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MULTIPLICITY AND  LOJASIEWICZ EXPONENT OF GENERIC

LINEAR SECTIONS OF MONOMIAL IDEALS

C. BIVIÀ-AUSINA

Abstract. We obtain a characterization of the monomial ideals I ⊆ C[x1, . . . , xn] of finite

colength that satisfy the condition e(I) = L(1)
0 (I) · · · L(n)

0 (I), where L(1)
0 (I), . . . ,L(n)

0 (I) is

the sequence of mixed  Lojasiewicz exponents of I and e(I) is the Samuel multiplicity of

I. These are the monomial ideals whose integral closure admits a reduction generated by

homogeneous polynomials.

1. Introduction

Let (R,m) denote a local ring of dimension n. Let I be an m-primary ideal of R. There

are two important numbers attached to I: the multiplicity of I, denoted by e(I) (see for

instance [9], [14] or [24]), and the  Lojasiewicz exponent of I, that is usually denoted by L0(I)

(see [15], [22] and [23]). We shall also refer to m-primary ideals as ideals of finite colength.

We recall that L0(I) is originally defined for ideals of the ring On of analytic function germs

(Cn, 0) → C around the origin. That is if I is generated by g1, . . . , gr ∈ On, then L0(I) is

defined as the infimum between all positive real numbers α such that

∥x∥α 6 C sup
i

|gi(x)|

for some constant C > 0 and all x that belongs to some open neighbourhood of the origin

in Cn. Lejeune and Teissier showed in [15] a relation between L0(I) and the asymptotic

Samuel function of I and, consequently, with the integral closure of I. This relation is the

motivation of the definition of L0(I) for an arbitrary ideal I of finite colength in a local ring

(R,m). Let us explain this more precisely.

Let us fix a local ring (R,m). Let I be an ideal of R and let h ∈ R. Then the order of h

with respect to I is defined as ordI(h) = sup{r > 1 : h ∈ Ir}. Therefore ordI(0) = +∞. It is

proven in [15, Section 0.2] and [17] that the sequence {ordI(h
r)

r
}r>1 has a limit in R>0∪{+∞}.

The asymptotic Samuel function of I is defined as the function νI : R → R>0 ∪ {+∞} given

by

νI(h) = lim
r→∞

ordI(h
r)

r
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2 C. BIVIÀ-AUSINA

for all h ∈ R, where we set νI(0) = +∞. We remark that νI(h) = 0, for all h /∈
√
I. The

number νI(h) is also known as the reduced order of h with respect to I. It is known that the

range of νI is Q>0 ∪ {+∞} (see for instance [14, § 10]).

If I is an ideal of On such that I is a monomial ideal (that is, I is generated by monomials)

then νI can be expressed in terms of the Newton polyhedron of I (see [2]). If I and J are

ideals of R, then we define

νI(J) = min{νI(h) : h ∈ J}.

Thus the result of Lejeune-Teissier to which we referred before says that, if I is an ideal of

On of finite colength and mn denotes the maximal ideal of On, then

(1) L0(I) =
1

νI(mn)
.

The above equality is used as the definition of  Lojasiewicz exponent of an arbitrary ideal I

of finite colength in a local ring (R,m). We also remark that equality (1) is equivalent to

L0(I) = inf{ r
s

: r, s ∈ Z>1, mr
n ⊆ Is} (see [15, Section 7]).

The notion of multiplicity of an ideal was extended by Risler and Teissier [22] to sequences

of m-primary ideals thus leading to the notion of mixed multiplicity e(I1, . . . , In) of n m-

primary ideals in R (see [14, § 17.4]). The motivation of this generalization has its origin in

the study developed by Teissier of the Milnor number of the restriction of a given function

germ f ∈ On to generic subspaces of Cn of different dimensions [22]. The study of mixed

multiplicities of ideals was further developed by Rees in [19]. Let (R,m) be a local ring and

let I1, . . . , In be ideals of R. Then we define

(2) σ(I1, . . . , In) = sup
r∈Z>1

e(I1 + mr, . . . , In + mr).

In general σ(I1, . . . , In) can be infinite. In [4, p. 393] we characterized the finiteness of

σ(I1, . . . , In). From (2) it is clear that if each ideal has finite colength then σ(I1, . . . , In) exists

and it is equal to the usual mixed multiplicity e(I1, . . . , In). We remark that σ(I1, . . . , In)

coincides with the mixed multiplicity defined by Rees in [18, p. 181]. Then we also refer to

σ(I1, . . . , In) as the Rees’ mixed multiplicity of I1, . . . , In.

Analogous to the generalization of the notion of multiplicity leading to mixed multiplicities,

we introduced in [3] the notion of  Lojasiewicz exponent of n ideals I1, . . . , In in a local

ring (R,m) of dimension n (see Section 2 and [5] for details). We denote this number by

L0(I1, . . . In). In order to define L0(I1, . . . In), the ideals I1, . . . , In are not assumed to have

finite colength but the condition σ(I1, . . . , In) < ∞ is needed. Therefore, if I denotes an

ideal of finite colength of R and i ∈ {1, . . . , n}, then we define the i-th relative  Lojasiewicz

exponent of I as

L(i)
0 (I) = L0(I, . . . , I,m, . . . ,m),

where I is repeated i times and m is repeated n− i times. In particular we have L(n)
0 (I) =

L0(I) and L(1)
0 (I) = ord(I).
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Let (R,m) denote an equicharacteristic regular local ring of dimension n > 2 with residue

field k, char(k) = 0. Let I be an ideal of R of finite colength and let us fix an index

i ∈ {1, . . . , n}. M. Hickel proved in [12, Théorème 1.1] that there exists a Zariski open set

U (i) of the Grassmannian Gk(i, n) of subspaces of dimension i of kn such that νIRH
(mH) does

not depend on H, for all H ∈ U (i), where we assume that H is the zero set of the collection

of k-linear forms h1, . . . , hn−i, the quotient ring R/⟨h1, . . . , hn−i⟩ is denoted by RH and mH

is the maximal ideal of RH . By [6, Lemma 4.9], we have L(i)
0 (I) = (νIRH

(mH))−1, for all

i = 1, . . . , n. We remark that (νIRH
(mH))−1 is denoted by ν

(i)
I in [12], for all i = 1, . . . , n.

Moreover Hickel proved in [12] that

(3) e(I) 6 L(1)
0 (I) · · · L(n)

0 (I).

We remark that this inequality was generalized in [6, Theorem 4.7]. Then there appears the

problem of characterizing when equality holds in (3) and to understand the structure of the

ideals satisfying that equality. This is already done by Hickel in dimension n = 2 in [12,

Proposition 5.1].

In this article we consider this problem when we suppose that I is a monomial ideal of On

or C[[x1, . . . , xn]] (see Theorem 3.5). We prove that the only monomial ideals that satisfy

the equality e(I) = L(1)
0 (I) · · · L(n)

0 (I) are those such that I admits a reduction generated

by homogeneous polynomials. This conditions reduces considerably the possibilities for the

shape of the Newton polyhedron of the ideal. As is seen in Section 3, we translate this

problem into a combinatorial problem, that, at first sight is independent from  Lojasiewicz

exponents and captures a special class of monomial ideals.

2. Mixed  Lojasiewicz exponents

In this section we recall briefly the notion of mixed  Lojasiewicz exponent and some basic

facts about this concept.

Let (R,m) denote a Noetherian local ring of dimension n > 1 and let I1, . . . , In be ideals

of R such that σ(I1, . . . , In) < ∞. Let J be a proper ideal of R. Let us define

(4) rJ(I1, . . . , In) = min
{
r ∈ Z>0 : σ(I1, . . . , In) = σ(I1 + Jr, . . . , In + Jr)

}
.

We recall that σ(I1, . . . , In) denotes the Rees’ mixed multiplicity of I1, . . . , In, defined in (2).

If we suppose that I1 = · · · = In = I, for some ideal I of R of finite colength and we assume

that R is formally equidimensional, then we can apply the Rees’s multiplicity theorem (see

[11, p. 147] or [14, p. 222]) to deduce that

rJ(I, . . . , I) = min{r ∈ Z>0 : Jr ⊆ I}.

Definition 2.1. [5] Under the above conditions, we define the  Lojasiewicz exponent of

I1, . . . , In with respect to J , denoted by LJ(I1, . . . , In), as

(5) LJ(I1, . . . , In) = inf
s>1

rJ(Is1 , . . . , I
s
n)

s
.
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We also refer to the number LJ(I1, . . . , In) as the mixed  Lojasiewicz exponent of I1, . . . , In
with respect to J . When J = m then we denote this number by L0(I1, . . . , In).

Let us observe that in order to define LJ(I1, . . . , In) we only need the ring R to be local and

Noetherian, no additional condition on R is assumed. As mentioned in the Introduction,

if I is an ideal of finite colength of R, then we can associate to I the vector L∗
0(I) =

(L(n)
0 (I), . . . ,L(1)

0 (I)), where L(i)
0 (I) = L0(I, . . . , I,m, . . . ,m), with I repeated i times and

m repeated n − i times, i = 1, . . . , n. The number L(i)
J (I) is defined analogously, for all

i = 1, . . . , n, and any ideal J of R of finite colength.

The following result is proven in [6, Corollary 4.11].

Theorem 2.2. Let (R,m) be a quasi-unmixed Noetherian local ring and let I, J be ideals

of R of finite colength. Let us suppose that the residue field k = R/m is infinite. Then

L(1)
J (I) 6 · · · 6 L(n)

J (I).

Let us fix coordinates x1, . . . , xn in Cn. If k ∈ Zn
>0, then we write xk to denote the

monomial xk1
1 · · · xkn

n . If h ∈ On and the Taylor expansion of h around the origin is given

by h =
∑

k akx
k, then the support of h, denoted by supp(h), is defined as the set of those

k ∈ Zn
>0 such that ak ̸= 0. If h ̸= 0, then we define the Newton polyhedron of h, denoted

by Γ+(h), as the convex hull in Rn
>0 of {k + v : k ∈ supp(h), v ∈ Rn

+}. If h = 0, then we

set Γ+(h) = ∅. If I is an ideal of On, then the Newton polyhedron of I, denoted by Γ+(I),

is defined as the convex hull of Γ+(g1) ∪ · · · ∪ Γ+(gs), where we assume that g1, . . . , gs is a

generating system of I. It is immediate to see that the definition of Γ+(I) does not depend

on the chosen generating system of I.

Let us fix a subset L ⊆ {1, . . . , n}, L ̸= ∅. Then we denote by Rn
L the set of those k ∈ Rn

such that kj = 0, for all j /∈ L. If A denotes any subset of Rn then we set AL = A∩Rn
L . The

cardinal of L will be denoted by |L|.
If I is a monomial ideal of On, then we denote by IL the ideal of On generated by the

monomials xk ∈ I such that k ∈ Rn
L . If supp(I) ∩ Rn

L = ∅, then we set IL = 0. If I is a

monomial ideal of On of finite colength, then we have IL ̸= 0, for all L ⊆ {1, . . . , n}, L ̸= ∅.

The next result gives a description of the sequence L∗
0(I) in terms of Γ+(I) when I is a

monomial ideal of finite colength of On.

Theorem 2.3. [6] Let I be a monomial ideal of On of finite colength. Let i ∈ {1, . . . , n}.

Then

L(i)
0 (I) = max

{
ord(IL) : L ⊆ {1, . . . , n}, |L| = n− i + 1

}
.

The following result is motivated by [12, Théorème 1.1] and in turn, the case J = m is the

motivation of the problem considered in this article. This result can be seen as a particular

case of [6, Theorem 4.7] (see [6, Corollary 4.8]). We also refer to [12, Remarque 4.3 (3)] for

the deduction of inequality (6) using different techniques in a slightly different context.
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Proposition 2.4. [6] Let (R,m) be a quasi-unmixed Noetherian local ring and let I and J

be ideals of R of finite colength. Then

(6)
e(I)

e(J)
6 L(1)

J (I) · · · L(n)
J (I).

In the main result, Theorem 3.5, we obtain a characterization of when equality holds in

(6) considering that I is a monomial ideal of On and J is the maximal ideal of On. As we

will see, Theorem 3.5 can be considered as a purely combinatorial result.

3. Main result

In this section we expose the concepts and results from [21] that we need in the proof of

the main result.

If A is a subset of Rn, then we denote by Conv(A) the convex hull of A in Rn. If

P ⊆ Rn, then we say that P is a polytope when there exists a finite subset A ⊆ Rn such that

P = Conv(A). If A is contained in Zn, then Conv(A) is said to be lattice polytope.

If P is a polytope in Rn, then the dimension of P is defined as the minimum dimension

of an affine subspace containing P .

If P is any subset of Rn, then we denote by C[P ] the family of polynomial maps h ∈
C[x1, . . . , xn] such that supp(h) ⊆ P . Let P = (P1, . . . , Pn) be an n-tuple of subsets of Rn.

We denote by Cn[P] the set of polynomial maps F = (F1, . . . , Fn) : Cn → Cn such that

supp(Fi) ⊆ Pi, for all i = 1, . . . , n. We can identify Cn[P] with a finite dimensional vector

space CN , for a big enough positive integer N , by associating to each map F ∈ Cn[P] the

vector formed by the coefficients of F . Under this identification, we say that a property

holds for a generic F ∈ Cn[P] when the said property holds in a dense Zariski open subset

of CN .

Given a lattice polytope P ⊆ Rn, then we say that P is cornered when for all j = 1, . . . , n

there exists some k ∈ P such that kj = 0 (see [21, p. 119]). If P ⊆ Rn
>0 and fP denotes the

polynomial obtained as the sum of all terms xk such that k ∈ P ∩Zn
>0, then we observe that

P is cornered if and only if fP is not divisible by xj, for all j = 1, . . . , n.

Let P = (P1, . . . , Pn) be an n-tuple of lattice polytopes in Rn, then P is said to be cornered

when Pi is cornered, for all i = 1, . . . , n. We say that P is nice when F−1(0) is finite, for a

generic map F ∈ Cn[P].

If F : Cn → Cn is a polynomial map such that F−1(0) is finite, then we denote by m(F )

the number of roots of F counted with multiplicities. That is, if I(F ) denotes the ideal

of C[x1, . . . , xn] generated by the component functions of F , then applying [7, Chapter 4,

Corollary 2.5] we have

m(F ) = dimC
C[x1, . . . , xn]

I(F )
.

If K ⊆ Rn, then we denote by Voln(K) the n-dimensional volume of K. Let C1, . . . , Cn be

n polytopes of Rn and let λ1, . . . , λn ∈ R>0. Let λ1C1+ · · ·+λnCn = {λ1k1+ · · ·+λnkn : ki ∈
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Ci, i = 1, . . . , n}. It is a classical result from convex geometry that Voln(λ1C1+· · ·+λnCn) is

a homogeneous polynomial of degree n in the variables λ1, . . . , λn (see for instance [7, p. 337]).

The n-dimensional mixed volume of C1, . . . , Cn is defined as the coefficient of λ1 · · ·λn in

the polynomial Voln(λ1C1 + · · · + λnCn). We denote this number by M(C1, . . . , Cn). Let us

recall some elementary properties of this number (we take them from [20, p. 112], see also

[7, Chapter 7, § 4]):

(1) M(C1, . . . , Cn) is symmetric and linear in each variable.

(2) M(C1, . . . , Cn) > 0 and M(C1, . . . , Cn) = 0 if and only if dim
(∑

i∈I Ci

)
< |I|, for

some non-empty subset I ⊆ {1, . . . , n}, where |I| denotes the cardinal of I.

(3) M(C1, . . . , Cn) ∈ Z>0, if Ci is a lattice polytope, for all i = 1, . . . , n.

(4) M(C, . . . , C) = n!Voln(C), for any polytope C ⊆ Rn.

We refer to [7, 10, 20] for more information about M(C1, . . . , Cn).

If P is a polytope in Rn, then we denote Conv(P ∪ {0}) by P 0. If P = (P1, . . . , Pn) is

an n-tuple of polytopes of Rn, then we define P0 = (P 0
1 , . . . , P

0
n). In particular, it makes

sense to speak about the mixed volumes M(P) and M(P0). Let us remark that P0 is always

cornered. By [16, Theorem 2.4], if F ∈ Cn[P], P is a lattice polytope and F−1(0) is finite,

then m(F ) 6 M(P0). As remarked in [21, p. 119], the conditions nice and cornered on P

are independent conditions. The following results tells us that both properties together in

P imply m(F ) = M(P0), for a generic F ∈ Cn[P].

Theorem 3.1. [21, p. 119] Let P = (P1, . . . , Pn) be an n-tuple of lattice polytopes of Rn
>0.

Let us suppose that P is nice and cornered. Then a generic polynomial map F ∈ Cn[P] has

exactly M(P0) roots in Cn, counting multiplicities.

The previous theorem is proven in [21] in a more general context (i.e. for polynomial maps

with coefficients in a given algebraically closed field of any characteristic).

Let P = (P1, . . . , Pn) and Q = (Q1, . . . , Qn) be n-tuples of polytopes in Rn
+. We write

P ⊆ Q to denote that Pi ⊆ Qi, for all i = 1, . . . , n. We also define the n-tuples of subsets

P ∩ Q = (P1 ∩ Q1, . . . , Pn ∩ Qn) and Q r P = (Q1 r P1, . . . , Qn r Pn). If L ⊆ {1, . . . , n},

L ̸= ∅, then we set PL = (P1 ∩ Rn
L , . . . , Pn ∩ Rn

L ).

Next we recall a particular case of a definition introduced in [21, p. 120].

Definition 3.2. Let P and Q be n-tuples of polytopes in Rn
>0 such that Q is nice and

cornered. We say that P counts Q when

(1) P ⊆ Q;

(2) P is nice

(3) For any F ∈ Cn[QrP], the map F +F ′ has a finite zero set and m(F +F ′) = M(Q0),

for a generic F ′ ∈ Cn[P].

In particular, if P counts Q, then m(F ) = M(Q0), for a generic F ∈ Cn[P], and therefore

M(P0) = M(Q0) provided that P is also cornered, by Theorem 3.1.
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Definition 3.3. [21, p. 124] Let P = (P1, . . . , Pn) be an n-tuple of polytopes in Rn. The

support of P is defined as the set of indices i ∈ {1, . . . , n} such that Pi ̸= ∅. We denote this

set by supp(P). Let J ⊆ {1, . . . , n}. Then J is said to be essential for P when the following

conditions hold:

(1) J ⊆ supp(P);

(2) dim(
∑

j∈J Pj) = |J | − 1;

(3) for all nonempty proper subset J ′ ⊂ J we have dim(
∑

j∈J ′ Pj) > |J ′|.

Given a closed subset P ⊆ Rn
>0 and a vector w ∈ Rn, then we define ℓ(w,P ) = min{⟨w, k⟩ :

k ∈ P}, where ⟨ , ⟩ stands for the standard inner product in Rn. If ℓ(w,P ) > −∞, then we

denote by Pw, or by ∆(w,P ), the subset of P formed by those k ∈ P such that ⟨w, k⟩ =

ℓ(w,P ). The sets of the form ∆(w,P ), for some w ∈ Rn, are called faces of P . If P =

(P1, . . . , Pn) is an n-tuple of lattice polytopes contained in Rn
>0, then we denote the n-tuple

(Pw
1 , . . . , P

w
n ) by Pw.

Next we state a particular case of [21, Theorem 7] that we need for our purposes (we remark

that the mentioned theorem is stated for polynomials with coefficients in any algebraically

closed field). Given two n-tuples of polytopes P and Q of Rn such that P ⊆ Q, the next

result gives a purely combinatorial characterization of when P counts Q.

Theorem 3.4. [21, p. 127] Let P and Q be n-tuples of lattice polytopes contained in Rn
>0 such

that P ⊆ Q. Let us suppose that Q is nice and cornered and M(Q0) > 0. Then P counts Q

if and only if supp(P ∩ Qw) contains an essential subset for Qw, for all w ∈ Rn rR>0.

If I is a monomial ideal of On of finite colength then we define

ai(I) = max
{

ord(IL) : L ⊆ {1, . . . , n}, |L| = n− i + 1
}

for any i ∈ {1, . . . , n}. Let us observe that a1(I) 6 · · · 6 an(I). The us remark that the

definition of ai(I) only depends on Γ+(I). Therefore ai(I) = ai(I), for all i = 1, . . . , n. We

also define the vector a(I) = (a1(I), . . . , an(I)). For instance, if I = ⟨xyz, xa, yb, zc⟩ ⊆ O3,

where 3 < a 6 b 6 c, then a(I) = (3, b, c).

We recall that ai(I) = L(i)
0 (I), for all i = 1, . . . , n, by Theorem 2.3, however this equality

is not used in the main result.

If k ∈ Rn then we denote by |k| the sum of the coordinates of k.

Theorem 3.5. Let I be a monomial ideal of finite colength of On. Then

(7) e(I) 6 a1(I) · · · an(I)

and equality holds if and only if there exist polynomials g1, . . . , gn ∈ C[x1, . . . , xn] such that

gi is homogeneous of degree ai(I), for all i = 1, . . . , n, and I = ⟨g1, . . . , gn⟩.

Proof. Since e(I) = e(I) and ai(I) = ai(I), for all i = 1, . . . , n, we can assume that I is

integrally closed. Then I = ⟨xk : k ∈ Γ+(I)⟩ (see for instance [14, Proposition 1.4.6]). Let
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ai = ai(I), for all i = 1, . . . , n. Let us denote by Di the convex hull in Rn of the set{
k ∈ supp(IL) : |k| = ai, L ⊆ {1, . . . , n}, |L| = n− i + 1

}
,

for all i = 1, . . . , n. By the definition of ai we have ai = ord(IL), for some L ⊆ {1, . . . , n}
such that |L| = n− i + 1, for all i = 1, . . . , n. In particular Di ̸= ∅, for all i = 1, . . . , n. Let

D denote the n-tuple of polytopes (D1, . . . , Dn).

If α ∈ R>0, let ∆(α) denote the convex hull in Rn of the set {k ∈ Zn
>0 : |k| = α} and let ∆

denote the n-tuple of polytopes (∆(a1), . . . ,∆(an)). It is clear that ∆ is nice and cornered

and M(∆0) = a1 · · · an > 0. Clearly we have D ⊆ ∆. We claim that D counts ∆. To see

this we will apply Theorem 3.4.

Let us fix a vector w = (w1, . . . , wn) ∈ Rn r Rn
>0 and let w0 = min{w1, . . . , wn}. Let Lw

denote the set of indices {i : wi = w0}. Then it is immediate to see that ℓ(w,∆(aj)) = ajw0

and ∆(aj)
w = ∆(aj) ∩Rn

Lw
, for all w ∈ Rn rRn

>0 and all j = 1, . . . , n. Then ∆w = ∆Lw , for

all w ∈ Rn rRn
>0. In particular we have the equality

{∆w : w ∈ Rn rRn
>0} = {∆L : L ⊆ {1, . . . , n}, L ̸= ∅}.

Let us fix a subset L ⊆ {1, . . . , n}, L ̸= ∅. Let α = |L| and let us consider the set of indices

JL = {n + 1 − α, . . . , n}. Let us show that JL ⊆ supp(D ∩ ∆L) and JL is an essential set for

∆L.

If i ∈ JL, then α > n − i + 1 and thus ord(IL) 6 ord(IL
′
) 6 ai, for all L′ ⊆ L such that

|L′| = n− i + 1. In particular, if L′ ⊆ L is any subset such that |L′| = n− i + 1, there exists

some k ∈ supp(IL
′
) ⊆ supp(IL) such that |k| = ai. Then Di ∩ ∆(ai)

L ̸= ∅, for all i ∈ JL.

That is, we have JL ⊆ supp(D ∩ ∆L). We observe that dim ∆(a)L = |L| − 1, for all a ∈ R>0.

Moreover it is immediate to see that
∑

j∈JL ∆(aj)
L = (∆(

∑
j∈JL aj))

L. In particular we have

dim
∑

j∈JL ∆(aj)
L = |L|−1. Then we observe that JL verifies immediately conditions (2) and

(3) of the definition of essential subset for ∆L (see Definition 3.3). Thus we deduce that D

counts ∆, by Theorem 3.4.

In particular, there exist homogeneous polynomials gi ∈ C[Di], i = 1, . . . , n, such that

the map G = (g1, . . . , gn) : Cn → Cn verifies that G−1(0) is finite and m(G) = M(∆0) =

a1 · · · an. Since gi is homogeneous, for all i = 1, . . . , n, and G−1(0) is finite, we conclude that

G−1(0) = {0}. Let I(G) be the ideal of On generated by g1, . . . , gn. Then I(G) has finite

colength and e(I(G)) = a1 · · · an. We assume that I is monomial and integrally closed, then

I(G) ⊆ I. This implies a1 · · · an = e(I(G)) > e(I).

Then by the Rees’ multiplicity theorem (see for instance [11, p. 147] or [14, p. 222]), the

equality e(I(G)) = e(I) holds if and only if I = I = ⟨g1, . . . , gn⟩. �

Let G denote a homogeneous polynomial map Cn → Cn such that G−1(0) = {0}. Let

us denote by I(G) the ideal of On generated by the component functions of G. We remark

that the integral closure of I(G) is not always a monomial ideal, as is shown by the map

G : (C2, 0) → (C2, 0) given by g(x, y) = (xy + x2, y3).
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Let I be a monomial ideal of On of finite colength and let v = (1, . . . , 1) ∈ Rn. Then we

denote the face ∆(v,Γ+(I)) by ∆0(I). Let us observe that the elements k ∈ Γ+(I) such that

|k| = ord(I) are contained in ∆0(I).

Remark 3.6. Let I be a monomial ideal of On of finite colength satisfying the condition

e(I) = a1 · · · an, where ai = ai(I), i = 1, . . . , n. Then, as we have seen in the proof of Theo-

rem 3.5, the ideal I admits a reduction ⟨g1, . . . , gn⟩, where gi is a homogeneous polynomial of

C[x1, . . . , xn] of degree ai, for all i = 1, . . . , n. Let d = dim ∆0(I). Then, as a consequence of

[1, Theorem 2.10], where all the reductions of monomial ideals are characterized, it follows

that a1 = · · · = ad = ad+1. In particular, if a1 < a2, then dim ∆0(I) = 0, that is, the face

∆(v,Γ+(I)) is a vertex.

Let us also observe that, by [1, Theorem 2.10], the condition e(I) = a1 · · · an forces the

face ∆0(I) to intersect all faces of Γ+(I) of dimension n. We conjecture that it is possible

to obtain a characterization of the condition e(I) =
∏n

i=1 ai(I) in terms of some property of

the tree determined by the vertexes and edges of Γ+(I).

Example 3.7. Let us consider the ideal of O3 given by I = ⟨xa, yb, zc, xy, xz, yz⟩, where

2 6 a 6 b 6 c. Then a(I) = (2, 2, c). Moreover e(I) = 2 + a + b + c. Then we observe that

e(I) 6 4c and equality holds if and only if a = b = c = 2.

Here we illustrate Remark 3.6. Let us observe that the face ∆0(I), contains the convex

hull of the supports of the monomials xy, xz, yz. Hence dim ∆0(I) = 2. Then I does not

satisfy the relation e(I) = a1(I)a2(I)a3(I) if c > 2, by Remark 3.6.

Example 3.8. Let I be the ideal of On generated by xk, xa1
1 , . . . , xan

n , where k ∈ Zn
>0,

k ̸= 0, and a1, . . . , an are integers such that |k| 6 a1 6 · · · 6 an. We recall that |k|
denotes the sum of the coordinates of k. Then we have a(I) = (k1 + · · ·+ kn, a2, . . . , an) and

e(I) = k1a2 · · · an+· · ·+a1 · · · an−1kn. Therefore it is immediate to see that e(I) =
∏n

i=1 ai(I)

if and only if a1 = · · · = an.

Let lct(I) denote the log canonical threshold of an ideal I of On and let µ(I) denote the

inverse 1/ lct(I), which is also known as the Arnold index of I. By a result of de Fernex-

Ein-Mustaţă [8, Theorem 1.4], if I is an ideal of On of finite colength, then e(I) > (nµ(I))n

and equality holds if and only if I = m
ord(I)
n . In particular, using (3), we have

(8) (nµ(I))n 6 e(I) 6 L(1)
0 (I) · · · L(n)

0 (I).

We recall that, by a result of Howald [13], if I is a monomial ideal then

(9) µ(I) = min{α > 0 : αv ∈ Γ+(I)},

where v = (1, . . . , 1) ∈ Rn. Let us denote the number on the right hand of (9) by α(I).

Then, as a consequence of (7) and [8, Theorem 1.4] we obtain the following conclusion, which

is a combinatorial result.
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Corollary 3.9. Let I be a monomial ideal of On of finite colength. Then

a1(I) · · · an(I) > (nα(I))n

and equality holds if and only if I = m
ord(I)
n .
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[3] Bivià-Ausina, C. Local  Lojasiewicz exponents, Milnor numbers and mixed multiplicities of ideals, Math.

Z. 262, No. 2 (2009), 389-409.

[4] Bivià-Ausina, C. Joint reductions of monomial ideals and multiplicity of complex analytic maps, Math.

Res. Lett. 15, No. 2 (2008), 389–407.
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