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Abstract

In this paper we deal with a generalization of the Vehicle Rout-

ing Problem with Time Windows that considers time-dependent travel

times and costs. Through several steps we transform this extension

into an Asymmetric Capacitated Vehicle Routing Problem, so it can be

solved both optimally and heuristically with known codes.
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1 Introduction

The Vehicle Routing Problem with Time Windows (VRPTW) basically con-

sists of finding a least cost set of routes made by a fleet of vehicles from

a specified location (the depot) to a set of points geographically distributed

(customers with a positive demand) such that: each route begins and ends at

the depot, each customer is visited only once by exactly one vehicle within

a given time window, all the vehicles have the same capacity and the total

demand serviced by a vehicle must not exceed its capacity. The number of

vehicles can be fixed a priori or left as a decision variable.
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Because of the great number of applications of the VRPTW in real-life

distributions and scheduling problems, it has been widely studied, and due to

its computational complexity, its study has been mainly focused on heuristic

approaches. To be brief we will cite the relevant surveys [3], [4] and [6] and

the recent papers [2] and [16].

Like in most routing problems studied in the OR literature, in the VRPTW

the costs or times to go from one location to another are considered constant

throughout the day. This assumption may be far from the reality in distri-

bution problems inside big cities, where the time or cost of traversing some

streets, like main avenues, depend on the moment of the day, for example the

peak hours, with their corresponding traffic jams.

Routing problems with time-dependent costs have hardly been studied be-

cause they are more difficult to model and to solve. However, in the last few

years several papers on vehicle routing problems have taken into account time-

dependent travel costs. We may cite [5], [8],[10],[12],[13] and [17], that provide

heuristic procedures for the solution of different time-dependent VRP models

with different kinds of time-dependent travel times. Due to the characteristics

of the problems (identical vehicles) most of these papers consider the “first-in-

first-out” (FIFO) property, also called the “non-passing” property: if a vehicle

leaves a vertex i for a vertex j at a given time, leaving vertex i for vertex j at

a later time implies arriving later at vertex j.

In the case of a single vehicle problem, recently Albiach et al. ([1]) de-

fine the Asymmetric Traveling Salesman Problem with Time-Dependent Costs

(ATSPTDC), an extension of the well-known Asymmetric Traveling Salesman

Problem with Time Windows (that can be considered as a VRPTW with a

single vehicle) in which the time and the cost of traversing an arc are time-

dependent. The main difference with respect to the papers cited above is that

Albiach et al. focus their work on optimal resolution; they optimally solve the

ATSPTDC by its transformation into a classical Asymmetric TSP.

In this paper we present a generalization of the VRPTW that, following

the names given in [5] and [8], we will call the Time-Dependent Vehicle Rout-

ing Problem with Time Windows (TDVRPTW), in which the time and the
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cost of traversing an arc depend on the period of time at which we start to

traverse it, and in which some kinds of waiting times are allowed at the cus-

tomer locations. Through several steps we transform the TDVRPTW into an

Asymmetric Capacitated Vehicle Routing Problem (ACVRP), a VRP without

time windows restrictions for which in addition to heuristic procedures like

the one given in [18] or the more recent in [7], at least two exact procedures

have been reported in [9] and [14]. Therefore, in contrast to the papers on

time-dependent VRP cited above, we provide a way to optimally solve this

problem, at least for small size instances due to its complexity.

To our aim we need to formally define the ACVRP:

Let G = (V,A) be a complete digraph, V = {vi}n
i=0 being its set of vertices,

where v0 is the depot vertex, each vertex vi with i > 0 has associated a demand

di > 0, and each arc (vi, vj) ∈ A has associated a cost ci,j ≥ 0. Moreover, a

fleet of vehicles with the same capacity W where W ≥ di ∀i = 1, ..., n is

available at the depot.

Find a set of shortest routes starting and ending at the depot such that each

vertex vi ∀ i ∈ {1, ..., n} must be visited by one and only one vehicle and the

sum of the demands of the vertices visited by each vehicle does not exceed W .

To obtain our transformation, we will also use the Generalized Vehicle

Routing Problem (GVRP), an extension of the ACVRP introduced by Ghiani

and Improta ([11]) and defined as follows:

“Let G = (V, A) be a directed graph where the set of vertices V is divided

into m+1 nonempty subsets S0, S1, ..., Sm such that S0 has only one vertex v0

which represents the depot, Sh h = 1, ...,m, represents l(h) possible locations

of the same vertex which has associated a positive demand di and each arc

(vi, vj) ∈ A has associated a cost ci,j ≥ 0. Moreover, a fleet of vehicles with

the same capacity W where W ≥ di ∀i = 1, ...,m is available at the depot.

Find a set of shortest routes starting and ending at the depot such that in

each subset Si, i = 1, ..., m one and only one vertex is visited exactly once and

the sum of the demands of every route does not exceed W .

This paper is organized as follows. Section 2 gives the definition of the TD-

VRPTW as well as the construction of auxiliary digraphs from a TDVRPTW
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instance. Section 3 transforms the TDVRPTW first into a GVRP and then

into an ACVRP, and Section 4 presents some final remarks about this work.

2 Definition and auxiliary digraphs

2.1 Definition of the TDVRPTW

We define the TDVRPTW as follows:

Let G = (V, A) be a directed complete graph, V = {vi}n
i=0 being its set

of vertices, where v0 is the depot vertex, each vertex vi has associated a time

window [ai, bi] verifying that ai, bi ∈ Z+ ∪ {0} and [ai, bi] ⊆ [a0, b0] ∀ i ∈
{1, ..., n}. Given pi = bi − ai, the time window [ai, bi] has associated pi +

1 instants of time {ai + k}pi

k=0 . For simplicity we will denote tki = ai + k

(therefore tki ∈ Z+ ∪ {0}). Each instant of time tki with i > 0 has associated a

waiting time window [wk
i , t

k
i ], wk

i ∈ (Z+ ∪ {0})∩ [a0, t
k
i ] and each vertex vi has

also associated a demand di > 0 ∀i > 0.

On the other hand, the time and the cost of traversing an arc (vi, vj) ∈ A

depend on the instant of time tki (k ∈ {0, 1, ..., pi}) at which we start traversing

it. Let us denote by tki,j ∈ Z+ and ck
i,j ≥ 0 the time and the cost respectively of

traversing the arc (vi, vj) starting at instant tki . Moreover, each waiting time

t ∈ Z+ at each vertex vi has associated a cost cwti(t) ≥ 0 and the traversing

arc times satisfy the FIFO property.

For a fixed number of vehicles r with identical capacity W > 0 such that

W ≥ di ∀i and rW ≥ ∑n
i=1 di, the goal of the TDVRPTW is to find r cycles

in G such that:

- Each cycle starts and ends at the depot at integer instants of time inside

[a0, b0]. Starting a circuit at time tk0 ≥ a0 involves a waiting time cost cwt0(t
k
0−

a0) with cwt0(0) = 0.

- Every vertex vi with i ∈ {1, . . . , n} must be visited by one and only one

vehicle, that must leave vertex vi inside its associated time window. If a circuit

arrives at vertex vi with i > 0 at time t ∈ Z+ ∩ [wk
i , t

k
i ], it is allowed a waiting

time tki − t with cost cwti(t
k
i − t) ≥ 0 (cwti(0) = 0) for all k ∈ {0, 1, ..., pi} if

the circuit leaves vi at time tki .
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- The sum of the demands of the vertices visited by each vehicle does not

exceed its capacity W.

- The sum of the costs of the r cycles be minimum, where the cost of a cycle

is defined as the sum of its arc costs and of its waiting time costs.

Some relevant aspects of this definition are:

- This definition allows a vehicle to start its route after instant a0 with a

waiting time cost. This is very important to minimize the cost; for instance, if

a0 belongs to a peak hour, if possible, the worker can work for a short period

of time inside the warehouse until the traffic be moving quite freely.

- In the same way, this definition also allows a waiting time at each customer

location vi, if due to the traffic conditions, it is preferable to wait in order to

minimize the cost of the circuit. This waiting time has an associated cost

which normally is given by a non-decreasing linear function. Note that in this

case, tki −wk
i indicates the maximum waiting time allowed if we want to leave

vertex i at time tki . Therefore, if we do not want to wait when tki > ai (as it

happens in the VRPTW), we only have to do wk
i = tki .

- As usual in routing problems, we suppose that if a service time is necessary

at a vertex i with i > 0, this time is included in the travel times tkij for all

j 6= i and for all k.

- From a practical point of view, the fact that the travel times must take

integer values does not involve a strong restriction with respect to the contin-

uous case, because we can define an appropriate and as-small-as required unit

of time for each instance.

- In contrast to the papers on time-dependent vehicle routing problems

cited in Section 1, this definition distinguishes between two magnitudes: the

time-dependent travel time and the time-dependent cost, focusing on cost min-

imization.

- Due to the characteristics of the problem (identical vehicles), this defini-

tion assumes that the travel times satisfy the FIFO property, in spite of the

fact that this assumption does not affect to the transformation discussed in

this paper.

- In the particular case of the TDVRPTW in which tkij = tsij = ck
ij = cs

ij
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∀k, s ∈ {0, 1, ..., pi} and ∀(vi, vj) ∈ A, ck
0,j = ∞ ∀k > 0 and ∀j > 0 (each

circuit must start at time a0), ∀i > 0 [wk
i , t

k
i ] = [a0, ai] if k = 0 and wk

i = tki

if k > 0 (no waiting time), and all waiting time costs equal to zero, we have a

VRPTW with a fixed number of vehicles.

- In the particular case r = 1, if ∀i > 0 [wk
i , t

k
i ] = [a0, ai] if k = 0 and

wk
i = tki if k > 0 we have the ATSPTDC, studied in [1]. Thus, we also

generalize the ATSPTDC in two ways: first by allowing waiting times at the

customer locations even when arriving inside the customer time window, and

then by extending the first generalization to the multivehicle case.

2.2 Auxiliary digraph

Due to the fact that traversing arc costs are not constant, we can not work

directly with the digraph G = (V,A) in a classical way, because each arc would

have many associated costs. To avoid this handicap, we will work with an

auxiliary digraph, in which basically a vertex vk
i corresponds with a customer

i (or with the depot) at time tki , such that arc (vk
i , v

h
j ) exists if and only if a

vehicle leaving customer i at time tki arrives at customer j at time thj or before

(if allowed) and leaves customer j at time thj . Arc (vk
i , v

h
j ) will have associated

a single cost consisting of the travel cost ck
ij plus maybe a waiting time cost if

it arrives at vj before thj . In this way we can use the classical properties of the

graphs.

Consider then a TDVRPTW defined on graph G = (V, A) with all the

corresponding data. We construct a directed auxiliary graph G′ = (V ′, A′) as

follows:

- For each vertex vi with i ∈ {0, ..., n} and for each instant of time tki for

all k ∈ {0, 1, ..., pi} create a vertex vk
i .

- For each pair of vertices vk
i , v

l
j ∈ V ′ with i 6= j and such that tki + tkij ∈

[wl
j, t

l
j] if j 6= 0 and tki + tkij = tlj if j = 0, add to G′ an arc (vk

i , v
l
j) with cost

equal to ck
i,j + cwtj(t

l
j − (tki + tkij)). Note that wl

j ≤ tki + tkij < tlj implies a

waiting time at vertex vj ∈ G if a cycle takes arc (vi, vj) at time tki and leaves

vj at time tlj.

- Divide {0, 1, ..., p0} into four subsets I1, I2, I3, I4 in the following way:
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1) k ∈ I1 if vk
0 has only leaving arcs in G′. Replace this vertex

with r copies of the same one that we will denote vk
0s1

, ..., vk
0sr

(a

starting vertex for each vehicle), and from each one of them the

same set of arcs must exit, that is, each arc (vk
0 , v

q
i ) will be replaced

in G′ with one copy for each vehicle, (vk
0sj

, vq
i ) j = 1, ..., r, with the

same cost.

2) k ∈ I2 if vk
0 has only entering arcs in G′. Replace this vertex

with r copies of the same one that we will denote vk
0e1

, ..., vk
0er

(an

ending vertex for each vehicle) and for each one of them the same

set of arcs must enter, that is, each arc (vq
i , v

k
0) will be replaced in

G′ with one copy for each vehicle, (vq
i , v

k
0ej

) j = 1, ..., r, with the

same cost.

3) k ∈ I3 if vk
0 has both entering and leaving arcs in G′. In this

case split vk
0 into 2r vertices: vk

0s1
, ..., vk

0sr
, vk

0e1
, ..., vk

0er
, so that the

first r vertices only have leaving arcs (the same as vk
0) in G′ and

the other r vertices only have entering arcs (the same as vk
0) in G′,

in the same way as in the two previous cases.

4) k ∈ I4 if vk
0 has neither entering arcs nor leaving arcs in G′.

Then, delete vk
0 from G′ for all k ∈ I4.

- Add to G′ a new vertex vd, that will be the depot, with the next arcs, all

of them with zero cost:

For each k ∈ I1 ∪ I3 and for each j ∈ {1, ..., r}, an arc (vd, v
k
0sj

).

For each k ∈ I2 ∪ I3 and for each j ∈ {1, ..., r}, an arc (vk
0ej

, vd).

An example illustrates the construction of this auxiliary digraph: a TD-

VRPTW with n = 4, r = 2 and W = 9, that is, with four customers and the

depot, and two vehicles with a capacity of 9 units. In order to clearly show

the whole transformed directed graph, in this example we will suppose that

∀i > 0 wk
i = a0 if k = 0 and wk

i = tki if k > 0, that is, a waiting time at vi is

only allowed if we arrive at vi before time ai and we leave vi at time ai. Like

in [1], in this example we will also suppose that waiting times have zero cost

and that the travel cost is proportional to the travel time except for a little
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deviation due, for instance, to the characteristics of the different routes. More

specifically, the travel cost is about 40 times the travel time with 5% maximum

deviation, that is, ct
ij ∈ [38ttij, 42ttij]. The time window and the demand of each

vertex are given in Figure 1.

Figure 1. Graph G.

Table 1 shows the time-dependent travel times and costs corresponding

to this example, in a particular format to simplify the construction of the

auxiliary digraph. Each tki shows in brackets its corresponding time instant.

For example, the ordered pair corresponding to the row t00 and to the column

t11 means that if we traverse arc (v0, v1) starting at time t00, which corresponds

to instant 0, t00,1 = 3 and c0
0,1 = 125. A dash inside the cell corresponding to

row tki and column tlj means that if we traverse arc (vi, vj) starting at time tki

we will not arrive at vj at time tlj if l > 0 or that we will arrive after aj if

l = 0. Note that the table does not include the rows and columns with not

possible paths, and that a waiting time at the customer location only occurs

going from v3 to v4 at time t = 1, being t03 + t034 = 4 and t04 = 5 (one unit of

waiting time).

Figure 2 shows the corresponding auxiliary digraph G′ in which, to simplify,

the vertices vk
i are denoted only by their superindex k and they have been

clustered into subsets Si corresponding to customers or vehicles. Arc costs

have been omitted in Figure 2; they can be easily obtained from Table 1.
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t11(3) t21(4) t02(4) t12(5) t23(3) t04(5) t14(6) t24(7)

t00(0) (3,125) - (4,163) - (3,115) (5,195) - -

t10(1) - (3,120) - (4,162) - - (5,205) -

t20(2) - - - - - - - (5,200)

t50(5) t60(6) t80(8) t02(4) t12(5) t22(6) t14(6)

t01(2) (3,123) - - (2,81) - - (4,160)

t11(3) - (3,115) - - (2,83) - -

t21(4) - - (4,160) - - (2,79) -

t40(4) t50(5) t60(6) t12(5) t04(5) t14(6)

t03(1) (3,120) - - (4,161) (3,125) -

t13(2) - (3,122) - - (3,121) -

t23(3) - - (3,120) - - (3,115)

t50(5) t60(6) t70(7)

t02(4) (1,40) - -

t12(5) - (1,41) -

t22(6) - - (1,39)

t60(6) t70(7)

t04(5) (1,41) - -

t14(6) - (1,38)

t24(7) - -

Table 1. Time-dependent travel times and costs (tkij, c
k
ij) of graph G.

Figure 2. Auxiliary digraph G′ from G.
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2.2.1 Reduced auxiliary digraph

Given the auxiliary digraph defined above, it is logical to think that its size

could be a handicap to apply any kind of exact procedure to solve an NP-

hard routing problem on it. In fact, in real distribution problems inside big

cities, the servicing time windows of the customers could have a relative small

size (for example one hour) after preliminary studies and negotiations, but the

depot time window should be opened during the entire working day. If there

are customers to be serviced early and customers to be serviced at the end

of the working day, each one of the sets Sj
0s

and Sj
0e

j = 1, ..., r, will contain

about b0−a0 vertices. For example, in this condition, in a 8-hour working day

with a time unit equal to 1 minute and a fleet of 5 vehicles, would imply that

the depot gives rise to about 8 × 60 × 5 × 2 = 4800 vertices in the auxiliary

graph.

We show next that the size of the auxiliary graph can be considerably re-

duced to make this transformation more competitive. In fact, in the “reduced”

auxiliary digraph, the number of vertices generated from the depot will always

be 2r + 1, independently of the size of the depot time window. Thus, in the

example given above, we would only have 11 vertices vs the about 4800 vertices

(a very considerable reduction), and in our example of Figure 1, we would have

5 vertices vs the 17 vertices in Figure 2.

Let then G′ = (V ′, A′) be the auxiliary digraph obtained from the original

TDVRPTW instance. Consider in V ′ the vertex subsets Sj
0s

= {vk
0sj
}k∈I1∪I3 j =

1, ..., r, Sj
0e

= {vk
0ej
}k∈I2∪I3 j = 1, ..., r and Si = {vk

i }pi

k=0∀i ∈ {1, ..., n}. From

G′ we construct a reduced auxiliary digraph G” = (V ”, A”) in the following

way:

- For each subset Sj
0s

with j = 1, ..., r create a single vertex sj
s.

- For each subset Sj
0e

with j = 1, ..., r create a single vertex sj
e.

- Maintain the rest of vertices of G′ including vd.

-For every vertex v ∈ G” different from those created in the first two steps,

and for each j ∈ {1, ..., r} do cost(sj
s, v) = min

k
{cost(vk

0sj
, v)}.

- For every arc (v, vk
0ej

) with finite cost in G′ do cost(v, sj
e) = cost(v, vk

0ej
).

- Do cost(sj
e, vd) = cost(vd, s

j
s) = 0 ∀j ∈ {1, ..., r}.
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- Maintain the arc costs between vertices belonging to different sets Si with

i ∈ {1, ..., n}.
- Remove all vertices vk

i ∈ G” with i 6= 0 verifying that d+(vk
i ) = 0 or

d−(vk
i ) = 0. To do this, we understand that an arc (u, v) exists in G” if it has

been assigned before a finite value to cost(u, v).

Figure 3 shows the reduced auxiliary digraph G” from G′ in Figure 2 cor-

responding to our example. As we have said, the number of vertices generated

from the depot is 5 vs 17 vertices in Figure 2, and vertices v0
1, v0

3, v1
3 and v2

4

have been removed, so G” has 13 vertices while G′ has 29 vertices.

Figure 3. Reduced auxiliary digraph G”.

3 Transformation of the TDVRPTW into an

ACVRP

Once defined the graphs G′ and G”, we present a way to solve the TDVRPTW

by transforming it into a GVRP and then transforming the obtained GVRP

into an ACVRP. Thus, we can solve the TDVRPTW with existing algorithms

for the ACVRP (as those cited in Section 1) both heuristically and optimally,

in this last case at least for small size instances.

Let G = (V,A) be the digraph where a TDVRPTW is defined. We consider

in its auxiliary digraph G′ = (V ′, A′) a GVRP corresponding to the partition of

V ′ into the following subsets: Sd = {vd}, Sj
0s

= {vk
0sj
}k∈I1∪I3 j = 1, ..., r, Sj

0e
=
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{vk
0ej
}k∈I2∪I3 j = 1, ..., r, and Si = {vk

i }pi

k=0∀i ∈ {1, ..., n}, that is, n + 2r + 1

subsets, where Sd represents the depot vertex, Sj
0s

and Sj
0e

with j = 1, ..., r

have demand 1, each subset Si i ∈ {1, ..., n} has associated the demand di of

the costumer i in the TDVRPTW, and the capacity of each vehicle is increased

in 2 units (W+2).

We also consider in its reduced auxiliary digraph G” = (V ”, A”) a GVRP in

the same terms as the GVRP defined in G′, except that the subsets Sj
0s

and Sj
0e

have now a single element, that is, Sj
0s

= {sj
s} and Sj

0e
= {sj

e} ∀j ∈ {1, ..., r},
and that some Si may contain fewer elements than in G′.

We have the following results:

Theorem 1 The TDVRPTW can be transformed into the GVRP defined in

the auxiliary digraph.

Proof. Let us see that there is a one to one correspondence between the set

of feasible GVRP solutions in G′ and the set of feasible TDVRPTW solutions

in G:

Let T ′ be a feasible GVRP solution in G′. By construction of G′, T ′ has

exactly r routes, one for each vehicle, and without loss of generality, we can

suppose that the routes have the following structure:{
vd, v

k1
0

0s1
, v

k1
1

i1
, ..., v

k1
a

ia
, v

k1
a+1

0e1
, vd

}
for vehicle 1,. . .,

{
vd, v

kr
0

0sr
, v

kr
1

ib
, ..., v

kr
c

ic
, v

kr
c+1

0er
, vd

}

for vehicle r.

Note that if a vehicle does not return to the depot by a vertex vk
0et

with

its corresponding index, a posteriori we can permute the names of the subsets

Sj
0e with j = 1, ..., r in order T ′ to have the previous structure.

We can easily identify the GVRP solution T ′ in G′ with the feasible TD-

VRPTW solution H in G consisting of the following set of r cycles:

{v0, vi1 , vi2 , ..., via , v0} for vehicle 1,. . .,{v0, vib , vib+1
, ..., vic , v0} for vehicle r,

where vehicle 1 leaves the depot vertex v0 at time k1
0 ∈ [a0, b0], leaves each vil in

its route at instant ail +k1
l ∈ [ail , bil ] and ends at v0 at time a0 +k1

a+1 ∈ [a0, b0],

and so on for the rest of vehicles. Both solutions T ′ and H have the same

cost and service the same demand except for the two units serviced by each

vehicle j at Sj
0e and Sj

0s in the GVRP. In a similar way it is easy to see that

a feasible TDVRPTW solution in G gives rise to a feasible GVRP solution in
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G′ with the same cost and therefore, an optimal GVRP solution in G′ gives us

an optimal TDVRPTW in G and vice versa.

Theorem 2 Solving the GVRP in G′ is equivalent to solving the GVRP in

G”.

Proof. Given a feasible GVRP solution in G′, if we change the initial

sequence for each vehicle j {vd, v
k
0sj, v} for the sequence {vd, s

j
s, v} in G” and

we change its final sequence {v, vk
0ej, vd} for the sequence {v, sj

e, vd} in G”, it is

evident that we have a feasible GVRP solution in G”. Moreover, the costs of

{v, vk
0ej, vd} and {v, sj

e, vd} are the same and in an optimal solution in G′, the

cost of {vd, v
k
0sj, v} must necessarily be min

k
{cost(vk

0sj, v)}, which is the cost

of {vd, s
j
s, v}. On the other hand, it is clear that there is no solution in G′

containing a vertex which is impossible to reach from another vertex or from

which another vertex will be impossible to be reached.

Thus, an optimal GVRP solution in G′ gives rise to a feasible GVRP solu-

tion in G” with the same cost, and with the same reasoning, a feasible GVRP

solution in G” gives rise to a feasible GVRP solution in G′ with the same

cost, and so, an optimal GVRP solution in G′ gives rise to an optimal GVRP

solution in G” and vice versa.

Next we present a transformation of the GVRP defined in G” into an

ACVRP, that can be considered an extension to a multivehicle case of the one

given by Noon and Bean ([15]) for a single vehicle problem.

From G” = (V ”, A”) we construct a digraph G∗ = (V ∗, A∗) as follows:

- V ∗ = V ”

- For each subset Ri with |Ri| > 1 in which V ” has been partitioned to de-

fine the GVRP, order its vertices consecutively in an arbitrary way {vt1
i , . . . , v

tl(i)
i };

then, for j = 1, . . . , l(i)− 1, define the cost of arc (v
tj
i , v

tj+1

i ) ∈ A∗ as zero; also

define the cost of arc (v
tl(i)
i , vt1

i ) as zero.

- For every v
tj
i ∈ Ri and every w /∈ Ri, if |Ri| > 1 define the cost of arc

(v
tj
i , w) ∈ A∗ equal to the cost in G” of the arc (v

tj+1

i , w) ((vt1
i , w) if j = l(i))

plus a fixed positive large quantity M , and if |Ri| = 1 define the cost of

(v
tj
i , w) ∈ A∗ equal to the cost in G” of the arc (v

tj
i , w) plus M .

- Any other arc in A∗ has infinite cost.
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- In V ∗ assign positive demands having sum equal to di to the vertices in

Ri ∀ i except for the depot subset.

Theorem 3 The GVRP defined in digraph G” can be solved by transforming

it into an ACVRP in the digraph G∗.

Proof. If we identify each arc (v
tj
i , w) in G” w /∈ Ri (w can be the depot)

with the path (v
tj
i , v

tj+1

i , . . . , v
tl(i)
i , vt1

i , . . . , v
tj−1

i , w) in G∗ if j 6= 1 and |Ri| > 1,

or the path (vt1
i , . . . , v

tl(i)
i , w) if j = 1 and |Ri| > 1 or (v

tj
i , w) if |Ri| = 1 (in

this last case v
tj
i can be the depot), it is easy to see that a feasible GVRP

solution S in G” gives rise to a feasible ACVRP solution HS in G∗ with cost

c(HS) = c(S) + M(m + r) m being the number of subsets Ri different from

the depot in G”, and due to the arc costs in G∗, it is evident that an optimal

ACVRP solution in G∗ has the same structure than HS: if a vehicle services

a vertex v
tj
i ∈ Ri, it services all vertices in Ri, and if v

tj
i is the first vertex

serviced by the vehicle in Ri, it services the vertices of Ri consecutively and in

the order v
tj
i , v

tj+1

i , . . . , v
tl(i)
i , vt1

i , . . . , v
tj−1

i if j 6= 1 or vt1
i , . . . , v

tl(i)
i if j = 1.

On the other hand, based on the same identification, a feasible ACVRP

solution H in G∗ with the structure cited above, gives rise to a feasible GVRP

solution SH in G” with cost c(SH) = c(H)−M(m + r).

Therefore, if H∗ is an optimal ACVRP solution in G∗, SH∗ is an optimal

GVRP solution in G”. Otherwise, let S” be an optimal GVRP solution in

G” with c(S”) < c(SH∗), then HS” is a feasible ACVRP solution in G∗ with

c(HS”) = c(S”) + M(m + r) < c(SH∗) + M(m + r) = (c(H∗) −M(m + r)) +

M(m + r) = c(H∗) which is impossible due to the optimality of H∗.

Following with our example, once we have the reduced auxiliary digraph

G”, we construct G∗ and we solve the corresponding ACVRP in G∗. Its optimal

solution is given in Figure 4, where
∑

j dij = di. From this optimal solution

we obtain the optimal solution to the GVRP defined in G”(see Figure 5): the

cycles {vd, s
1
s, v

2
1, v

2
2, s

1
e, vd} servicing a demand of 7 units with travel time

6 and cost 238 and {vd, s
2
s, v

2
3, v

1
4, s

2
e, vd} servicing a demand of 9 units with

travel time 7 and cost 268. Finally, Figure 6 shows the optimal solution to

the TDVRPTW in G, with total cost 506. Note that the first circuit does not

start at time a0 (there is a waiting time at the depot).
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Figure 4. Optimal ACVRP solution in G∗.

Figure 5. Optimal GVRP solution in G”.

Figure 6. Optimal TDVRPTW solution in G.
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4 Conclusion

More and more researches on routing problems are taking into account time-

dependent costs in order to move the mathematical models closer to real-world

problems inside big cities, where the costs of traversing some streets depend

on the moment of the day, for example peak hours. We have cited seven of

these recent papers and we are convinced that as computer power and speed

increase, the number of researches on this topic will also increase.

By other hand, due to the fact that vehicle routing problems with time-

dependent costs are more difficult to model and to solve, these studies have

been focused on heuristic approaches. In contrast, we have presented here a

way to optimally solve a time-dependent vehicle routing problem with time

windows (at least for small size instances due to its complexity), by transform-

ing it through several steps into an ACVRP, a well-known routing problem for

which several heuristic and exact procedures exist.

This is a theoretical work whose aim is that its results can be used in the

future as ideas or tools to test the efficiency of specific procedures for vehicle

routing problems with time-dependent costs, with computational experiments

through benchmark instances. This is the challenge for our future research in

this topic.
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