of this letter is to estimate the
importance of the relativistic corrections to the classical asymptotic form (1) of the stopping
power as compared with the above mentioned electron-ion correlation contribution. In a
partially ionized plasma the bound-electron contribution can strictly be taken into account
[11] by incorporating the ionization losses, but in the sequel the plasma is considered to
be completely ionized. Such an assumption is fully justified because of the high kinetic
energy of projectiles and, at the same time, allows one to adopt the polarizational picture
to calculate the stopping power of a simple Coulomb fluid.

In 1954 Lindhard [12] expressed the polarizational stopping power in terms of the medium
longitudinal dielectric function ϵ (k, ω). This expression can further be generalized by ap-
plying the Fermi golden rule to obtain [13–16]:

−dE

dx
=

2 (Zpe)
2

πv2

∞∫
0

dk

k

α+(k)∫
α−(k)

ωnB (ω)
(
− Im ϵ−1 (k, ω)

)
dω. (2)

Here α± (k) = ±kv+~k2/2M (v), nB (ω) = (1− exp (−β~ω))−1
, where ~ denotes the Planck

constant, M (v) is the (velocity-dependent) projectile mass and β−1 = kBT stands for the
plasma temperature T in energy units with kB being the Boltzmann constant. Two essential
physical restrictions are imposed by applying formula (2). First of all, no magnetization
effects are taken into account such that the plasma dielectric function depends solely on
the wavevector modulus. Secondly, the interaction between the projectile and the plasma
medium is treated in a linear approximation. Notice that, e.g., the Z3

p Barkas contribution
to the stopping power [17] identically vanishes in a fully ionized plasma [18].

In the past the polarizational stopping power was quite extensively studied in the litera-
ture. The problem was thoroughly analyzed within the random-phase approximation (RPA)
[13,14] and beyond by introducing an analytical formula for the local field correction (LFC)
[19], derived within the T-matrix approach [20], the method of effective potentials [21], or
using the Mermin or more sophisticated models for the dielectric function [22].

In spite of the fact that the coupling between the projectile and the target plasma is
assumed to be treated perturbatively, no further restriction is made on the value of the
coupling parameter, Γ = βe2/a with a = (4πne/3)

−1/3 being the Wigner-Seitz radius. The
only limitation left is that the plasma must remain in the liquid-like phase, although, the
modeling of its dielectric properties remains rather a sophisticated problem, since its char-
acteristic lengths, i.e., the Wigner-Seitz radius and the Debye length, λD = (4πnee

2β)−1/2,
are estimated to be of the same order of magnitude. Note that in a non-ideal plasma of
interest herein, Γ = a2/3λ2

D & 1, which invalidates mean field theories, such as the RPA
and other analogous perturbative approaches and, at the same time, requires the electronic
subsystem to be considered as partly degenerated.

The background. – All further dielectric formalism is based on the classical method
of moments [23, 24], which allows to express the dielectric function ϵ(k, ω) in terms of the
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already known convergent frequency moments or sum rules. The sum rules to be employed
are actually the power frequency moments of the positive loss function (LF)

L (k, ω) = −ω−1 Im ϵ−1 (k, ω) ,

defined as

Cν(k) = π−1

∫ ∞

−∞
ωνL (k, ω) dω, ν = 0, 1, . . . .

Due to the parity of the LF, all odd-order frequency moments vanish whereas the even-
order frequency moments are still determined by the static characteristics of the system
which, after routine but straightforward calculations, take the following form [23–25]:

C0(k) = (1− ϵ−1(k, 0)), C2(k) = ω2
p, (3)

C4(k) = ω4
p(1 +K(k) + U(k) +H), (4)

with
K(k) =

(⟨
v2e
⟩
k2 + ~2k4/ (2me)

2
)
/ω2

p, (5)

and ⟨
v2e
⟩
=

3F3/2(η)

meβD3/2
,

being the average squared characteristic velocity of the plasma electrons. Here the following
notations are introduced:

Fν =

∫ ∞

0

xνdx

exp (x− η) + 1
,

D = βEF = βmev
2
F /2 = β~2k2F /2me = β~2

(
3π2ne

)2/3
/2me, (6)

where Fν (η) , EF , vF , and kF are the ν-th order Fermi integral, Fermi energy, velocity, and
wavenumber, respectively, and the dimensionless chemical potential η = βµ is defined by
the normalization equation

F1/2 (η) =
2

3
D3/2,

D being the degeneracy parameter.
The last two terms in the fourth moment (4) stem from the interaction contribution

to the system Hamiltonian and can be expressed in terms of the partial structure factors
Sab (k) , a, b = e, i:

U (k) =
(
2π2ne

)−1
∫ ∞

0

p2 (See (p)− 1) f (p, k) dp,

H =
(
6π2ne

)−1
∫ ∞

0

p2Sei (p) dp, (7)

where

f (p, k) =
5

12
− p2

4k2
+

(k2 − p2)2

8pk3
ln

∣∣∣∣p+ k

p− k

∣∣∣∣ .
It is worthwhile mentioning that the second moment in (3) is exactly the f -sum rule, i.e.
C2(k) = ω2

p. Notice that the above results for the moments are exact and these expressions
are applicable in the whole range of variation of both coupling, Γ, and degeneracy, D,
parameters as long as the system is in a liquid state and is not relativistic. The only
simplification admitted in (??) is that the terms of the order of me/mi are omitted in these
expressions, mi being the average mass of plasma ions.

The static structure factors Sab (k) of various species a, b = e, i can independently be
computed, e.g., from the Ornstein-Zernike equation in the hypernetted-chain approximation
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[26] which enables one to calculate the power frequency moments (3) and (4). At this point
it is the strength of the theory of moments that allows one to restore the dynamical behavior
of the dielectric function from such scarce knowledge of the system. Namely, the Nevanlinna
formula of the theory of moments provides the following form of the dielectric function to
satisfy the known sum rules {C2ν}2ν=0 [23, 24]:

ϵ−1(k, z) = 1 +
ω2
p(z + q)

z(z2 − ω2
2) + q(k, z)(z2 − ω2

1)
, Im z > 0, (8)

where

ω2
1 = ω2

1 (k) = C2(k)/C0(k), ω2
2 = ω2

2 (k) = C4(k)/C2(k).

Here the function q(k, z) is introduced to be analytic, to have the positive imaginary part
and to fit the limit q(k, z)/z → 0 as z → ∞, all uniformly in the complex upper half-plane
Im z > 0. Under these conditions the LF in (8) automatically satisfies the sum rules in (3),
(4) by construction. By definition,

ϵ−1(k, ω) = lim
γ↓0

ϵ−1(k, ω + iγ).

Despite of its pure mathematical nature, the Nevanlinna function q(k, z) plays the role
of the dynamic LFC G (k, ω) in an electron liquid. In particular, the Ichimaru visco-elastic
model [27] expression for G (k, ω) is equivalent to the Nevanlinna function approximated as
i/τm with τm being the effective relaxation time [28].

In two-component dense plasmas the Nevanlinna parameter function stands for the
species’ dynamic LFCs but, in general, there is no immediate phenomenological informa-
tion at hand to determine q(k, z) [29]. Nevertheless, the Perel’ - Eliashberg (PE) [30] exact
expression for the high-frequency asymptotic form of the imaginary part of the dielectric
function [23],

Im ϵ
(
k, ω ≫ (β~)−1

)
≃ A (ωp/ω)

9/2
, (9)

can be employed to yield [31]:

q (k, z) =
A
√
ω5
pz (1 + i)

ω2
2 (k)− ω2

1 (k)
+ i

ω2
2 (k)− ω2

1 (k)

ν (0)
,

A =

(
16π

3

)5/4

πZr3/2s ,

where rs = amee
2/~2 is the Brueckner parameter and ν (0) represents the transport collision

frequency determined by the plasma static conductivity

σ0 = lim
ω→0

ω

4πi

(
1

ϵ−1 (k = 0, ω)
− 1

)
=

ω2
p

4πν (0)
. (10)

It should be clearly emphasized that the application of the asymptotic form (9) for a Coulom-
bic system inevitably implies that higher even-order frequency moments C2l (k) , l ≥ 3 di-
verge.

The Nevanlinna formula which leads to (8) gives the continuous, so called non-canonical,
solution of the Hamburger moment problem [32] corresponding to the set of moments
{C2ν}2ν=0. In what follows we will also employ the canonical solution [33] which effectively
corresponds to the choice of the Nevanlinna function q(k, ω) = i0+:

L (k, ω)

πC0 (k)
=

ω2
2 − ω2

1

ω2
2

δ (ω) +
ω2
1

2ω2
2

(δ (ω − ω2) + δ (ω + ω2)) , (11)
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where δ stands for the Dirac delta function. Physically, equation (11) describes an undamped
collective excitation mode located at

ω2 (k) = ω2
p(1 +K(k) + U(k) +H) (12)

with an additional central peak corresponding to the hydrodynamic diffusional process [34].
Due to the presence of the ∼ k4 contribution in (5),

ω2
pK(k) =

⟨
v2e
⟩
k2 + ~2k4/4m2

e,

the canonical solution (11) describes not only the undamped Langmuir collective mode
channel of energy transfer in collisional plasmas, but the one-particle excitations [35] and
diffusional processes as well, i.e., the full range of energy loss channels.

The corrected Bethe-Larkin formula. – Our goal here is to obtain an analytic
expression for the plasma stopping power asymptotic form with respect to relativistic ions.
But first let us see how the Bethe-Larkin asymptotic form can be easily obtained within the
above formalism. To this end, let us omit the correlation contributions, U(k) and H to the
fourth moment, i.e., to

ω2 (k) =

(
ω2
p(1 + U(k) +H) +

⟨
v2e
⟩
k2 +

~2k4

4m2
e

)1/2

, (13)

and substitute the resulting canonical solution of the moment problem (11) or

ω
(
− Im ϵ−1 (k, ω)

)
= πC0 (k)

ω2
1

2
(δ (ω − ω2) + δ (ω + ω2)) , (14)

into the Lindhard formula (2) and take into account that

nB (ω) + nB (−ω) = 1.

Then one gets:

−dE

dx
≃

v→c

(Zpeωp)
2

v2
ln

k2
k1

, (15)

where the inverse wavenumbers k−1
1 and k−1

2 are not just ”cut-off” characteristic lengths,
but the values stemming from the inequalities

α− (k) ≤ −ω2 (k) ≤ ω2 (k) ≤ α+ (k) (16)

for the longest and shortest wavelengths possible, c is, certainly the speed of light. Precisely,
for small k and large v we get from (16):

−kv ≤ −ωp ≤ ωp ≤ kv,

i.e., k1 = ωp/v. For large k and large v we arrive to the inequality

~k2

2me
≤ kv +

~k2

2M (v)
,

where, for heavy projectiles, we can neglect the contribution

~k2

2M (v)
≪ ~k2

2me

and thus obtain k2 = 2mev/~. Hence, the Bethe-Larkin result [1,2] is recovered in this way.
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To analytically take into account Coulomb and exchange interactions in the system the
following long- and short-range asymptotic forms for the electron-electron contribution U (k)
can be used:

U (k → 0) ≃ Eeek
2

15n2
ee

2
, U (k → ∞) ≃ −hee (0) /3,

where Eee is the plasma electron-electron interaction energy density Eee [16] and hee (0) =
gee (0)−1. Then the wavenumber k1 is modified to become k′1 = ω′

p/v with ω′
p = ωp

√
1 +H,

so that the fast projectile stopping power reads [7]:

−dE

dx
≃

v→c

(
Zpeωp

v

)2

ln
2mev

2

~ωp

√
1 +H

. (17)

The correction H defined in (7) is due to the electron-ion correlation contribution to the
moment C4(k) and is responsible for the undamped Langmuir frequency upshift in the long-
wavelength limit. It is worthwhile mentioning that a precise calculation of the electron-ion
correlation contribution, H, is a difficult problem [36], and, the following simplified analytic
expression can be used for completely ionized hydrogen-like plasmas, obtained within a
modified random phase approximation [23,37]:

H =
4

3
Zrs

√
Γ
[
3ZΓ2 + 4rs + 4Γ

√
3 (1 + Z) rs

]−1/2

. (18)

It is obvious that in an ideal plasma, Γ ≪ 1, this correction stays negligible, but in a strongly
coupled Coulomb system its importance can grow significantly such that it could even turn
possible to directly retrieve H (or gei(0)) by measuring the stopping power and, then, using
(17). If gei(0) = 10 and ln

(
2mv2/~ωp

)
= 10 are taken for the sake of estimate, then the

stopping power obtained by the Bethe-Larkin formula is modified by ∼ 7%, which indicates
to what extent the experimental accuracy needs to be improved in future to corroborate
(17). As it has already been mentioned above, another alternative way of verification of
(17) is to use diclusters as projectiles [8].

Energy loss of relativistic projectiles. – Relativistic corrections to the Lindhard
formula were studied in [38]:

−dE

dx
= − (Zpe)

2

πv2

∞∫
0

dk

k

kv∫
−kv

ω Im

(
ϵ−1 (k, ω)

ϵ−1 (k, ω)− v2

c2

ϵ−1 (k, ω)− ω2

k2c2

)
dω. (19)

It can easily be shown that when the speed of light c → ∞ and M,mi ≫ me, (19) actually
turns into (2). As we have seen, within the present approach the quantum corrections in
the frequency integral limits are negligible, and since

Im

(
ϵ−1 (k, ω)

ϵ−1 (k, ω)− v2

c2

ϵ−1 (k, ω)− ω2

k2c2

)
=

=
(
Im ϵ−1 (k, ω)

)1 +

(
ω
kc

)2 ((v
c

)2 − ( ω
kc

)2)(
Re ϵ−1 (k, ω)−

(
ω
kc

)2)2
+ (Im ϵ−1 (k, ω))

2


we can once employ (14) to simplify (19) into:

−dE

dx

∣∣∣∣
v→c

≃
(
Zeωp

v

)2

ln
2mv2

~ωp

√
1 +H

+
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Fig. 1: The energy losses of relativistic protons in plasmas of T = 1 eV , Γ = 10.7725, and rs =
2.5256. The tiny dashed line shows our result in comparison with the Bethe-Larkin asymptotic
expression (medium line) for the electron fluid, while the large dashed line, corresponds to the Bethe-
Larkin asymptotic expression and the full line is corrected one (20) for two-component plasmas.

+

(
Zeωp

c2

)2
2mv
~∫

ωp
√

1+H

v

dk

k3

ω2
2 (k)

(
1− ω2

2(k)
k2v2

)
(ω2

2 (k)− ω2
1 (k))

2

Ω4 (k) +
(

ω2
pω2(k) Im q(k,ω2(k))

|q(k,ω2(k))|2

)2 , (20)

where

Ω2 (k) = ω2
p +

(
ω2
2 (k)− ω2

1 (k)
)(

1− ω2
2 (k)

k2c2

)
+

ω2
pω2 (k)Re q (k, ω2 (k))

|q (k, ω2 (k))|2
.

The relative importance of (20) as compared to (17) has numerically been analyzed
and the results are presented in figs. 1-5. In these figures the plasma stopping power is
multiplied by the factor (a/e)

2
, and the projectile speed is normalized to the Fermi velocity

of plasma electrons. The upper pairs of curves on all figures correspond to the electron fluid
under the same thermodynamic conditions, while the lower ones represent the stopping
power of two-component plasmas. In each pair of curves, the lower one corresponds to
the corresponding Bethe-Larkin asymptotic expression, i.e., without (in an electron fluid)
or with the electron-ion correlation correction, respectively. For numerical evaluations the
plasma static characteristics have been calculated in the hypernetted-chain approximation
[26] using the Deutsch effective potential [39].

Conclusions. – In this Letter, two factors have been studied to influence the polar-
ization stopping power described by the Bethe-Larkin formula. The first correction is due
to the presence of the ionic component [7] whereas the second amendment is caused by rel-
ativistic effects. It has been demonstrated that for projectiles with a velocity of up to 80%
of the speed of light, the relativistic correction enhances only slightly the Bethe-Larkin-type
asymptotic value of the stopping power of moderately coupled plasmas. At the moment it
is rather difficult to expect the experimental confirmation of the presented results, but they
might become crucial for future studies of the ion-driven inertial fusion.
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