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Abstract 22 

 23 

High-pressure optical absorption measurements have been performed in defect 24 

chalcopyrite HgGa2Se4 to investigate the influence of pressure on the bandgap energy 25 

and its relation with the pressure-induced order-disorder processes that occur in this 26 

ordered-vacancy compound. Two different experiments have been carried out in which 27 

the sample undergoes either a partial or a total pressure-induced disorder process at 15.4 28 

and 30.8 GPa, respectively. It has been found that the direct bandgap energies of the 29 

recovered samples at 1 GPa were around 0.15 and 0.23 eV smaller than that of the 30 

original sample, respectively, and that both recovered samples have different pressure 31 

coefficients of the direct bandgap than the original sample. A comprehensive 32 

explanation for these results on the basis of pressure-induced order-disorder processes is 33 

provided.  34 

 35 
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1. Introduction 41 

HgGa2Se4 is an adamantine-type A
II
B2

III
X4

VI
 ordered-vacancy compound (OVC) 42 

which crystallizes in the tetragonal defect-chalcopyrite (DC) structure whose space 43 

group (S.G.) is I-4, No. 82. A feature of OVCs is that they are tetrahedrally-coordinated 44 

semiconductors that have a vacant cationic site in an ordered and stoichiometric fashion; 45 

i.e., a stoichiometric vacancy located at a fixed Wyckoff position in the unit cell [1]. 46 

The presence of a stoichiometric vacancy in the unit cell leads to a more complex 47 

physics in OVCs than in common semiconductors and explains why OVCs have been 48 

less studied than common binary and ternary chalcogenide semiconductors. 49 

OVCs are interesting compounds to study the order-disorder phase transitions 50 

occurring in tetrahedrally-coordinated semiconductors and the influence of cation 51 

disorder in the physico-chemical properties of semiconductors. A common trend in all 52 

adamantine OVCs is that they have several non-equivalent tetrahedrally-coordinated 53 

cations and a vacancy in the unit cell which results in a distortion of the crystal lattice 54 

from the cubic symmetry. The lack of cubic symmetry of OVCs, their anisotropy, and 55 

their wide range of bandgap energies provides special properties to this family of 56 

semiconductors with important technological applications in optoelectronics, solar cells, 57 

and non-linear optics that have been the subject of several reviews [1-4].  58 

High-pressure studies of OVCs with A
II
B2

III
X4

VI
 stoichiometry are receiving 59 

increasing attention in the last years [5-36]. The vast majority of these works have been 60 

focused on the study of the structural and vibrational properties of A
II
B2

III
X4

VI
 61 

compounds. In particular, three high-pressure works have recently reported the 62 

structural and vibrational properties of DC-HgGa2Se4 under pressure where pressure-63 

induced phase transitions have been observed [24,25,28]. The disordered stannite (DS) 64 

structure and the disordered rocksalt (DR) structure have been proposed as the high-65 

pressure phases of DC-HgGa2Se4 [24,25,28]. In addition, the DR phase of HgGa2Se4 on 66 

downstroke undergoes a phase transition below 2.1 GPa to a phase assigned to a 67 

disordered zincblende (DZ) structure [24,28]. However, to the best of our knowledge, 68 

only three works have been devoted to the experimental high-pressure study of the 69 

optical absorption of the OVC family [6, 21, 23]. In this respect, the pressure 70 

dependence of the direct bandgap energy of semimagnetic MnGa2Se4 [6], and of DC-71 

CdGa2Se4 and DC-HgGa2Se4 [21] were reported. This last work was focused on the 72 

explanation of the strong non-linear pressure dependence of the direct bandgap energy 73 
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in both compounds at relatively low pressures. Finally, a comprehensive work showing 74 

the correlation of Raman scattering and optical absorption measurements on DC-75 

CdGa2Se4 was reported in Ref. 23, where the effects of the pressure-induced order-76 

disorder processes occurring in OVCs were addressed.  77 

In order to improve the knowledge of the high-pressure behaviour of AGa2Se4 78 

(A= Zn, Cd, Hg) compounds, we report in this work an optical absorption study of DC-79 

HgGa2Se4, which has been studied in two runs up to pressures of 15.4 and 30.8 GPa, 80 

respectively. As it has been commented, a partial report of our results has been already 81 

published [21]. In this work, we demonstrate that the maximum pressure reached in the 82 

experiments is important in order to: i) shed light on the complex pressure-induced 83 

order-disorder processes occurring in OVCs and ii) understand the relationship between 84 

structure and optical properties in these defective compounds.  85 

 86 

2. Experimental section 87 

 Single crystals of DC-HgGa2Se4 with around 20 µm in thickness were grown 88 

from its constituents HgSe and Ga2Se3 by chemical vapor transport method using iodine 89 

as a transport agent [37]. The as-grown crystals represent triangular prisms with mirror-90 

like surfaces. Chemical and structural analyses have shown the stoichiometric 91 

composition of the crystals and no spurious phases were observed. Ambient pressure x-92 

ray diffraction (XRD) and Raman scattering (RS) measurements previously published 93 

confirmed that our sample has a DC-type structure [24, 28].  94 

 High-pressure optical absorption experiments at room temperature were 95 

performed by the sample-in sample-out method using a micro-optical system [38] in 96 

combination with a tungsten lamp and an Ocean Optics spectrometer. Samples were 97 

loaded in a membrane-type diamond anvil cell together with a 16:3:1 methanol-ethanol-98 

water mixture as pressure-transmitting medium and ruby grains for pressure calibration 99 

with the ruby fluorescence method [39]. Stray light was measured in the high absorption 100 

region of the sample for every spectrum and subtracted from the transmission spectrum. 101 

Afterwards, the experimental transmittance spectrum was scaled in order to fit the 102 

theoretical value of the transmittance in the spectral range through which the sample is 103 

transparent (absorption coefficient α = 0). The value used for the theoretical 104 

transmittance Tteor is given by [40]: 105 
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In our particular case for DC-HgGa2Se4, we have taken d = 20 µm, n = 2.6 [41] and n0 = 116 

1.35 [42].  117 

The study of 20-µm-thick samples allows to get relatively small values of 118 

α which enables one to explore both indirect and direct bandgaps; however, they 119 

prevent a precise determination of the direct bandgap by fitting the optical absorption 120 

edge [43,44]. In this respect, we have obtained the direct bandgap by extrapolating the 121 

linear fit of the high-energy part of the (α·hν)
2
 vs. hν plot to zero absorption. This 122 

method has yielded rather accurate values of the pressure coefficient of the direct 123 

bandgap energy and only slightly underestimated values of the direct bandgap as 124 

commented in Refs. 21 and 23 for both DC-CdGa2Se4 and DC-HgGa2Se4. For DC-125 

HgGa2Se4, we obtained an experimental direct bandgap of 1.93 eV at room pressure 126 

[21], which is very close to the accepted value between 1.95 and 1.99 eV [45,46].  127 

In this work, we report results of two optical absorption experiments at high 128 

pressures that allow us to study the pressure dependence of the bandgap energy in DC-129 

HgGa2Se4 and in recovered samples of HgGa2Se4 obtained after reaching different 130 

pressures on upstroke.  The two experiments consisted of two consecutive upstrokes and 131 

downstrokes and allowed us to study the reversibility of the pressure-induced order-132 

disorder processes which lead from the initial ordered DC phase to high-pressure phases 133 

with partial or total cation-vacancy disorder [24,28]. In the first experiment, partially 134 
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reported in Ref. 21, we increased pressure only up to 15.4 GPa in order to induce a 135 

partial cation-vacancy disorder in the samples since at this pressure the sample has not 136 

undergone a complete phase transition to the DR phase [24,28]. In the second 137 

experiment, we increased pressure up to 30.8 GPa in order to induce a total cation-138 

vacancy disorder, transforming our sample to the opaque DR structure, as shown in 139 

previous high-pressure XRD and RS measurements in DC-HgGa2Se4 [24,28]. In both 140 

experiments, pressure was slowly decreased to 1.0 GPa after the first upstroke to study 141 

the reversibility of the bandgap energy and of the defects created during the first 142 

upstroke. In summary, the main difference between both experiments is the maximum 143 

pressure reached (15.4 and 30.8 GPa) which influences the completion of the phase 144 

transition to the opaque DR phase observed in previous experiments above 17-22 GPa 145 

depending on the technique used and the hydrostatic conditions of the experiment 146 

[24,28]. We will show that the study of the optical absorption of the recovered samples 147 

from both experiments show important differences in order to understand pressure-148 

induced order-disorder processes in OVCs.  149 

 150 

3. Results and discussion  151 

 Our aim is to show that high-pressure optical absorption measurements on DC-152 

HgGa2Se4 evidence changes in the optical properties that correlate with changes in the 153 

structural and vibrational properties already seen in previous high-pressure XRD and 154 

RS experiments carried out under similar conditions [24,25,28]. Therefore, hereafter we 155 

will explain the results of our high-pressure optical absorption experiments by 156 

correlating them with the different phases of HgGa2Se4 discussed in previous works 157 

(DC, DS, DR, and DZ). 158 

Figure 1 shows a selection of the optical absorption spectra in DC-HgGa2Se4 159 

during the first upstroke up to 15.4 GPa. As it can be observed, there is a blue shift of 160 

the fundamental absorption edge with increasing pressure up to 11.2 GPa and a red shift 161 

between this pressure and 15.4 GPa. At pressures higher than 14.8 GPa, the presence of 162 

a great number of dark linear defects in the sample results in an almost complete 163 

darkening of the samples and a very large low-energy tail in the absorption spectra due 164 

to light absorption by defects. Therefore, the estimation of the direct bandgap energy 165 

has not been possible above 14.8 GPa.  166 

As commented in a previous work, a low-energy tail begins to appear in the 167 

optical absorption spectrum of DC-HgGa2Se4 around 11.8 GPa [21]. The appearance of 168 
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a low-energy tail in the optical absorption spectrum of a direct bandgap semiconductor 169 

could be attributed to: i) the observation of an indirect bandgap below the direct 170 

bandgap due to a direct-to-indirect bandgap crossover [43, 44, 47] or ii) optical 171 

absorption by defects which are precursors of a phase transition [44, 48, 49]. In this 172 

respect, ab initio calculations for DC-HgGa2Se4 reported in Ref. 21 concluded that the 173 

bandgap is of direct type and that a direct-to-indirect bandgap crossover would only 174 

occur at pressures higher than 16 GPa; i.e., at pressures at which the bandgap cannot be 175 

estimated experimentally because of the light absorption by defects. Therefore, the 176 

appearance of the low-energy tail observed between 12 and 16 GPa in HgGa2Se4 cannot 177 

be attributed to the indirect bandgap. This situation is similar to that of DC-CdGa2Se4 178 

above 6-8 GPa [23]. 179 

Figure 2 shows images taken during the second experiment up to 30.8 GPa. It 180 

can be observed that the original DC-HgGa2Se4 sample presents a reddish color at 0.6 181 

GPa and that on increasing pressure to 11.8 GPa the sample becomes more transparent. 182 

Above this pressure, dark linear defects, which are precursors of a phase transition, 183 

appear together with the appearance of the low-energy tail. At 30.8 GPa the sample 184 

appears black in color because of the completion of the phase transition to the opaque 185 

DR phase.  186 

Figure 3 shows the pressure dependence of the direct bandgap energy (circles) 187 

in DC-HgGa2Se4 during the first upstroke which is estimated by extrapolating the linear 188 

fit of the high-energy part of the (α·hν)
2
 vs. hν plot to zero absorption. Inset of Fig. 1 189 

shows a plot of (α·hν)
2
 vs. hν where the tangent method is applied to estimate the direct 190 

bandgap energy of DC-HgGa2Se4 from the absorption coefficient at 0.6 GPa in the first 191 

upstroke. Error bars for the bandgap energies have been estimated by taking into 192 

account the different ranges of absorption coefficient values for which the relationship 193 

(α·hν)
2
 vs. hν is linear at each different pressure. These different ranges of the 194 

absorption coefficient values give different values of the bandgap energy depending on 195 

the slope of the straight line obtained from the linear fit. Note that the error bar for the 196 

bandgap energy increases at pressures above 11.8 GPa due to the presence of the low-197 

energy tail. In Fig. 3 can be observed that the direct bandgap energy of DC-HgGa2Se4 198 

exhibits a strong non-linear pressure dependence up to 8 GPa. This behavior was 199 

already observed in DC-HgGa2Se4 and also in DC-CdGa2Se4 and explained on the basis 200 

of theoretical ab initio calculations which demonstrated that this non-linear behavior is 201 
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a general feature common to all OVCs [21]. In particular, it was proposed that this 202 

behavior was due to a conduction band anticrossing at the Γ point of the Brillouin zone 203 

caused by two factors: i) the presence of ordered vacancies in adamantine OVCs and ii) 204 

the doubling of the unit cell along the c axis with respect to the zincblende structure.  205 

It can be observed that the direct bandgap energy in DC-HgGa2Se4 increases at 206 

low pressures with a pressure coefficient of 31±4 meV/GPa estimated from a linear fit 207 

in the range 0.6-2.9 GPa (see blue line in Fig. 3), while at pressures above 11.8 GPa the 208 

bandgap energy decreases with a pressure coefficient of -20±3 meV/GPa estimated 209 

from a linear fit in the range 11.8-14.8 GPa (see pink line in Fig. 3). We note that a 210 

rough estimate of the pressure coefficient of the direct bandgap can also be obtained by 211 

measuring the shift of the optical absorption edge at a constant high absorption 212 

coefficient. Following this procedure, the pressure coefficients obtained for the direct 213 

bandgap energy of DC-HgGa2Se4 at low pressure in the range 0.6-2.9 GPa and at high 214 

pressure in the range 11.8-14.8 GPa are 31±1 and -20±6 meV/GPa, respectively; which 215 

agree with those previously obtained from the linear extrapolation method. A similar 216 

behavior was observed in DC-CdGa2Se4 [21,23], and the gradual decrease of its direct 217 

bandgap above 6-8 GPa was interpreted as a signature of the onset of the cation disorder 218 

process that gradually transforms the DC phase to a structure with a partial disorder 219 

which was tentatively attributed to a DS structure [23].  220 

We must note that a change in the sign of the pressure coefficient of the direct 221 

bandgap above certain pressure was already noted in some chalcopyrites, like CuAlSe2 222 

[50], and in defect zincblende compounds, like Ga2Se3 [51]. In these works, the change 223 

of sign of the pressure coefficient was attributed either to a direct-pseudodirect bandgap 224 

crossover [50] or to a direct-indirect bandgap crossover [51]. In this respect, we have 225 

discarded these two interpretations, as has been previously commented, because we 226 

have performed band structure calculations in DC-HgGa2Se4 (see Ref. 21) and our 227 

calculations do not support the direct-indirect bandgap crossover as the origin of the 228 

decrease of the bandgap above 11.2 GPa in DC-HgGa2Se4. Moreover, we must note that 229 

in DC-HgGa2Se4 the appearance of a low-energy tail in the optical absorption spectrum 230 

begins around 12 GPa which is coincident with the onset of a stronger decrease of the 231 

bandgap energy as in DC-CdGa2Se4 [23]. Therefore, we may attribute both the abrupt 232 

decrease of the bandgap energy in DC-HgGa2Se4 and the appearance of the low-energy 233 

tail around 12 GPa to the onset of the cation-cation or cation-vacancy disorder 234 
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processes. This process gradually transforms the initial DC phase of HgGa2Se4 first to a 235 

structure with partial cation disorder, tentatively attributed to a DS phase [28], and then 236 

at higher pressures to a structure with full cation-vacancy disorder and considered to be 237 

the DR phase [24,28].  238 

As it was previously mentioned, we have performed two optical absorption 239 

experiments up to different maximum pressures in order to obtain information on the 240 

reversibility of the order-disorder processes associated to the DC→DR phase transition. 241 

In the experiment up to 15.4 GPa, the sample was partially opaque due to the 242 

appearance of dark linear defects above 12 GPa. In the experiment up to 30.8 GPa, the 243 

sample became completely opaque above the phase transition to the DR phase and 244 

during the pressure release we found that the opaque sample recovered its transparency 245 

below 5 GPa. We must stress that in both experiments the recovered samples at 1.0 GPa 246 

on downstroke showed dark linear defects that were not present in original DC samples 247 

and that the direct bandgap energy at 1.0 GPa after dowstroke was smaller in both 248 

samples than in the initial DC samples at a similar pressure upon upstroke. In particular, 249 

the samples recovered from 15.4 and 30.8 GPa showed a direct bandgap energy that was 250 

around 0.15 and 0.23 eV smaller than that measured at the same pressure in the original 251 

DC phase, respectively (see squares and triangles in Fig. 3). To clarify this issue, Fig. 2 252 

shows an image of the sample at 2.9 GPa obtained during a second upstroke after 253 

decreasing slowly pressure down to 1 GPa from 30.8 GPa. As it can be observed, the 254 

sample retains some dark linear defects from the transition to the DR phase and has a 255 

dark red color that evidences the decrease of the bandgap energy with respect to the 256 

image of the original sample at 0.6 GPa. A similar phenomenon is observed in the 257 

sample compressed only to 15.4 GPa. These results indicate that dark linear defects are 258 

not reversible and the change of the bandgap energy above 12 GPa (once dark linear 259 

defects appear) is also not reversible. The decrease of the bandgap energy observed in 260 

DC-HgGa2Se4 above 12 GPa that we have attributed to increasing disorder is similar to 261 

that observed in chalcopyrites [52] and in other ternary OVCs, like CdGa2Te4 [3], 262 

CdGa2Se4 [23], HgGa2S4 [26] and ZnGa2Se4 [27, 30]. We want to stress that the 263 

irreversibility of the direct bandgap energy and its decrease in value in the recovered 264 

samples can be explained by the irreversible cation-cation and cation-vacancy order-265 

disorder processes which may result in different recovered structures (with different 266 

bandgaps depending on the maximum pressure attained by the initial DC sample) from 267 

that of the original DC phase. 268 
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In the following, we will discuss about the possible structures of the recovered 269 

samples in HgGa2Se4 on the basis of our present results of high-pressure optical 270 

absorption measurements and of previous results of high-pressure XRD and RS 271 

measurements [24, 28]. As regards the nature of the recovered phases, the presence of 272 

DZ-HgGa2Se4 on downstroke after the transformation of DC-HgGa2Se4 to the DR 273 

structure has been evidenced by XRD and RS measurements [24,28]. Furthermore, a 274 

decrease of the direct bandgap energy by 0.4 eV was already observed in a recovered 275 

sample with DZ structure in CdGa2Se4 obtained after transforming DC-CdGa2Se4 to the 276 

DR structure above 20 GPa [23]. Therefore, we tentatively attribute the sample 277 

recovered at 1.0 GPa from 30.8 GPa, which shows a direct bandgap 0.23 eV smaller 278 

than the DC phase, to DZ-HgGa2Se4.  279 

As regards the nature of the sample recovered from 15.4 GPa, it is known that 280 

ZnGa2Se4 samples with partial cation or cation-vacancy disorder, like those crystallizing 281 

in the DS structure, show a slightly smaller bandgap energy than ordered samples of the 282 

DC structure [30]. Therefore, the smaller decrease of the direct bandgap in the sample 283 

recovered from 15.4 GPa than that recovered from 30.8 GPa, prompts to attribute it to a 284 

structure with an intermediate degree of disorder between that of DC and DZ structures. 285 

In this respect, different intermediate structures between these two structures have been 286 

recently discussed [53]. In particular, a phase with a possible DS structure (likely model 287 

7 of Ref. 53 where cations and vacancies become partially mixed) was found in RS 288 

measurements of DC-HgGa2Se4 above 19 GPa [28]. This DS phase shows more Raman 289 

peaks than the DC phase because of the partial occupation of the vacancy position [28]. 290 

However, the disappearance of the A2 Raman mode (characteristic of the DC structure) 291 

observed above 14.5 GPa in HgGa2Se4 [28] suggests that a DS phase is already formed 292 

at this pressure which is different from the previous DS phase since no new Raman 293 

modes are present [28]. The DS phase of HgGa2Se4 above 14.5 GPa is likely to be 294 

similar to that already observed in CdGa2Se4 (model 2 or 6 of Ref. 53 where cations and 295 

vacancies are not mixed) [23]. Since the onset of structural disorder in HgGa2Se4 is 296 

observed above 12 GPa, we consider that pressures above 12-13 GPa are high enough to 297 

observe the irreversibility of the pressure-induced disorder process in DC-HgGa2Se4. 298 

Consequently, hereafter we will consider that the sample obtained after pressurization of 299 

DC-HgGa2Se4 to 15.4 GPa is a partially-disordered DS structure likely corresponding to 300 

model 2 or 6 of Ref. 53. 301 
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Figure 4 shows selected optical absorption spectra of the two samples with DS 302 

and DZ structures recovered from 15.4 GPa and from 30.8 GPa, respectively. These 303 

measurements were obtained during a second upstroke after recovering the samples to 304 

pressures near 1 GPa. In both recovered samples the optical absorption edge exhibits a 305 

blue shift with increasing pressure more pronounced for the case of the DS phase. DS 306 

and DZ samples exhibit a progressive darkening above 6-8 GPa that prevents a good 307 

measurement of the optical absorption spectrum at higher pressures. In fact, a complete 308 

darkening of the DS and DZ samples was observed around 14 GPa. This last pressure is 309 

in agreement with the pressure (16 GPa) at which RS measurements, performed during 310 

a second upstroke in a DZ-HgGa2Se4 sample recovered from the DR phase, showed no 311 

Raman activity as expected after the transition to the DR phase [28]. Therefore, on the 312 

basis of these results we tentatively attribute the high-pressure structure of the DS and 313 

DZ phases, found at pressures above those in which we observe the complete darkening 314 

of the samples, to the same octahedrally-coordinated DR structure previously observed 315 

upon compression of the DC phase during the first upstroke [24,28]. It must be stressed 316 

that the smaller pressure for the DS→DR and DZ→DR phase transitions than for the 317 

DC→DR phase transition is in good agreement with the order-disorder mechanism of 318 

the transitions from the DC, DS and DZ phases to the completely disordered DR phase; 319 

i.e., the larger the disorder in the initial sample the smaller the phase transition pressure 320 

to the fully disordered high-pressure structure.  321 

From the optical absorption measurements performed in the two recovered 322 

samples at different pressures we have estimated the direct bandgap energy of the 323 

samples with DS and DZ structures as a function of pressure by extrapolating the linear 324 

fit of the high-energy part of the (α·hν)
2
 vs. hν plot to zero absorption. Inset of Fig. 4 325 

shows a plot of (α·hν)
2
 vs. hν where the tangent method is applied to estimate the direct 326 

bandgap energy of DS-HgGa2Se4 from the absorption coefficient at 0.9 GPa in the 327 

second upstroke. The results for the direct bandgap energy of the DS and DZ phases up 328 

to 6-8 GPa are shown in Fig. 3 with squares and triangles, respectively. Note that 329 

theoretical calculations support the existence of a direct bandgap at smaller energy than 330 

the indirect bandgap in all OVCs (including those with DS and pseudocubic structures) 331 

at ambient pressure [21] and the same feature is expected for the DZ phase, as it occurs 332 

in most binary zincblende-type compounds [54]. The experimental pressure coefficient 333 

of the direct bandgap energy of DZ-HgGa2Se4 at low pressure has been estimated from 334 
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a linear fit in the range 1.0-3.8 GPa to be around 7±3 meV/GPa while the pressure 335 

coefficient at low pressure of the direct bandgap energy of the DS sample recovered 336 

from 15.4 GPa has been estimated from a linear fit in the range 0.9-3.9 GPa to be 337 

around 24±6 meV/GPa. As it has been previously commented, we have also obtained 338 

the pressure coefficient of the direct bandgap energy by measuring the shift of the 339 

optical absorption edge at a constant high absorption coefficient. Following this 340 

procedure, the pressure coefficients obtained for the direct bandgap energy of the DZ 341 

and DS phases of HgGa2Se4 at low pressure in the ranges 1.0-3.8 GPa and 0.9-3.9 GPa 342 

are 6±3 and 22±2 meV/GPa, respectively; which are in good agreement with those 343 

obtained with the linear extrapolation method. Both pressure coefficients for the 344 

recovered phases are smaller than that of the DC phase at low pressure (31±4 345 

meV/GPa), and much smaller than the pressure coefficients at low pressure of binary 346 

zincblende-type compounds, in particular ZnSe (70 meV/GPa [55,56]) and HgSe (43 347 

meV/GPa [56,57]). Therefore, our results show that there is a clear decrease of the 348 

direct bandgap energy and its pressure coefficient with increasing disorder in OVCs. In 349 

the following we will try to explain the reason for these two features of disordered 350 

phases in OVCs.  351 

In order to address the explanation of the above mentioned features, we have to 352 

consider the parallelism between the properties of ternary ABX2 chalcopyrites and 353 

AB2X4 OVCs since both families of tetragonal compounds derive from the cubic 354 

zincblende structure. In these two tetragonal families, the different values of the 355 

bandgap energy of compounds with the same composition but different structures could 356 

be determined by three main factors: i) tetragonal distortion of the crystal lattice, as 357 

described by the deviation of the axial c/a ratio from 2 (external distortion); ii) 358 

displacement of anions from the ideal position in the zincblende structure (internal 359 

distortion); and iii) cation-cation disorder (in chalcopyrites) and cation-cation or cation-360 

vacancy disorder (in OVCs) [2]. It is well known that increasing disorder in 361 

chalcopyrites leads to the DZ structure with a smaller bandgap energy than that of the 362 

chalcopyrite structure [50,52,58]. On the other hand, it has been commented that 363 

increasing disorder in OVCs leads to a negligible increase of the unit cell volume 364 

through a decrease of the tetragonal distortion (external distortion) and the tendency of 365 

anions on average towards the ideal position (internal distortion) in the zincblende 366 

structure [59]. Therefore, the decrease in the bandgap energy of chalcopyrites with 367 

increasing disorder cannot be ascribed to either the internal or external distortion and 368 
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must be mainly ascribed to cation-cation disorder. This argument can be also 369 

extrapolated to ternary AB2X4 OVCs since the theoretical direct bandgap energy in these 370 

OVCs is only slightly changed by the modified structural parameters on going from the 371 

DC structure towards the DZ structure [4]. In fact, the decrease of the bandgap in the 372 

disordered phases of OVCs is observed irrespective of the volume of the DZ and DC 373 

phases as measured from XRD measurements. Note that DZ-CdGa2Se4 has a larger 374 

volume than DC-CdGa2Se4 [10] while DZ-HgGa2Se4 has a smaller volume than DC-375 

HgGa2Se4 [24] but both compounds show a smaller bangap in the DZ phase than in the 376 

DC phase. Therefore, we should ascribe the change in the direct bandgap energy of 377 

different structures in ternary AB2X4 OVCs mainly to the effect of cation or cation-378 

vacancy disorder in complete parallelism with chalcopyrite compounds. 379 

On the basis of the previous considerations, we have come to the conclusion that 380 

the decrease of the bandgap energy with increasing disorder in ternary AB2X4 OVCs, 381 

like CdGa2Se4 and HgGa2Se4 can be explained in the same way as it was previously 382 

explained in chalcopyrites [59]; i.e. by the level repulsion effect responsible for bandgap 383 

bowing in alloys [60,61] and by the formation of donor and acceptor pairs which lead to 384 

donor-like and acceptor-like bands inside the parent bandgap of the ordered compound 385 

[59]. On one hand, a small disorder in OVCs, like that occurring when going from DC 386 

to DS phases, leads to a small decrease of the bandgap energy because of the small 387 

repulsion effect between levels and the presence of relatively shallow donor-like and 388 

acceptor-like levels inside the bandgap of the parent DC phase. On the other hand, a 389 

larger disorder in OVCs, like that occurring in the DZ phase with a total cation-vacancy 390 

disorder in cation sites of the zincblende phase, leads to a larger decrease of the bandgap 391 

energy because of the larger repulsion effect between levels and the presence of deep 392 

donor-like and acceptor-like levels inside the bandgap of the parent DC phase.  393 

We will discuss now the values of the pressure coefficients of the direct bandgap 394 

in the DS and DZ phases. In order to explain the pressure coefficient of the direct 395 

bandgap energy in DS-HgGa2Se4, which is intermediate between those of the DC and 396 

DZ phases, we want to stress that the DS phase is a tetragonal OVC and has two 397 

lowermost conduction bands, like the DC phase [21]. The smaller pressure coefficient 398 

of the direct bandgap energy in the DS phase with respect to the DC phase can be 399 

explained by considering that the bandgap energy of the DS phase is determined by the 400 

bands formed by shallow donors and acceptors, which arise during the transition from 401 

the DC to the DS phase. These donor-like and acceptor-like bands should have similar 402 



13 

 

pressure coefficients than the lowermost conduction and topmost valence band, 403 

respectively. Finally, one has to take into account that the lowermost conduction band in 404 

the DS phase is expected to have a larger proportion of Ga cations located at 2a sites 405 

than in the DC phase, which mainly contribute to the second conduction band of the DC 406 

phase [21]. Since the second conduction band of the DC phase has a smaller pressure 407 

coefficient than the first conduction band [21], the disorder of Hg cations at 2d sites and 408 

Ga cations at 2a sites, as it would occur in model 2 of the DS phase in Ref. 53, would 409 

result in a larger contribution of Ga(2a) atoms to the lowermost conduction band than in 410 

the DC phase and consequently this would yield a smaller pressure coefficient of the 411 

direct bandgap energy in the DS phase than in the DC phase. In this sense, it must be 412 

stressed that model 6 of DS phase (in which Hg at 2d sites and Ga at 2c sites; i.e., 413 

located at the same cation plane perpendicular to the c axis, get mixed) is expected to 414 

have roughly the same pressure coefficient than the DC phase since both Hg(2d) and 415 

Ga(2c) atoms mainly contribute to the lowermost conduction band [21]. Therefore, our 416 

optical absorption measurements lead us to consider that the DS phase recovered in 417 

HgGa2Se4 from 15.4 GPa likely corresponds to model 2 of Ref. 53 where some Hg(2d) 418 

atoms occupy Ga(2a) positions at the same plane as vacancies (located at 2b Wyckoff 419 

sites).  420 

Finally, the much smaller pressure coefficient of the bandgap energy in the DZ 421 

phase compared to the parent DC phase can be explained by the presence of deep 422 

acceptors and donors in the DZ phase. It is known that deep levels inside the bandgap 423 

(either with donor or acceptor character) have very small pressure coefficient, owing to 424 

the nature of the localized close-range potential binding electrons, that is more 425 

determined by atomic electronegativity differences than by the crystal band structure 426 

[62, 63]. Therefore, the formation of deep donor-like and acceptor-like bands in the DZ 427 

phase reduce considerably both the bandgap energy and its pressure coefficient.  428 

The above conclusion is supported by our theoretical calculations of the direct 429 

bandgap energy on CdGa2Se4 and HgGa2Se4 both in the DC (I-4) phase and in the ideal 430 

zincblende phase without disorder as performed in Ref. [4] (see Ref. 21 for theoretical 431 

details of our ab initio calculations). Note that the ideal zincblende phase was simulated 432 

for different volumes taking as basis a I-4 unit cell where the c parameter was fixed to 433 

c=2a and where the anion, located at the 8g Wyckoff position, was fixed at 434 

(1/4,1/4,1/8). In general, our calculations have confirmed the results of Ref. [4] and 435 

have shown that the pressure coefficient of the direct bandgap energy in the ideal 436 
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zincblende phase without disorder, for both compounds, is twice the pressure coefficient 437 

in the DC phase. This result is in complete contradiction to our experimental results 438 

which show a considerable decrease of the pressure coefficient of the direct bandgap 439 

energy in the DZ phase with respect to the DC phase; therefore, we can conclude that 440 

the decrease of the pressure coefficient of the direct bandgap energy observed in the DZ 441 

phase must be mainly ascribed to the effect of disorder.  442 

We want to clarify that the explanation we have provided in this work for the 443 

decrease of the direct bandgap energy and its pressure coefficient in the DZ phase of 444 

ternary AB2X4 OVCs is in contrast to that provided in a previous work related to DC-445 

CdGa2Se4 [23]. In that work it was considered that the smaller bandgap of the 446 

disordered DZ phase was mainly due to the larger unit cell volume of the DZ phase with 447 

respect to the DC phase and that the decrease of the pressure coefficient of the direct 448 

bandgap was due to the uneven mixture of the two lowermost conduction bands of the 449 

DC phase which contribute to the lowermost conduction band in the DZ phase. In this 450 

respect, we have to note that we have modified our view in this work on the light of the 451 

literature existing for ABX2 compounds and the results which point to a negligible 452 

volume change with increasing disorder in ternary AB2X4 OVCs. In summary, we 453 

conclude that both the smaller direct bandgap energy and its smaller pressure coefficient 454 

in the DZ phase than in the DC phase can be explained by taking into account the deep 455 

acceptor-like and donor-like bands formed due to cation and cation-vacancy disorder 456 

present in the DZ phase of OVCs. 457 

 458 

 459 

 460 

4. Conclusions 461 

We have performed optical absorption measurements in tetragonal defect 462 

chalcopyrite (DC) HgGa2Se4 (S.G. I-4) under high pressure. Two types of experiments 463 

performed in this ordered-vacancy compound below and above 20 GPa have shown the 464 

importance of the maximum pressure applied to a defect chalcopyrite sample in order to 465 

understand the effects of pressure-induced order-disorder processes on recovered 466 

samples. If applying pressure leads to a total cation-vacancy disorder, as in the cubic 467 

disordered rocksalt (DR) phase (S.G. Fm-3m), the sample usually returns on 468 

decompression to a cubic disordered zincblende (DZ) structure (S.G. F-43m), also with 469 
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total cation-vacancy disorder, showing the smallest direct bandgap and pressure 470 

coefficient. However, if pressure is not high enough to complete the phase transition to 471 

the DR phase the sample undergoes a partial cation-cation or cation-vacancy disorder 472 

and on decreasing slowly pressure the sample returns to a structure with a bandgap 473 

energy and pressure coefficient intermediate between those of the DC and DZ phases 474 

which we have attributed to a tetragonal disordered stannite (DS) (S.G. I-42m) phase 475 

(model 2 of Ref. 53) in HgGa2Se4. The reason why the direct bandgap energy and its 476 

pressure coefficient for the disordered phases (DS and DZ) of OVCs are smaller than 477 

those inherent to the parent ordered DC phase has been explained by the level repulsion 478 

effect responsible for bandgap bowing in alloys and by the formation of donor and 479 

acceptor pairs in the DS and DZ phases which lead to donor-like and acceptor-like 480 

bands inside the parent bandgap of the ordered compound. 481 
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Figure captions 618 

Figure 1. Optical absorption edge of DC-HgGa2Se4 on increasing pressure up to 10.4 619 

GPa (a) and from 10.4 up to 15.4 GPa (b). Inset shows a plot of (α·hν)
2
 vs. hν where the 620 

tangent method is applied to estimate the direct bandgap energy of DC-HgGa2Se4 from 621 

the absorption coefficient at 0.6 GPa in the first upstroke. 622 

Figure 2. (Color online) Sequence of photographs of the HgGa2Se4 crystal taken during 623 

the first upstroke of the second experiment at 0.6, 11.8, and 30.8 GPa. The last 624 

photograph was taken at 2.9 GPa during the second upstroke of the second experiment. 625 

Figure 3. (Color online) Pressure dependence of the bandgap energy in the different 626 

phases of HgGa2Se4. Circles with error bars are obtained during a first upstroke. 627 

Triangles with error bars, and squares with error bars are obtained during a second 628 

upstroke in recovered DZ and DS samples after increasing pressure during a first 629 

upstroke up to 30.8 and 15.4 GPa, respectively. Experimental values of pressure 630 

coefficients of the direct bandgaps at low pressure (in the DC, DS and DZ phases) and 631 

at high pressure (in the DC phase) are also shown. Coloured solid lines are just guides 632 

to the eye for establishing the slopes of the bandgaps in the different structures of 633 

HgGa2Se4 and are not related to any kind of phase transition in this compound.  634 

Figure 4. Pressure dependence of the optical absorption edge of the recovered samples 635 

of HgGa2Se4 measured during a second upstroke in the first (a) and second (b) 636 

experiment; i.e., after having increased pressure in the first upstroke up to 15.4  GPa and 637 

up to 30.8 GPa, respectively. Inset shows a plot of (α·hν)
2
 vs. hν where the tangent 638 

method is applied to estimate the direct bandgap energy of DS-HgGa2Se4 from the 639 

absorption coefficient at 0.9 GPa in the second upstroke. 640 
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