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Abstract 

In the present study the valorization of wastes from Posidonia Oceanica (PO) has been 

carried out in order to obtain a fully biobased composite material in combination with a 

biobased polyethylene obtained from sugar cane as matrix. Morphological analysis by scanning 

electron microscopy (SEM) of the fractured surfaces from impact tests has revealed a 

homogenous distribution of particles of PO, as a consequence, good balanced properties have 

been obtained for composites with PO contents in the 5-40 wt. %. Thermal properties of 

composites have been studied through differential scanning calorimetry (DSC) and 

thermogravymetric analysis (TGA); the obtained results show an improvement on the thermal 

degradation. With regard to thermomechanical properties, dynamic mechanical analysis (DMA) 

results have shown a much enhanced storage modulus (G’) as the Posidonia Oceanica content 

increases. Tensile tests have shown a remarkable increase in stiffness with tensile modulus 

values about 60% higher for composites with 40 wt. % with regard to unfilled material. In a 

similar way, the flexural modulus is more than twice with regard the unloaded polyethylene. 

Shore D hardness confirms this improvement on mechanical properties and Charpy Impact Test 

shows values very similar to sample without PO, so that the intrinsic high impact energy 

absorption of HDPE is maintained in HDPE-PO composites. The water uptake test determines 

that the water absorption percent does not exceed 8%, which is relatively low for a high 

immersion time (5 months), which guarantees a dimensional stability in lifetime for these 

composites. 

  



1. Introduction 

Posidonia Oceanica is a Mediterranean endemic seaweed which covers approximately 

the 60% of the seabed until 40 m depth [1]. In particular, it represents an extension area of about 

2800 km2 [2] in the Mediterranean coast of Spain.  Posidonia Oceanica plays a critical role as it 

acts as a natural protection of the seabed thus preventing the advance of the erosive process. 

Moreover is the habitat of more than 400 vegetable and 1000 animal species [3]. Its importance 

on the overall marine environment, coast and seabed protection and biodiversity are leading 

factors to advise its legal protection. For example, at European level, it has been included as 

strictly protected flora specie. (Council Directive 97/62/EC and Regulation (EC) No 1626/94). 

At state level, countries as France or Spain have protected this flora specie and have declared 

Posidonia Oceanica meadows as zone of conservation [4].  

Seasonally Posidonia Oceanica detaches rhizomes, calculating a production between 

500 and 2000 g dry weight m-2 per year [5-7], depending on meteorological conditions as winds, 

storms or marine currents. This accumulation of wastes from Posidonia Oceanica on the beach 

is clearly observable, especially in autumn and winter in the form of leaves, stalks and typical 

fibrous balls. Thus, each year beaches must be cleaned in order to remove Posidonia Oceanica 

wastes as they cause odors due to its decomposition (and subsequent appearance of insects) and  

to a negative visual impact, especially for tourism purposes. Mediterranean countries are 

characterized by a strong beach tourism sector. Presence of big amounts of Posidonia Oceanica 

wastes involves a significant financial cost to the government, which must remove thousand 

tons of wastes from the beaches in order to obtain quality awards such as the international Blue 

Flag awarded by the Foundation for Environmental Education (FEE) or the Q for Quality 

distinction awarded by the Spanish Tourism Quality Institute (ICTE). Traditionally Posidonia 

Oceanica wastes have been collected and used as fodder for livestock, packing glass objects, in 

traditional medicine due to its anti-inflammatory properties, filtering, etc.; but these activities 

results in a negligible use of this waste, which can be found in large volumes and carries an 

economic high cost to be removed from beaches. 



In the recent years some authors have studied possible uses of Posidonia Oceanica as a 

renewable adsorbent for dyes or as source of lignocellulosic fibers for the production of pulp 

and paper [8, 9]. An alternative is to use these wastes as reinforcement fibers in composites with 

a polymeric matrix thus leading to new natural fiber reinforced plastics (NFRP) which are 

gaining attractive interest due to recent environmental concerns. The production and use of 

NFRPs and wood plastic composites (WPCs) have increased considerably during the last 

decades [10, 11]. WPCs show significant advantages at economical and environmental concerns 

but also they are attracting from a technical point of view as they can be shaped by conventional 

manufacturing processes such as hot-press molding, extrusion and injection process [12]. As an 

alternative to wood, WPCs are characterized by high dimensional stability, lightness, longer 

lifetime and lower maintenance requirements [13]. WPCs are used in building products that 

have limited structural requirements. Their utilization in products as industrial flooring, 

decking, railing, moldings, walls, indoor furniture, automobile interior parts, etc. results in a 

product market with an annual growth of 18 and 14% in North America and Europe respectively 

[14]. Moreover, in order to improve the environmentally friendly nature of the WPCs, recycled 

plastics and biodegradable plastics can be used as matrices which leads to similar mechanical 

properties to virgin polymers or petro-chemical derived polymers [15, 16]. A step forward in the 

field of environmentally friendly polymers has been done by Braskem leads industrial 

production of polyethylene from sugar cane. The different commercial grades of “Green PE” 

supplied by Braskem offer identical properties as those of the corresponding petroleum-based 

PE grades but with a remarkable environmental benefit. Production of Green PE does not lead 

to CO2 emissions; as it is obtained from sugar cane, it fixes about 2.5 t CO2/t polymer, while 

typical CO2 emissions of a petroleum-based PE are about 2.1 t CO2/t polymer [17].  

In the present work natural fiber reinforced plastics (NFRPs) have been developed by 

using a biobased HDPE as matrix and waste fibers from Posidonia Oceanica as reinforcement 

in order to give an industrial solution to the problematic associated to seaweed wastes. The 

influence of the Posidonia Oceanica content on the melt viscosity is studied by measuring the 

Melt Flow Index (MFI) and the dispersion of Posidonia Oceanica particles and interaction 



fiber/matrix are followed scanning electron microscopy (SEM) analysis. The effect of Posidonia 

Oceanica fibers on thermal behavior of composites is evaluated by differential scanning 

calorimetry (DSC) and thermogravymetric analysis (TGA) and mechanical properties are 

obtained by tensile and flexural tests, Charpy’s impact test and Shore D hardness. In addition, 

the effect of temperature on mechanical-dynamical in shear are presented.  

 

2. Experimental 

2.1.- Materials 

Posidonia Oceanica balls were collected from different beaches located in coast of 

Valencia (Spain). They were washed with 4% NaOH solution for 24 h to remove impurities 

such as sand, soil and other contaminants. After this initial process, Posidonia Oceanica balls 

were dried at room temperature and subsequently milled using an ultra-centrifugal mill (Retsch 

Gmbh, Hann, Germany) working at a rotational speed of 6000 rpm to obtain an average particle 

size of 250 µm. 

The selected matrix for composites was a biobased high density polyethylene (HDPE) 

commercial grade Green HDPE SHA7260 for injection molding supplied by Braskem (Sao 

Paulo, Brasil). This bio-HDPE is produced from ethanol derived from sugar cane, a fully 

renewable source. It is characterized by a melt flow index, MFI of 20 g (10 min)-1, a density of 

0.956 g·cm3 and a minimum biobased content of 94.5% [17]. 

 

2.2.- HDPE-Posidonia Oceanica composite preparation 

In a first step, the appropriate amounts of bio-HDPE and Posidonia Oceanica particles 

were weighed to obtain different composite formulations (5, 10, 20, 30 and 40 wt. % Posidonia 

Oceanica) and subsequently mechanically mixed in a zip bag. After this, the different 

formulations were extruded in a twin screw co-rotating extruder at 40 rpm. The temperature 

profile was 160, 160, 165 and 170 ºC. After cooling, the different compounds were pelletized 

for further processing by injection molding with a Meteor 270/75 (Mateu and Solé, Barcelona, 



Spain) using an injection temperature of 190 ºC to avoid degradation of the lignocellulosic 

component. A steel mold with mirror finishing with standardized sample geometries was used. 

 

2.3.- Melt flow index characterization 

The melt flow index (MFI) of the pelletized compounds was determined with a 

plastometer model ATS FAAS by Metrotec (SA Metrotec, San Sebastian, Spain) in accordance 

with the guidelines of the ISO 1133. The selected temperature and load were 190 ºC and 2.16 kg 

respectively. Every compound formulation was tested at least three times and the average MFI 

value was calculated.  

 

2.4.- Mechanical characterization 

The flexural and tensile properties of the different samples were measured by an 

electromechanic universal test machine Ibertest Elib 30 (Ibertest S.A.E., Madrid, Spain) 

following the guidelines of the ISO 178 and ISO 527 respectively. The size of the flexural 

samples are 80x10x4 ± 2 mm as the normative recommended. The flexural modulus in MPa is 

determinate according the following expression:  

𝐸𝐸𝑓𝑓 =
𝜎𝜎𝑓𝑓2 − 𝜎𝜎𝑓𝑓1
𝜀𝜀𝑓𝑓2 − 𝜀𝜀𝑓𝑓1

 (1) 

 

Where σf1 is the flexural stress measured by the arrow S1, and σf2 is the flexural stress measured 

by the arrow S2. The arrow in S1 and S2, correspond to the values of deformation in points εf1 

=0.0005 and εf2 =0.0025 with the following expression: 

𝑆𝑆1 =
𝜀𝜀𝑓𝑓1𝐿𝐿2

6 ℎ
 

(2) 

 

Where S1 is the arrow in mm, εf1 is the flexural deformation, L is the distance between supports 

in mm and h is the thickness of the sample.  

 



 

 On the other hand the size of the tensile samples are in weightlifting shape with 150 

mm total length and 20 mm broad in the extremes. The narrow part is 60 mm length and 10 mm 

of broad. The thickness is 4 mm constant in all sample. The tensile modulus is obtained 

following the next expression: 

𝐸𝐸 =
𝐿𝐿0𝐹𝐹
∆𝑙𝑙 𝐴𝐴0

 
(3) 

Where F is the force, L0 is the original length, Δl is the amount by which the length 

changes and A0 is the original cross-sectional area. A load cell of 5 kN was used and the 

crosshead speed for flexural tests and tensile tests was set to 5 mm·min-1 and 10 mm·min-1 

respectively.  

The Shored D hardness of HDPE-Posidonia Oceanica composites was obtained in a 

Shore D hardness durometer model 676-D (J. Bot Instruments, Barcelona, Spain) according to 

ISO 868. On the other hand, the impact energy of notched samples was determined using a 1 J 

Charpy pendulum following the guidelines of the ISO 179 standard. The size of the samples for 

Charpy test are 80x10x4 ± 2 mm. 

 

2.5.- Characterization by scanning electron microscopy (SEM) 

Fractured surfaces from impact tests of HDPE-Posidonia Oceanica composites were 

observed with a scanning electron microscope (SEM) model Phenom (FEI Company, 

Eindhoven, The Netherlands). Before observation, samples, mounted on a conductive adhesive 

tape, were covered with a thin gold-palladium layer. The coating process lasted 120 seconds 

using the model of sputter-coater Emitech mod. SC 7620 (Quorum Technologies Ltd, East 

Sussex, UK). Then, samples were observed in the SEM working at an electron acceleration 

voltage of 5 kV. 

 

2.6.- Thermal analysis of HDPE-Posidonia Oceanica composites 



Thermal properties of HDPE-Posidonia Oceanica composites were characterized by 

thermogravimetry (TGA) and differential scanning calorimetry (DSC). Thermogravimetric 

measurements were carried out in a TGA/SDTA 851 (Mettler-Toledo Inc., Schwerzenbach, 

Switzerland) and the temperature ranged from 30 ºC to 700 ºC with a heating rate of 20 ºC min-1 

under nitrogen atmosphere of 66 mL min-1. Thermal transitions were obtained by differential 

scanning calorimetry (DSC) using a Mettler-Toledo 821 (Mettler-Toledo Inc., Schwerzenbach, 

Switzerland) and the temperature program used was from 30 ºC to 300 ºC at 10 ºC min-1 under 

nitrogen atmosphere of 66 mL min-1.  All samples have a weight between 5 and 10 mg.  

 

2.7.- Dynamic mechanical thermal analysis (DMTA) of HDPE-Posidonia Oceanica 

composites 

DMTA was carried out using an AR G2 from TA Instruments (TA Instruments, New 

Castle, EEUU) in torsion mode. Rectangular samples 40x10x4 mm3 in size were subjected to a 

temperature ramp from -50 ºC up to 100 ºC with heating rate of 2 ºC min-1 at frequency of 1 Hz 

and using as a controlled variable the % strain in 0.1. The storage modulus is obtained following 

the next expression: 

𝐸𝐸′ =
𝜎𝜎0
𝜀𝜀0

cos 𝛿𝛿 (4) 

 

Where E’ is the storage modulus, σ is the stress, ε is the strain and δ is the phase lag between 

stress and strain. 

2.7.- Water uptake of HDPE-Posidonia Oceanica composites 

The water uptake test was carried out by immersing samples in distilled water (20 ºC) 

for a 5 months period. Test specimens sized 80x10x4 mm3 and at least five different samples 

were tested to obtain the average value of each sample. Water absorption percentage was 

determined by the following expression: 

 

                                                𝑊𝑊𝑊𝑊 (%) =  (𝑀𝑀𝑀𝑀−𝑀𝑀𝑀𝑀)
𝑀𝑀𝑀𝑀

 𝑥𝑥 100                                                        (5) 



Where WA (%) is the water absorption percentage, Mf is the dry weight of the sample after the 

corresponding time and Mo is the initial weight of the sample before immersed in water. A 

measured was taken every week in order to follow the water uptake evolution. 

 

3. Results and discussion 

Firstly, the melt flow index (MFI) of HDPE-Posidonia Oceanica composites is useful 

from a manufacturing point of view in order to evaluate the influence of the particle addition on 

the processability by injection molding of the different composite formulations. Fig. 1 shows the 

plot evolution of the MFI in terms of the percentage of Posidonia Oceanica particle content.  

 

Figure 1 

 

As it can be observed, Fig. 1 shows a clear decreasing tendency in MFI values as the 

Posidonia Oceanica content increases. This reduction of fluidity reached 53% for a sample with 

40 wt. % Posidonia Oceanica. However, even a MFI of 6.1 g (10 min-1) does not restrict the 

injection process in an industrial injection molding machine and only some adjustments in 

pressure in time cycle have to be done. Thus, the incorporation of Posidonia Oceanica particles 

up to 40 wt. % is not a drawback to obtain HDPE-Posidonia Oceanica composites in usual 

manufacturing process used in the plastics industry. This increase in viscosity is typical of 

polymer-filled systems as the filler increases the shear by restricting polymer chain mobility 

[11].  

To evaluate the particle dispersion and potential interactions among fiber-polymer 

interface, the morphology of the fractured surfaces from impact tests were observed by scanning 

electron microscopy (SEM). In Fig. 2a it is possible to observe a moderate surface roughness 

corresponding to the unfilled HDPE matrix. This morphology is characterized by small crack 

produced during the advance of the impact test. On the other hand, in the images corresponding 

to HDPE-Posidonia Oceanica composites it is possible to observe an increase in particle 

presence as Posidonia Oceanica content increases. Particles are quite homogenously distributed 



within the thermoplastic matrix, even for the samples with high content of Posidonia Oceanica 

(30 wt. % and 40 wt. % which represents higher volume contents due to the low density of the 

lignocellulosic waste). Also these images can be useful to determine particle-matrix 

interactions. As we can see, very small gaps between Posidonia particles and the surrounding 

HDPE matrix can be detected. Even in samples with high Posidonia content (Fig. 2e and Fig. 

2f) the interaction between the filler and the matrix is acceptable. This suggests that exists an 

acceptable compatibility between the particle and the polymeric matrix, which is evident from 

the absence of large gaps between the particles and the polymer matrix. [18] 

 

Figure 2 

 

The thermal properties of the matrix of bio-HDPE and the other materials prepared in 

this study, has been studied by DSC and TGA. Table 1 summarizes the main parameters 

obtained with both techniques. Firstly, through DSC, the melting temperature and the 

degradation temperature of the samples has been studied. The melting temperature of the 

different composites are slightly above compared with the sample of bio-HDPE without 

Posidonia Oceanica. The difference are less than 3 ºC, but could be as a consequence of the 

presence of phenolic compounds presents in the cells constituting the Posidonia Oceanica [19]. 

The degradation temperature has a similar trend, being slightly higher in composite made with 

certain Posidonia Oceanica content. Some authors has registered similar aspects, with DSC 

tracings of composites with Posidonia Oceanica very similar to the reference sample. Thus, in 

despite of the introduction of high contents of lignocellulosic fillers, the thermal properties are 

not affected, in any cases, slightly increased. Some authors justified this behavior as a change of 

the degradation mechanism. In composites it has been found a complex two-step nucleation-

driven reaction, while a polymer without fillers the degradation mechanism is based in a chain 

scission process [20]. On the other hand, as a consequence, some parameters as the flexibility of 

the samples or extrusion and injection process are not negatively influenced [21].  



On the other hand, thermogravymetric analysis (TGA) shows that Posidonia oceanica 

fibers start to lose weight at about 235 ºC with a 50% weight loss close to 550 ºC. The 

degradation of Posidonia oceanica corresponds to the first step detected in TGA curves for 

HDPE-Posidonia oceanica composites. However, it should be noted that in all composites, the 

initial temperature of the first weight loss process is increased up to 15 ºC. This suggests that the 

thermal stability of Posidonia oceanica inside the HDPE matrix is slightly increased. 

Obviously, as the Posidonia oceanica content increases in composites the residual mass ratio of 

this first weight loss process is greater. The second weight loss process corresponds to the 

degradation of the HDPE polymeric matrix. As it can be seen for the unfilled HDPE, the 

degradation onset temperature is about 350 ºC and almost a 92 wt. % is lost at 520 ºC.  As 

observed with weight loss of Posidonia oceanica and its degradation process, the degradation 

onset temperature for the second degradation stage (HDPE degradation) is shifted from 350 ºC 

up to 390.5 ºC. Therefore, it seems to be a synergistic effect which delays the onset degradation 

temperature of both the polymeric matrix as the Posidonia oceanica separately which is related 

with presence of natural phenolic compounds in Posidonia oceanica [22] 

 

Table 1 

 

The dynamic mechanical analysis (DMA torsion mode) of composites with different 

Posidonia oceanica contents from -150 ºC has shown that the glass transition temperature (Tg) 

does not change in a remarkable way with a value around -123 ºC for both filled and unfilled 

HDPE which is representative for poor interaction. Thus, the addition of Posidonia oceanica 

does not affect the Tg of the bio-HDPE [21]. Fig. 3 shows the evolution of the storage modulus 

(G´) of the different composites in function of the temperature. The storage modulus is studied 

to a temperature of -50, since it is not expected that a WPC is subjected in real conditions to 

temperatures below. At lower temperatures polymers and composites enter in a glassy region 

characterized by high values of storage modulus but extremely high fragility, which impedes 

real uses. The storage modulus decreases as the temperature is increased due to softening of 



polymer (increase in chain mobility) as we get near the melt temperature. As it can be seen in 

Fig. 3, the addition of Posidonia oceanica waste fibers leads to an increase in storage modulus 

(G’) as observed by a displacement towards higher G’ values thus indicating more stiff 

materials. If we consider a reference temperature of 25 ºC, all HDPE-Posidonia oceanica 

composites are characterized by higher storage modulus than the unfilled bio-HDPE: i.e. the 

addition of a 5 wt. % provides an increment of the storage modulus above 46% and this increase 

reaches values of almost 118% for composites with 40 wt. % Posidonia oceanica. This behavior 

evidences the reinforcing effect provided by the filler with high cellulose content. Particles 

immersed in a HDPE polymer matrix act as interlock points which restrict chain mobility and 

even with a poor polymer-filler interaction, stiffer materials are obtained. [23] It is also 

important to remark that the increasing tendency for the storage modulus G’ is clearly evident 

for all compositions but very slow differences between 30 wt. % and 40 wt. %. This is 

important since higher filler addition (over 30 wt.%) does not lead to an increase in storage 

modulus. 

 

Figure 3 

 

Table 2 shows a summary of the mechanical properties obtained by tensile and flexural tests of 

HDPE and Posidoniaee oceanica composites. As it can be seen, the tensile modulus of the 

composites is highly improved as the filler content is increased. The tensile modulus of the 

unfilled HDPE is close to 373 MPa, and this value is remarkably improved up to values of 521.9 

MPa (40% increase) and 600.9 MPa (60% increase) for composites containing 30 wt. % and 40 

wt. % Posidonia oceanica respectively. These results are in agreement with the previously 

described DMA results thus indicating a remarkable increase in stiffness. The elongation at 

break of composites with different Posidonia oceanica contents is remarkably reduced from 

520% (unfilled HDPE) up to 3.3% for the composite with 40 wt. % Posidonia oceanica. This is 

typical of particle-filled polymer systems with poor or no compatibility between components so 

that, stress transfer phenomena can’t occur and the general behavior of the particle filler is that 



of a stress concentrator thus leading to early fracture [24]. With regard to the tensile stress, it 

remains with interesting values close to 18-19 MPa for all compositions. The effect of the filler 

is more accurate on flexural properties of HDPE-Posidonia oceanica composites. We observe 

an increasing tendency for flexural strength from 23 MPa (unfilled HDPE) to 30.8 MPa 

(composite with 40 wt. % Posidonia oceanica) and the flexural modulus evolution shows a 

substantial increase for samples from 723 MPa (unfilled HDPE) up to 1430 MPa and 1762 MPa 

for composites with 30 wt. % and 40 wt. % Posidonia oceanica respectively.  

 

Table 2 

 

The mechanical properties are completed with the study of the Shore D hardness and 

Charpy’s impact test of composites. The results obtained are represented in Fig. 4. Shore D 

hardness evolution is similar to the previously described mechanical resistance properties such 

as elastic modulus, flexural modulus and storage modulus. The addition of Posidonia oceanica 

leads to stiffer composites due to the reinforcing effect of the particle-filler which play a key 

role in restricting polymer chain mobility [25, 26]; i.e. an increase in Shore D hardness of about 

11% is achieved with the incorporation of 40 wt. % Posidonia oceanica. But usually, one of the 

main drawbacks of the incorporation particles, fillers and loads to polymeric matrices is the 

decrease in toughness which represents the ability of the material to absorb energy during the 

deformation and fracture processes typical of an impact. Toughness is highly dependent on two 

main factors: supported stress and deformation before fracture. As we have seen previously, the 

tensile strength remains with almost constant values while the elongation at break suffers a 

dramatic decrease as the Posidonia oceanica content increases. For this reason, the Charpy’s 

impact test was carried out on notched standard samples. The initial impact energy of the 

unfilled HDPE is around 2.6 KJ m-2 and as it can be observed, the impact energy for composites 

with Posidonia oceanica is slightly lower than the unfilled material with values of about 2.5 KJ 

m-2. This feature is quite interesting and useful in practice because these composites are able to 

retain similar capacity to absorb impact energy as the unfilled material, but with an advantage of 



an overall increase in mechanical resistance properties. It has been reported that the addition of 

whiskers, particles or loads to polymeric matrices could reduce or even improve the tenacity of 

polymers depending of the interaction between the matrix and particles [27, 28]. As we have 

described previously, we have not detected high interaction between the highly hydrophobic 

HDPE matrix and the highly hydrophilic Posidonia oceanica reinforcement but as toughness 

depends on supported stress and ability to deform, tenacity of HDPE-Posidonia oceanica 

composites remains almost constant as the dramatic decrease in mechanical ductile properties 

(such as elongation at break) is compensated by an increase in stiffness (moduli) and tensile and 

flexural strengths. It is possible that the tubular capillary structure of the Posidonia oceanica 

fibers helps to dissipate the energy, thus giving as a consequence a good toughness for 

composites.  

 

Figure 4 

 

The addition of natural fibers provides multiple advantages from different points of 

view: economical advantages due to up-grading industrial and/or biobased wastes, 

environmental advantages due to a reduction in the carbon footprint, biodegradability, etc. and 

technical aspects as described previously. Nevertheless the addition of natural lignocellulosic 

particles in products designed to stay in outdoor could have one main drawback: the highly 

hydrophilicity of the natural fibers. The presence of hydroxyl groups in the structure of cellulose 

attracts water molecules and moisture, which could modify the dimensional stability of products 

as decking, walls, flooring, louvers, indoor furniture, etc. [29]. For this reason, it is important to 

quantify the extent of the water uptake for these composites. 

Fig. 5 shows the plot evolution of the water uptake (absorption percentage) of HDPE-

Posidonia oceanica composites immersed in water for a period of 5 months. Cellulose and 

hemicellulose presents in Posidonia oceanica are characterized by high sensitiveness to water 

and moisture. As we have described in a previous paper, Posidonia oceanica wastes are 

characterized by a high cellulose and hemicellulose content [18]. For this reason, as the 



Posidonia oceanica content in HDPE composites increases, the percentage of absorbed water is 

greater; i.e., the unfilled HDPE has a weight gain due to water absorption of about 0.32% after 

an immersion period of 5 months while the composite containing 40 wt. % Posidonia oceanica 

reaches a weight gain of less than 8% after the same period. Compared with other studies, the 

absorbed water is not high. Klyosov determines typical water absorption for wood plastic 

composites (WPCs) up to 18% after several months [30]. Other studies carried out with HDPE- 

based WPCs offer water uptake values of about 15%-16% [31]. On the other hand, it is 

important to remark that commonly accepted water uptake in wood products is 25% moisture 

content; this represents the minimum level necessary to start a decrease in mechanical properties 

and bacterial growth [32]. Thus, the maximum water uptake for HDPE-Posidonia oceanica 

composites with values of 8% for high filler content (40 wt. % Posidonia oceanica) guarantees 

dimensional stability and no growth of bacteria and fungi during the use in outdoor applications. 

 

Figure 5 

 

4. Conclusions 

The use of Posidonia oceanica as particle filler for NFRP (natural fiber reinforced 

plastics) is an interesting solution for upgrading this natural waste, that every year is 

accumulated in beaches and entail an elevated economical cost for local governments. 

Composites of Posidonia oceanica with HDPE derived from sugarcane are fully based on 

renewable resources and could be used in multiple applications replacing wood and wood like 

products thus reducing dependency on petrochemical-based materials. Composites with 30-40 

wt. % Posidonia oceanica are characterized by interesting mechanical performance. The water 

uptake test guarantees a dimensional stability of these composites for outdoor applications such 

as decking, flooring, railing, automobile interior parts, indoor furniture, etc. SEM results 

revealed that Posidonia oceanica particles could be dispersed correctly in a green-HDPE matrix 

and despite poor matrix-filler interaction is obtained, mechanical resistant properties increase 

and toughness remains almost constant. Addition of Posidonia oceanica particles has a 



synergistic effect on thermal stability of both waste fibers and HDPE matrix. This work offers 

new environmentally friendly materials for a wide range of industrial applications as a substitute 

of wood and wood-like products. 
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Figure Caption 

 

Figure 1.- Variation of MFI of the bio-HDPE and WPCs compounds in terms of the wt. % of 

PO.  

Figure 2.- SEM images (500x) of fractured surface from impact test of the composites with (a) 

0, (b) 5 wt.%, (c) 10 wt.%, (d) 20 wt.%, (e) 30 wt.%, (f) 40 wt.% of PO loadings. 

Figure 3.- Plot evolution of the storage modulus of HDPE composites with different Posidonia 

oceanica contents. 

Figure 4.- Plot evolution of the Shore D hardness and Charpy’s impact energy of HDPE 

composites with different Posidonia oceanica contents. 

Figure 5.- Plot evolution of the water absorption percentage of HDPE composites with different 

Posidonia oceanica contents as a function of immersed time. 

  



Table Captions 

 

Table 1.- Summary of the values obtained by DSC and TGA. 

DSC TGA 

 first weight loss process second weight loss 
process 

Sample Melting 
Temp, 

Tm (ºC) 

Degradation 
Temperature 

(ºC) 

Initial 
Temp 
(ºC) 

End 
Temp 
(ºC) 

Mass 
Residual 

Ratio 
(%) 

Initial 
Temp 
(ºC) 

End 
Temp 
(ºC) 

Mass 
Residual 

Ratio 
(%) 

P. Oceanica - - 235,0 550,0 52,5 - - - 
HDPE 0 wt, 

% 
137,4 232,5 - - - 350,0 520,0 92,8 

HDPE 5 wt, 
% 

140,2 233,5 250,0 390,5 4,9 390,5 520,0 86,1 

HDPE 10 wt, 
% 

140,5 233,8 250,0 390,5 8,9 390,5 520,0 74,3 

HDPE 20 wt, 
% 

138,8 233,8 250,0 390,5 12,1 390,5 520,0 70,4 

HDPE 30 wt, 
% 

138,3 233,9 250,0 390,5 13,2 390,5 520,0 68,7 

HDPE 40 wt, 
% 

138,4 233,9 250,0 390,5 14,8 390,5 520,0 61,5 

 

 

  



Table 2.- Tensile and flexural properties of HDPE composites with different Posidonia oceanica 

contents. 

           

Posidonia 

oceanica 

content 

Tensile Properties Flexural Properties 

Tensile 

Modulus 

(MPa) 

Tensile 

Strength 

(MPa) 

Elongation 

(%) 

Flexural 

Modulus 

(MPa) 

Flexural 

Strength 

(MPa) 

HDPE 0 wt. % 373 ± 8.6 19.6  ± 0.2 520.1  ± 8.8 723  ± 12.6 23.0  ± 0.4 

HDPE 5 wt. % 392  ± 22.1 17.9  ± 1.4 18.9  ± 1.7 888  ± 22.0  25.4  ± 0.5 

HDPE 10 wt. % 457  ± 15.6 18.9 ± 0.9 10.5  ± 2.8  1037  ± 25.7 27.0  ± 0.3 

HDPE 20 wt. % 474  ± 14.6 19.4 ± 0.5 7.1  ± 0.5 1190  ± 22.9 29.8  ± 0.2 

HDPE 30 wt. % 522  ± 10.0 19.5  ± 0.1 5.4  ± 0.3 1430  ± 32.3  30.3  ± 0.2 

HDPE 40 wt. % 601  ± 19.8 18.9  ± 0.5 3.3  ± 1.4 1762  ± 22.6 30.8  ± 0.3 

 

  



Figure 1.- Variation of MFI of the bio-HDPE and WPCs compounds in terms of the wt. % of 

PO.  

 

 

  



Figure 2.- SEM images (500x) of fractured surface from impact test of the composites with (a) 

0, (b) 5 wt.%, (c) 10 wt.%, (d) 20 wt.%, (e) 30 wt.%, (f) 40 wt.% of PO loadings. 

 

  



Figure 3.- Plot evolution of the storage modulus of HDPE composites with different Posidonia 

oceanica contents. 

 

  



Figure 4.- Plot evolution of the Shore D hardness and Charpy’s impact energy of HDPE 

composites with different Posidonia oceanica contents. 

 

 

  



Figure 5.- Plot evolution of the water absorption percentage of HDPE composites with different 

Posidonia oceanica contents as a function of immersed time. 
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