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Abstract

In this paper, we apply a smoothing technique to solve contact problems using a
segment-to-segment formulation based on the mortar method. In contact smooth-
ing the C0 finite element description of the geometry is replaced by an improved
smoothed one (usually with C1 continuity). So far these techniques have been ap-
plied to solve contact problems based on node-to-segment interaction. Some nu-
merical examples are solved to compare the performance of the smoothing and
non-smoothing formulations. The examples show that the non-smoothed mortar
formulation is improved mainly for problems with matching curved surfaces dis-
cretized with non-conforming meshes.
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1 Introduction

In recent years the mortar method has been successfully applied to solve large
deformation contact problems [1–13] using both linear and quadratic elements
in 2D or 3D. The aim of this work is to propose a mortar-based formulation
to solve 2D large deformation frictionless contact problems using a smooth
C1 contact surface description of the two bodies. We consider linear elements
in this work. The results will be compared with a non-smoothing formulation
using linear elements also based on the mortar method [13] for some numerical
problems.

A number of surface smoothing procedures have been proposed in the litera-
ture [14–19], in the context of node-to-segment (NTS) formulation. In contrast,



in this work the contact formulation is based on the mortar method so the
contact constraints are imposed in a weak sense using integrals defined in the
whole contact surface. Therefore, the proposed formulation has the advantages
of segment-to-segment formulations, i.e. it avoids locking and overconstraining
effects and it allows to obtain optimal convergence rates of the finite element
solution.

In the node-to-segment smoothing formulations, a slave node interacts with
a C1 master surface. Different alternatives have been tried to define the C1

smooth surface based on the nodal coordinates of the master nodes (nodes of
the master surface): cubic Hermite interpolation [15,19], cubic Bernstein inter-
polation in the form of Bezier curve [18,14] or cubic splines [16]. In this work
we choose a cubic Hermite interpolation. Since the proposed formulation is
segment-to-segment, both the master surface and the slave surface are defined
using the smooth interpolation. This is a significant difference with respect to
node-to-segment formulations. In the clasical NTS formulation it is reported
(see [14,15] for example) that the smoothing technique improves the quality
of the solution and the robustness of contact algorithms, mainly for frictional
problems. On the other hand, in the mortar method the room for improvement
is less than in NTS because the mortar method already avoids some problems
of NTS. This is due to the transmission of forces which is distributed in the
whole contact surface and not only pointwise. However, there are some kind
of problems solved with mortar formulation that can be improved, namely
bodies with matching curved contact surfaces discretized with non-matching
meshes. In this cases the error computing the gap can affect the global error
of the finite element solution, as shown in the numerical examples. Another
alternative to reduce the gap error could be the use of quadratic elements
which are readily avaliable in the literature for the mortar formulation [5,7,9]

In this work the formulation and solution of the contact problem is performed
following the same ideas exposed in [13]. We use the Lagrange multiplier
method to impose the contact constraints and numerical integration is pro-
posed to compute contact integrals. The linearization of the contact integrals
is based on the value of the magnitudes at the quadrature points. The Newton-
Raphson method is used to solve the non-linear problem.

The paper is organized as follows. Section 2 describes the formulation of the
frictionless contact problem using Lagrange multipliers and the solution using
finite elements. Section 3 details the definition of the smooth surfaces and
how this definition is introduced in the evaluation of the segment-to-segment
contact integrals. In Section 4 the linearization of the weak form is performed,
in order to apply a Newton’s method. In Section 5 several numerical examples
are solved to compare the results of the smooth mortar contact formulation
with that of mortar contact without smoothing, namely the implementation
in [13]. Conclusions are exposed in Section 6. Appendix A shows details of the
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Fig. 1. Notation for the large deformation contact problem.

linearization and Appendix B the matrix notation.

2 Problem definition

2.1 Contact problem formulation

In figure 1 there is a schematic of two 2D bodies Ω(i) in contact represented in
the deformed configuration. Γ(i)

u and Γ(i)
σ are the boundaries with prescribed

displacements and tractions, respectively. The portion of the boundary where
the body can be in contact is denoted by Γ(i)

c . The contact surfaces Γ(1)
c and

Γ(2)
c are denoted as slave and master surfaces, respectively.

For every point in the slave surface x(1), the contact point on the master
surface x(2) is computed as the intersection of the surface Γ(2)

c with the line
having direction of the normal vector n(1), as depicted in figure 1. n(1) is the
unit normal vector to the slave surface. The normal gap at a given point x(1)
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of the slave surface is defined as

gN = (x(2) − x(1)) · n(1) (1)

where the convective coordinate on surface 2, ξ(2) is used to define the contact
point as x(2) = x(2)(ξ̄(2)).

The virtual work principle can be written as the sum of the virtual work of
internal and external forces of the two bodies and the virtual work of contact
forces

G(v,u) =
2∑

i=1

(
G(i)

int(v,u) +G(i)

ext(v)
)
+GC(v) = 0 (2)

where u are the displacements and v their variations. The virtual work arising
from the internal and external forces can be computed for body (i) in the
deformed configuration as

G(i)

int(v,u) +G(i)

ext(v) =
∫
Ω(i)

σ · gradv dΩ−
∫
Ω(i)

b · v dΩ−
∫
Γ
(i)
σ

t̂ · v dΓ (3)

where σ is the Cauchy stress tensor, b denotes the body forces and t̂ the
prescribed tractions.

The contact virtual work is also computed in the current configuration. Taking
the slave surface Γ(1)

c as integration domain and taking into account that the
Cauchy contact traction has opposite direction in each body t(2)

C = −t(1)
C and

the slave and master surfaces are equal in the real contact area Γc, the contact
virtual work can be written as

Gc(v) =
∫
Γ
(1)
c

t(1)C · v(1) dΓ +
∫
Γ
(2)
c

t(2)C · v(2)(ξ̄(2)) dΓ

= −
∫
Γc

t(1)

C ·
(
v(2)(ξ̄(2))− v(1)

)
dΓ

(4)

The variation of the gap δgN obtained from equation 1 is

δgN =
(
v(2)(ξ̄(2))− v(1)

)
· n(1) (5)

and the contact pressure pN can be defined as the normal component of the
contact traction as pN = −t(1)C · n(1). Taking into account this definition and
equation 5, the contact virtual work of equation 4 can be rewritten as

Gc(v) =
∫
Γc

pN δgN dΓ (6)

Note that in the real contact area we consider that the distance between the
bodies in the continuum, i.e. the gap, is zero and the surfaces of both bodies
are parallel.
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The size and position of the contact interface is computed to verify the Kuhn-
Tucker conditions

gN ≥ 0, pN ≥ 0, pN gN = 0 (7)

2.2 Solution by the finite element method

In this work the bodies are discretized using two dimensional bilinear finite
elements. In each body the displacement field, its variation and the current
coordinates are interpolated as follows

v(i)h =
nn∑
k=1

N (i)

k (ξ) v(i)

k , x(i)h =
nn∑
k=1

N (i)

k (ξ) x(i)

k (8)

where N (i)

k is the shape function of node k in body (i), nn is the number of
nodal points and x(i)

k and v(i)

k are the nodal values of x(i) and v(i), respectively.
With these definitions the virtual work terms of internal and external forces
of equation 3 can be evaluated using the standard finite element formulation
and the equivalent nodal force can be obtained

2∑
i=1

(
G

h,(i)
int (v,u) +G

h,(i)
ext (v)

)
= v ·

(
f i + f e

)
(9)

For the computation of the contact virtual work, the nodes of the slave surface
are divided into two sets: the active set for nodes in contact and the inactive
set for nodes out of the contact. Only the active nodes contribute to the finite
element formulation with a nodal force due to the contact virtual work and a
constraint equation.

The contact virtual work in the discretized domain is obtained following an
approach similar to that presented in [4] and [13] which is based on the La-
grange multiplier method. An additional variable, the Lagrange multiplier λN

is introduced which has units of contact pressure. In the above references the
virtual work of the contact forces is derived from the variation of the con-
tact potential energy with respect to displacements, and a expression similar
to equation 6 is obtained. In the discretized domain this integral is evaluated
along the slave surface Γ(1)

c
h. This surface is divided into segments Γ(1)

cks
and the

integral is computed as the contribution of all segments. A mapping between
the current configuration of the segment and the reference element (with co-
ordinate ξ ∈ [−1, 1]) is defined and the contact virtual work can be written
as

Gh
C(v

h) =
∑
∀cks

(∫
�
λh

N δghN J dξ +
∫
�
λh

N ghN δJ dξ
)
= v · f cN (10)

where J is the jacobian of the mapping (in case of 2D linear elements is the
length of the deformed slave segment divided by 2). The square symbol in the
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integrals is used to denote the integration is performed in the reference ele-
ment. As pointed out in [4,13] the second integral of equation 10 is always zero
due to the Kuhn-Tucker conditions, but it is necessary to obtain a symmetric
tangent matrix in the linearization. The variation of the gap is based on the
smoothed surface definitions and it is detailed in the next section.

The interpolation of the Lagrange multiplier field is based on linear shape
functions. Given a nodal value of the Lagrange multiplier λNk, the interpola-
tion of the multipliers and their variations are defined as

λh
N =

nc∑
k=1

M (1)

k (ξ) λNk δλh
N =

nc∑
k=1

M (1)

k (ξ) δλNk (11)

where nc is the number of active nodes in the slave surface Γ(1)
c .

Like in all mortar-based contact formulations, we define an averaged gap ĝNk

using the Lagrange multiplier shape functions for every slave node k.

ĝNk =
∫
Γ
(1)
c

h Mk g
h
N dΓ =

∫
�
Mk g

h
N J dξ (12)

The finite element formulation of the contact problem consists in finding the
displacement and Lagrange fields that fulfill the following equations

f i + f e + f cN = 0

ĝN = 0
(13)

Note that the contribution to the contact force and the contact constraint is
only due to the active nodes. An algorithm is defined to find the correct active
set (see [13] for more details on the algorithm).

3 Discretization using smooth surfaces

The evaluation of the contact integrals (equations 10 and 12) needs the defini-
tion of the gap and its variation based on the smoothing surface formulation.
In this work, cubic Hermite polynomials are used to define the master and
slave surfaces. In figure 2 there is a slave segment cks with slave nodes ks−1
and ks. The deformed configuration of the smoothed surface is based on the
position of the nodes xks−1 and xks and the averaged tangent vectors ŝks−1 and
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ŝks and is defined as follows:

xs(1)(ξ) =He1(ξ)x
ks−1 +He2(ξ)x

ks +He3(ξ) ŝ
ks−1 +He4(ξ) ŝ

ks

He1(ξ) =
(ξ − 1)2 (2 + ξ)

4

He2(ξ) =
(ξ + 1)2 (2− ξ)

4

He3(ξ) =
(ξ − 1)2 (ξ + 1)

4

He4(ξ) =
(ξ + 1)2 (ξ − 1)

4

(14)

The averaged tangent vectors, as well as the averaged normal vectors, are not
unitary and are calculated form the finite element discretization as

ŝks =

xks+1 − xks

2
+

xks − xks−1

2
2

=
xks+1 − xks−1

4
(15)

Γ(1)
c

x1

x2

ks

ks+1
ks−1

ks− 2

cks

n̂ks−1n̂ks

ŝks−1
ŝks

xs(1)(ξ)

Fig. 2. Smoothed slave surface using Hermite polynomials.

Substituting equation 15 in the definition of the smoothed slave surface (equa-
tion 14) we obtain

xs(1)(ξ) =H1(ξ)x
ks−2 +H2(ξ)x

ks−1 +H3(ξ)x
ks +H4(ξ)x

ks+1

with

H1(ξ) = −He3
4

H2(ξ) = He1 − He4
4

H3(ξ) = He2 +
He3
4

H4(ξ) =
He4
4

(16)

where it can be observed the dependence of the slave surface on the position
of four consecutive nodes associated to each slave segment.
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The master surface is defined similarly. In order to compute the contact inte-
grals we need to define the gap and its variation. This is shown schematically
in figure 3. For a given quadrature point in the smoothed slave surface ξ(1)

g ,
the gap is computed in three steps:

• 1. Compute the global position of the slave surface at the quadrature point
ξ(1)
g using the Hermite surface description of equation 16.

• 2. Obtain the unit vector normal to the slave surface as n(1)
g =

n̂(1)

g

‖n̂g‖ , where
n̂g = ŝg × e3 and the tangent vector is computed from equation 16 as

ˆs(1)
g =

∂xs(1)(ξ(1)
g )

∂ξ
(17)

• 3. Solve the intersection between the line having the normal direction and
the cubic Hermite polynomial for the master surface (cubic equation).

xg + gNg ng(ξ
(1)

g ) = xs(2)(ξ(2)

g ) (18)

where master surface is defined using a smooth interpolation like the slave
surface

xs(2)(ξ(2)

g ) =

H1(ξ
(2)

g )xkm−2 +H2(ξ
(2)

g )xkm−1 +H3(ξ
(2)

g )xkm +H4(ξ
(2)

g )xkm+1
(19)

Solving equation 18, we obtain the gap ggN and the local coordinate ξ̄(2)
g of

the contact point in the master surface.

Γ(1)
c

Γ(2)
c

x1

x2

ks

ks+1
ks−1

ks− 2

cks

ckm

ng
n̂ks

n̂ks−1

xs(1)

xs(2)

ξ(1)
g

ξ(2)
g

km

km+1

Fig. 3. Interaction between the two smoothed surfaces.

Taking variations of equation 18 the following expression is obtained

v(1)

g + δgNg n
(1)

g + gNg δn
(1) = v(2)(ξ(2)

g ) + ŝ(2)

g δξ(2)

g (20)
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The variation of the master surface δxs(2)(ξ(2)
g ) is divided into two terms. The

first one, v(2), is computed like in equation 19 but replacing the position of the
nodes by the variation of displacements. The second one is obtained taking
the variation with respect to the local coordinate of the contact point as

xs
(2)
,ξ δξ =

(
H1,ξ x

km−2 +H2,ξ x
km−1 +H3,ξ x

km +H4,ξ x
km+1

)
δξ (21)

The virtual gap is computed by multiplying equation 20 by the unit normal
vector n(1)

g

δgNg =
(
v(2)(ξ(2)

g )− v(1)

g

)
· n(1)

g + ŝ(2) · n(1)

g δξ(2)

g (22)

Note the the second term in the right hand side of the last equation is, in
general, nonzero because vectors ŝ(2)

g and n(1)
g are not necessarily perpendicular.

The variable δξ(2)
g is obtained by multiplying equation 20 by the unit tangent

vector s(1)
g (which is perpendicular to n(1)

g ) and simplifying

δξ(2)

g =
−

(
v(2)(ξ(2)

g )− v(1)
g

)
· s(1)

g + gNg δn
(1)
g · s(1)

g

ŝ(2)

g · s(1)
g

(23)

3.1 Contribution of the active nodes. Numerical integration

There are two alternatives to perform the numerical integration of the contact
integrals. The first one, is to perform a segmentation of the slave segment in
subsegments where the integrand is a unique polynomial. For example in the
segment of figure 4 there are two subsegments. A quadrature rule is employed
in each subsegment to perform the integration. Using this strategy the numer-
ical integration error is eliminated, but the computational cost is increased.

The second option, which is used in this work and in the numerical examples
of section 5, is to define a set of quadrature points in each slave segment,
without taking into account how the variation of the integrand function is
(see figure 4). In the case of the example shown in figure 4, more than one
master segment interact with a slave segment, and therefore there is an error
in the numerical evaluation of the contact integral. This error can be reduced
by increasing the number of quadrature points. This integration was also used
in a non-smooth mortar based formulation [13].

Using the numerical quadrature with Ng points in each segment the contact
virtual work is computed as

Gh
N(v

h) =
∑
∀cks

Ng∑
g=1

Hg λNg δgNg Jg (24)

where Hg is the weight of the quadrature point and Jg is the jacobian at
the quadrature point. The Lagrange multiplier at the quadrature point λNg is

9
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Fig. 4. Slave segment and numerical integration.

computed using equation 11 and depends on the nodal values of the multiplier.
The virtual gap δgNg is obtained from equation 22.

The calculus of jacobian and the matrix expression of the virtual gap is detailed
in the appendix.

4 Linearization

A semi-smooth Newton method is used to solve the non-linear equations 13
derived from the discretization of of contact problem. The contact contribution
is due to the active nodes in two terms: the contact virtual work (equation 10)
and the constraint (equation 13). Linearizing each term of these equations we
obtain

ΔGh
N =

∫
�
Δλh

N δghN J dξ +
∫
�
λh

N ΔδghN J dξ +
∫
�
λh

N δghN ΔJ dξ

+
∫
�
Δλh

N ghN δJ dξ +
∫
�
λh

N ΔghN δJ dξ +
∫
�
λh

N ghN ΔδJ dξ

ΔĝN =
∫
�
δλh

N ΔghN J dξ +
∫
�
δλh

N ghN ΔJ dξ

(25)

The same numerical integration defined in section 3.1 can be used to compute
the integrals of equation 25. Therefore the integrands have to be evaluated
at the quadrature points. Due to the equivalence between variations and lin-
earizations, equations 22 and 23 can be rewritten replacing Δ(. . .) by δ(. . .) so
that the linearization of the gap ΔghN can be obtained directly from equation
22. Since the multiplier λN is a free variable ΔλN is directly its linearization.
The variation and linearization of the jacobian and normal vectors is detailed
in the Appendix.
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The linearization of the virtual gap can be obtained linearizing equation 20

ΔδgNg n
(1)

g + δgNg Δn(1)

g +ΔgNg δn
(1)

g + gNg Δδn(1)

g =

δŝ(2) Δξ̄(2)

g +Δŝ(2)

g δξ̄(2)

g + ŝ(2)

g Δδξ̄(2)

g

(26)

Multiplying by the unit normal vector and simplifying we obtain

ΔδgNg = δŝ(2) · n(1)

g Δξ(2)

g +Δŝ(2) · n(1)

g δξ(2)

g

+ ŝ(2) · n(1)

g Δδξ(2)

g − gNg n
(1)

g ·Δδn(1)

g

(27)

The term Δδξ(2)
g is obtained by multiplying equation 26 by the unit tangent

vector s(1)
g

ŝ(2)

g · s(1)

g Δδξ(2)

g = −δŝ(2)

g · s(1)

g Δξ(2)

g −Δŝ(2)

g · s(1)

g δξ(2)

g

δgNg Δn(1)

g · s(1)

g +ΔgNg δn
(1)

g · s(1)

g + gNg Δδn(1)

g · s(1)

g

(28)

Within the above definitions the numerical integration of the contact force,
gap vector and its linearizations can be performed. The system of equations
to be solved during each Newton iteration has the following form

⎡
⎢⎣KG +KN CT

N

CN 0

⎤
⎥⎦
⎛
⎜⎝ Δu

ΔλN

⎞
⎟⎠ = −

⎛
⎜⎝ f i + f e + f cN

gN

⎞
⎟⎠ (29)

where KG comes from the linearization of internal and external forces and KN

and CN are detailed in matrix form in the Appendix.

5 Numerical examples

Some numerical examples have been solved to test the performance of the
proposed smoothing formulation. The results are compared with the non-
smoothed mortar implementation presented in [13] which is based on linear
elements. As was done in [13], the displayed contact pressure is obtained with a
linear interpolation from the nodal values that are computed as the equivalent
nodal force divided by the equivalent nodal area:

pNk = −

∫
Γ
(1)
c

h Nk λ
h
N dΓ∫

Γ
(1)
c

h Nk dΓ
(30)

where Nk is the shape function associated to slave node k.
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Examples 5.1 and 5.3 are small deformation and large deformation problems,
respectively, with matching curved surfaces in contact that are discretized with
non-matching meshes. This is the kind of problems in which the smoothed
formulation is expected to improve the most compared with non-smoothed
formulation using linear elements. Although the examples involve academic
problems, they show clearly the interactions that arise between meshes under
this configuration. That could appear in certain problems in practice. It is
worth pointing out that a non-smoothed mortar formulation using quadratic
elements could be an alternative to the smoothing technique in order to reduce
the gap error in curved surfaces.

Example 5.2 is a well known problem solved by other authors [3,9] to test
the convergence of the semi-smooth Newton method. Finally, example 5.4 is
presented to point out that the smoothing method does not always improve
results and other techniques like the adaptive mesh refinement can be used
instead.

In all the examples the number of quadrature points in every slave segment
is Ng = 16. This number has been chosen to ensure that, in practice, a larger
number of quadrature points does not modify the finite element solution in
the four examples.

5.1 Cylinder under internal pressure

The first problem is a hollow cylinder subject to internal pressure under small
deformation conditions and linear elastic material behavior. The schematic of
the problem is shown in figure 5.1 where it can be seen that only a quarter of
the hollow cylinder is considered and the cylinder is divided into two bodies
in contact. The dimensions of the cylinder are a = 0.9, b = 1.1 and c = 1.0.
The Young’s modulus is E = 100 and the Poisson’s ratio is υ = 0.3. This
problem has an exact solution and therefore, the exact error of the finite
element solution can be computed.

The problem was solved using meshes with different slave to master element
size ratios 1:4, 1:2, 3:4, 9:10 (see figure 6) and a 1:1 conforming mesh (not
shown in the figure). In this figure, the meshes of the two bodies in contact
are shifted to clarify the representation since both clearly overlap. We have
used the discretized surfaces to compute the initial gap, although this is a
small deformation problem and it could be solved taking into account that
the theoretical value of the initial gap is zero. This is done to analyze the
effect of the initial gap error for non-matching meshes.

Every mesh in figure 6 is the first of a sequence of meshes obtained by uniform
refinement. These meshes are used to analyze the error of the finite element

12
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Fig. 5. Schematic of the cylinder under internal pressure problem.

solution. Note that the ratio between master and slave element size is kept
constant during the refinement. The exact error in energy and L2 norms are
plotted in figure 7 as a function of the number of degrees of freedom of the
mesh. A comparison is performed for every mesh using non-smoothed (dotted
line) and smoothed formulations (continuous line). The ◦ symbol is used for
the 1:4 meshes, � symbol for the 1:2 meshes, � for the 3:4 meshes, × symbol
for the 9:10 meshes and + symbol for the conforming 1:1 mesh. In the last
case only the smoothed formulation results are plotted.

In this problem there are two sources of error: the discretization error and the
error due to the initial gap. As can be seen in figure 7, the higher the ratio
between master and slave element size, the higher error of the solution is. Of
course, the 1:4 mesh is very poorly suited if the error due to initial gap is to be
minimized, so the global error in the solution expected for the first meshes is
very high. At the other end, in the 1:1 mesh the initial gap is zero because the
meshes are conforming by construction and we have only the discretization
error. The error of the first 1:4 mesh is high compared with the 1:1 for both
smoothed and non-smoothed formulations, although in the smoothed case the
error is one order of magnitude lower.

It can be remarked that the convergence in the energy norm asymptotically
tends to the same value for every mesh using the two formulations. However
the convergence in L2 norm exhibits a constant gap. This is due to the influence
of the geometrically computed initial gap in the global error of the solution
and its convergence. The discretization error converges with the element size
h as O(h1) in energy norm and O(h2) in L2 norm (O(n0.5

dof ) and O(n1
dof ),

respectively in 2D problems). On the other hand, the convergence of the error
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1:4 mesh 1:2 mesh

3:4 mesh 9:10 mesh

Fig. 6. Meshes used to solve the cylinder problem.

due to the initial gap depends on the formulation. In this problem, for very
different sizes of slave and master elements, the geometrical error in the initial
gap decreases as O(h2) for the non smoothed formulation. This means that its
contribution to the global error decreases as O(h2) (that is O(n1

dof )) in both
L2 and energy norms. In the smoothed formulation the error due to initial gap
decreases faster in both norms.

As a conclusion of the above discussion we find that the global error in energy
norm tends to the same value for smoothed and non-smoothed formulations
because the error due to the initial gap converges faster than the discretization
error. Therefore, as the number of degrees of freedom increases the discretiza-
tion error becomes dominant. In the case of L2 norm the error due to initial
gap converges faster than the discretization error for the smoothed formula-
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Fig. 7. Error vs number of degrees of freedom.

15



tion. In the non smoothed method the convergence is the same. Therefore a
constant gap between the error associated with both methods remains as the
number of degrees of freedom is increased.

As pointed out above, another alternative to the smoothing technique would
be the use of unsmoothed quadratic elements that should perform well in this
kind of problems with curved surfaces.

5.2 Large deformation rings

The problem schematically shown in figure 8 was previously used in [15] to test
the mortar method. It is a large deformation contact problem of two rings.
Two material behaviour are considered for the rings: first elastic and then
elastoplastic. In the first case the Young’s modulus is E = 689.56 and the
Poisson ratio υ = 0.32. In the second case we add a plastic von Mises model
with yield strength Sy = 310 and kinematic hardening with H = 2.612. The
upper ring is being subject to a horizontal displacement with maximum value
of ux = 28 which is applied in 50 time increments.

8

10

10

12

17

ux ux

Fig. 8. Large deformation rings.

Figure 9 shows the deformed configuration and the von Mises stress field for
elastic and plastic behavior and for different time steps. This problem was
solved to test the convergence of the Newton iterations. This information is
shown in table 1 for two time steps. As can be seen the convergence is good
and the solution is obtained in 6 time steps. The simulation is quasistatic so
in the case of the elastic behavior there is a snapthrough phenomenon during
the simulation that affects the convergence.
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Fig. 9. Von Mises stress field at different time steps.

Iteration Elastic (T=10) Plastic (T=10) Elastic (T=30) Plastic (T=30)

1 147.9 156.0 147.9 145.8

2 2.61 · 10−2 3.13 · 10−2 3.45 · 10−2 2.96 · 10−2

3 8.38 · 10−4 1.15 · 10−3 1.19 · 10−4 9.85 · 10−4

4 1.08 · 10−7 3.63 · 10−7 6.85 · 10−8 1.75 · 10−7

5 1.45 · 10−11 6.82 · 10−11 4.00 · 10−11 3.78 · 10−11

6 2.12 · 10−16 1.58 · 10−14 3.83 · 10−15 7.76 · 10−15

Table 1
Convergence in energy norm.

5.3 Disc in contact semicircular hole

In this problem, also with large deformations, a solid disc interacts with a fixed
base as depicted in figure 10. The radius of the disc and the contact surface
of the base is R = 50 whilst the external radius of the base is Re = 125.
Neo-hookean material is assumed for both solids being the elastic constants
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of the disc E1 = 105 and ν = 0.3 and the base E2 = 103 and ν = 0.3.

Γ(1)
c

Γ(2)
c

R

R

Re

Δy

Fig. 10. Schematic of the disc contact problem.

The solid disc is imposed to move in vertical direction with 20 time incre-
ments, for a maximum displacement uy = 90. Figure 11 shows the deformed
configuration for different time steps.

In figures 12 and 13 the contact pressure is shown for different time steps. We
show results for the proposed smooth formulation and the non-sooth formu-
lation in order to compare both methods. Theoretically, the two undeformed
contact surfaces are equal and therefore the gap should be zero. But due to
the different discretization of the two contacting bodies there is an error in
the gap that affects to the contact pressure, mainly in the first time steps
(T=1 and T=5). As can be seen in those initial time steps, the smooth for-
mulation obtains a smoother distribution of the contact pressure because the
error in the gap is smaller. Once the deformation becomes more important
and higher values of the contact pressure are obtained, the error computing
the gap has lower influence in the solution and a similar distribution of the
contact pressure is obtained for both formulations.

5.4 Spur gears

The last example is the contact between two spur gears that undergo large
rotations. The schematic of the problem is shown in figure 14. The two gears
are equal and have a number of teeth z = 22, modulus m = 10 and width
b = 120 mm. The power transmitted is P = 70 kW at a speed of ω = 11
rad/s. The material is steel with elastic constants E = 210 GPa and ν = 0.3,
and is modelled using a St.Venant-Kirchhoff material model.

The boundary conditions are applied through the thick line shown in every
body in figure 14. In the thick line the degrees of freedom are constrained to
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T=5 T=10

T=15 T=20

Fig. 11. Deformed configuration of the disc contact problem for different time steps.

have only a circular movement with respect to the gear center. In the upper
gear a constant torque T = 6366.2 Nm is applied whilst the lower gear is
imposed to move with different angles from θ = 0 to θ = 2 π/z in 100 time
increments.

The contact ratio εα = 1.6 so the power is transmitted through two teeth
during part of the time as can be seen in the position of figure 14 and through
one tooth the rest of the time. To illustrate this, from the finite element results
of contact pressure, the torque transmitted by each tooth can be computed.
This was done by computing the resultant force in each contact area multiplied
by the distance to the center of the gear. The results obtained are plotted in
figure 15 where the blue line with the circle symbol is used for the torque
transmitted by tooth 1, the red line with squared symbol for tooth 2 and the
black line with star symbol for tooth 3. These torques are plotted for different
time steps which are proportional to the the angle of rotation of the lower
gear. In this figure there is a comparison of the results obtained with the non-
smoothing and the smoothing formulations. As can be seen both formulations
tend to yield similar results and there are oscillations on the torque transmitted
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Fig. 12. Contact pressure distribution on the disc (time steps 1, 2 and 5).

by each tooth.

The oscillating results shown in figure 15 are due to the mesh which is too
coarse for this problem. We have used an h-adaptive mesh refinement based
on element subdivision [20] to obtain a mesh with a lower error. The mesh
refinement introduces new nodes that adjust to the evolving profile of the teeth
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Fig. 13. Contact pressure distribution on the disc (time steps 10 and 15).

obtaining a more accurate representation of the real geometry. It adaptivity
process uses information of the finite element error in all the time steps [21].
In figure 16 the last mesh of the sequence is shown and in figure 17 the
torque transmitted by each tooth is plotted. Both smoothed and non-smoothed
formulation are virtually the same. Again the blue line with circle symbol is
used for the torque transmitted by tooth 1, the red line with square symbol
for tooth 2 and the black line with star symbol for tooth 3. As can be seen
the oscillations of the transmitted torque disappear.

One can distinguish several zones in the blue line with circle symbol. A first
part with constant transmitted torque corresponds to the situation when there
is only one tooth in contact. Two zones with high slope (between time t = 3
to t = 9 and between t = 41 to t = 46) result when another tooth is moving
out of contact (first case) or is beginning to contact (second case). The high
slope in the variation of the torque is due to the elastic deformation caused by
the new contact force. Finally there is a second linear zone with lower slope
that is due to the variation of the position of the contact point in the tooth
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(b) Mesh

Fig. 14. Schematic of the straight gear contact problem.

profile, i.e. the resultant force is at a different distance from the gear center.

6 Conclusions

A smoothed segment-to-segment formulation has been presented to solve large
deformation frictionless contact problems. The master and slave surfaces are
defined using cubic Hermite polynomials on a first-order finite element mesh.
The contact variables and integrals have been derived to solve the contact
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Fig. 15. Torque transmitted by each tooth for the non-smoothing and smoothing
formulations.

Fig. 16. 5th mesh obtained with the h-adaptative mesh refinement.
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Fig. 17. Torque transmitted by each tooth for the adapted mesh.

problem using the mortar method.

Numerical problems were solved to compare the proposed smoothed segment-
to-segment formulation with the non-smoothed mortar formulation presented
in [13]. The results show an improvement in the solution in the case of smoothed
formulation for problems with matching curved surfaces discretized using non-
conforming meshes. In those cases, the global finite element error is affected
by the error in computing the initial gap in addition to the discretization er-
ror. The initial gap computed using the cubic polynomial of the smoothed
formulation is more accurate than that computed using the linear surface of
the non-smoothed formulation, improving the finite element solution. The use
of quadratic elements could also reduce the error due to initial gap.

In some examples, like the contact problem between two spur gears, the results
obtained with the smoothing and non-smoothing formulation are very similar
and improvement of the finite element solution has been obtained using an
h-adaptive mesh refinement that adjust the new nodes to the evolving profile
of the teeth.

In previous works and for frictional problems the smoothing technique has
been applied to node-to-segment formulation to reduce oscillations in the
forces transmitted for sliding meshes and to obtain more robust algorithms.
However, the non-smoothed mortar formulation already overcomes this type of
oscillations that appear in frictional problems. Therefore, the type of improve-
ment that can be achieved with smoothed mortar formulation is not essentially
related to the frictional character of the problem but with the existence of non
matching meshes on curved surfaces.

24



A Appendix

A.1 Linearization of unit vectors and the jacobian

The variation and linearization of the unit tangent vector (or the unit normal
vector) is obtained taking into account the definition of equation 17 as

δs(1)

g =
δŝ(1)

g

‖ŝ(1)

g ‖ −
(
ŝ(1)

g · δŝ(1)

g

)
ŝ(1)

g

‖ŝ(1)

g ‖3 (A.1)

And linearization of the variation

Δδs(1)

g =3
ŝ(1)

g

(
Δŝ(1)

g · ŝ(1)

g

) (
δŝ(1)

g · ŝ(1)

g

)
‖ŝ(1)

g ‖3 − ŝ(1)

g

(
Δŝ(1)

g · δŝ(1)

g

)
‖ŝ(1)

g ‖3

− δŝ(1)

g

(
Δŝ(1)

g · ŝ(1)

g

)
‖ŝ(1)

g ‖3 − Δŝ(1)

g

(
δŝ(1)

g · ŝ(1)

g

)
‖ŝ(1)

g ‖3
(A.2)

The Jacobian of the coordinate transformation between the slave segment and
the reference element is defined as

Jg =
l(1)

2
=

√(
x(1)

ks − x(1)

ks−1

)
·
(
x(1)

ks − x(1)

ks−1

)
2

(A.3)

The linearization and variation can be written as

δJg = −1

2
s(1)

cks
·
(
v(1)

ks − v(1)

ks−1

)
(A.4)

ΔδJg =
1

2 l(1)

(
v(1)

ks − v(1)

ks−1

)
·
(
Δx(1)

ks −Δx(1)

ks−1

)
− 1

2 l(1)
s(1)

cks
·
(
v(1)

ks − v(1)

ks−1

)
s(1)

cks
·
(
Δx(1)

ks −Δx(1)

ks−1

) (A.5)

Note that the tangent vector s(1)
cks

is constant for a segment and it is different
from tangent vector ŝ(1) which is derived from the smoothing surface definition.

B Matrix notation

A patch of nodes (ks− 2, ks−1, ks, ks+1, km− 2, km− 1, km and km+1)
can be defined associated to a quadrature point of every slave segment, as in
the segment cks of figure 3. This patch can be used to express the contribution
of the quadrature point to the tangent matrix of equation 29. The degrees of
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freedom related to nodes in the patch are used to define the following vectors

ΔǔT =
(
Δu(1)

ks−2 , Δu(1)

ks−1 , Δu(1)

ks , Δu(1)

ks+1 , Δu(2)

km−2 , Δu(2)

km−1 , Δu(2)

km, Δu(2)

km+1

)
(B.1)
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(1)
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(1)
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(1)
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(2)

km−2 , v
(2)
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(2)

km , v(2)

km+1

)
(B.2)

We define the following vectors and matrix that arise from linearization of the
normal gap, normal vector and Jacobian determinant

Fn =
[
−H (1)

1 n(1)

1 −H (1)

1 n(1)
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Ln = [0 0 −n(1)
c 1 −n(1)

c 2 n(1)
c 1 n(1)

c 2 0 0 0 0 0 0 0 0 0 0]T (B.7)

Ls = [0 0 −s(1)
c 1 −s(1)

c 2 s(1)
c 1 s(1)

c 2 0 0 0 0 0 0 0 0 0 0]T (B.8)

L =

⎡
⎢⎣ 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 −1 0 1 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎦
T

(B.9)

where n(1) = n(1)
g and s(1) = s(1)

g are the normal and tangent vectors computed
from the smoothed surface definition, n(1)

c = n(1)
cks

is the normal vector to the
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slave segment, s(1)
c = s(1)

cks
is the tangent vector defining the slave segment and

Hi,ξ is the derivative of the Hermite interpolation function defined in equation
16, with respect to the local coordinate.

We also define the following values

psm = ŝ(2) · n(1)

g lsm = ŝ(2) · s(1)

g (B.10)

With these definitions and assuming that the node ks is active, the contribu-
tion of a quadrature point to the contact force vector (equation 10) can be
expressed in matrix form as

f cN = Hg Jg M
(1)

ks λNks

(
Fn − psm

lsm
Fs +

psm gNg

lsm
Ns

)
(B.11)

The tangent matrix is obtained from equations 25. We first need to define the
following matrices (from equations 22 and 23)

Mt =
1

2 l2sm
(Fs ⊗ Ls + Ls ⊗ Fs)−

gNg

2 l2sm
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1
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(B.12)
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+ psmMt − gNg Nn ⊗Nn +
gNg

l(1)2
NT N

(B.13)

From equation 25, taking the integrals 2, 3, 5 and 6, we obtain

KN =Hg M
(1)
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[
Mn Jg − 1

2
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] (B.14)

Taking integrals 1 and 4 from equation 25 the contact constraint coefficient
matrix is obtained

CT
N =Hg M

(1)

ks

[
Jg

(
Fn − psm

lsm
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psm gNg

lsm
Ns

)
− gNg

2
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