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Abstract. For positive definite Toeplitz matrices QN = (b( j− k))N−1
j,k=0 generated by trigonomet-

ric moments b( j) of a non-negative measure dσ(θ ),θ ∈ [−π,π] , we note that the Hilbert-
Schmidt norm ‖QN‖2 and the maximal eigenvalue λm(N) satisfy the following relations

lim
N→∞

1
N2 ‖QN‖2

2 = ∑
α

m2
α , lim

N→∞

1
N

λm(N) = max
α

mα ,

where {mα} is the set of jumps of σ(θ ) . Analogous relations hold for positive definite integral
operators with difference kernels. The above relations are used in order to detect hidden almost
periodic components in random signals.

1. Introduction

This paper is motivated by attempts to find indications of hidden instability in
random neutron signals from boiling water nuclear reactors [4]. We assume that a
signal from a monitored system forms, during a sufficiently long time interval, a real-
valued stationary random process ξ (t), t ∈ Z , with discrete time, such that the means
satisfy

〈ξ (t)〉 = 0,
〈
ξ 2 (t)

〉
= 1.

The correlation function of such a process,

b(t) := 〈ξ (t)ξ (0)〉 =
〈
ξ (t + t ′)ξ (t ′)

〉
, t, t ′ ∈ Z,

is a real-valued sequence admitting the representation

b(t) =
∫ π

−π
exp(itθ )dσ(θ ), (1)
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where σ (θ ) is a non-decreasing bounded function on [−π ,π ] [3]. By our assumptions,

b(0) = σ (π)−σ (−π) = 1,

and for any θ1, θ2 such that 0 � θ1 � θ2 � π , we have

σ (θ2)−σ (θ1) = σ(−θ1)−σ(−θ2). (2)

In general, the spectral distribution function σ (θ ) which determines the process cor-
relation function by (1), can be split into a sum

σ (θ ) = σc (θ )+ σd (θ ) (3)

of a continuous non-decreasing function σc (θ ) and a non-decreasing step function
σd (θ ) . Herewith σc (θ ) and σd (θ ) in (3) are unique up to constants [3]. Notice that
both these functions σc (θ ) and σd (θ ) satisfy the condition (2). Actually, the prob-
lem formulated in [4] was to find, in a real-time operation mode, whether the spectral
distribution function of the random signal σ (θ ) contains or does not contain a non-
trivial component σd (θ ) . For brevity, we will call here the random process (signal)
ξ (t) smooth if its spectral distribution function σ (θ ) is continuous and non-smooth
otherwise. In other words, the process is non-smooth if and only if

σd (π)−σd (−π) > 0.

The main task of the present work is to find general criteria of smoothness of the process
in terms of its correlation function b(t) using as a tool the sequence of positive definite
Toeplitz matrices QN = (b( j− k))N−1

j,k=0 . In doing so we do not involve the assumption
(2).

This paper is organized in the following way. In Section 2 we find the asymptotic
expression for the Hilbert-Schmidt norm ‖QN‖2 of QN as N → ∞ , and show that the
process is smooth if and only if ‖QN‖2 = o(N) . Section 3 contains a similar criterion,
but with the operator norm ‖QN‖ (maximal eigenvalue λm (QN) ) instead of ‖QN‖2 .
We prove here that if N → ∞ , then λm (QN) = m ·N +o(N) , where m is the maximal
jump of σ (θ ) . In Section 4 both criteria are generalized for continuous time processes
or for positive integral operators with difference kernels. In Section 5 we demonstrate
the validity of the above smoothness criteria for signal processing by application to real
neutron signals emitted by the Forsmark 1&2 boiling water reactor.

2. Hilbert-Schmidt norm of truncated Toeplitz matrices and smoothness
criterion

Let us denote by {QN} , N = 1,2, . . . , the sequence of non-negativedefinite Toeplitz
matrices (b( j− k))N−1

j,k=0 and let ‖QN‖2 be the Hilbert-Schmidt norm of QN :

‖QN‖2 =

(
N−1

∑
j,k=0

|b( j− k) |2
) 1

2

=

(
N−1

∑
k=0

k

∑
p=−k

|b(p) |2
) 1

2

. (4)
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It is appropriate to mention here that by definition of the Hilbert-Schmidt norm the
numerical sequence ‖QN‖2 is non-decreasing. Our assumptions imply that

|b(k) |2 =
∣∣∣∣
∫ π

−π
exp(ikθ )dσ (θ )

∣∣∣∣
2

� b2 (0) = 1.

Therefore ‖QN‖2 � N that is ‖QN‖2 may be either O(N) or o(N) as N → ∞ .
A baby version of the Szegő and Avram-Parter theorems states that if σ(θ ) is

absolutely continuous, dσ(θ ) = σ ′(θ )dθ , and σ ′ ∈ L2(−π ,π) , then

lim
N→∞

‖QN‖2√
N

=
√

2π
∥∥σ ′∥∥

2 :=
√

2π
(∫ π

−π

∣∣(σ ′(θ )
)∣∣2 dθ

)1/2

, (5)

(see, for example, [2], Proposition 4.14). We see that ‖QN‖2 = O(
√

N) as N → ∞ if
σ is absolutely continuous and σ ′ ∈ L2(−π ,π) . One may ask whether the relation
‖QN‖2 = o(N) is still true if σ is simply a continuous non-decreasing function on
[−π ,π ] . The affirmative answer stems from the following theorem by N. Wiener [5]
(see also [7], Chapter III).

THEOREM 1. For any function σ(θ ) of bounded variation on [−π ,π ] all the
jumps {mα} and Fourier coefficients

b(n) =
∫ π

−π
exp(inθ )dσ (θ ) , n = 0,±1, . . . ,

are related by the formula

lim
N→∞

1
2N +1

N

∑
−N

|b(n)|2 = ∑
α
|mα |2 . (6)

Indeed, setting

ck =
1

2k+1

k

∑
p=−k

|b(p) |2

and representing ‖QN‖2
2 in the form

‖QN‖2
2 =

N−1

∑
k=0

(2k+1)ck,

taking into account that for any convergent sequence {ck}

lim
N→∞

cN = lim
N→∞

1
N2

N−1

∑
k=0

(2k+1)ck

and applying Wiener’s theorem we see that

lim
N→∞

1
N2 ‖QN‖2

2 = lim
N→∞

1
2N +1

N

∑
−N

|b(n)|2 = ∑
α
|mα |2 . (7)

Hence
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THEOREM 2. The process ξ (t) is smooth if and only if

lim
N→∞

1
N
‖QN‖2 = 0.

3. Asymptotic form of the maximal eigenvalue of a truncated correlation matrix

Let us denote by λm (N) the maximal eigenvalue of a positive (i.e., positive defi-
nite) matrix QN , λm (N) = ‖QN‖ . Theorem 2 implies the following.

THEOREM 3. The process ξ (t) is smooth if and only if

lim
N→∞

λm (N)
N

(
= lim

N→∞

‖QN‖
N

)
= 0.

Proof. If ξ (t) is smooth, then ‖QN‖2 /N → 0 by Theorem 2, and since ‖QN‖ �
‖QN‖2 , we conclude that ‖QN‖/N → 0. To show the inverse implication, note first
that the operator norm ‖A‖ of any square matrix (or any nuclear operator A) satisfies
the inequality

‖A‖ � ‖A‖2
2

‖A‖1
, (8)

where ‖A‖1 and ‖A‖2 are the nuclear and Hilbert-Schmidt norms, respectively. As
‖QN‖1 = TrQN = Nb(0) = N , it follows that ‖QN‖ � ‖QN‖2

2 /N . Consequently, if
‖QN‖/N → 0, then ‖QN‖2

2 /N2 → 0, and Theorem 2 now yields that ξ (t) is smooth.
�

Actually the limit of λm (N)/N can be identified for general σ (θ ) .

THEOREM 4. Given the sequence of maximal eigenvalues (norms) {λm (N)} of
positive definite Toeplitz matrices {QN} , generated by a non-negative measure dσ (θ )
as in (3), it holds that

lim
N→∞

λm (N)
N

= max
α

mα .

Proof. The Toeplitz matrix QN generated by the non-decreasing function (3) is

the sum of non-negative Toeplitz matrices Q(c)
N and Q(d)

N , generated by non-decreasing

functions σc and σd , respectively. Let us denote by λ (c)
m (N) and λ (d)

m (N) the maximal

eigenvalues (norms) of the matrices Q(c)
N and Q(d)

N , respectively. Since QN � Q(d)
N ,

then

λ (d)
m (N) � λm (N) =

∥∥∥Q(d)
N +Q(c)

N

∥∥∥�
∥∥∥Q(d)

N

∥∥∥+
∥∥∥Q(c)

N

∥∥∥= λ (d)
m (N)+ λ (c)

m (N) .

By Theorem 3 λ (c)
m (N) = o(N) . Hence it remains to prove that

lim
N→∞

λ (d)
m (N)

N
= max

α
mα . (9)
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To this end let us consider first only σd (θ ) with a finite number s of jumps at some
points θ1, ...,θs ⊂ [−π ,π) . We will not use in this proof the fact that the points θα , 1 �
α � s, are located symmetrically with respect to θ = 0. The Toeplitz matrix Q(d)

N =
(bd ( j− k))N−1

j,k=0 , s < N , generated by σd , can be represented in this case in the form

Q(d)
N =

s

∑
α=1

mα (·,eα)eα , (10)

where
(·,eα)eα = (exp(i( j− k)θα))N−1

j,k=0

are N ×N matrices of unit rank, so that QN transforms a N × 1 column vector x =
(x j)

N−1
j=0 into

Q(d)
N x =

s

∑
α=1

mα (x,eα)eα , (11)

where (·, ·) is the scalar product in the linear space CN of N×1 column vectors :

(x,y) =
N−1

∑
j=0

x jy j, x = (x j)N−1
j=0 , y = (y j)N−1

j=0 .

Notice that the vectors {eα} are linearly independent. Indeed, suppose that there is a
set of complex numbers {zα} such that

s

∑
α=1

zαeα = 0. (12)

Due to (12), the numbers zα satisfy the homogeneous system

s

∑
α=1

exp(ikθα )zα = 0, k = 0,1, ...,N−1.

But the determinant of this system is the Van der Monde determinant, which vanishes
if and only if among the numbers {exp(ikθα )} there are equal ones, which is excluded
here. Hence all zα = 0.

Let λ be a non-zero eigenvalue of Q(d)
N and hλ be a corresponding non-zero

eigenvector:
s

∑
α=1

mα (hλ ,eα)eα = λhλ . (13)

By (13), hλ admits the representation:

hλ =
s

∑
α=1

zαeα ,

where zα are some complex numbers, not all of which are equal to zero. Put

ηα =
√

mα (hλ ,eα) .
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By virtue of (13), not all numbers ηα = 0. Taking the scalar products of both sides of
(13) with all vectors

√
mαeα , we obtain the following homogeneous system for ηα :

s

∑
α ′=1

√
mαmα ′ (eα ′ ,eα)ηα ′ = λ ηα . (14)

Thus, the non-zero eigenvalues of Q(d)
N coincide, with account of their multiplicities,

with the eigenvalues of the s× s Hermitian positive definite matrix

AN = (
√

mαmα ′ (eα ′ ,eα))s
α ,α ′=1 . (15)

Notice that by definition of the vectors eα , we have

(eα ′ ,eα) =
exp(iN (θα ′ −θα))−1
exp(i(θα ′ −θα))−1

, α ′ 
= α, (eα ,eα) = N. (16)

Hence, the matrix AN is the sum of the diagonal matrix

A1,N := (Nmα δαα ′)s
α ,α ′=1

and the Hermitian matrix A2,N with zero diagonal elements and non-diagonal elements√
mαmα ′ (eα ′ ,e,α) , α 
= α ′ . By (16) the non-diagonal elements of A2,N are uniformly

bounded:

|√mαmα ′ (eα ′ ,eα)| � 2

(
max
α ′ 
=α

|θα ′ −θα |−1
)(

max
α

mα

)
,

and, hence,

‖A2,N‖ � 2(s−1)
(

max
α ′ 
=α

|θα ′ −θα |−1
)(

max
α

mα

)
.

Therefore,[
N−2(s−1)

(
max
α ′ 
=α

|θα ′ −θα |−1
)](

max
α

mα

)
� ‖A1,N‖−‖A2,N‖ � ‖AN‖

� ‖A1,N‖+‖A2,N‖ �
[
N +2(s−1)

(
max
α ′ 
=α

|θα ′ −θα |−1
)](

max
α

mα

)
.

We see that
λ (d)

m (N) = ‖AN‖ =
N→∞

N ·max
α

mα +O(1) . (17)

To prove the relation (9) for a non-decreasing step function σd (θ ) , σd (π)−σd (−π)�
1, having infinitely many points of jump, we take a small ε > 0 and split σd (θ ) into a
sum σ1d (θ )+ σ2d (θ ) of non-decreasing step functions σ1,d (θ ) and σ2,d (θ ) , where,
as before, σ1d (θ ) has a finite number of jump points and σ2d (θ ) is such that

π∫
−π

dσ2,d (θ ) < ε < max
α

mα .
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With respect to this split, we represent the Toeplitz matrix Q(d)
N as the sum Q(1,d)

N +
Q(2,d)

N of non-negative Toeplitz matrices generated by σ1,d (θ ) and σ2,d (θ ) , respec-
tively. Notice that by construction∥∥∥Q(2,d)

N

∥∥∥� TrQ(2,d)
N < Nε. (18)

Besides,

λ (1,d)
m (N) =

∥∥∥Q(1,d)
N

∥∥∥� λ (d)
m (N) � λ (1,d)

m (N)+
∥∥∥Q(2,d)

N

∥∥∥ .

Applying the estimate (17) to Q(1,d)
N and taking into account the inequality (18) for

N → ∞ yields

N ·max
α

mα +O(1) = λ (1,d)
m (N) � λ (d)

m (N) � N ·
(
max

α
mα + ε

)
+O(1) .

Finally,

max
α

mα � lim
N→∞

λ (d)
m (N)

N
� lim

N→∞

λ (d)
m (N)

N
� max

α
mα + ε,

where ε > 0 can be taken arbitrarily small. �

REMARK 1. The number ‖QN‖ = λm (N) is in general only numerically avail-
able. However, there exist simple estimates in terms of the entries of the matrix QN .
For example, let

(SNb)(θ ) := ∑
| j|�N−1

b je
i jθ , (FNb)(θ ) := ∑

| j|�N−1

(
1− | j|

N

)
b je

i jθ . (19)

Then
|(FNb)(1)| � ‖(FNb)‖∞ � ‖QN‖ � ‖SNb‖∞ � ‖SNb‖W , (20)

where ‖c‖∞ := maxθ |c(θ )| is the L∞ norm ‖c‖W := ∑ j |c( j)| stands for the norm in
the Wiener algebra. The upper bounds in (20) are well-known and for the lower bounds
see [1], p. 122. It follows in particular that the condition

lim
N→∞

1
N

N−1

∑
p=0

|b(p)| = 0 (21)

is sufficient for the smoothness of the process and that the condition

lim
N→∞

1
N

N−1

∑
p=0

(
1− |p|

N

)
b(p) = 0 (22)

is necessary for the process to be smooth.
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4. Extension to continuous time processes

Real signals are, certainly, continuous time processes, ξ (t) . The correlation func-
tion b(t) of a process having a finite second moment

〈
ξ 2 (t)

〉
is a Hermitian positive

function. As such, it admits the representation

b(t) =
∫ ∞

−∞
exp(iλ t)dϑ (λ ) , (23)

where ϑ (λ ) is a bounded non-decreasing function on the real axis. Like for the discrete
time processes, ϑ (λ ) can be represented, in general, as the sum

ϑ (λ ) = ϑc (λ )+ ϑd (λ )

of a non-decreasing continuous function ϑc (λ ) and a non-decreasing step function
ϑd (λ ) , and we call the process smooth if ϑ (λ ) is continuous and non-smooth other-
wise. To investigate the non-smoothness characteristics of a continuous time process,
we consider instead of the Toeplitz matrices QN , the set of non-negative integral oper-
ators

(BT f ) (t) =
∫ T

0
b(t− s) f (s)ds, 0 < T < ∞, (24)

in the Hilbert spaces L2 (0,T ) . Since b(t) is a continuous function, all these operators
are nuclear and their nuclear and Hilbert-Schmidt norms ‖BT‖1 and ‖BT‖2 are given
by the expressions

‖BT‖1 = Tb(0) = T

∞∫
−∞

dϑ (λ ) ,

‖BT‖2 =

√√√√√2T

T∫
0

(
1− t

T

)
|b(t)|2 dt

=

√√√√ ∞∫
−∞

∞∫
−∞

4

(λ −λ ′)2 sin2 (λ −λ ′)T
2

dϑ (λ ′)dϑ (λ ).

(25)

Let us denote, as before, by {mα} the set of jumps of ϑ (λ ) . Using (25) and arguments
similar to those employed in the proofs of Theorems 2 and 4, we obtain the following
criterion of stability of a continuous time process ξ (t) .

THEOREM 5. A stationary continuous time process ξ (t) is smooth if and only if
its correlation function b(t) satisfies

lim
T→∞

2
T

T∫
0

(
1− t

T

)
|b(t)|2 dt = 0.
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Otherwise,

lim
T→∞

2π
T

T∫
0

(
1− t

T

)
|b(t)|2 dt = ∑

α
m2

α .

We want to point out that Theorem 5 follows directly from Wiener’s theorem [6]
(see also [7], Chapter XIV) according to which for the Fourier transform b(t) of any
function of bounded variation ϑ(λ ) on the real axis with the set of jumps { m α} the
equality holds

lim
T→∞

π
T

T∫
−T

|b(t)|2 dt = ∑
α

m2
α .

In particular, if ϑ(λ ) is continuous, then

lim
T→∞

π
T

T∫
−T

|b(t)|2 dt = 0.

THEOREM 6. A stationary continuous time process ξ (t) is smooth if and only
if the operator norms ‖BT‖ of integral operators (24), where b(t) is the correlation
function of the process, are such that

lim
T→∞

1
T
‖BT‖ = 0.

Otherwise,

lim
T→∞

1
T
‖BT‖ = max

α
mα . (26)

REMARK 2. For the norm of the integral operator BT the following estimate:

‖BT‖ � 2

T∫
0

|b(t)|dt

is valid. As it stems from (26), the relation

lim
T→∞

1
T

T∫
0

|b(t)|dt = 0

guarantees the smoothness of the process ξ (t) .
The proof of [1], Theorem 5.10, for the lower bound in (20) can be modified to

yield the estimates

‖BT‖ � sup
x∈R

∣∣∣∣∣∣
T∫

−T

(
1− |t|

T

)
b(t)eixtdt

∣∣∣∣∣∣�
∣∣∣∣∣∣

T∫
−T

(
1− |t|

T

)
b(t)dt

∣∣∣∣∣∣ ,
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which shows that the condition

lim
T→∞

1
T

T∫
−T

(
1− |t|

T

)
b(t)dt = 0 (27)

is necessary for the smoothness of the process.

5. Application to processing of random signals

5.1. Detection of quasi-periodic components in a random signal

The existence of jumps of the spectral distribution function ϑ (λ ) of a stationary
process is, in general, a sign of appearance of undamped oscillation components in
a signal and the points of discontinuity of ϑ (λ ) are either the frequencies of such
components themselves or directly related to them. Notice that, due to physical reasons,
the measurement of ξ (t) is possible only at discrete moments of time with a step Δ . If
t in (23) is an integer multiple of Δ , then it is evident that

b(t) =
∫ Ω

−Ω
exp(itθ )dσ (θ ) , Ω =

π
Δ

, (28)

σ (θ ) =
∞

∑
n=−∞

[ϑ (θ +2nΩ)−ϑ (2nΩ−Ω)] , −Ω � θ < Ω.

The function σ (θ ) is bounded and non-decreasing in the interval [−Ω,Ω] . If ϑ (λ )
loses its continuity at the points λ1,λ2, ... , then σ (θ ) has a non-void set of discontinu-
ity points {

θ ′
j =
(

E
(

λ j

2Ω
+

1
2

)
− 1

2

)
2Ω
}
⊂ [−Ω,Ω], (29)

where E(x) is the fractional part of the number x . (In general, ±θ ′
j1

coincides with
every ±θ ′

j2
such that λ j1 −λ j2 is a multiple of 2Ω .) Therefore, in general, the jump of

σ (θ ) at a point θ ′
j is the sum of the jumps of ϑ (λ ) at all co-images of θ ′

j under the
mapping (29).) Taking Δ as the time measurement unit, we return to the representation
(1) of b(t) for integer t . Thus, the spectral distribution function σ (θ ) inherits all
discontinuities of ϑ (λ ) from the interval [−Ω,Ω] and also may get new ones at the
points (calculated according to (29)) related to the discontinuity points of ϑ (λ ) outside
this interval. We see that the spectral distribution function for the discrete time process
obtained in such a way from a continuous time process, has a non-trivial component
σd if and only if the corresponding spectral distribution function of the initial discrete
time process has non-zero jumps on some set of points. In other words, the values of a
random continuous time process measured at discrete moments of time form a smooth
discrete time process if and only if the initial process is smooth.

The correlation function of the discrete time process delivers not only the de-
scribed gauge of non-smoothness of the process but also the following tool for the
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detection of the points {±θα} , which are the discontinuity points of σ (θ ) . Put

ΘN (θ ) =
N−1

∑
k=−N+1

(
1− |k|

N

)
b(k)exp ikθ =

π∫
−π

sin2 1
2N (θ −θ ′)

N sin2 1
2 (θ −θ ′)

dσ
(
θ ′) . (30)

It is not difficult to see that

lim
N→∞

1
N

ΘN (θ ) = σ (θ +0)−σ (θ −0) . (31)

Further, take a sufficiently large N and split the interval [−π ,π ] into equal segments
of longitude δ such that Nδ < 1. Let σ (θ ) have a jump mα within the interval
(lδ ,(l +1)δ ) . Since

2
π
|x| � |sinx| � |x| , 0 � |x| � π

2

then, for |θ − lδ | ∼ δ , we have

ΘN (θ ) �
(l+1)δ∫
lδ

sin2 1
2N (θ −θ ′)

N sin2 1
2 (θ −θ ′)

dσ
(
θ ′)� 4

π2 N

(l+1)δ∫
lδ

dσ
(
θ ′)� π2

6
Nmα .

On the other hand, ΘN (θ ) = O
(

1
N

)
for θ at fixed distance δ > 0 from the growth

points of σ . Besides, if the continuous part σc (θ ) of σ (θ ) is absolutely continu-
ous and satisfies the condition σ ′

c ∈ Lp(−π ,π), 1 < p < ∞, then applying the Hölder
inequality yields

Θc
N (θ ) =

π∫
−π

sin2 1
2N (θ −θ ′)

N sin2 1
2 (θ −θ ′)

σ ′
c

(
θ ′)dθ ′

� 1
N

⎧⎨
⎩

π∫
−π

sin2q 1
2Nθ

sin2q 1
2θ

dθ

⎫⎬
⎭

1
q
⎧⎨
⎩

π∫
−π

σ ′p(θ )dθ

⎫⎬
⎭

1
p

(32)

� CqN
1
p
∥∥σ ′

c

∥∥
p ,

where

Cq =
π2

4

⎧⎨
⎩

∞∫
0

sin2q x
x2q dx

⎫⎬
⎭

1
q

.

Therefore ΘN (θ ) can be at most O
(
N

1
p

)
at points remote from the jumps of σ (θ ) .

This suggests that for a real signal the appearance of one or more pronounced peaks
on the graph of 1

N ΘN (θ ) , which do not disappear with increasing N , indicates that the
related process is non-smooth.
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The assertion of Theorems 2 and 4 can be used for the detection of symptoms of
emerging non-smoothness of a random process, which can be considered as stationary
for long time intervals. The method consists in the construction of the correlation func-
tion of the process from a piece of its time series from the beginning of observation to
a rather far off moment of time ϒ in the future. Set, as usually,

m = 1
ϒ

ϒ
∑

p=0
ξ (p) , b(k) = 1

ϒ−k

ϒ−k
∑

p=0
ξ (p+ k)ξ (p)−m2

and compute, for a sufficiently large N < ϒ , the numbers

1
N

N−1
∑

p=0

∣∣∣ b(p)
b(0)

∣∣∣ , 1
N2 ‖QN‖2

2 = 1
N + 2

N

N−1
∑

k=1

(
1− k

N

) b2(k)
b2(0) (33)

or the numbers

1
T

T∫
0

(
1− t

T

)
|b(t)|2 dt,

1
T

T∫
0

|b(t)|dt

for a continuous time process. An explicit tendency of any of these numbers to be
bounded, for increasing N , from below by certain positive numbers, is a serious evi-
dence of the process non-smoothness.

The following example demonstrates that the manifestation of such a tendency be-
gins the sooner in N the larger the contribution of the oscillating components generated
by dσd (θ ) into b(0) .

Let the correlation function of a stationary random process be given by the expres-
sions:

b(0) = 1;

b(k) =
s

∑
α=1

mα eikθα , k = ±1,±2, ...,
(34)

with 1 � s < ∞ , 0 <
s
∑

α=1
mα < 1 and 0 < θ1, ...,θs < π .

The spectral distribution function σ (θ ) of such a process is the sum of the spectral
distribution function σc (θ ) of the ”white noise”,

dσc (θ ) =
p

2π
dθ , p = 1−

s

∑
α=1

mα ,

and the step function σd (θ ) , the jump points of which are {θα} , and

σd (θα +0)−σd (θα −0) = mα .

In this special case

1
N2 ‖QN‖2

2 = 2
s

∑
α=1

m2
α +

p(2− p)
N

+
1
N2 ∑

α ′ 
=α
mαmα ′

sin2 1
2N (θα −θα ′)

sin2 1
2 (θα −θα ′)

. (35)
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Hence, the first term on the right hand side of (35) becomes dominant for

N > p(2− p)

(
s

∑
α=1

m2
α

)−1

.

5.2. Numerical results

Let us apply the latter results to the investigation of real signals obtained from the
Forsmark 1&2 boiling water reactor (BWR) [4].

200 400 600 800 1.000
0

0.2

0.4

0.6

0.8

N

1 N
2
‖Q

N
‖2 2

Signal B
Signal A

Figure 1: Sequences of 1
N2 ‖QN‖2

2 for the signals A (dashed line) and B (dash-dotted line).

In Fig. 1 we display results for the Hilbert-Schmidt norms of Toeplitz matrices
constructed for two different shots of real signals obtained in the Forsmark BWR: A
for a near unstable mode and B for a quiet mode. The sampling time interval of these
signals equals 0.08s, and both of them consist of 4209 points. We observe the differ-
ence between a more unstable mode, A and a more stable one, B . As expected, for A ,
the sequence ‖QN‖2

2 tends to zero slower.
To determine the points of discontinuity of σ (θ ) we have also considered the

function 1
N ΘN (θ ) for different values of N . Fig. 2 and Fig. 3 demonstrate different

behavior of 1
N ΘN (θ ) for different modes A and B with N growing. In both cases the

number of segments into which the interval [−π ,π ] was split, was equal to 3000. The
peaks of the signal correspond to possible discontinuities of the spectral distribution
functions. It can be observed that for B the main peak of the function 1

N ΘN (θ ) located
at θ = 0.27rad ( f = 0.53Hz) tends to zero with increasing N rather rapidly, while
for the corresponding peak of A 1

N ΘN (θ ) at θ = 0.24rad ( f = 0.48Hz) this is not
evident.
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Figure 2: 1
N ΘN (θ ) for the signal A .
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Figure 3: 1
N ΘN (θ ) for the signal B .



NORMS OF POSITIVE DEFINITE TOEPLITZ MATRICES 875

RE F ER EN C ES
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[4] G. VERDÚ, D. GINESTAR, J. L. MUÑOZ-COBO, J. NAVARRO, M. J. PALOMO, P. LANSAKER,

J. M. CONDE, M. RECIO, E. SARTORI, Forsmark 1&2 Boiling Water Reactor Stability benchmark,
Time Series Analysis Methods for Oscillation during BWR Operation, Final Report. Nuclear Energy
Agency, Organization for Economic Co-Operation and Development, NEA/NSC/DOC/(2001).

[5] N. WIENER, The quadratic variation of a function and its Fourier coefficients, Massachusett’s Journal
of Math., 3 (1924), 72–94.

[6] N. WIENER, The Fourier integral and certain of its applications, Cambridge Mathematical Library,
Cambridge University Press, 1988.

[7] A. ZYGMUND, Trigonometric series, Vol. I, II, Cambridge Mathematical Library, Cambridge Univer-
sity Press, 2002.

(Received April 7, 2013) Vadym Adamyan
Department of Theoretical Physics

I. I. Mechnikov Odessa National University
65082 Odessa, Ukraine

e-mail: vadamyan@onu.edu.ua
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