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Abstract— A critical issue, especially in urban areas, is the oc-
currence of traffic accidents, since it could generate traffic jams.
Additionally, these traffic jams will negatively affect to the rescue
process, increasing the emergency services arrival time, which can
determine the difference between life or death for injured people
involved in the accident. In this paper, we propose four different
approaches addressing the traffic congestion problem, comparing
them to obtain the best solution. Using V2I communications, we
are able to accurately estimate the traffic density in a certain area,
which represents a key parameter to perform efficient traffic
redirection, thereby reducing the emergency services arrival time,
and avoiding traffic jams when an accident occurs. Specifically,
we propose two approaches based on the Dijkstra algorithm, and
two approaches based on Evolution Strategies. Results indicate
that the Density-Based Evolution Strategy system is the best
one among all the proposed solutions, since it offers the lowest
emergency services travel times.

I. INTRODUCTION

Traffic accidents represent a big problem for drivers and a

serious burden for the economy of all the countries. A close

look at traffic accidents shows that many of the casualties and

serious medical conditions take place during the time elapsed

between the accident occurrence and the arrival of the medical

assistance. The so called ‘Golden Hour’ [1] after a car crash

is the time within which medical or surgical intervention by

a specialized trauma team has the greatest chance of saving

lives. If more than 60 minutes have elapsed by the time the

injured arrives to the operating table, the chances of survival

fall sharply. Typical arrival of medical help takes about 15

minutes, but initial access and treatment starts 25 minutes

after the accident. Transportation of the injured to the hospital

usually takes place 50 minutes later. Therefore, time is critical

for the survival of the injured in a severe crash incident, and

any technology capable of providing a fast and efficient rescue

operation after a traffic accident takes place will increase the

probability of survival of the injured, and reduce the injury

severity.

Cooperative vehicle systems have become an increasingly

popular transportation paradigm in recent years. Wireless

technologies, through vehicular networks, enable peer-to-peer

mobile communications among vehicles (V2V), as well as

communications between vehicles and infrastructures (V2I).

Using these technologies, crashed vehicles are able to notify

the emergency services about the occurrence of an accident.

In addition, emergency services can dynamically redistribute

traffic by communicating or suggesting new routes to vehicles.

These routes can be calculated using different methods such

as Dijkstra-based algorithms, genetic algorithms, or evolution

strategies. Evolutionary Algorithms imitate the principles of

natural evolution as a method to solve parameter optimization

problems. They have been successfully used to solve various

types of optimization problems [2], since they provide an

optimal solution without checking all the possible solutions,

thereby reducing the execution time drastically. Evolution

Strategies are a kind of Evolutionary Algorithm with the

particularity that the mutation steps are included in the chro-

mosome. This kind of Evolutionary Algorithms obtains very

good results in numerical optimization problems, especially

when working on continuous variables.

In this paper, we propose four different approaches to

minimize the emergency services arrival time when an accident

takes place in urban scenarios, also trying to avoid traffic

jams. In particular, two of them are based on the Dijkstra

algorithm, and the other two are based on Evolution Strategies.

Additionally, we evaluated the four proposed solutions in three

different scenarios with different topologies to determine the

best solution in terms of travel times of the emergency services

and the rest of vehicles.

So far, evolutionary algorithms have been widely used in

the field of dynamic traffic distribution (e.g., [3], [4], and [5]).

However, unlike our proposal, existing works do not focus on

reducing the rescue time of the emergency services, or exploit

the advantages of using vehicular communication capabilities

to calculate vehicles routes. Additionally, in all these works,

authors only consider a specific scenario for simulations to

assess their proposal. From our point of view, simulating

only one specific scenario is inadequate when presenting a

vehicle routing model (even in real scenarios since it can

lead to unrepresentative and inaccurate results). We consider

that simulating different (and realistic) topologies is necessary,

since the roadmap topology significantly affects the obtained

results [6].

This paper is organized as follows: In Section II we present

our four different re-routing systems (i.e., Dijkstra, Density-

Based Dijkstra, Evolution Strategy, and Density-Based Evolu-

tion Strategy). Section III introduces the simulation environ-

ment used to assess our proposed schemes. Section IV shows

the obtained results. Finally, Section V concludes this paper.



Fig. 1. Example of a traffic jam when the street priority is given by the
number of lanes.

II. OUR PROPOSED VEHICLE ROUTING SYSTEMS

In this Section, we propose four different vehicle routing

approaches with the aim of ensuring that emergency services

arrive at the place of the accident as soon as possible, whereas

the rest of vehicles are not significantly affected, i.e., their

travel times do not increase considerably, avoiding the possible

traffic jams caused by the accident. Next, we present them in

detail.

A. Dijkstra

This system aims at obtaining the shortest route between

two map locations by using the Dijkstra algorithm [7], specif-

ically adapted to roads and streets, and taking into account the

length and priority of the streets. The priority of each street

indicates the preference it has with respect to the others for a

vehicle when it arrives to a junction.

Specifically, in this approach, the street priority is calculated

by using the number of lanes per street, assigning higher

priority to the widest streets (i.e., with higher number of

lanes). Figure 1 shows an example of this situation. As shown,

vehicles arrive to the junction through street A. Using this

system and considering the priorities shown in the figure (1.0

for street B and 9.0 for street C), the majority of vehicles

continue their route through street C (90% of vehicles since

this street has a greater number of lanes), collapsing it.

However, street B has less traffic density, with a more fluid

traffic.

This proposed system uses a static model for street priori-

ties, where a priority is given to each street, and priorities do

not change under any circumstance. This issue could generate

two kind of problems when an accident occurs: (i) there could

be traffic jams in specific areas of the scenario, whereas other

areas present very low traffic, and (ii) the streets selected as

routes for the emergency services do not present low priority

for the rest of vehicles in order to reduce the number of

potential vehicles blocking the streets.

The main advantage of this system is the low computational

cost since it does not need to know the current traffic density

or the emergency service routes; in addition, when an accident

occurs, this approach can be applied immediately.

B. Density-Based Dijkstra

This proposed system is similar to the previous one, with

the difference that, in this case, we take into account the traffic

density in the area when the street priorities are assigned.

To develop this method, those streets leading vehicles to

high traffic density areas, are penalized. When an accident

occurs, all the vehicles involved send a warning message using

Vehicular Networks, and once the control systems are notified,

they apply the vehicular density estimation approach proposed

in[8]. In addition, the streets through which emergency ser-

vices circulate to arrive at the accident site are penalized for

the rest of vehicles. Specifically, in this proposed system, we

proceed as follows:

• Step 1: we prioritize streets by normalizing the values

(see Equation 1). As shown, the normalized values start

in 1 and end in 10 (Nmin and Nmax, respectively).

Nx =
(Px − Pmin) · (Nmax −Nmin)

Pmax − Pmin

+Nmin

where :

Nmin = 1

Nmax = 10

(1)

• Step 2: the normalized value for the rest of the areas (Nx)

is calculated by using a proportion between the minimum

and the maximum traffic density percentages, and the

traffic density of the area which we want to calculate the

normalized value (Pmin, Pmax, and Px, respectively).

• Step 3: with the aim of penalizing streets with a high

traffic density, we apply Equation 2. In this Equation, we

obtain the inverse value calculated above (Sx), since a

higher priority value has more priority, and we multiply

this value by the number of lanes of the street (Lx).

Sx = (Nmax −Nx + 1) · Lx (2)

• Step 4: with the aim of calculating the fastest route for

the emergency services vehicle, this approach applies a

simple Dijkstra algorithm for each one, calculating the

shortest route between two map locations (accident site

and hospital, police station, firehouse, etc.), regardless of

traffic density. Note that, in this case, we do not take

into account the street priorities since emergency vehicles

always have to reach rapidly to the accident location.

• Step 5: as shown in Equation 3, we penalize these streets

through which emergency services circulate (Sxe
) by

giving them a priority corresponding to the number of

lanes (e.g., a street with four lanes has a priority of 4).

Sxe
= Lx (3)

• Step 6: we calculate the new vehicle routes using a

Dijkstra-Based algorithm taking into account the streets



priorities, since the shortest path could not be the fastest

path.

Equation 4 shows an example of street priorities calcula-

tion. As shown, we have three different areas which contain

the following percentage of traffic vehicles: Pmin = 20%,

Pmax = 50%, and Px = 30% of the total of vehicles. Also,

we have three streets located in the aforementioned areas with

these numbers of lanes (Lmin = 3, Lmax = 2, and Lx = 1).

Since we have the maximum and minimum normalized values

(Nmin and Nmax), we calculate the other street normalized

value (Nx) by using Equation 1. Finally, we obtain the street

priorities (Smin, Smax, and Sx) by using Equation 2, thereby

obtaining street priorities of 30, 2, and 7 respectively.

Pmin = 20, Pmax = 50, Px = 30

Nmin = 1, Nmax = 10

Lmin = 3, Lmax = 2, Lx = 1

Nx =
(Px − Pmin) · (Nmax −Nmin)

Pmax − Pmin

+Nmin

Nx =
(30− 20) · (10− 1)

50− 20
+ 1 = 4

Sx = (11−Nx) · Lx

Smin = (11− 1) · 3 = 30

Smax = (11− 10) · 2 = 2

Sx = (11− 4) · 1 = 7

(4)

C. Evolution Strategy

Due to the high computational cost of calculating all

possible combinations of street priorities to find the opti-

mal solution, we consider interesting to apply an Evolution

Strategy to address our problem, i.e., the reduction of the

emergency services arrival time to the accident location. As

in the previous proposed approaches, this scheme applies the

Dijkstra algorithm for each emergency vehicle in order to

calculate the emergency services routes, and also we penalize

the streets selected for the emergency services vehicles.

Next, we present the main characteristics of our Evolution

Strategy (i.e., definition of variables, fitness function, mutation,

recombination, parents selection, and survivors selection).

1) Definition of Variables: An individual, i.e., a potential

solution of our system, encodes a possible solution into a

chromosome based structure (genotype) [9]. In this case, a

vector of float point numbers which contains the priority value

of each street (as shown in Figure 2) is considered. Street

priorities are randomly selected in the vectors of the initial

population for each street for the first time.

2) Fitness Function: Selection is a process in which so-

lutions are selected for recombination based on their fitness

values. Here, fitness refers to a measure of profit, utility, or

goodness to be maximized while exploring the solution space.

Our system has three different fitness functions designed to

minimize the arrival time for the emergency vehicles and the

Fig. 2. Example of a genotype for street priorities.

travel time of the rest of vehicles: (i) Fitness Function 1 gives

double importance to the arrival time of emergency services

(‘e’ represents emergency services vehicles, and ‘r’ represents

the rest of Regular vehicles) (see Equation 5), (ii) Fitness

Function 2 assigns the same importance to both arrival times

(see Equation 6), and (iii) Fitness Function 3 gives double

importance to the arrival time of the rest of vehicles (see

Equation 7). Although the latter should not perform well,

since our main goal is to reduce the time required by the

emergency vehicles to reach the accident location, we consider

interesting to evaluate it to assess whether the system is able

to significantly reduce the travel time of the rest of vehicles,

while slightly increasing the the emergency services’ arrival

time.

FitnessFunction1 = 2 ·
∑ne

ie=0 tie

ne

+

∑nr

ir=0 tir

nr

(5)

FitnessFunction2 =

∑ne

ie=0 tie

ne

+

∑nr

ir=0 tir

nr

(6)

FitnessFunction3 =

∑ne

ie=0 tie

ne

+ 2 ·
∑nr

ir=0 tir

nr

(7)

3) Mutation: In an Evolution Strategy there is a strong

emphasis on the mutation to create the offspring. Additionally,

mutation is implemented by adding a random ‘noise’ obtained

from a Gaussian distribution. Mutation parameters change

during the execution of the algorithm. In our proposal, we

use an Uncorrelated Mutation with n Step Sizes. The mutation

mechanism applies the functions included in Equation 8, where

σ is the mutation step size, τ is the scale parameter for the

mutation step sizes, and n is the number of individuals.

σ′

i =σ · eτ ′
·N(0,1)+τ ·Ni(0,1),

x′

i =xi + σ′

i ·Ni(0, 1)

where :

τ ′ ∝ 1√
2n

τ ∝ 1
√

2
√
n

(8)

Using this kind of mutation, our genotype contains values x

(street priority) and values σ (mutation step sizes), as shown

in Figure 3.



Fig. 3. Example of genotype formed by street priorities and mutation step
sizes.

Fig. 4. Example of local discrete recombination.

To avoid too small standard deviations providing a negligi-

ble effect, we limit the value of the step sizes using a threshold

(ε0), i.e., σ′ < ε0 ⇒ σ′ = ε0.

4) Recombination: The basic recombination scheme in

Evolution Strategies requires two parents to create a child.

For λ descendants, the recombination process is performed λ

times. There are two variants of recombination depending on

how parental alleles are recombined:

• Discrete Recombination: one of the alleles of the parents

is chosen with equal probability for both parents.

• Intermediate Recombination: the parental allele values are

averaged.

Furthermore, two parents can be used, randomly obtained

from the population of µ individuals, for each component

(i ∈ {1...n}) of the offspring. This is known as Global

recombination, and the variant in which only two parents

are selected for the total of components is called Local

recombination.

In our proposed system, we apply Local Discrete Recom-

bination, since this method is one of the most widely used in

this kind of algorithms, and it provides a good performance in

most cases. As shown in Figure 4, each child allele is chosen

with equal probability for both parents.

5) Parents Selection: The parents selection in Evolution

Strategies does not depend on their fitness values. Parents are

chosen randomly by using a uniform distribution from the

population of µ individuals.

6) Survivors Selection: The Survivors Selection consists on

deterministically choosing the µ best individuals, after creating

λ descendants and calculating their fitness. There are two kinds

of Survivor Selection:

• Selection (µ, λ): only the individuals of the offspring are

considered to generate the next generation.

• Selection (µ+ λ): survivors are selected from the union

of parents and descendants.

Our proposed scheme uses Selection (µ + λ), since using

Selection (µ, λ) descendants could produce worse results,

delaying the achievement of the best solution.

D. Density-Based Evolution Strategy

With the aim of reducing the system runtime, we pro-

pose an Evolution Strategy with the same characteristics as

the Evolution Strategy System (presented in the previous

Subsection), but in this case we do not obtain the initial

population randomly. We consider that by using the traffic

density information, our system will be able to reduce the time

required to find the optimal solution (by reducing the number

of generations). Specifically, this approach combines both the

Density-Based Dijkstra and the Evolution Strategy schemes.

Instead of getting the initial population randomly, we start

the procedure by taking into account two different genotypes:

(i) a genotype which contains street priorities based on the

number of lanes, and (ii) a genotype which contains street

priorities based on traffic density. The rest of individuals of

the initial population are obtained by recombining these two

genotypes. Street priorities based on the number of lanes are

obtained by squaring the number of lanes of each street, and

the street priorities based on traffic density and emergency

vehicles routes are obtained by using the method proposed in

the Density-Based Dijkstra approach. Then, we make a first

recombination with them, selecting the n best descendants

in order to generate a first offspring, so approaching to the

best solution. This improvement will make the system reach

the optimal solution in less time than using a random initial

population.

Figure 5 shows an example of the objective of this so-

lution. As shown, initializing the population accounting for

the traffic density and the number of lanes could make it

possible to obtain better solutions with a lower number of

offsprings, thereby reducing the system runtime. In particular,

while the non-density-based system would have created xndb

generations to obtain the ydb fitness value, our density-based

proposed system would obtain this value in its first generation.

The initial executions would be avoided and, therefore, this

approach would save crucial time.

III. SIMULATION ENVIRONMENT

Regarding the traffic simulation, we use the Simulation

of Urban MObility (SUMO), an open source, microscopic,

continuous-space traffic simulator designed to handle large

road networks [10]. To increase the level of realism of our

simulations, we use real scenarios consisting of downtown

areas from the cities of Rome (Italy), and New York (USA)

imported directly from OpenStreetMap [11].



Fig. 5. Example of fitness function values using both proposed intelligent
systems (i.e., Evolution Strategy and Density-Based Evolution Strategy).

TABLE I

PARAMETERS USED FOR THE SIMULATIONS

Parameter Value

number of simulations 100
roadmaps Rome and New York

warm up time 60 seconds

roadmap size 2000m × 2000m
number of vehicles 500 and 1000
number of collided vehicles 1
warning message size 18KB [12]

beacon message size 512B
warning messages priority AC3
beacon priority AC1
interval between messages 1 second

RSU deployment policy Uniform Mesh [13]

MAC/PHY 802.11p

radio propagation model RAV [14]

mobility model Krauss [15]

channel bandwidth 6Mbps
max. transmission range 400m

All simulation results consist of an average of over 100 runs

with different scenarios, densities and fitness functions. Each

simulation consist on vehicles circulating during 600 seconds.

We simulate a car accident taking place at 60 seconds. We use

the first 60 seconds as a warm up period to achieve a stable

state. During this time, vehicles follow random routes. At the

time of the accident we capture the current estimated location

of all the vehicles and their target location. Then, we apply our

proposed approaches to calculate the new vehicle routes, and

to perform a comparison analysis. Additionally, we consider

a non-static start and end position for the emergence vehicle,

since an ambulance does not have to be always at the same

place and the accident can occur in any location. Table I shows

the parameters used for the simulations.

Table II shows the main features of each map for the cities

under study. Specifically, we obtained the number of streets,

the number of junctions, and the number of lanes per street.

We also added a column labeled as SJ Ratio, which represents

the result of dividing the number of streets between the number

of junctions, thereby indicating the roadmap complexity. As

shown, the first city (New York) presents an SJ ratio of 0.5130,

TABLE II

MAP FEATURES

Map Streets Junctions lanes/street SJ Ratio

New York 257 500 1.573 0.5140

Rome 1655 1193 1.0590 1.3873

TABLE III

PARAMETERS USED FOR THE EVOLUTION STRATEGY

Parameter Value

number of simulations 100
population number 5
number of descendants 10
number of generations 20
fitness functions Equations 5, 6, and 7

mutation Uncorrelated Mutation with n Step Sizes

recombination Local Discrete

parents selection Randomly

survivors selection (µ + λ)

which indicates that it has a simple topology, whereas Rome

presents a greater SJ value, which indicates a more complex

topology.

In order to obtain the real-time traffic density to provide this

information to the system, we apply the Density Estimation

Function presented in [8], which uses the number of beacons

received by each Road side Unit (RSU) (parameter x), and

the SJ Ratio (parameter y) to accurately estimate the vehicle

density of a given area.

IV. SIMULATION RESULTS

In this Section we present the simulation results of our

four proposed approaches. First, we show the results obtained

using the Evolution Strategy System. Our goal is to study

the number of required generations to obtain the function

convergence values. Then, we compare the Dijkstra, the

Density-Based Dijkstra, and the Evolution Strategy Systems,

demonstrating that by applying an evolution strategy we are

able to obtain better results. Finally, we present a comparison

between the Evolution Strategy and Density-Based Evolution

Strategy Systems, with the aim of proving that adding traffic

density information allows the evolution strategy to obtain

better results using a smaller number of generations.

A. Evolution Strategy

In this Subsection, we show the obtained results using

our proposed Evolution Strategy and we analyze the number

of generations required to obtain the function convergence

value. Table III shows the parameters used for the Evolution

Strategy used. Figures 6 and 7 present the obtained results.

As expected, the system obtains the best emergency services

arrival times when applying Equation 5 as a fitness function

(i.e., the fitness function that gives doubled importance to the

emergency services arrival time) in all simulated scenarios.

Also, we can observe that, when using Equation 7 as a fitness

function, our system is able to reduce the travel times of the

rest of vehicles, although this solution slightly increases the

emergency services arrival times. On the other hand, results

indicate that when applying Equation 6 as a fitness function

we are able to reduce both the emergency services arrival
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Fig. 6. Emergency services arrival times, using the Evolution Strategy in the scenarios of: Rome (Italy) (a) 125 vehicles/km2 , and (b) 250 vehicles/km2 ,
and New York (USA) (c) 125 vehicles/km2 , and (d) 250 vehicles/km2 .
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Fig. 7. Mean travel times of the rest of the vehicles, using the Evolution Strategy in the scenarios of: Rome (Italy) (a) 125 vehicles/km2 , and (b) 250
vehicles/km2 , and New York (USA) (c) 125 vehicles/km2 , and (d) 250 vehicles/km2 .



time and the rest of vehicles travel time, but they are not

reduced in the same degree as when using the other two fitness

functions. Since the main goal of our proposal is to reduce

the emergency services arrival time as much as possible, we

select Equation 5 as the best fitness function, which is able to

minimize this time. In addition, as shown in Figure 6, by using

this configuration the system obtains the function convergence

values in 10 generations or less.

B. Dijkstra, Density-Based Dijkstra, and Evolution Strategy

Comparison

For the purpose of knowing which one is the best system, we

analyze the results obtained with the configuration proposed

in the previous Subsection (i. e., 10 number of generations,

and Equation 5 as the fitness function), since they were the

best parameter values when using the Evolution Strategy.

Table IV shows the average travel times of the emergency

vehicles and the rest of vehicles (in seconds), when varying

the roadmap scenario, the vehicle density, and the traffic re-

routing approach. As shown, when using the Density-Based

Dijkstra system we improve in all scenarios compared with

the application of pure Dijkstra. In particular, we reduce

emergency services travel times by 13.92% on average (i. e.,

19.33% in Rome, and 8.51% in New York). Also, we reduce

the rest of vehicles travel time by an average of 8.53% (i.e.,

5.45% in Rome, and 11.61% in New York).

On the other hand, the Evolution Strategy significantly

reduces the emergency services arrival time, although it in-

creases the travel time for the rest of the vehicles. Specifically,

this system reduces emergency services travel times by an

average of 34.12% (40.36% in Rome, and 27.88% in New

York). However, it increases the travel time for the rest of the

vehicles by 10.03% on average (10.53% in Rome, and 9.53%

in New York). Although this intelligent system increases the

travel time for the rest of the vehicles (a maximum of 16.27%),

it can significantly reduce the emergency services travel time

(a minimum of 26.35%).

C. Comparison Between Evolution Strategy and Density-

Based Evolution Strategy Systems

In this Subsection we compare our two proposed intelli-

gent algorithms (i.e., Evolution Strategy and Density-Based

Evolution Strategy). Simulations were performed using the

parameters showed in Table III, but, in order to simplify the

comparison, we only simulate our systems using Equation

5 as the fitness function. As shown in Figure 8, the results

obtained when applying the Density-Based Evolution Strategy

system are better than when using the Evolution Strategy.

Also, we can observe that the Density-Based approach allows

obtaining smaller emergency services arrival times with fewer

generations, since we consider traffic density when initializing

the population.

In addition, we compare the Density-Based Evolution Strat-

egy system results with those obtained when using the Dijkstra

system. As shown in Table V, we reduce the emergency

services travel times by 52.37% on average (53.58% in Rome,

TABLE V

SIMULATION RESULTS

Dijkstra Density-Based

Scenario Vehicles/km2 Evolution Strategy

Vehicles Emgcy. Vehicles Emgcy.

Avg. t. Serv. Avg. t. Serv.

Rome
125 222.91 190 249.36 89

250 112.27 209 126.51 93

New York
125 151.43 68 171.06 31

250 143.46 83.5 157.44 43.5

and 51.16% in New York). However, this system increases the

rest of vehicles travel time by 11.82% on average (12.27% in

Rome, and 11.36% in New York). Although this intelligent

system increases the travel time for the rest of vehicles (a

maximum of 12.96%), it can significantly reduce the emer-

gency services arrival time (a minimum of 47.9%).

Since one of the most important goals of our approach is

reducing the emergency services travel times, the Density-

Based Evolution Strategy system is the best one among all

the proposed solutions. Once again, we demonstrate that traffic

density is a key factor in vehicular scenarios.

V. CONCLUSIONS

In this paper we propose four different approaches to

reduce the emergency services arrival time when an accident

occurs, trying to avoid traffic jams that could result from this

particular situation. Specifically, we present two systems based

on Evolution Strategies which obtain a sub-optimal solution

in a reduced time.

Results show that the Density-based Evolution Strategy

performs better than the rest. In particular, this approach

reduces the emergency services arrival time by a minimum

of 47.9%, increasing the travel time of the rest of vehicles by

just 12.96% in the worst case when compared to the rest of

our proposed algorithms that obtain an improvement of 5.99%

(Density-Based Dijkstra), and 26.35% (Evolution Strategy),

respectively.
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