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Abstract: Osteoarticular pathologies very often require an implementation therapy to favor 

regeneration processes of bone, cartilage and/or tendons. Clinical approaches performed on 

osteoarticular complications in dogs constitute an ideal model for human clinical 

translational applications. The adipose-derived mesenchymal stem cells (ASCs) have 

already been used to accelerate and facilitate the regenerative process. ASCs can be 

maintained in vitro and they can be differentiated to osteocytes or chondrocytes offering a 

good tool for cell replacement therapies in human and veterinary medicine. Although 

ACSs can be easily obtained from adipose tissue, the amplification process is usually 

performed by a time consuming process of successive passages. In this work, we use 

canine ASCs obtained by using a Bioreactor device under GMP cell culture conditions that 

produces a minimum of 30 million cells within 2 weeks. This method provides a rapid and 
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aseptic method for production of sufficient stem cells with potential further use in clinical 

applications. We show that plasma rich in growth factors (PRGF) treatment positively 

contributes to viability and proliferation of canine ASCs into caprolactone  

2-(methacryloyloxy) ethyl ester (CLMA) scaffolds. This biomaterial does not need 

additional modifications for cASCs attachment and proliferation. Here we propose a 

framework based on a combination of approaches that may contribute to increase the 

therapeutical capability of stem cells by the use of PRGF and compatible biomaterials for 

bone and connective tissue regeneration. 
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1. Introduction 

In the field of regenerative medicine, an increasing number of strategies propose a combination of 

different therapeutic approaches that have improved the regeneration process when applied alone. 

Numerous strategies of tissue engineering presently under development in humans and animals include 

transplants of stem cells to regenerate damaged tissues and organs and constitute a promising approach 

for bone and adjacent tissues regeneration [1]. The use of mesenchymal stem cells to repair bones and 

joint tissues, such as cartilage and tendon, offers therapeutic alternatives [2,3] and constitute a real 

hope for the use in traumatic, degenerative and inflammatory disorders associated with these 

tissues [4,5]. Adipose-derived stem cells (ASCs) constitute a source of stem cells of easy and rapid 

isolation from adipose tissue that can differentiate to multiple lineages, including osteoblast and 

chondrocytes [6–8]. Non-aggressive invasive biopsy from subcutaneous adipose tissue and  

suction-assisted lipectomy (liposuction) are frequent techniques used to obtain adult adipose-derived 

stem cells. New approaches for ASC amplification and isolation are being developed [8,9]. Their main 

goal is to generate sufficient number of stem cell for clinical applications, including autologous 

transplantation approaches that would avoid undesired immunoreactions. In fact, during last decade, 

much effort is being implemented to increase the yield, efficiency and therapeutical capability of stem 

cells, including the use of different growth factors as those associated with platelet rich plasma growth 

factors (PRGF) [10]. PRGF might constitute an autologous source of growth factors (GFs) that can 

contribute to tissue regeneration [11,12]. In fact, PRGF contains GFs that induce growth of 

mesenchymal stem cells (MSCs) and osteogenic lineage cells which can accelerate bone repair [13]. 

Therefore, a combination of ASCs and PRGF can produce a synergistic effect to increase the yield on 

bone formation and consolidation [14]. Additional strategies in tissue engineering in osteoarticular 

pathologies involve a combination of ASCs with coral scaffolds resulting in the successful repair of 

canine bone defects [1]. Moreover, a variety of polymeric scaffolds for replacement into the injured 

tissue has been of interest for several research groups during the last decade. In fact, the scaffold 

biocompatibility within the tissue environment has already been for different materials (reviewed 

in [15,16]). A variety of naturally derived and synthetic biomaterial scaffolds have been investigated 

as 3D environments for supporting stem cell growth. Natural biomaterials are often composed of 

elements found in the extracellular matrix that favor cell adhesion that improve cell culture and usually 
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show biodegradability. Synthetic scaffolds can be synthesized to have a greater range of mechanical 

and chemical properties often offer greater reproducibility are easy to manipulate and have no risk of 

viral infection. Additionally, they can be reproducibly manufactured on a large scale, with a variety of 

specific properties. Despite good biocompatibility of biomaterials, many synthetic scaffolds lack  

cell-adhesive properties and need additional modifications to allow cell-surface interactions. 

Caprolactone 2-(methacryloyloxy) ethyl ester (CLMA), allows enhanced cellular adhesion and 

proliferation [17]. CLMA generates scaffolds with controlled porosity for tissue engineering [18] that 

may favor the integration of stem cells in the damaged tissue that after differentiation would allow 

sites for regeneration in osteoarticular –related pathologies. ASCs isolated under aseptic conditions 

and amplified in GMP clinical-compatible criteria allow for better translational applications. Here we 

propose to create a biological and synergistic framework formed by a combination of PRGF, that 

positively contribute to the survival of cASCs, and the use of biomaterial scaffolds of CLMA as a 

compatible platform to fill the gap in the damaged tissue for optimal recovery.  

2. Results and Discussion 

2.1. Canine ASC Isolation and Characterization 

Tissue engineering has become a promising strategy to overcome the limitations of autologous 

transplants for therapeutical applications and has grown exponentially in the last two decades. The 

usual approaches propose to transplant active elements such as cells for gene-therapy, stem cells or 

proteins within a porous degradable material known as a scaffold. Since stem cells are naturally 

engrafted in active 3D microenvironments in vivo, current tissue engineering approaches often try to 

mimic the stem cells niche. Many proposed methods for engineering replacement tissues accurately 

mimic these microenvironments by culturing stem cells in 3D biomaterial scaffolds. In general, 3D 

scaffolds provide an appropriate establishment of cell polarity in the environment and possess 

biochemical and mechanical properties similar to the damaged tissue. Here we obtained cASC under 

aseptic conditions to be amplified following GMP criteria compatible for clinical use. cASCs were 

obtained from five different dogs after inguinal fat biopsy. Twenty grams of subcutaneous fat were 

processed enzymatically (collagenase) washed and centrifuged several times until obtaining a cell 

concentrate in sterilized conditions. cASC enrichment and expansion, containing autologous serum in 

the growth medium, was achieved by the use of a Bioreactor with temperature, oxygen and CO2 

controlled (Soluciones Bioregenerativas-Proteal, Barcelona, Spain). A minimum of 30 million cells are 

delivered within 2 weeks providing a rapid and aseptic method for stem cells production and further 

use in clinical applications. Two weeks after fat biopsy the concentrated cell suspension was further 

characterized by using CD90 as a stem cell marker. Flow cytometry analysis showed that half of the 

population at passage 0 positively reacts to CD90 hybridization (Figure 1a). CD34 (hematopoietic cell 

marker) hybridized with almost 40% of the remaining cell population (data not shown). Subsequently 

passages of cASCs in adherent conditions significantly enriched the CD90 positive population up to 

P5 (Figure 1a). Morphological analysis of cASC after three consecutive passages showed feature 

correlation and resemblance to mesenchymal stem cells (Figure 1b, upper panels). cASCs obtained 

from five different dogs were seeded (5 × 105 cells) and counted after three consecutive passages. A 
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consistent and exponentially growing proliferative curve was found for all tested samples in growth 

medium containing 10% fetal bovine serum (Figure 1b).  

Figure 1. Canine adipose-derived mesenchymal stem cells (cASC). (a) Flow cytometry 

analysis of CD90 positive population of ASC at passages 0 (before adherent cell culture 

conditions), and passages 3 and 5 (in adherent conditions). * P < 0.05; (b) Upper panels: 

phase contrast microscopy representative images of ASC grown in adherent conditions at 

P1-3. Lower panel: Cell growth curve of ASC quantified from five independent samples at 

P1-3 and values were expressed as mean ± S.D. * P < 0.05.  

 
 

2.2. Influence of PRGF in cASC Growth 

The use of PRGF constitutes a source of cell signaling molecules and can contribute to tissue 

regeneration [11,12], also in combination with stem cells to reduce the time of consolidation in 

distraction osteogenesis [19]. Since PRGF represents a source of growth factors, it can favor the 

adhesion and proliferation of mesenchymal stem cells on 3D ceramic scaffolds [20]. However, the 

benefits of PRGF are still under evaluation since inconsistent results have been reported. This 

controversy may be caused by individual variation in growth factor concentration in PRGF [21]. We 

determined the effects of increasing concentrations (1%, 5% and 10%) of PRGF in cASCs 

proliferation. Confluent cultures were reached when cASCs were treated with 5% PRGF for 24 hours 

(Figure 2a). Untreated cells and those treated with PRGF (5%) were stained with Giemsa to improve 

visualization (Figure 2a). Significantly increased proliferation (P ≤ 0.05) of cASCs after treatment 

with 1%, 5% and 10% PRGF was quantified by MTS assay (Promega, USA) (Figure 2b). 

Transcriptional expression of the pluripotent markers Nanog, Sox2 and Oct4 was evaluated by  

semi-quantitative PCR. We detected higher presence of transcripts for all three pluripotent markers 

when cASCs where treated with 5% PRGF for 24 hours that suggests a higher self-renewal of cASCs 

(Figure 2c). A cultured supplement composed of 3% human platelet-poor plasma (hPPP) with a 

cytokine cocktail formed by epidermal growth factor (EGF), basic fibroblast growth factor (bFGF) and 

platelet-derived growth factor-bb (PDGFbb) improves ASC proliferation more than FBS. The addition 

of hPRGF to the described supplement or hPRGF alone also increases ASC expansion [10]. In line 
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with these results, we observed that treatment of cASCs with a combination of FBS with PRGF does 

not change cell viability rates in comparison to those obtained with PRGF alone (Figure 2d). 

Therefore, our results suggest that growth factors contained in PRGF might be sufficient to improve 

the yield of cASCs. 

Figure 2. Plasma rich in growth factors (PRGF) treatment induce ASC proliferation.  

(a) Phase contrast microscopy images of cASC evidence an increased cell density in the 

presence of PRGF (1%, 5% or 10%) in a PRGF dose dependent manner (a–e; non-fixed 

and non-stained cells, e–f: fixed and stained with Giemsa); (b) Quantification of the 

proliferative activity of cASC in the presence or absence of PRGF (0, 1, 5 or 10%) for 

24 hours, * P < 0.05 vs. 0% PRGF. The mean ± S.D. of three different experiments is 

represented; (c) Semiquantitative PCR stemness-related gene expression in cASC treated or 

not with PRGF (5%); (d) Quantification of the proliferative activity of cASC in the presence 

or absence of 1% PRGF for 24 hours, with or without FBS (10%) in the growth medium.  

* P < 0.05 vs. 0% PRGF. The mean ± S.D. of three different experiments is represented. 

 
 

2.3. cASCs Exhibit Improved Adaptation to CMLA Scaffolds and Higher Proliferation When Treated 

with PRGF  

To our knowledge, there is a lack of proposals that combine stem cells, scaffolds and the PRGF, an 

optimal autologous source of growth factors. For instance, dental implants, using tissue engineered 

bone with natural fibrin scaffolds, stem cells and PRGF alone or in combination was previously 
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proposed in dog [22]. The authors show a significant increase of bone-implant contact in dogs treated 

with a combination of mesenchymal stem cells, PRGF and fibrin. Fibrin has many advantages as a cell 

delivery vehicle in terms of biocompatibility, biodegradation and hemostasis [23,24] and can provide a 

permissive environment for cell growth with increased proliferation and survival of human bone 

marrow stromal cells in porous scaffolds [25]. This bioactive factor/scaffold has disadvantages when 

used as scaffolds, such as low rigidity that can produce shrinkage of scaffols and rapid degradation that 

would not permit proper bone regeneration. Therefore, other proposals suggest the use of fibrin as an 

adjunt element for sustaining osteogenic capacity of stem cells in mineralized scaffolds [26]. PRGF 

has also been considered as a natural scaffold [19] with advantages such as flexibility, non toxic, no 

immune reaction, complete resorption [27,28]. However, the use of PRGF as a gel can present similar 

disadvantages to fibrin.  

A more consistent material such as those formed by synthetic materials might be required for bone 

regeneration. Pieri and colleagues propose the use of mesenchymal stem cells, platelet-rich plasma and 

fluorohydroxyapatite (FH) scaffold [29]. In general, FH is a main component of bone mineral and 

accepted as a bioactive material with biocompatibility with hard tissues [30], despite its low 

degradation rate, mechanical strength and osteoinductive potential [7,8]. Autologous mesenchymal 

stem cells loaded onto porous ceramic cylinders of hydroxyaparite (65%) and p-tricalcium phosphate 

ceramic (35%) promoted faster consolidation of the fracture [31]. No additional growth factor 

enrichment was performed in this work and the observed high fold increase in the number of 

mesenchymal stem cells was explained through the culture expansion process. However, this is a time 

consuming process and porous ceramic presents a load-bearing capacity for stem cells and tends to 

fracture affected bones in dogs. Adequate cell adhesion to biomaterial implants is critical for a proper 

cell supply into the hosted tissue. Although porous scaffolds for bone tissue engineering present good 

biocompatibility and can be integrated with biological cells or molecules to regenerate tissues [32], 

some synthetic biomaterials need a previous additional modification to allow cell-surface interactions 

and improve adhesion properties of cells.  

Caprolactone 2-(methacryloyloxy) ethyl ester (CLMA), has previously allowed enhanced cellular 

adhesion and proliferation [17]. CLMA generates scaffolds with controlled porosity for tissue 

engineering [18] that may favor the integration of stem cells in the damaged tissue that would allow bone 

regeneration after differentiation. In fact, cASCs are able to adhere to CLMA (Figure 3a–c) without 

additional modifications of CMLA. cASCs cultured in CMLA were distributed throughout the scaffold 

and showed positive proliferative activity when treated with PRGF (Figure 3d–f). 

cASCs seeded on CMLA and treated with 1% PRGF showed higher yield in comparison to cells 

cultured on scaffolds without PRGF (Figure 3d,e). Cell proliferation was quantified by counting 

Phospho-Histone H3 positive cells (mitotic marker) by immunocytochemistry. There were 

significantly more phospho-histone H3-positive cells in cultures treated with 1% PRGF (Figure 3f). 

3. Experimental Section  

3.1. Adipose Tissue Processing and Derived-mesenquimal Stem Cell Culture  

A biopsy of 20 g of inguinal subcutaneous fat from five owner dogs with EPA (Early Psoriatic 

Arthritis) and 120 ml of blood were isolated in sterilized conditions and processed by using the kit 
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DogStem® distributed by Soluciones Bioregenerativas-Proteal (Barcelona, Spain) following its 

manufacturer instructions. Immediately after sample collection, fat biopsy and blood (in anti-coagulant 

container) were sent at 4 °C for cell isolation and amplification in GMP conditions. Two weeks after 

biopsy, we analyzed the isolated and concentrated cells. The cells were maintained in growth medium: 

DMEM (Life Technologies S.A., Alcobendas, Spain) supplemented with 10% heat-inactivated fetal 

bovine serum (FBS), 2 mM L-glutamine, 100 units/mL penicillin and 100 µg/mL streptomycin at  

37 °C, 20% O2 and 5% CO2. All cell analysis was performed up to passage 8. All the sample collection 

was approved and certified by the dog owners with an informed consent. 

Figure 3. PRGF treatment induces cASC proliferation in a methacrylate-endcapped 

caprolactone (CLMA) porously network. (a–c) Ultrastructural view of cASC seed onto 

CLMA scaffolds by scanning electron microscope; (d–e). Confocal images show 

immunolocalization of vimentin (stem-cell marker, green), P-Histone H3 (mitotic marker, 

red) and DAPI (nuclear marker, blue) in cASC-CLMA scaffolds treated or not with PRGF; 

(f) Quantification of P-Histone H3 positive cASC-CLMA cells treated or not with PRGF. 

At least 6 different fields of 3 different experiments were quantified and the mean ± S.D. is 

represented. *P < 0.05 vs. 0% PRGF. 

 
 

3.2. FACS Analysis 

ASC suspension was assayed for cell surface protein expression by flow cytometry (FC500, Cultek, 

Madrid, Spain). Cells at passage 0, 1, 3 and 5 were pelleted, resuspended in PBS at a concentration of 

105 cells/µL, and stained with 1:50 dilution of CD90 antibody conjugated with PE (BD Pharmigen, 

New Jersey, USA). Cells were incubated in the dark for 45 min at room temperature and then washed 

three times with PBS and resuspended in 0.3 mL of cold PBS for FACS analysis. The  

mean ± S.D. of the 5 different tested samples were determined.  
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3.3. PRGF Preparation and ASC Viability and Proliferation 

The PRGF, isolated from three different dogs, were prepared following the standardized method 

previously described by Anitua and collegues [33]. The cell viability and proliferative activity was 

determined by The CellTiter 96® AQueous Non-Radioactive Cell Proliferation Assay (Promega Co., 

Madison, WI, USA) following the manufacturer´s instructions. Briefly, 105 ASC at passages 2–5 were 

seeded onto 96 well plates and were allowed to grow for 24 hours in growth medium. After removing 

the growth medium the cells were treated with different concentrations of PRGF: 0%, 1%, 5% or 10% 

in the presence or absence of 10% FBS and 2 Units/ml of heparin for 24 hours. Every condition was 

assayed in quadruplicate in three different experiments. The viability of cells at each assayed condition 

was expressed as the percentage ratio of the mean ± S.D. of colorimetric signal from treated cells in 

the presence of PRGF in comparison with cells in the absence of PRGF. 

The proliferative curves were assayed in growth medium (in the presence of 10% FBS). ASCs  

(5 × 105) were seeded in 100 cm2 petri dishes and every third day trypan blue exclusion cell counting 

in a neubauer® chamber was performed up to passage 5. The mean ± S.D. of absolute numbers of 

viable cells of the 5 different samples was determined.  

3.4. RNA Isolation and Semiquantitative RT-PCR 

Total RNA was extracted by using the RNeasy Mini-kit (Qiagen, Germany) according to the 

manufacturer’s instructions. One µg of total RNA was reverse-transcribed in a total reaction volume of 

50 µL at 42 °C for 30 min using random hexamer primers. The semi-quantitative PCR amplification 

was performed on a thermal cycler (Eppendorf, Germany) by using the following program, 3 min of 

denaturation at 95 °C followed by 30 cycles of 30 seconds at 95 °C, 15 seconds at 60 °C, 60 second at 

72 °C and a final extension step at 72 °C for 4 minutes. The following primer sequences were used 

sequences: Sox2-Fw_5' AGTCTCCAAGCGACGAAA AA; Sox2-Rv_5': GCAAGAAGCCTCTCC 

TTGAA; Nanog-Fw_5': GAATAACCCGAATTGGAGCAG; Nanog-Rv_5': AGC GAT TCC TCT 

TCA CAG TTG; Oct4-Fw_5': GAGTGAGAGGCAACCTGGAG; Oct4-Rv_5´: GTGAAGTGAGGG 

CTCCCATA;GAPDH-Fw_5':CCATCTTCCAGGAGCGAGAT; GAPDH-Rv_5': TTCTCCATGGTG 

GTGAAGAC. The target gene value was normalized to the expression of the endogenous reference 

(GAPDH). A negative (without a prior reverse transcription reaction) control was always included. 

After amplification, 25 µL of each PCR mix was electrophoresed through a 2% (w/v) agarose gel with 

ethidium bromide (0.1 µg/mL) and visualized under an ultraviolet trans-illuminator (BioRad). The 

specific bands were analyzed by densitometry and the ratio with GAPDH expression was determined 

(all PCR amplifications were performed from 4 different experiments).  

3.5. Giemsa Staining 

ASCs were fixed in 4% paraformaldehyde at room temperature for 10 min and washed with PBS before 

incubating in Giemsa solution (Sigma, St. Louis, MO, USA) for 30 min. The excess stain was removed by 

subsequent washes with distilled water. The cells were allowed to air dry and then visualized under 

the microscope.  
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3.6. CLMA Scaffolds Preparation  

Poly(methyl methacrylate) (PMMA) microspheres with a diameterof 90 ± 10 μm (Colacryl dp 300) 

were used as porogens by introducing them between two plates (of a self-built device whose distance 

could be controlled) and heating at 180 °C for 30 minutes to obtain the first template. This template 

shows the highest porosity attainable (that will yield the lowest porosity of the scaffold) with classical 

compaction values of 60%–65% for random mono-sized spherical particles. To obtain scaffolds with 

controlled porosity, the thickness of the obtained disk was first measured; then the disk was replaced in 

the mould and compressed at 180 °C for 30 min. The degree of compression was quantified by 

measuring the reduction in thickness. After cooling the template at room temperature, a mixture of 

caprolactone 2-(methacryloyloxy) ethyl ester (CLMA, as monomer), benzoin (1 wt %, as initiator) and 

ethylene glycol dimethacrylate (1 wt %, EGDMA) was introduced in the empty space between the 

PMMA spheres. The polymerization was carried out up to limiting conversion under a UV radiation 

source at room temperature. After polymerization took place, the porogen template was removed by 

Soxhlet extraction with acetone for 48 hours. The porous sample was maintained in Soxhlet with 

ethanol in order to extract low molecular weight substances for an additional 24 hours. Samples were 

dried in a vacuum to constant weight before characterization. 

3.7. Morphological Characterization of CLMA Scaffolds  

Morphological analysis of CLMA scaffolds were examined in a scanning electron microscope Jeol 

JSM-5410, SEM. All specimens were coated with a conductive layer of sputtered gold. The 

micrographs were taken at an accelerating voltage of 20 kV in order to ensure a suitable image 

resolution. When cells were seeded onto CLMA scaffolds before SEM analysis a previous fixation 

with 2.5% PFA plus 2% glutaraldehyde for 10 min at RT was performed and then dehydrated in 

graded ethanol concentrations. Critical point dryer (CPD) was performed on an Autosambri 

814 instruments (Rockville, MD, USA) followed by sputter coated with gold before observation.  

3.8. Immunocytochemistry 

Single cells (5 × 105) were distributed in 2 µL per 2 mm2 CLMA scaffold (previously re-hydrated 

by overnight incubation in cell culture medium at 37 °C) or alone (without scaffold) individually set 

into 96 well plates, and incubated for 24 hours. Then ASCs were treated with 0 or 5% PRGF for an 

additional 24 hours in growth medium in the absence of FBS and with 2 Units/ml of heparin. 

Subsequently, the cells were fixed with 4% paraformaldehyde at room temperature for 10 min and 

washed with PBS, permeabilized with a PBS solution containing 0.1% Triton X-100 and blocked with 

5% goat serum in PBS for 1 h. The following primary antibodies were diluted in blocking solution and 

incubated overnight at 4 °C. Vimentin (α-mouse, clone V9 Cat. MAB3400; Millipore, Billerica, MA, 

USA (1:200)) and P-Histone3-Alexa 647 (α-rabbit, Cat. 9716S; Cell Signaling, Boston, USA (1:100)). 

After being rinsed three times with PBS, the cells were incubated with Oregon Green-Alexa647 dye 

conjugated goat anti-mouse IgG 1:400 (Life Technologies S.A., Alcobendas, Spain) secondary 

antibodies for 1 hour at room temperature. All cells were counterstained by incubation with  

4,6-diamidino-2-phenylindole dihydrochloride (DAPI) from Molecular Probes (Invitrogen, Carlsbad, 
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CA, USA) for 3 min at room temperature followed by washing steps. Samples were mounting using 

FluorSave Reagent (Calbiochem, Darmstadt, Germany). Signals were visualized by Confocal 

Microscopy (Leica Microsistemas, Barcelona, Spain). Four different assays were performed and at 

least 6 different fields per condition and assay were analyzed.  

3.9. Statistical Analysis 

Statistical comparisons were assessed by Student’s t-test. All P values were derived from a  

two-tailed statistical test using the SPSS 11.5 Software. A P-value < 0.05 was considered 

statistically significant.  

4. Conclusions  

We propose the use of a new strategy that combines the direct implantation of autologous cASCs, 

obtained and amplified in aseptic conditions, into CLMA proliferative scaffolding structures improved 

by autologous PRGF addition. This strategy offers the ability to rapidly obtain cASCs in aseptic 

conditions required for clinical application and reduces the need of massive proliferation and 

amplification of stem cells by successive culturing. In addition, this proposal avoids further 

chemotaxis of stem cells into the damaged tissue by in situ substitution of the affected tissue with the 

synthetic scaffold CMLA, which has positive osteoconductive properties [34]. The uniform porosity of 

CMLA maintains stem cells with homogeneous distribution and allows cASCs to continue with basic 

biological processes as proliferation. Despite superior biocompatibility of CMLA and the promising 

results observed after treatment of cASC with PRGF in vitro, additional experimentation in vivo is 

required for further translational approaches of the proposed framework to the clinic. Moreover the 

present data significantly contributes to improve the design of osteoarticular combinatory cell-based 

therapies where PRGF contributes to enhance stem cell survival in a well adaptable scaffold niche.  
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