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Abstract — The Ant Colony Optimization (ACO) has been a 
very resourceful metaheuristic over the past decade and it has 
been successfully used to approximately solve many static NP-
Hard problems. There is a limit, however, of its applicability in the 
field of p2p networks; derived from the fact that such networks 
have the potential to evolve constantly and at a high pace, 
rendering the already-established results useless. In this paper we 
approach the problem by proposing a generic knowledge diffusion 
mechanism that extends the classical ACO paradigm to better deal 
with the p2p’s dynamic nature. Focusing initially on the 
appearance of new resources in the network we have shown that it 
is possible to increase the efficiency of ant routing by a significant 
margin. 

Keywords—Ant Colony Optimization, ACO, p2p, Semantic 
Search, Semantic Networks, Overlay Networks 

I. INTRODUCTION 

Since the introduction of the ACO metaheuristic [1] it has 
been considered a dynamic algorithm, one that is capable of 
successfully adapting in case a change in the system occurs [2], 
very much resembling the actual behavior of ants. One can 
indicate however a pace of the evolution of the underlying 
structure at which the classical ACO will not be able to keep up 
and might achieve highly suboptimal results during the entirety 
of its execution; we can view it as a certain level of inertia of 
the system. Naturally, ACO thrives at solving static problems; 
both: classical, such as the Traveling Salesman Problem [3] and 
the Assignment Problem [4], but also more uncommon ones, as 
shown in our several works [5] [6] [7]. Nevertheless, the 
dynamic issue has remained largely unaddressed. In various 
papers [8] [9] [10] it has also been shown that ACO-based 
algorithms are more than an adequate base for a p2p search 
engine. However, p2p networks are innately and unpredictably 
dynamic which makes the mentioned problem relevant. 

As indicated in [11] the dynamism of a network can impair 
severally the quality of the results obtained. The issue centers 
on the fact that ACO algorithms are not capable of redirecting 
the established routes immediately; a problem to which we refer 
as slow re-convergence. In a moderate size p2p network it can 
take up to a few thousand execution iterations in order to 
accommodate the changes, in this time an additional step of the 
system’s evolution might occur and make a full convergence 
nearly impossible. In order to counteract this problem we 
introduce a diffusion layer in p2p networks, within the scope of 
ACO’s pheromone paradigm, designed to propagate the 

information quicker and more efficiently than a pure ACO 
would. We named it the Diffusion Model Framework. 

Classically the ants were considered the only ‘intelligent’ 
element in the system, while the rest was purely passive, only 
capable of receiving, resending and answering queries. In our 
case we let the nodes themselves take some of the 
responsibility, by being able to analyze its own content and take 
decisions, thus redistributing the focus more in the network. 

In this paper we introduce a novelty in the field of p2p 
semantic search, namely our Diffusion Model Framework as an 
entire platform that permits defining many diffusion algorithms 
of diverse nature. The main idea behind it is to improve the re-
convergence of the system to a degree that allows an efficient 
p2p search, regardless of the level of the system’s dynamism. In 
this respect, we propose two diffusion strategies: in-width and 
in-depth diffusion, both built within the mentioned framework 
and we perform an experimental study of these strategies to 
evaluate their effectiveness. We chose the Ant Colony System 
(ACS) [1] as our ACO implementation, seeing that it is 
considered the most classical of all, with one crucial 
modification called the Routing Concept (RC), which was  
proposed, in different aspects, by several authors [12] [8]. The 
results obtained by the above studies show that RC can 
significantly improve query routing in ACO-based p2p systems 
[10]. 

The experimental data obtained demonstrate that, in terms 
of re-convergence speed, the in-width strategy has proven to be 
a feasible solution in systems that have a downtime period. 
Moreover, in the case of the in-depth diffusion, the overall 
strain on the system is minimal and the effectiveness of the 
search process is improved up to 30% with respect to a non-
diffusion-based search process. 

The paper is structured as follows. In section II we 
summarize the related work in the field of p2p and ACO with 
respect to information diffusion. In section III we introduce 
some of the ACS basis and expand on the subject of the 
Routing Concept. In section IV we describe in detail the 
Diffusion Model Framework and the concrete implementations 
we chose to experiment with. In section 0 we present our 
experimental setup, formalize all the concepts and propose a 
quality measure; section VI shows the results obtained and in 
section 0 we conclude and summarize our main findings. 



 

 

II. RELATED WORK 

To the best of our knowledge the subject, as we define it, 
has not been explored. There are several works that focus on the 
diffusion of the resources in the system, but in all the cases it is 
solely a study of how it occurs naturally in various systems [13] 
[14], regardless whether they include ACO concepts or not. 
Never is it an induced diffusion, with the objective of 
improving a specific quality measure nor is it an extension of 
the ACO paradigm.  

The most similar subject is the publish/feed paradigm where 
a particular node is the generator of content while a certain 
subset of the network consumes the resources [15]. However 
the main focus in those works is the efficiency and scalability, 
not an ACO-based method nor a resource-query mechanism. 
We might qualify it as a deterministic and complete point-to-
point resource propagation, in contrast to our dynamic resource 
Diffusion Model Framework. 

III. FORMAL BASIS 

A. ACS 

Ant Colony System [9] is one of the most popular 
implementations of the ACO metaheuristic. It is an extension 
and improvement over the Ant System (AS) [16] that we chose 
as our main strategy for p2p search. The reasons for this choice 
are twofold: firstly, we wanted to experiment with a fairly well 
known and pure ACO implementation, secondly, as shown in 
[11], many of the common ACO implementations are not 
suitable for neither the query-resource paradigm, the p2p 
environment nor the dynamic system setup. ACS performed 
well in all those aspects. 

We choose precisely the same mathematical basis of ACS as 
were presented in [11] [8].Having this ant strategy in place, we 
will formalize the semantic search in p2p in a simple manner. 
Firstly we establish a network of homogenous nodes. Each of 
them may be in possession of a certain set of resources of any 
nature, but also each is capable of generating a query – i.e. 
require resources of a given taxonomical kind. An ant 
corresponding to the query is created and routed according to 
the ACO algorithm of our choosing collecting resources labeled 
with the indicated taxonomical entity from the nodes it visits. 
Once the algorithm is complete the ant evaluates its findings 
and returns to its emitting node, performing pheromone-related 
tasks along the way. 

B. Routing Concept 

In most ACO algorithms there is just a single value of 
pheromone per outgoing link in each node. The Routing 
Concept, however, introduces an additional dimension (a layer), 
giving each link a full table of pheromones, each corresponding 
to a class of queries that might appear in a given node. 
Therefore a single ant, at its creation, is given a Routing 
Concept value and only manages pheromone that has been 
deposited in that particular layer of the system. Hence, it is 
closely related to the Taxonomy Based Routing, presented in 
[10] [17]. 

The technical basis is as follows (see [11] for a detailed 
formal description). Every node  keeps a 2–dimensional 
matrix		Ω : , with real, positive values, where  is the 

space of outgoing links from the node  and  is the space of 
Routing Concepts maintained by this particular node	 . This 
matrix is referred to as routing table, or routing matrix. The l–
th, c–th element of Ω  corresponds to the pheromone value of 
the l–th outgoing link for the c–th routing concept, which can be 
written as Ω , . 

IV. DIFFUSION MODEL FRAMEWORK 

The diffusion is an additional source of pheromone trail 
creation in the system, which is managed by the nodes 
themselves and can be performed at will, usually as a response 
to a node’s internal event, such as resource addition. It is 
achieved through the introduction of a new type of ant that 
exists alongside the classical Forward Ants (FA) and Backward 
Ants (BA), namely a Diffusion Ant (DA). Every node of the 
system is given the ability to analyze its own content’s 
evolution and generate a DA at any moment it sees fit. It can 
also be externally forced to do so. Each DA carries two values: 
Diffusion Power and Diffusion Routing Concept. See Table II 
for details on both of these values; they are established by the 
emitting node at DA’s creation. 

TABLE I GLOBAL DIFFUSION PARAMETERS 

Parameter Name 
(symbol) Parameter Interpretation Value Constraints 

Diffusion Ant Max 
TTL (TTL ) 

The maximum distance from 
the origin node the DA can 
reach

0 

Diffusion Delta (D ) 
The effect of a DA on the 
node’s pheromone D ∈ 〈0,1〉 

Diffusion Random 
Spread Chance ( ) 

Chance to continue spreading 
pheromone to uninitialized 
regions of the system 

∈ 〈0,1〉 

Diffusion Minimum 
Link Spread ( ) 

The minimum amount of links 
to spread to, at each step. 

∈
1, 0 ,1, … , 

-1 means all available.

Diffusion Maximum 
Link Spread ( )

The maximum amount of links 
to spread to, at each step. 

∈
1, 0 ,1, … , 

-1 means all available.

TABLE II LOCAL DIFFUSION PARAMETERS 

Parameter Name 
(symbol) Parameter Interpretation Value Constraints 

Diffusion Ant Time 
To Live ( ) 

The current time to live of a 
given DA, decreases as an ant 
continues

∈ 〈0, 〉

Diffusion Power 
( ) 

The scaling parameter of a 
given DA, affects the 
pheromone deposition. 

0 

Diffusion Routing 
Concept ( ) 

The Diffusion objective of a 
given DA, affects the 
pheromone deposition.  

One of the Routing 
Concepts present in 
the system.

The DA behavior is governed by the below algorithm. 

Algorithm: DA behavior 

1. DA arrives in node , DA’s Time To Live is  
2. If Ω  matrix contains pheromone for the Diffusion 

Routing Concept carried by DA go to 4 
3. Otherwise generate a random real value 	 ∈ 	 〈0,1〉.	If 

 go to 4, else end Algorithm.  is the Diffusion 
Random Spread Chance, see Table I for details. 

4. Perform Diffusion Pheromone Update (see next 
algorithm) in , unless  is the emitting node of DA. 



 

 

5. If 	0 end Algorithm. 
6. Let  be the set of all the outgoing links from N, to 

nodes not visited previously by the DA nor its clones; let 
 be a random subset of the  set, of size , 

where  is a random integer value, and ∈
〈 , 〉, limited by the size of aLinks  

7. Set decrement 	to	 1 and send a clone of 
DA to every link in	 . 

Algorithm End 

Algorithm: Diffusion Pheromone Update in Node	N 

1. Let  

 , 	
1
1
.	 (IV.1)

where  is the current node,  is the node from which 
 arrived to N and DA  is the diffusion power. 

2. If Ω  matrix contains pheromone for the Diffusion 
Routing Concept carried by DA ( ) go to 5. 

3. Add the  to Ω . 
4. Set the  pheromone value, for the link from which DA 

arrived, at 

 , ← 	 , 	 (IV.2)

5. In the node  set the pheromone value corresponding to 
 for the link from which DA arrived in , at  

, ← D δ , 1 D , , (IV.3) 

where  is the default value of the pheromone and	D  
is the Diffusion Delta. 

Algorithm End 

In Table I we summarize the parameters that define the 
character of the diffusion in question; they remain unchanged 
during the entire execution of the algorithm. In Table II we 
summarize parameters attached to a particular act of diffusion, 
all of which may be variable during a single execution. This 
choice of parameters allows us to create an abundant amount of 
types of diffusion. In order to make the analysis more focused 
we decided to extract two diffusion families with a manageable 
set of independent variables to examine. 

A. In-width diffusion 

TABLE III IN-WIDTH DIFFUSION PARAMETERS 

Parameter Name (symbol) Value 

Diffusion Ant Max TTL (TTL ) Subject to test: 1, 2, 3, 4  

Diffusion Delta (D ) 0.1 

Diffusion Random Spread Chance ( ) 1 

Diffusion Minimum Link Spread ( ) -1 

Diffusion Maximum Link Spread ( ) -1 

The most straightforward diffusion is a k-flood diffusion. In 
simple words it can be understood as unconditionally notifying 
all the nodes up to the distance  from the initiating node [18]. 
The  is simply the  in our setup, and therefore the, so 
called, diffusion depth, would be  as well. Table III 
presents the values of the diffusion parameters that are 
necessary to achieve a proper k-flood. See Fig. 1 for a graphical 
representation of the in-width diffusion and how it affects its 
neighbors. It creates an area in the p2p network with 

increasingly attractive force to the emitter, somewhat similar to 
a gravity field.  

 
Fig. 1. In-width diffusion,  

B. In-depth diffusion 

The opposite approach is the in-depth diffusion. Here we do 
not permit the cloning of the DA, by establishing	

1, which, in combination with the prohibition of the 
reentry, creates long chains of diffused pheromone, rather than 
areas. The effect DAs have on the system is much lower and 
more distributed in time, but it is not as strong as the previous 
method, due to the fact that there might be an ant that misses the 
chain. As it can be seen in Fig. 2 Ant B behaves identically, 
regardless of the state of the diffusion. In spite of the given 
counter-example we suspect that this lightweight mode of 
diffusion might prove better in terms of the ratio: nodes affected 
by diffusion to ants attracted; especially so if one chooses to 
release several independent DA instead of one. Consult Table 
IV for parameter values necessary to achieve in-depth diffusion 
in our model. Again, the TTL  will be referred to as the 
Diffusion Depth later on. 

 
Fig. 2. In-depth diffusion,  



 

 

TABLE IV IN-DEPTH DIFFUSION PARAMETERS 

Parameter Name (symbol) Value 

Diffusion Ant Max TTL (TTL ) Subject to test: 5,10,15,20  

Diffusion Delta (D ) 0.1 

Diffusion Random Spread Chance ( ) 1 

Diffusion Minimum Link Spread ( ) 1 

Diffusion Maximum Link Spread ( ) 1 

V. EXPERIMENTAL SETUP 

In this section we provide an exhaustive overview of all the 
decisions and assumptions we took in order to formalize the 
experiments. 

A. Resource distribution and labeling 

As in [10], the ACM Computing Classification System [19] 
will be the taxonomical vocabulary used. Every resource in the 
network is described by one, and only one leaf taxonomical 
concept  (referred to as the taxonomical entity) of the ACM 
classification. A resource has therefore only two properties – its 
owner node  and a taxonomical label . It is depicted as 

, .		It must be pointed out that two resources ,  and 
	 , , unless explicitly 	 	 , are not considered equal, 
even if  and 	 . The consequence of such an 
approach leads to valuing higher those nodes that provide many 
resources of the same . 

The distribution of resources within the network follows 
strictly the approach by the test setup [10]. The resources are 
evenly distributed among the nodes, as well as among the 
entities in the taxonomy tree. Additionally, every node is a 
designated expert in a given field (there can be multiple experts 
in each field) which is expressed by the composition of 
resources in it. Of all the resource units in a node, 60% is 
labeled with the field in which the node is considered an 
“expert”, further 20% is labeled with another field that is 
closely related in the taxonomical tree to the expert field, and 
the last 20% is purely random, but with the restriction to be 
outside the expert field. This is said to resemble real–world 
distribution, reflecting the fact that people have specific 
interests and hobbies [20]. 

B. Query and query resolution 

Every non-diffusion ant is connected to a query  and will 
only carry one of the ACM classification leaf entities and it will 
be fully defined by it. In this case, however,  iff 
	 ; the benefit of such an approach is to be able to 
compare results of two queries released at different time points 
in the testing process and to show relative improvement 
between them. The resolution of a query 	in a node  
consists of finding the resources that have been labeled with	 , 
that is, all the resources	 	 	|	∃ , . 

C. P2P network setup 

Every p2p network in our tests is a fully connected toroidal 
world of  nodes, with the resource distribution that obeys 
the rules explained in section V.A. See Table V for all the world 
variants. In order to follow a coherent approach with our 
previous works we chose to present a minor alteration to the 
pure toroid topology. Namely: every node will additionally 
have one long distance connection between itself and a node 

randomly selected of all those not directly neighboring. The 
probability of linking two nodes is inversely proportional to the 
distance between them. 

D. Quality measure 

As many works before [8] [10] [21] we decided to adopt the 
Hop per Hit (HpH, dimensionless) measure. It can be read as: 
how many steps a single ant must take to obtain a single 
resource during a given iteration. The graphical analysis of 
many plotted evolutions of HpH in function of iterations led us 
to confirm that it gets fairly stable after a certain point, called 
the convergence point [8]. Therefore we chose our final 
measure to be the arithmetical average of exactly 1000 last 
values of HpH in a given experiment; we expect it to be 
characterized by low standard deviation. 

TABLE V P2P WORLDS PRESENT IN THE EXPERIMENTS 

World edge 
size 

World total 
size 

Initial resources 
per node Nodes affected 

-	

32 1024 30 48 

40 1600 30 75 

48 2304 30 108 

56 3136 30 147 

64 4096 30 192 

Additionally we decided to distinguish between two 
separate interpretations of the data. It is obvious that every act 
of diffusion consumes a portion of system resources, whether it 
is bandwidth, processing time or any other. One might argue, 
however, that the entire diffusion process can be executed when 
the system is in its downtime, when there is no or very little real 
usage. A good example is forcing all the diffusion at night, 
reducing the probability of a conflict with a user-released ant to 
a minimum. Hence, in that case the diffusion would not 
interfere with system’s functionality and it could be omitted in 
the calculations. Therefore the two interpretations are: 

 non-strained results, where the resources consumed by 
diffusion ants are not taken in consideration, and are 
treated as neutral to the system. The non-strained average 
of HpH Diffusion Depth  will be symbolized by μ  

 strained results, where every diffusion ant is treated as 
inseparable from the system and included in the results. 
The strained average of HpH of the Diffusion Depth  
will be symbolized by μ  

A way to include the diffusion strain in the calculations is 
based around the fact that it does not evolve with the system. 
We can infer from this that the density of resources consumed 
by diffusion in the function of iterations remains constant as 
well. Consequently we sum the total diffusion strain over all the 
iterations, divide it over the number of iterations and add the 
resulting value to all the HpH results obtained the classical way, 
might it be a single iteration or an average of a given period. 

E. Experimental methodology 

In its most general form the execution of every experiment 
will be as follows: 

Algorithm: Single Experiment in the world  
1. Iterate points 2-5 exactly 	 times. 



 

 

2. Choose a random node  of all available in  and 
select a random resource  of its repository. 

3. Choose a random node  of all available in  and 
generate in it an Ant whose objective is the discovery of 
the resource	 . 

4. After its completion the query will report the amount of 
resources obtained and the amount of steps taken. Data 
will be used to calculate the HpH measure for that 
particular iteration. 

5. Every  iterations initiate the Resource Distribution 
procedure (see next algorithm). 

Algorithm End. 

Algorithm: Resource Distribution in the world  
1. Choose a set  of random nodes of available in . 
2. For a given node	 ∈  , select one random resource 

from all the ones it possesses and generate a set of 10 
resources within its category. 

3. Add all generated resources to the node ; the process 
referred to as node enrichment. 

4. Force the node  to release a diffusion ant into the system 
that informs about its newly acquired content. 

5. Repeat points 2 – 4 for every ∈   

Algorithm End 

See Table V for sizes of	 ; it was adjusted to the scale 
linearly with the total size of the world. The amount of 
iterations per execution was chosen to be 100000. This 
particular value permits us to see the full evolution of the 
system while still presenting us with a manageable amount of 
data. The period between consecutive resource distributions is 
set at	 1000, therefore the resource distribution will be 
executed 99 times within a single experiment. The two above 
statements are concluded from [11]. 

For each combination of any set of the parameters chosen to 
test, we will execute the Single Experiment algorithm three 
times and, after confirming consistency of the results, proceed 
to work with the average of the three for further analysis. 

VI. EXPERIMENTAL STUDY 

We decided to formulate the statistical analysis in the 
following way. Our null hypothesis  is such that the averages 
of HpH, grouped by a particular Diffusion Depth, in all 
experiments are equal: : ∗ ∗ ⋯ ∗, where ∗ is 
the normalized average of HpH values within the Diffusion 
Depth	 . The normalization is with regard to the Diffusion 
Depth 0; a way to express the relative improvement. The 
alternative hypothesis  assumes differences between the 
means:	 : ∗ ∗ ⋯ ∗.The significance levels we 
aim for are at	 0.1 and 0.05. Before each test we 
apply the Shapiro-Wilk test to establish the fact of data 
normality; it is the most adequate test for such an amount of 
data [22].  

A good omnibus test, when the normality of the data cannot 
be guaranteed, is the Kruskal-Wallis test [23] which even in 
cases of near-normality can prove to be more sensitive than 
ANOVA. In the event of detecting significant differences 
between diffusion levels we will perform the Dunn’s Pairwise 
Comparison method [24], the results of which should provide 
us with knowledge on the relations between different Diffusion 

Depths	 . We also must take into account the amount of data 
groups present in the test by applying the necessary Bonferroni 
correction. To achieve the agreed significance of 0.1 and 

0.05 we must confirm results only at the significance 
0.01 and 0.005 respectively, which is a very 

strong requirement. 

All the experiments will be run on our proprietary software, 
written by us in the Java programming language. It was 
designed specifically for the simulation of the accelerated 
evolution of ACO algorithms in various settings. The machine 
used in testing is a PC Intel Pentium 4 630 at 3.00GHz with 4 
GB of RAM on a 32bit Windows 7. Typically a single 
experiment might take up to 15 minutes of processing time. 

A. In-width diffusion Experiment 

With the configuration presented in Table III we attempted 
the recreation of the most basic, flood-like behavior in our 
system. The independent variable  is the TTL of Diffusion 
Ants, taking values 	|	0, 	|	1, 	|	2, 	|	3 and 	|	4. Each test 
is repeated three times and the data will be presented as strained 
and non-strained, as explained in the section V.D. 

The full dataset of the results is presented in Table VI. The 
normality was not achieved here due to a priori selection of the 
depth values; the Shapiro-Wilk test does not allow the 
assumption of normality with high certainty, see Table VII. 

TABLE VI IN-WIDTH EXPERIMENT, FULL RESULTS 

World 
Size 

Diffusion 
Depth 

Diffusion 
Size 

HpH 
str. 

HpH 
str. 

HpH 
non-
str. 

HpH 
non-str. 

-  -  ∗  ∗ 

1024 0 0 20.52 1.00 20.52 1.00 

1024 1 4 17.74 0.87 17.58 0.86 

1024 2 12 17.98 0.88 17.61 0.86 

1024 3 24 19.07 0.93 17.30 0.84 

1024 4 40 21.19 1.04 16.34 0.80 

1600 0 0 21.78 1.00 21.78 1.00 

1600 1 4 19.63 0.90 19.34 0.89 

1600 2 12 18.81 0.86 17.89 0.82 

1600 3 24 19.68 0.90 16.97 0.78 

1600 4 40 26.64 1.22 18.22 0.84 

2304 0 0 21.53 1.00 21.53 1.00 

2304 1 4 20.38 0.95 19.96 0.93 

2304 2 12 19.75 0.92 18.38 0.85 

2304 3 24 22.53 1.05 18.32 0.85 

2304 4 40 27.92 1.30 16.77 0.78 

3136 0 0 21.56 1.00 21.56 1.00 

3136 1 4 21.10 0.98 20.49 0.95 

3136 2 12 19.37 0.90 17.59 0.82 

3136 3 24 22.92 1.06 17.43 0.81 

3136 4 40 33.05 1.53 17.31 0.80 

4096 0 0 22.41 1.00 22.41 1.00 

4096 1 4 21.30 0.95 20.51 0.92 

4096 2 12 20.19 0.90 17.84 0.80 

4096 3 24 25.95 1.16 18.38 0.82 

4096 4 40 37.52 1.67 17.21 0.77 



 

 

TABLE VII IN-WIDTH EXPERIMENT, NORMALITY TESTS 

Shapiro-Wilk Statistic df p-value 
In-Width strain 0.749 25 0.000 

In-Width non-strain 0.874 25 0.005 

 
Fig. 3. In-Width Diffusion, strain graph 

 
Fig. 4. In-Width Diffusion, non-strain graph 

Kruskal-Wallis test has proven beyond any doubt that 
groups formed by different diffusion settings are significantly 
different and are disjointed populations of data points with 
respect to the HpH measure. The most interesting conclusions 
stem out of Table IX and Table X. For instance, in Table IX we 
see that the difference between non-str. 	|	2 and 	|	0 is of 
12.100 ranks; from the corresponding field in the Table X we 
conclude that it is significant at 0.01.  In case of the non-
strain values we confirm that even an algorithm as crude as k–
flood is significantly better than the lack of diffusion for depths 
of diffusion equal or larger than 	|	2, which are 	|	2, 	|	3 and 
	|	4. The strained data are less promising as there is no 

statistically significant benefit from the diffusion and therefore 
more elaborate algorithms are in place, if one cannot pinpoint 
system’s downtimes to perform the diffusion and treat it as non-
straining. We feel we need to point out however that the 
diffusion of size 	|	2 was very nearly accepted as better than 
no diffusion, with	 0.036. A simple look at the 
graphical representation of the strained results (Fig. 3) suggests 
that around the diffusion d | 2 there is a local minimum of net 
benefit at about 15% HpH. In case of the non-strained results 
(Fig. 4) no such minimum is observed and we assume that it is 

located outside the examined scope; the best value is 23% lower 
than the diffusion-less system. 

TABLE VIII IN-WIDTH EXPERIMENT, KRUSKAL-WALLIS TEST RESULTS 

Kruskal-Wallis test In-Width non-strain In-Width strain
K (Observed value) 18.604 16.896 

K (Critical value) 7.779 7.779 

Df 4 4 

p-value (Two-tailed) 0.001 0.002 

Alpha 0.01 0.01 

TABLE IX IN-WIDTH EXPERIMENT, DUNN'S COMPARISON, RANKS 

    d | 0 d | 1 d | 2 d | 3 d | 4 

In-
Width 
non-
strain 

d | 0 0 4.600 12.100 13.800 17.500 

d | 1 -4.600 0 7.500 9.200 12.900 

d | 2 -12.100 -7.500 0 1.700 5.400 

d | 3 -13.800 -9.200 -1.700 0 3.700 

d | 4 -17.500 -12.900 -5.400 -3.700 0 

In-
Width 
strain 

d | 0 0 6.400 9.900 0.200 -6.900 

d | 1 -6.400 0 3.500 -6.200 -13.300 

d | 2 -9.900 -3.500 0 -9.700 -16.800 

d | 3 -0.200 6.200 9.700 0 -7.100 

d | 4 6.900 13.300 16.800 7.100 0 

TABLE X IN-WIDTH EXPERIMENT, DUNN'S COMPARISON, P-VALUES 

    d | 0 d | 1 d | 2 d | 3 d | 4 

In-
Width 
non-
strain 

d | 0 1 0.330 0.010a 0.003a b 0.000a b 

d | 1 0.330 1 0.092 0.039 0.004a b 

d | 2 0.010a 0.092 1 0.702 0.225 

d | 3 0.003a b 0.039 0.702 1 0.406 

d | 4 0.000a b 0.004a b 0.225 0.406 1 

In-
Width 
strain 

d | 0 1 0.175 0.036 0.966 0.144 

d | 1 0.175 1 0.432 0.164 0.003a b 

d | 2 0.036 0.432 1 0.029 0.000a b 

d | 3 0.966 0.164 0.029 1 0.111 

d | 4 0.144 0.003a b 0.000a b 0.111 1 

Bonferroni corrected significance levels: a 0.01 
b 0.005 

B. In-depth diffusion Experiment 

The in-depth diffusion experiment was executed according 
to the parameters established in Table IV. We manipulated the 
degree of diffusion by changing the TTL of Diffusion Ants over 
5 values: 	|	0, 	|	5, 	|	10, 	|	15 and 	|	20, it will be our 
independent variable . Each test is repeated three times and the 
data will be presented as strained and non-strained, as it was 
explained in the section V.D 

Similarly to the previous experiment the data cannot be 
considered normal, as it is shown in Table XII. We therefore 
must again run the statistical analysis with the Kruskal-Wallis 
test. With near perfect certainty (>99.99%, see Table XIII) it 
was confirmed that there are different populations of points 
within our results in terms of HpH measure. In case of In-Depth 
diffusion the strain put on the results is marginally low, from 
Table XI we conclude that even at the 	|	20 Diffusion Depth 
the difference between strain and non-strain results is below 0.8 
HpH. It comes as no surprise that strained and non-strained 



 

 

results are very much alike, see Table XIV and Table XV for 
Dunn’s pairwise comparison. We can conclude that the 
Diffusion Depths of 	|	15 and higher are significantly better 
than no diffusion at all. It is also worth pointing out that the 
minute Diffusion Depth of 	|	10 may be nearly considered 
appropriate as well. In these cases the improvement reaches 
quite an impressive value of 32% in the non-strained variant 
and up to 29% in the strained one. Both of these can be seen on 
Fig. 5 and Fig. 6 respectively. No clear local minimum was 
detected so pushing the Diffusion Depth to even higher values 
may be justified. 

TABLE XI IN-DEPTH DIFFUSION, FULL RESULTS 

World 
Size 

Diffusion 
Depth 

Diffusion 
Size 

HpH 
str. 

HpH 
str. 

HpH 
non-
str. 

HpH 
non-
str. 

-  -  ∗  ∗ 

1024 0 0 19.46 1.00 19.46 1.00 

1024 5 5 18.02 0.93 17.85 0.92 

1024 10 10 15.89 0.82 15.59 0.80 

1024 15 15 14.57 0.75 14.16 0.73 

1024 20 20 14.04 0.72 13.52 0.70 

1600 0 0 22.05 1.00 22.05 1.00 

1600 5 5 19.42 0.88 19.13 0.87 

1600 10 10 17.21 0.78 16.71 0.75 

1600 15 15 15.82 0.72 15.14 0.69 

1600 20 20 15.55 0.71 14.68 0.67 

2304 0 0 21.99 1.00 21.99 1.00 

2304 5 5 18.38 0.84 17.99 0.82 

2304 10 10 18.91 0.86 16.69 0.76 

2304 15 15 18.12 0.82 16.33 0.75 

2304 20 20 16.50 0.75 15.20 0.69 

3136 0 0 22.02 1.00 22.02 1.00 

3136 5 5 20.18 0.92 19.6 0.89 

3136 10 10 19.12 0.87 18.05 0.82 

3136 15 15 18.29 0.83 16.80 0.76 

3136 20 20 17.99 0.82 16.13 0.73 

4096 0 0 21.91 1.00 21.91 1.00 

4096 5 5 19.45 0.89 18.73 0.86 

4096 10 10 18.21 0.83 16.90 0.78 

4096 15 15 16.92 0.77 15.17 0.70 

4096 20 20 18.27 0.84 15.86 0.73 

 
Fig. 5. In-Depth Diffusion, strain graph 

 
Fig. 6. In-Depth Diffusion, non-strain graph 

TABLE XII IN-DEPTH EXPERIMENT, NORMALITY TESTS 

Shapiro-Wilk Statistic df p-value
In-Depth strain 0.926 25 0.069 

In-Depth non-strain 0.885 25 0.009 

TABLE XIII IN-DEPTH EXPERIMENT, KRUSKAL-WALLIS TEST RESULTS 

Kruskal-Wallis test In-Depth non-strain In-Depth strain
K (Observed value) 20.677 18.166 

K (Critical value) 7.779 7.779 

Df 4 4 

p-value (Two-tailed) 0.000 0.001 

Alpha 0.01 0.01 

TABLE XIV IN-DEPTH EXPERIMENT, DUNN'S COMPARISON, RANKS 

    d | 0 d | 5 d | 10 d | 15 d | 20 

In-Depth 
non-
strain 

d | 0 0 4.600 9.800 15.500 18.100 

d | 5 -4.600 0 5.200 10.900 13.500 

d | 10 -9.800 -5.200 0 5.700 8.300 

d | 15 -15.500 -10.900 -5.700 0 2.600 

d | 20 -18.100 -13.500 -8.300 -2.600 0 

In-Depth 
strain 

d | 0 0 5.000 10.800 15.800 16.400 

d | 5 -5.000 0 5.800 10.800 11.400 

d | 10 -10.800 -5.800 0 5.000 5.600 

d | 15 -15.800 -10.800 -5.000 0 0.600 

d | 20 -16.400 -11.400 -5.600 -0.600 0 

TABLE XV IN-DEPTH EXPERIMENT, DUNN'S COMPARISON, P-VALUES 

    d | 0 d | 5 d | 10 d | 15 d | 20 

In-Depth 
non-
strain 

d | 0 1 0.330 0.038 0.001a b 0.000a b 

d | 5 0.330 1 0.243 0.014 0.002a b 

d | 10 0.038 0.243 1 0.201 0.062 

d | 15 0.001a b 0.014 0.201 1 0.559 

d | 20 0.000a b 0.002a b 0.062 0.559 1 

In-Depth 
strain 

d | 0 1 0.290 0.022 0.001a b 0.001a b 

d | 5 0.290 1 0.193 0.015 0.010a 

d | 10 0.022 0.193 1 0.262 0.209 

d | 15 0.001a b 0.015 0.262 1 0.893 

d | 20 0.001a b 0.010a 0.209 0.893 1 

Bonferroni corrected significance levels: a 0.01 
 b 0.005 



 

 

VII. CONCLUSIONS / FUTURE WORK 

In this work we have shown clearly that the introduction of 
our idea of the Diffusion Model Framework, with the objective 
of improving the re-convergence speed in a p2p environment 
managed by ACO algorithm, is beneficial. Even the crudest 
variant provided a certain net improvement to the system, in 
terms of HpH, and was helpful in combating the slow re-
convergence. 

The in-width version has proven to be a feasible solution in 
systems that have a downtime period. As mentioned before, 
those including day/night cycles, weekday/weekend cycles, etc. 
In this situation one might disregard the strain that the Diffusion 
Ant has on the system and successfully apply the in-width 
diffusion depth 	|	3 or 	|	4. To some extent the in-width 
diffusion depth 	|	2 is nearly applicable to the strained system 
as well. 

In the case of our in-depth strategy the results were much 
stronger. Not only the overall strain on the system was minimal, 
but also the improvement reached values as high as 30%. 
Regardless of whether we used strained or non-strained results 
we come to the conclusion that in-depth diffusion depths 	|	15 
and 	|	20 are significantly better than no diffusion at all. This 
permits us to say that any system, that follows our prerequisites 
even loosely, would benefit from such an extension. 

This paper focused on some basic ideas of the applicability 
of the diffusion. We want to take the subject further and test it 
in a much more general environment, where resources appear, 
disappear and modify. Our next step will also consist of 
applying the concept of diffusion to real-life networks, with 
where the dynamism is not limited to the nodes’ content, but 
also to the nodes themselves which attach and detach from the 
system, creating breaks in the pheromone trail’s continuity. We 
also intent to work on more elaborate and sophisticated 
diffusion algorithms, which revolve around the concept of the 
directed diffusion achieved through exploiting the topology of 
the network. This will lead to the creation of a lightweight 
diffusion algorithm that complements efficiently the classical 
ACO paradigm in p2p environments.  
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