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Abstract
This work describes an approach devised by the authors for time series classification.
In our approach genetic programming is used in combination with a serial processing
of data, where the last output is the result of the classification. The use of genetic
programming for classification, although still a field where more research in needed,
is not new. However, the application of genetic programming to classification tasks
is normally done by considering the input data as a feature vector. That is, to the
best of our knowledge, there are not examples in the genetic programming literature
of approaches where the time series data are processed serially and the last output
is considered as the classification result. The serial processing approach presented
here fills a gap in the existing literature. This approach was tested in three different
problems. Two of them are real world problems whose data were gathered for online or
conference competitions. As there are published results of these two problems this gives
us the chance to compare the performance of our approach against top performing
methods. The serial processing of data in combination with genetic programming
obtained competitive results in both competitions, showing its potential for solving time
series classification problems. The main advantage of our serial processing approach
is that it can easily handle very large datasets.

Keywords
Classification, time series, genetic programming, serial data processing, real world
applications.

1 Introduction

Abstractly, the problem tackled in this paper amounts to classification of finite length
data sequences, as opposed to the more commonly encountered problem of classifica-
tion based on feature vectors. That is, our data will consist of a sequence of observa-
tions over time (we call such a sequence a time series) as opposed to cross sectional data
(feature vectors) where all observations are collected together and presented simultane-
ously (in parallel) to the classifier. There are many approaches for solving classification
problems: statistical methods, neural networks, fuzzy logic, and so on. Recently, some
researchers have reported success using genetic programming (GP) techniques for clas-
sification purposes. One of the advantages of this approach is that it is not constrained by
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a priori choice of a classification method. Rather, the classification algorithm is allowed
to evolve to best solve the underlying problem at hand.

GP is an optimization method inspired by biological evolution that aims to find
solutions that perform a user-defined task (Koza, 1992; Poli et al., 2008; Poli, 2010;
Langdon et al., 2010). Unlike the classical optimization methods, which are based on
tracking a certain trajectory, GP works with a population of candidate solutions (called
individuals).

As for any evolutionary optimization technique, in GP an initial population of in-
dividuals is created at random. Each individual in the population is evaluated using a
so-called fitness function. The fitness of an individual measures how well it solves the
problem at hand, in our case how well the function classifies the time series data. The
individuals that perform better in the evaluation process have a higher probability of
being selected as parents for the new population. A new population is created using
selection, crossover, and mutation operators. The individuals of this new population
typically show better performance than those of the previous one, since the best indi-
viduals have a better chance of being selected for reproduction. The loop is run until a
certain termination criterion is met, for example, obtaining near optimum solutions or
when a predetermined finite number of generations is reached.

As opposed to other evolutionary techniques, the individuals being evolved in GP
are functions and can be represented by a tree of no predefined size. This makes it very
appropriate for classification and regression problems. In addition, it offers an escape
from the black box techniques, providing an explicit function as a result.

In the literature, examples can be found of applications of GP to classification prob-
lems of feature vectors (for a review, see Jabeen and Baig, 2010). In some contributions
GP evolves the classifier structure itself. For example, in Eggermont et al. (1999) different
variations of GP applied on two-class classification problems are reported. In Liu and
Khoshgoftaar (2004) a random sampling technique is introduced to reduce overfitting.
In Kishore et al. (2000) the GP paradigm is extended for multi-class problems and the
same authors go one step further in Kishore et al. (2001) integrating the GP classifier
with feature space partitioning. Following the same trend, Muni et al. (2006) present
an approach for multi-class classification problems that simultaneously optimizes the
subset of features used and the classifier. Finally, in Oltean and Diosan (2009) a system
called genetic programming–autonomous solver is presented and successfully tested
on classification problems. That is, the role that GP plays in the classification process is
that of evolving/generating a classification algorithm.

However, GP is usually used for optimizing a classifier structure generated by
means of another method. For instance, in Dasgupta and Gonzalez (2001) a linear
genetic tree is proposed in order to evolve complex fuzzy rule sets for solving classifi-
cation problems. In Tsakonas (2006) four structures, namely, decision trees, fuzzy rule-
based systems, feedforward neural networks, and fuzzy Petri-nets, are evolved using
GP.

In other works, GP has been used as a preprocessing tool to evolve projections
that translate the data into a new vector space where projected data can be more easily
classified. For instance, in Estébanez et al. (2007) the data are projected into a 3D space
and then they are classified using a simple linear perceptron. Other approaches use GP
for a feature extraction stage prior to classification (Eads et al., 2002; Otero et al., 2003).

As mentioned previously, all these approaches classify feature vectors. There are
some works that deal with the problem of time series classification (Estébanez et al.,
2007; Eads et al., 2002) but again they treat the time series as a feature vector.
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In the field of digital signal processing there are a few references where the au-
thors try to circumvent the inherent difficulty (due to the data handling limitations) of
working with time series in GP. In Holladay and Robbins (2007) a new vector-based
GP language is developed, where vectors can be treated as single input data, instead
of being handled element by element. The main disadvantage of this approach is the
added complexity in the data handling, given that all data, including simple types, need
to be treated as a structure. Also, in Esparcia-Alcázar (1998) delay nodes are introduced
as a mechanism for handling data series in a channel equalization problem.

In the field of GP forecasting of time series, on the other hand, there is a great deal
of literature available, mainly on financial series (Kaboudan, 2000; Hui, 2003; Ahalpara
and Parikh, 2006; Borrelli et al., 2006).

The aim of this paper is to present a new approach that considers a sequential
treatment of the time series to classify, instead of considering a parallel approach where
all the data are treated simultaneously. The serial processing of data presented here
preserves the essence of the time series by processing the elements in the same sequential
order that they are measured. Also, every time one element of the sequence is fed into
the classifier, an output is generated. This output is fed back as an extra input into the
classifier. The idea is similar to that of a window sliding along the time series. There will
be as many classification steps as elements in the time series to classify and the output
of the last step will be used as a classification result. Some authors have used a sliding
window for time series prediction (Hui, 2003; Wagner and Michalewicz, 2008), although
their approaches did not include any output feedback. The following equations show
the sliding window effect considering a window size 8:

Step n . . . xn-7 xn-6 xn-5 xn-4 xn-3 xn-2 xn-1 xn
︸ ︷︷ ︸

xn+1 . . .

Step n + 1 . . . xn-7 xn-6 xn-5 xn-4 xn-3 xn-2 xn-1 xn xn+1
︸ ︷︷ ︸

. . . (1)

A preliminary approach to this idea was already presented in Alfaro-Cid, Sharman
et al. (2006). The objective of this work was to evolve a learning machine using a GP
that incorporates in its function set what we called a learning node. Such a node was
tuned by a second optimization algorithm, mimicking a natural learning process and
providing the GP tree with added flexibility and adaptability. These nodes consist of
a value α, which is variable, and one input. Given an input x, the output, y, of the
node is equal to y = α · x. If learning nodes are included in the function set, we are
effectively adding variable gains at certain points of the system. Varying the value of
these gains implies changing the way the system responds.The result of the evolution
is a system with a fixed structure but with some variable parameters. The system could
then learn new tasks in new environments without undergoing further evolution, just
by tuning the α parameters. In this context the learning machine was tested using serial
processing of data for a toy problem: the two-way classification of stochastic time series
data values.

In this paper we aim to more exhaustively test the serial processing approach in
three problems: the classification of white noise signals that have been filtered through
band pass filters with two different passband frequencies, the classification of electro-
encephalogram (EEG) signals from a brain-computer interface (BCI) and the classifi-
cation of data samples from an automotive subsystem. The latter two problems are
real-world applications and the datasets used were gathered for classification compe-
titions. This gives us the chance to compare the results provided using GP with serial
processing against the results obtained by other researchers.
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Thus, summarizing, the original contribution of this paper lies in the combination
of GP and a serial processing of data for time series classification. Instead of considering
the time series as a feature vector and treating all the elements in the series in parallel,
the elements are processed serially and the last output of the process is considered
as the classification result. This allows for the handling of very large datasets. On the
other hand, since the classifier is evaluated as many times as elements there are in the
time series, the evolution of the classifier is slower.

The layout of the paper is as follows: Section 2 describes the GP algorithm and how
it was applied to the classification problem. The emphasis is placed on the serial pro-
cessing of the data. Section 3 explains the experimental procedure followed in the work.
The following three sections, Section 4, Section 5 and Section 6, describe the problems
solved with our approach, the data used and the particular GP implementation applied,
as well as the results obtained. Finally, in Section 7 some conclusions are drawn.

2 Genetic Programming for Classification

Genetic programming (Koza, 1992; Poli et al., 2008) is an evolutionary computation tech-
nique based on the idea that in nature structure undergoes adaptation. The structure
created over a period of time is the outcome of natural selection and sexual repro-
duction. Thus, GP is a structural optimization technique (as opposed to a parametric
optimization technique).

In the GP algorithm, traditionally, the structure being evolved has a tree shape.
That means that the size and shape of the solutions are not defined a priori as in
other methods from the field of evolutionary computation, but they evolve along the
generations.

Prior to creating a GP environment, the designer must define which functions
(internal tree nodes) and terminals (leaf branches) are relevant for the problem to solve.
This choice defines the search space for the problem in question. Given a fairly small
set of functions, different combinations of them allow the GP to specify a huge range of
multivariable functions. On the other hand, increasing the number of functions increases
the size of the search space. Therefore, the inclusion of too many functions may hamper
the efficiency of the search algorithm.

Once the function and terminal sets are chosen, the first population needs to be
initialized. The initialization process is more complex for GP than for other evolutionary
algorithms due to the increased complexity of the individuals’ representation. In his
pioneering work, Koza (1992) presented three methods of initializing the population: full
method, grow method, and ramped half-half. The full method involves creating trees with
a fixed length between the root and every terminal node. The grow method involves
creating trees with a specified maximum length between the root and every terminal
node. Thus, the shapes of the trees in the population show a bigger diversity. Finally, the
ramped half-half method creates an equal number of trees for every length value from
two up to the maximum. For each length value, half of them are created using the full
method and the other half using the grow method. Koza (1992) recommends the use of
ramped half-half because of the wide variety of shapes it creates. According to Koza’s
suggestions, in this work, ramped half-half was used as the initialization method.

Once an initial population of trees is created at random, each individual in the pop-
ulation is evaluated using a fitness function. This fitness function assigns a value to the
individual according to how well it solves the problem at hand (i.e., the classification
of the training set of data). Then, a new population is created through reproduction,
crossover, and mutation. Generally speaking, individuals with a higher level of fitness
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Figure 1: Serial processing of data using a single input which is applied N times. Note
that X = {xn, n = 0, · · · N − 1}.

are selected for reproduction mimicking a “survival of the fittest” strategy. However, oc-
casionally lower fitness individuals are selected to maintain population diversity. Some
of these individuals are chosen for crossover and mutation with a certain probability.
The loop is run until a certain termination criterion is met.

One of the problems encountered by GP researchers is that of code bloat (Luke,
2000; Luke and Panait, 2006). Bloat occurs when the trees grow in size without an
improvement in fitness. This flaw causes a waste of computer resources evaluating
huge trees and difficulties in the understanding of the final solutions. It spoils the
convergence by hampering the modification of trees in a meaningful way.

2.1 Serial Processing of Data

In a conventional classifier, the data to be classified are normally presented to the system
as a vector, that is, all the data are presented simultaneously to the classifier. In our case,
we adopted an alternative approach in which the data are presented to the classifier
in series. The aim of this is to reduce the complexity of the classifier. A conventional
classifier for data with N features requires a system with N inputs. In our approach we
have a single input which is applied N times. In effect we are trading off space for time.

To do this, our GP has a set of terminals {x ′
0, x ′

1, . . . , x ′
M} which represent the current

input and the previous M inputs to the classifier. That is, at time step n, the m + 1
terminals are, x ′

0 = xn, x
′
1 = xn-1, . . . , x ′

M = xn-M . We also have another set of terminals
labeled {y ′

1, y ′
2, . . . , y ′

K} representing K previous outputs from the GP tree at time step
n. That is, y ′

1 = yn-1, y
′
2 = yn-2, . . . , y ′

K = yn-K (see Figure 1). The parameters M and K
are user defined and will depend on the application at hand.

The upshot of all this is that our GP trees implement functions of the form:

yn = f (xn, xn-1, . . . , xn-M, yn-1, . . . , yn-K ) (2)

n = 0, 1, 2, . . . , N.

In order to deal with the first part of the time series, the serial processing of the series
starts on sample xM so that the required previous inputs are available. The previous
outputs are set to zero.

Note that the output of f () is also a time series. The actual function f () is, of course,
defined by the structure of the GP tree.

The resulting functions are not unique since GP is a stochastic algorithm that may
produce different results each time it is executed.

2.2 Signal Classification

In this work we are interested in a two-category classification of time series.
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For the implementation, let the data to be classified be X = {x0, . . . , xN-1}. Then we
apply this dataset as input to a GP tree and calculate the outputs yi, i = 0, . . . , N − 1 (i.e.,
the tree is executed N times in total). The final output, yN-1, indicates the classification
results according to:

yN-1 ≥ 0, X ∈ C1 (3)

yN-1 < 0, X ∈ C2 (4)

where C1 and C2 are the two class labels.
During evolution, we use a training set of T independent time series and known

labels {(Xi, ci), i = 1, . . . , T } where Xi ∈ �N is the N-dimensional feature vector, and
ci ∈ {C1, C2}.

To evaluate the fitness of each individual, we apply each Xi in turn and calculate its
chosen class, c′

i , according to Equations (3) and (4). We then count the number of hits
as the number of times ci = c′

i . Note that to calculate the fitness of an individual, the
individual’s tree must be evaluated TN times.

3 Experimental Procedure

In order to test our serial processing approach, we chose three different problems that
deal with two-category classification of time series. These problems were (I) classifica-
tion of time series with different power spectral densities, (II) classification of states in
a brain-computer interface (BCI) using electroencephalogram—EEG—signals, and (III)
classification of data samples from an automotive fault finding application.

The time series used in the first classification problem were generated for the pur-
pose of this work by filtering white noise signals with filters with different passbands.
The EEG signals used in the classification problem presented here were gathered for the
BCI Competition II (http://www.bbci.de/competition/ii/). The objective of the com-
petition was to evaluate the current state of the art of the BCI field. The automotive
signals were used in the Ford Classification Challenge (http://home.comcast.net/∼nn
classification/), one of the competitions hosted at the IEEE World Congress on Com-

putational Intelligence (WCCI) that took place in Hong Kong in June, 2008. The aim of
the competitions was to stimulate research in computational intelligence and promote
fair evaluations.

The use of data from online competitions in the case of the EEG problem and the
Ford problem provides us with a good benchmark of results to compare our results
against. That is, in each of these competitions a fairly large number of researchers sub-
mitted results obtained with a broad set of different classification techniques. This will
allow us to validate the quality of our results against a range of different classification
methods.

The following sections describe in detail the three problems considered, the GP
implementation used for each problem, and the results obtained.

4 Problem I: Power Spectral Density Problem

The problem to solve is the classification of white noise signals filtered with filters that
have different passbands (see Figure 2). The problem was solved for three different
datasets. In the first one, the filters have separated passbands, and in the second case
the passbands are very close, thus increasing the difficulty of the problem. Finally, the
third set considers filters with overlapping passbands.
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Figure 2: Generation of time series with different power spectral densities.

4.1 Description of the Data

In this problem we worked with three different sets of data. Each of them was generated
from 200 white noise signals. Half of them were passed through a passband filter with
a certain passband, while the other half were passed through a passband filter with a
different passband. Each white noise signal is a sequence of 100 elements.

Therefore, the classification problems under consideration are:

• Problem 1: Classification of two time series with different power spectral
densities.

Series 1: White noise passed through a band pass digital filter, passband
0.1–0.2 (of the sampling frequency)

Series 2: White noise passed through a band pass digital filter, passband
0.3–0.4 (of the sampling frequency)

• Problem 2: Classification of two time series with different (but closer) power
spectral densities.
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Series 1: White noise passed through a band pass digital filter, passband
0.18–0.2 (of the sampling frequency)

Series 2: White noise passed through a band pass digital filter, passband
0.21–0.3 (of the sampling frequency)

• Problem 3: Classification of two time series with overlapping power spectral
densities.

Series 1: White noise passed through a band pass digital filter, passband
0.18–0.25 (of the sampling frequency)

Series 2: White noise passed through a band pass digital filter, passband
0.21–0.3 (of the sampling frequency)

The dataset consisted of 200 data records for each problem. Half of them were used
for training the GP and the other half for testing the solutions.

4.2 GP Implementation

The GP implementation used is based on the JEO (Java evolving objects) library devel-
oped by Arenas, Dolin et al. (2002) within the European project DREAM (Distributed
Resource Evolutionary Algorithm Machine; Arenas, Collet et al., 2002). The project’s
aim was to develop a complete distributed peer-to-peer environment for running evo-
lutionary optimization applications.

JEO is a software package in Java, easily extendable, and integrated in DREAM. In
the context of GP, the standard GP algorithm proposed by Koza (1992) is implemented
in JEO as a default. JEO includes a genome structure with a tree shape and reproduction
and crossover operators. Basically, the user only needs to implement the methods that
are problem dependent, that is, fitness evaluation and construction of the function
and terminal sets. In our case, the default algorithm was modified to use tournament
selection and subtree mutation.

We used a population size of 500 individuals. The termination criterion was a 98%
classification success. The crossover, mutation, and cloning rates were set at 0.8, 0.1,
and 0.1, respectively.

The function set includes the four arithmetic operators as well as an if clause. The
if clause takes four arguments: if arg1 ≤ arg2 then return arg3, else return arg4. The
division operator is protected so that if the denominator is zero, the division returns a
zero value.

As explained in Section 2.1, the terminal set consists of M + 1 input terminals
{x ′

0, x ′
1, . . . , x ′

M} which represent the current input and the previous M inputs to the
classifier and another set of K terminals labeled {y ′

1, y ′
2, . . . , y ′

K} representing K previous
outputs from the GP tree. For this particular problem M = K = 9. Thus, there are 19
terminals in the terminal set. This could resemble a lot but in a parallel approach we
would need to use as many terminals as elements are in the data sequence, that is, 100
terminals for solving the same classification problem (for a time series of length 100
points).

4.3 Results

Table 1 shows the results obtained for the three problems of classification of two time
series with different power spectral densities. For each problem, 50 runs of the GP
algorithm were executed. The table shows the percentage of hits obtained during the

272 Evolutionary Computation Volume 22, Number 2



E. Alfaro-Cid, Ken Sharman, and Anna I. Esparcia-Alcázar

Table 1: Results obtained for the classification of two time series with different power
spectral densities.

Testing hits (%)

Problem 1
Average 98.64
Standard deviation 2.59
Best 100

Problem 2
Average 96.70
Standard deviation 3.97
Best 100

Problem 3
Average 88.08
Standard deviation 8.63
Best 98

testing phase. It can be seen from the table that on increasing the difficulty of the
problem, the average and best results worsen. In all runs, GP converged to a solution
that obtains at least a 98% classification success, our termination criterion.

The best results from each of the 50 runs were compared as for the percentage of
testing hits they produce. The following three equations represent the classifiers that
obtained the highest percentage of testing hits for each problem under consideration:

Problem 1: yn = yn-1 + xn-5xn-8 (5)

Problem 2: yn = yn-6 + xn-1xn-8 (6)

Problem 3: yn = yn-2 + xn-3 (yn-8 + xn-3 (2xn-3xn-9 + yn-7 − xnxn-3)

+ yn-2 (if xn-7 ≤ xn then xn-6 else xn-5)) (7)

As can be seen from Equations (5–7), the classifiers that scored the highest number
of testing hits (100%) for Problems 1 and 2 present a very similar structure. However,
the best classifier for Problem 3 is far more complicated. This could be expected given
the increased problem complexity of Problem 3.

Let us analyze Equation (5). Substituting yn-1 in Equation (5), an expression in terms
of previous inputs and the output yn-2 can be obtained: yn = yn-2 + xn-5xn-8 + xn-6xn-9.
Repeating this process n − 9 times, we obtain the following expression for Equation (5):

yn = y8 +
n-9
∑

k=0

xn-5-k · xn-8-k. (8)

This is a result of the fact that, in order to deal with the first part of the time series,
the initial outputs (yn where n < M) are set to zero. The expression could be simplified
as:

yn =
n-9
∑

k=0

xn-5-k · xn-8-k. (9)
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Figure 3: Examples of class 1 and 2 signals in the testing set of Problem 1.

The term yn-1 in Equation (5) is used as a store that allows the building of the sum
term in Equation (9). Therefore, m = n − k, and the resulting expression is:

yn =
n

∑

m=9

xm-5 · xm-9 (10)

Figure 3 shows two signals included in the testing set of Problem 1. One belongs to
class 1 and the other to class 2. Due to the filtering through two band pass filters with
different passband frequencies, the frequency of the cycles in both signals is different.
That implies that the number of samples included in each cycle varies. The higher the
frequency, the higher the number of cycles in the recorded period and the fewer the
number of sample inputs in the cycle.

Figure 4 plots the time series of the product (xm-5 · xm-9) from m = 9 to m = n for
the signals of Figure 3. It can be observed that the time series is mostly positive for
the class 1 signal and mostly negative for the class 2 signal. In class 1 signals, there
are roughly three samples per cycle. That means that an element in the time series is
usually multiplied by another element that takes a close value, since the cycles repeat
themselves every three samples. The product of both samples is then positive. The
addition of all these positive terms results in a positive value and, consequently, in a
classification of the signal as class 1. On the other hand, in class 2 signals there are
around five samples per cycle. Therefore, two elements within a distance of three are
very likely to be of different sign, and the resulting product will have a negative value.
The addition of all these negative terms results in a negative value and, consequently,
in a classification of the signal as class 2.

A parallel analysis could be performed for Equation (6) in Problem 2. In this case the
number of samples per cycle for class 1 signals is around seven, while in class 2 signals
it is around 10. Therefore, the term xm-1 · xm-8, where the product of two samples with
a delay of seven is calculated, will be mostly positive for class 1 signals, since in this
case the number of samples per cycle is around seven, and mostly negative for class 2
signals.

It is interesting to note that the GP algorithm has identified the number of sam-
ples per cycle for one class series for each problem and has built a very simple, but
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Figure 4: (xm-5 · xm-8) series for the signals in Figure 3.

effective, classification strategy. In Problem 3 this strategy does not work because of the
overlapping passband frequencies, so GP has resorted to a more complex classifier.

5 Problem II: EEG Problem

BCI technology is based on the idea that different states of mind produce different
EEG signals (Wolpaw et al., 2000). Therefore, it might be possible, by measuring and
classifying the EEG signals, to translate certain states of mind into actions. The ultimate
goal of the research in this field is to develop a system that will allow an individual to
control an external device through his or her EEG signals.

In a BCI system, first, the EEG data are acquired. Then this data need to be pre-
processed to eliminate noise and artifacts (e.g., eye blinking). Then, there is a stage
of feature analysis where the EEG signals are compressed. Afterward, the data are
divided into the training set and the test set. BCI systems need to be trained because
every individual has different EEG patterns. In the training phase, the computer selects
a mental state and the user focuses on whatever thought he or she associates with that
state for a while. The EEG data are stored during that time, and they are also processed
and classified. Finally, the user gets some feedback on the success or failure of the
classification. Once the training is over, we hope that the BCI system will be able to
classify the EEG readings with high accuracy.

5.1 Description of the Data

In this work we are interested in a two-category classification of the EEG data (Alfaro-
Cid, Esparcia-Alcázar et al., 2006). In fact, we want to determine whether the user’s
state of mind is meant to be a command for moving a screen cursor up or down. The
EEG signals used in the classification problem presented here were provided by the
University of Tübingen (data sets Ia) for the BCI Competition II (Blankertz et al., 2004)
(http://www.bbci.de/competition/ii/).

The datasets were taken from a healthy subject. The subject was asked to move a
cursor up and down on a computer screen, while his cortical potentials were taken.
Cortical positivity/negativity led to a downward/upward movement of the cursor. An
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interval of 3.5 s of every trial is provided for training and testing. Using a sampling rate
of 256 Hz results in 896 samples per channel for every trial. Samples of the six channels
being recorded are stored concatenated. Therefore, the full raw data set is 5,376 samples
for each trial.

The training set consisted of 268 data records (T = 268). After evolution, we tested
the best evolved individuals on a set of 293 unseen data records.

5.2 GP Implementation

In this experiment we used ECJ (http://cs.gmu.edu/eclab/projects/ecj/), an evolu-
tionary computation library in Java developed at George Mason University’s ECLab
(Evolutionary Computation Laboratory). The GP module in ECJ includes more features
than JEO. Also, ECJ has a lively community of users contributing to the work and
reporting bugs. As a consequence, the library is continuously improving.

We used a GP population of 1,000 individuals over 51 generations. The percentage
of elitism was 1%. A new generation was created through subtree crossover (90% of the
population) and cloning (10% of the population).

As a method of bloat control, we included a new crossover operator, bloat-control-
crossover, that occurs with a probability of 0.4. This crossover operator implements a
bloat control approach described in Alfaro-Cid et al. (2010) and inspired in the “prune
and plant” strategy used in agriculture. It is used mainly for fruit trees and it consists of
pruning some branches of trees and planting them in order to grow new trees. The idea
is that the worst tree in a population will be substituted by branches pruned from one
of the best trees and planted in its place. This way, the offspring trees will be of smaller
size than the ancestors, effectively reducing bloat.

In this problem the terminal set consists of 41 terminals: x1
0 , · · · x1

5 , x2
0 , · · · x2

5 , x3
0 , · · ·

x3
5 , x4

0 , · · · x4
5 , x5

0 , · · · x5
5 , x6

0 , · · · x6
5 , y1, · · · y5, where xi

j is the value of the sequence j times
prior to the current input for channel i. In the EEG case, we need six times the usual
number of input terminals, since there are measures from six different channels. That
is, the data sequence is the result of concatenating the measures of six channels. For
classification purposes we are considering the six channels as six independent input
data sequences, since they are independent time series measured simultaneously. Given
that the number of terminals increases considerably because of this, for this problem
we have set M = K = 5, which amounts to 41 terminals. For parallel processing of the
data 5,376 terminals would be necessary.

As in Problem I, the function set includes the four arithmetic operators as well as an
if clause. The if clause takes four arguments: if arg1 ≤ arg2 then return arg3, else return
arg4. The division operator is protected, so that if the denominator is zero, the division
returns a zero value.

5.3 Results

Table 2 shows the results obtained for the EEG classification problem. Thirty runs of the
GP algorithm were executed.

Figure 5 shows the percentile 10, 50, and 90 of the best solutions of each run along
the generations. It can be seen how the improvement in the solutions slows down while
the number of generations increases. To further test the convergence of the GP solution,
a Wilcoxon signed ranked test was performed. The Wilcoxon signed ranked test is a
nonparametric hypothesis test designed for use when the samples are measured on two
occasions or under two different conditions. In this case an ANOVA test at different
points of the evolution could not be performed due to the autocorrelation of the series.
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Table 2: Results obtained for the classification of EEG signals.

Testing hits (%)

Average 78.08
Standard dev. 8.20
Best 87.37
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Figure 5: Evolution of the percentiles 10, 50, and 90 of the best solutions in the EEG runs.

Our aim is to ensure that by the time the evolution was stopped (that is, after 51
generations), the GP had converged. With this purpose, a Wilcoxon signed ranked test
was performed with the mean values of each run in generation 51 and six generations
before. The result of the test is that, with a significance level of 5% it can be concluded
that the differences between the two scores are not statistically significant, that is, there
was not significant improvement in the results in the last generations.

The best results from each of the 30 runs were compared as for the percentage of
testing hits they produce. The following equation represents the classifier that obtained
the highest percentage of testing hits for the problem at hand:

yn =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

yn-1 − x1
n-3, if yn-1 − x2

n-3 − 2x1
n-3 ≤ yn-3

yn-1 − x1
n-3 − x2

n-3, if (yn-1 − x2
n-3 − 2x1

n-3 > yn-3) and (x2
n-3 ≤ yn-3)

yn-1 − x1
n-3 − 2x2

n-3, if (yn-1 − x2
n-3 − 2x1

n-3 > yn-3) and (x2
n-3 > yn-3)

(11)

As can be observed, Equation (11) only includes terminals with the supraindex 1
and 2. This indicates that the GP found that data from channels 1 and 2 are the most
adequate for the EEG classification in this case. This is one of the advantages of obtaining
explicit functions as results, in that they can be analyzed and valuable conclusions may
be drawn.
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Table 3: Results of “The BCI Competition II.”

Rank Error (%) Research lab Classification method

1 11.3 MIT Discriminant analysis
2 11.6 Fraunhofer FIRST (IDA) Regularized discriminant analysis
3 11.9 National Taiwan University Support vector machine
4 15.0 National Taiwan University Nonlinear support vector machine
5 15.7 University of Florida Hidden Markov model with 10 states
6 17.1 Yale University Support vector machine
7 17.4 University of Tübingen Linear discriminant analysis
8 17.8 Regularized linear Fisher discriminant
9 19.1 University of Florida Majority vote of different five methods

10 19.8 University of Florida Recursive multi-layer perceptron
11 23.5 Sahand University of Technology Neural network
12 24.6 Technical University of Graz Multi-layer perceptron
13 34.5 University of Florida Time-delay neural network predictor
14 46.8 University of Florida Nonparametric Bayes classifier
15 49.1 University of Lille Stochastic algorithm (GloBo)

This classification tree scored a 12.63% error in the testing phase. The results of
the BCI Competition II can be found online (see http://www.bbci.de/competition/ii/
results/index.html). Fifteen research teams from various nationalities participated in
the competition. The percentages of error obtained ranked from 11.3% to 49.1%. There
were a variety of classification methods proposed, among them, support vector ma-
chines, neural networks, and discriminant analysis. Table 3 shows the results obtained
for each of the participants of the BCI competition.

As can be seen from Table 3, the result of the proposed GP algorithm would be
classified between the 3rd and 4th position. The three candidates that qualified first
obtained error percentages of 11.3%, 11.6%, and 11.9%, respectively. The two contribu-
tions that qualified first and second used discriminant analysis and the contribution
that qualified third used support vector machines.

In the first qualified approach, each signal was represented by four feature values
that were fed, subsequently, into the discriminant analysis classifier. The feature vectors
found to be more discriminant in the analysis performed in Mensh et al. (2004) were
time domain features of the slow cortical potentials for channels 1 and 2 and frequency-
domain features for channels 4 and 6. It is interested to note that channels 1 and 2
were identified as the most discriminant in the time domain. This is consistent with the
results obtained by the GP approach, that works in the time-domain (serial-feeding of
data) and only considers channels 1 and 2 for classifying the signals.

In Mensh et al. (2004) the best results in classification are obtained using all four
features (11.3% testing error). The classification performed using only time-domain
features for channels 1 and 2 obtained a higher error (17.4% testing error). However,
when only the frequency domain features were used, the classification error increased
significantly. That means that, according to Mensh et al. (2004), although the time
domain features are the most discriminant when classifying the EEG data, there is also
a frequency component that has an effect. The GP, given the serial processing of data
used, is missing that information, and that could justify the differences in performance
between both methods.
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The contributor that qualified fourth obtained an error percentage of 15.0% (worse
than the error obtained with the proposed GP algorithm) using a nonlinear support
vector machine. The remaining contributors used a variety of approaches, among them,
neural networks.

All contributors have tackled the classification problem as a feature classification
problem. In order to reduce the number of features (i.e., samples) in the signal to classify,
groups have resorted to preanalysis of the data either to find some relevant features that
describe the signal or to downsample it. In fact, some authors pointed out that feature
selection had become the main challenge of the competition.

The proposed GP approach has obtained good results with no preprocessing of data
and no need of expert knowledge on EEG waves. In fact, the GP algorithm converged to
a solution that focused on the two channels identified by the first qualified contributor
as more relevant in the time-domain without preanalyzing the data.

6 Problem III: Ford Problem

The Ford Classification Challenge competition was organized by Dr. Mahmoud Abou-
Nasr and hosted at the IEEE World Congress on Computational Intelligence 2008
(http://home.comcast.net/∼nn classification/). The challenge problem was motivated
by a potential automotive application. The results presented here relate to data set
Ford_A.

6.1 Description of the Data

Data samples from a Ford automotive subsystem were collected in batches of 500
samples per diagnostic session. The objective is a classifier that will determine whether
a certain symptom exists or does not exist. The 500 samples collected in each diagnostic
session represent a set of sequential values of the measured variable, where sample n + 1
occurs after sample n, that is, they form a finite data sequence, not a feature vector. Also,
the beginning of the sampling process is not aligned with any external circumstance
or any aspect of the observed pattern and the data were collected in typical operating
conditions, with minimal noise contamination.

The dataset was divided into training, validation, and testing data. The training
data used for training the classifier consists of 3,271 training patterns. The validation
data consist of 330 patterns, and the testing data consist of 1,320 patterns.

6.2 GP Implementation

The GP implementation for the Ford problem is very similar to the one used for the
EEG classification. It was also implemented in ECJ.

A population of 1,000 individuals is evolved over 51 generations. The percentage
of elitism is 1%. A new generation is created through subtree crossover (40% of the
population), bloat-control-crossover (40% of the population), subtree mutation (10% of
the population), and cloning (10% of the population).

For this particular problem, M = K = 9. Therefore, there are 19 terminals in the
terminal set. In a parallel processing of the data the number of terminals would be 500.

As in problems I and II, the function set includes the four arithmetic operators as
well as an if clause. The if clause takes four arguments: if arg1 ≤ arg2 then return arg3,
else return arg4. The division operator is protected so that if the denominator is zero,
the division returns a zero value.
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Table 4: Results obtained for the classification of Ford signals.

Validation hits (%) Testing hits (%)

99.40 99.60
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Figure 6: Evolution of the best solution in the Ford run.

6.3 Results

Table 4 shows the results obtained for the Ford classification problem. Due to time
constraints the GP algorithm was only run once. As the Ford Classification Challenge
included validation series, these results are included as well in the table.

Figure 6 shows the evolution of the run along the generations. It can be seen how the
improvement in the solutions slows down while the number of generations increases.
In fact, there is not any improvement in the best result in the last 12 generations. In
this case, the Wilcoxon signed ranked test was not performed since only one run of the
algorithm was executed.

The following equation represents the classifier that obtained the highest percentage
of testing hits for the Ford classification problem, that is, the resulting classifying tree.

yn = ln(f )
((

xn-3

yn-5
+ xn-7 + y2

n-4

)

ln(i) + xn-3

yn-5

)

(12)

a =
{

y2
n-4 if xn-1 ≤ xn-1−yn-1

xn-3

yn-4 otherwise

b =
{

xn-3 if ln(xn-3) ≤ yn-5

xn-3yn-7 otherwise
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c =
{

b if yn-4
xn-3

≤ xn-1

a otherwise

d =
{

yn-6 if c ln(xn-4) ≤ xn-7 − xn

yn-1 otherwise

e =
{

yn-6 if xn-1 ≤ xn-1−yn-1
yn-4

yn-4 otherwise

f =
{

xn-3 + xn-8 if e ≤ yn-4

xn-5d otherwise

g =
{

xn-4 − xn-3 if xn-3 ≤ yn-2

xn-5 otherwise

h =
{

ln(ln(xn-1 ln(xn-4 − xn-6))) if xn-7 ≤ yn-4

ln(ln(xn-1 ln(yn-5))) otherwise

i =
{

ln(g)
(

ln(yn-8) + yn-4

(

xn-3 + y2
n-4 + xn-3

yn-5
h
))

if ln(xn-5) ≤ yn-4

(yn-1 + xn-5) ln(yn-6) otherwise

As can be observed, the resulting classifier has a very complex structure that
includes nine conditional clauses. It is very difficult to extract any conclusion from
Equation (12). In this case, despite obtaining an explicit function as a result, it is equiv-
alent to a black box, given how convoluted its structure is.

The results of the Ford Classification Challenge can be found at http://home.comcast
.net/∼nn classification/. Twenty research teams submitted contributions to the com-
petition. The accuracy of the results ranged from a 100% testing hits scored by the first
qualified to a 65.9% testing hits scored by the last qualified. We participated in the
competition and qualified second. Table 5 shows the results obtained for each of the
participant of the Ford competition.

In this case, unfortunately, the organizers of the competition did not publish the
classification methods used by the contributors. To the best of our knowledge, the
only contributor that published a description of the method used was Paulo Adeodato
(Adeodato et al., 2009), which ranked seventh in the competition. The strategy he and
his colleagues followed for classifying the data consisted of an initial phase of feature
extraction, where more than a hundred features were extracted for each sequence, and
a classification phase, where an ensemble of 30 multilayer perceptrons was used. In the
paper, the authors emphasize the importance of the feature extraction phase in order
to get a good classification. Therefore, they claim that a team working on this kind of
problem has to possess expertise on time series, signal processing, or some other kind
of sequential data processing.

The proposed GP approach obtained better results in the competition with no need
of analyzing the data, preprocessing the data, or performing any feature extraction
phase.
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Table 5: Results of the Ford Classification Challenge.

Rank Name Error (%) False positive (%)

1 D’yakonov Alexander 100 0
2 Eva Alfaro-Cid 99.6 0
3 Lv Jun 97.8 1.8
4 Cristian Grozea 96.7 2.1
5 Teesid Korsrilabutr 96.5 2.9
6 Schuichi Kurogi 96.0 3.7
7 Paulo Adeodato 95.5 4.6
8 Joerg D. Wichard 95.4 5.0
9 Anthony Bagnall 94.9 3.5

10 Gavin Cawley 94.5 6.6
11 Paavo Nieminen 93.9 6.8
12 David Verstraeten 92.5 7.6
13 Bo Jin 89.6 9.5
14 Dmitry Zhora 85.6 17.2
15 Ukil Abhisek 83.8 15
16 Hugo Jair Escalante 81.6 27.3
17 Paul Chandra 80.7 39
18 Dongrui Wu 76.9 25.8
19 Dymitr Ruta 75.3 40.2
20 Cota Flores Suarez 65.9 24.2

7 Conclusions

This work presents an approach for time series classification that processes time series
sequentially, as opposed to a classification based on feature vectors. This approach
uses genetic programming and a serial processing of data where the last output of the
classifier is considered as the classification result.

The approach was tested in three different problems. Two of the problems are
real-world problems proposed for two competitions. The results obtained were com-
pared against those obtained by the participants in the research competition. Our ap-
proach provided competitive results for both problems. This shows the potential of the
approach.

In the first real world problem tackled in the paper, the classification of EEG signals
proposed in the BCI Competition, the GP algorithm converges to a solution that only
uses two of the EEG channels recorded in the experiments. These two channels were
identified by one of the participants in the competition as the most significant for
classification in the time domain. Therefore, GP has been able to automatically identify
those data that were more relevant for the problem, avoiding the need for preanalyzing
the signals.

In the second real world problem tackled, the classification of automotive signals
gathered in the Ford Classification Challenge, the structure of the solution proposed by
the GP is quite complex, effectively acting as a black box, despite its explicit function
expression.

In both competitions, the participants remarked on the importance of features
extraction prior to classification, the difficulty of this process, and the expertise required
to perform it. One of the advantages of the method proposed in this work is that the
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classification is performed right along with the time series, there is no need of feature
extraction or any other preprocessing of data.

The serial processing approach reduces the number of inputs of the system. How-
ever, the sliding window effect requires that the evaluation process is applied as many
times as there are elements in the sequence. Therefore, one of the drawbacks of serial
processing is the time it takes. In effect we are trading off space for time.
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