
UNIVERSITY POLYTECHNIC OF VALENCIA

MASTER DEGREE ON COMPUTER ENGINEERING

MASTER FINAL WORK

MONITORING WIRELESS SENSOR NETWORK
NODES WITH A LOW INTRUSION HYBRID

MONITOR

Author:

Marlon Renné Navia Mendoza

Tutors:

José Carlos Campelo, Alberto Bonastre Pina

Valencia, February 2015

To my family, my support and encouragement.

- 2 -

Contents
Abstract...4

1. Introduction...5

2. Objectives and Justification..7

3. Monitoring Tools..8

3.1 Active Monitors..8

3.2 Passive Monitors...9

3.1 Others Monitors Purposes...10

4. The Low Intrusion Active Hybrid Monitor...12

4.1. Architecture of the Monitor...12

4.2. Monitor Operation...15

4.3. Monitor Implementation..18

5. Evaluation and Results..22

5.1. Intrusion on Time...22

5.2. Intrusion on Code...24

5.3. Intrusion on Power Consumption..25

5.4. Frequency for Event Log Generation..26

6. Discussion...28

7. Conclusions...31

8. Future Work..32

References...33

- 3 -

Abstract

Several systems have been proposed to monitor sensor networks—

specially Wireless Sensor Networks (WSN)—in order to debug and

analyze their operation. These systems are based on hardware and/or

software technology, and can be active or passive. Each one of them has

pros and cons, but none is complete at all. Active monitors generate a lot

of intrusion, passive ones do not collect all relevant information about

nodes, and most proposals are far away from real systems or are too

hardware dependent. This work presents an active hybrid monitor with

low intrusion, to be applied on sensor network nodes, which overcomes

most of these drawbacks. Monitor is based in a new purposed open

architecture for Monitoring Platforms which provides flexibility,

universality, and reutilization. Intrusion caused to the sensor node has

been evaluated on three aspects: time, additional code, and power

consumption. Low intrusion has been achieved in all three issues. We

have evaluated interfaces different from traditional serial transmission

proposed by most of similar approaches. It has been proved that the use

of parallel interface or Serial Peripheral Interface (SPI) allows a higher

frequency of event log generation and low intrusion.

Keywords: Monitoring, hybrid monitor, low intrusion, sensor networks.

- 4 -

1. Introduction

Sensor networks have undergone great research and development in recent years.

However their massive deployment has not been too great because sensors networks

may experience problems or errors in their operation. Many causes can be identified,

such as interferences in the transmission medium, security attacks (especially in

WSN [1]), adverse environmental conditions, malfunctioning nodes, and others. The

node faults, their sources, and detection approaches are diverse, as it is detailed in

[2]. Although during development or implementation of this type of network

debugging and operation testing is usually made, when sensors are deployed the

conditions can be very different and usually unanticipated events arise.

The availability of a suitable sensor network failure diagnostic tool is a key issue

in progressing to real-world deployment of WSN. Nowadays there are no standard

tools or standard architectures in this area. Most of proposals in monitoring and

debugging do not consider enough aspects of sensor networks to be fully useful, or

are built for very specific network architectures. There are many challenges in

several aspects—architectural, functional, and dynamic—that have to be researched

according to [3].

The so called monitoring systems—or simply monitors—are used to evaluate the

performance and operation of a sensor network, in controlled conditions or even in a

real environment. Monitors can focus on many performance parameters, such as

throughput, jitter, response time or reliability, and even to security and intrusion

detection in the network, as described in [4].

Monitors usually are built based on one of two possible approaches. Active

monitors involve additional hardware and/or software in sensor nodes, interacting

with it. In this way, active monitors usually require the modification of the sensor

nodes to be monitored. This interferes with its normal operation and measured

parameters may vary from unmonitored node. However, the obtained data are

more reliable.

- 5 -

On the other hand, passive monitors rely on the observation of the external

behavior of the monitored system without any interference with its normal operation.

Usually, behavior algorithms are used to evaluate the presence of errors, undesirable

operation or unexpected events. No incidence on monitored nodes performance is

caused, but only externally observable variables can be measured.

Besides there is another approach for monitors depending if they are based on

hardware or software. A software monitor is implemented by means of a specific

code, application, or plug-in to the operating system of node, which access to the

system status and reports relevant information. Usually, a software monitor has deep

information about the system functioning, but it may interfere with the operation of

the monitored system.

A hardware monitor consists on electronic devices connected to the monitored

system, which recollect data from interesting system points. Hardware monitors use

to be less intrusive than software monitors, but they implies the use of additional

components.

Each monitor approach by itself cannot cover all aspects of monitoring tasks, as

we will study in the next section. Monitors can also combine both approaches in

order to achieve the advantages of both types and obtain a complete vision of the

system, trying to keep the interference to the minimum. These are the so called

Hybrid monitors [5].

In this work an active hybrid monitor with very low intrusion—based on both

hardware and software monitoring methods—is presented. This monitor can record

the events which occur in a node of a sensor network and store them in a non-volatile

memory for later analysis. Moreover it is capable of being incorporated as a part of a

complete monitoring platform that includes other acquisition possibilities, such as

passive monitors, as described in [6].

- 6 -

2. Objectives and Justification

The main goal is to build a monitor system that lets to combine the advantages of

both types of monitors in a single monitoring platform able to monitor the complete

system.

The hybrid monitor is going to work in a standardized way, by using of standard

interfaces and available libraries, but with low intrusion on sensor network nodes.

This monitor system allows to register the events and behavior of sensor network

nodes, as well as to reconstruct the activity of the network. The generated

information can be further analyzed by adequate tools.

The architecture used for hybrid monitor development wants to become a standard

for monitoring platforms, and allows to monitor provides flexibility, universality, and

reutilization.

- 7 -

3. Monitoring Tools

There are several tools and techniques for monitoring sensor networks, most of

them with one approach, and mainly focused to WSN. In [3], an overview and

comparison of most of proposed tools are made, not only monitoring tools but also

debugging ones. In this section a brief summary of some of the most important and

relevant is done.

3.1 Active Monitors

SNMS (Sensor Network Management System) [7] is one of the first and best

known monitoring systems. SNMS is a complete management system, focused on

working with any type of sensor network. It is built on TinyOS—an open source

operative system designed for low-power devices [8]—and allows a review of the

state of a node and even save information locally. Nevertheless, it generates

substantial intrusion—it increases traffic and power consumption—and is oriented

rather to management that monitoring.

Memento [9] and Lightweight Tracing [10] are both examples of active monitors.

Both use short encoding with events and information of sensor node. The first one

adds its code protocol to a message that is going to be transmitted by node. Memento

can detect problems in a node by basing on the information provided by their

neighbors in the sensor network; but for detecting new kinds of failures it requires

node reprogramming.

In Lightweight Tracing [10] the events are saved by using a very light coding in

non-volatile memory for further reconstruction and debugging of node and network

behavior. Because both are active monitors, they generate substantial intrusion in

nodes operation.

Despite its name, Passive Diagnosis for WSN (PAD) [11] is an active monitor

system with little intrusion. It is based in a probabilistic diagnosis approach—based

on a Belief (or Bayesian) Network—to infer the root causes of abnormal WSN

- 8 -

operation. This adds a probe in each node that marks the packets with relevant data

with very little overhead. . However, PAD has to wait a message transmission to send

information and it might not determine when an error has happened. Besides, as far

as non-sense nodes, such as router nodes, do not send sensed data, they are not able

to send any monitor information to infer possible abnormal operation.

3.2 Passive Monitors

Sympathy [12] works as a passive monitor, and can detect and debug pre-and-post

deployment errors. It operates by analyzing the data arriving at the sink of a sensor

network, applying metrics, and inferring where in the network a fault or failure can

be produced. The implementation of this mechanism depends on the knowledge of

the network behavior. It also considers the aggregation of a small overhead on the

network to increase its accuracy. However, it was not developed for event-driven

applications, losing some important information and reducing its accuracy.

SNIF (Sensor Network Inspection Framework) [13], Pimoto [14], LiveNet [15],

SNDS (Sensor Network Distributed Sniffer) [16], NSSN [17], and EPMOSt (Energy-

efficient Passive Monitoring SysTem for WSN) [18] are examples of passive

monitors. Their approach consist on deploying a network of sniffers—together with

the target sensor network—with an interface to capture all transmissions from nodes.

The main difference between them is how the captured data is processed.

SNIF [13] and Pimoto [14] transmit—via a Bluetooth interface—the captured data

to other device in order to process it. In the first case the device that receives the

packets—tagged with a timestamp—works as a sink and analyzes information. The

analysis tool has been developed by the authors.

In Pimoto the device that receives the data—called gateway—is a computer that

tag the packets with a timestamp and forwards it, via TCP/IP, to a central server for

analysis. Pimoto can also works over more than one sensor network simultaneously.

It has a plugin for Wireshark [19]—a traffic analysis tool—in order to analysis data.

However, Pimoto may not be practical for monitoring WSN that has too many nodes

widely distributed, because it needs more infrastructures.

- 9 -

LiveNet [15] merges the traces obtained by sniffers in order to provide

information about dynamics of sensor network, as i.e. node traffic rate analysis,

hotspot identification, network topology discovery, and others. However it does not

detect problems that do not impact on network traffic, and needs reprograming for

additional information.

SNDS [16] works in a similar way that the two above mentioned, but it uses an

Ethernet connection instead of Bluetooth. TCP and UDP protocols are used for data

transmission and synchronization respectively. Nevertheless this monitoring system

needs additional infrastructure due Ethernet connection.

In NSSN [17] sniffers can detect automatically the work frequency of target

WSN. The collected data is sent via wireless—3G, GPRS, Wi-Fi—to a monitor

server which parses, pre-processes, and stores data in a database. The information

stored in the server can be accessed by clients in order to look it or analyze it.

Although the multiple radio channel option is an interesting feature, it cannot avoid

the problems of differences in radiofrequency circuits and signals.

EPMOSt [18] is a passive monitoring system focused on the reduction of energy

consumption of monitoring network. EPMOSt selects the nodes that their packets

will be captured by each sniffer, so there are not duplicated captured packets. This

system provides information using a SNMP (Simple Network Management

Protocol) agent.

Most of passive monitors can provides real-time analysis of information about

sensor network. Nevertheless all these tools only capture the transmitted frames “on

the air” but not obtain information directly from nodes; so some information about

sensor network behavior may not be available.

3.1 Others Monitors Purposes

Minerva [20] is not a monitor, but a testbed for WSN. It uses a debugging port and

tracing port connected to the sensor node to observe the behavior of the node.

Minerva has very interesting features but is not too adequate for monitoring in real

environments and is more oriented to debugging.

- 10 -

Finally, Spi-Snooper [21] integrates hardware and software in a hybrid approach.

The hardware architecture joins in a piece the sensor node and the monitor in a

transparent way, using a SPI interface to communicate them. The software

architecture has two operation modes: active and passive. In passive mode the

monitor—called co-processor—mainly logs the communication through the SPI bus

and check son node data. In active mode it assumes the control of SPI and radio

interface. However, it can only be used in sensor nodes that transmit through a SPI

port. Only the data transmitted through this SPI interface may be monitored.

Each one of these proposals has pros and cons. Proposed active monitors usually

involve much intrusion. Passive monitors only can monitor transmitted data, but they

are not able to know what happed inside the node. Addition of monitoring

information to a transmitted message — or new messages to the network —produces

a decrease of network performance. Monitors based exclusively in software are not

able to work if the node fails. Hardware-based proposed monitors are too

architecture-specific. A monitor system with wide enough network information

coverage, while keeping low intrusion is then necessary. Furthermore, it has to be

generic enough to be applied to all hardware architecture. In this work more

interesting characteristics of these studied proposals have been considered as a base

for design of our monitoring system, while trying to minimize the drawbacks of

previous tools.

- 11 -

4. The Low Intrusion Active Hybrid Monitor

In [22] is presented a first approach of the proposal. The system is based on the

proposed architecture presented in [23]. The main characteristics of the monitoring

platform—according to [6] and [23]—should be:

 It must have the greatest possible independence between the application /

network and monitor.

 The intrusion in both software and hardware should be minimal.

 The system must be able to record information of the nodes.

The proposal architecture and operation mode are presented in this section. . It is

based in a standard-oriented architecture, in order to provide advantages such as

universality, reusability and flexibility. A simple and little intrusive operation mode

has been defined for the hybrid monitor

4.1. Architecture of the Monitor

The architecture of this hybrid monitor is based in the proposal presented in [23].

This model is based on the division of the monitoring issues in three layers:

Monitoring Layer focuses on relevant information—data capture, analysis and

visualization—; Information Layer deals with information coherence—data

format, synchronization and triggering—; and finally Interchange Layer supports

communication and storage. Figure 1 shows the layers and components of this

architecture.

One of the main goals of this model is to aid in the design of new WNS

Monitoring Platforms (WNS-MP). This approach offers several new interesting

features, such as universality, adaptability, flexibility and simplicity; finally, it is

ready to follow the future evolution of sensor networks and their monitoring systems.

- 12 -

Figure 1. Architecture for WSN monitoring systems proposed in [23].

In this three layer architecture the communication between layers and entities in

the same layer is similar to the standardized in the OSI (Open Systems

Interconnection) reference model for networks [24]. Each layer defines interfaces to

communicate with the next.

One of the advantages of working with a defined architecture is that changes and

developments in an entity/layer should not affect the others. Hence, any

improvement to the monitor system will be easier to develop and implement.

Besides, reutilization of this hybrid monitor in other sensor network is easy by

making the changes in the respective layer.

The active hybrid monitor includes both software and hardware parts, as Figure 2

shows. The software part consists of Software Traps added to the sensor network

nodes, and constitutes the monitoring layer entity. These software traps—located into

the code of the monitored node—send a numeric code when executed, usually related

to significant operations in the node, such a state change or event occurring, and

optionally additional information (such state variables, message contents) as it will

be explained later.

- 13 -

Figure 2. Layered architecture of hybrid monitor.

The hardware part of hybrid monitor covers the others two layers in the reference

architecture. The information layer entity of the hybrid monitor is implemented by

the monitor node. It is connected to the sensor network node through a standard

interface.

In this proposal, interchange layer entity is implemented by means of a storage

device attached to the monitor node, where the collected data will be stored. The

communication with monitor node is done through a serial interface, as described in

Figure 2.

Figure 3 shows monitor components and their location in the architecture, as well

as the communication direction. Two routines are included inside the sensor node.

First of them—which can be called as a function by the node application—prepares

the log data about events to be sent to the monitor. The second one is activated when

an ACK (Acknowledgment message) interruption is received. This routine sends the

rest of data if necessary. The ACK mechanism was found be necessary for flow and

error control in early experiments, especially for higher data sizes. These software

routines belong to the Monitoring Layer.

- 14 -

The monitor node implements the information layer entity of the hybrid monitor.

It uses its built-in RTC (Real Time Clock) to generate timestamps for the sensor node

events. The monitor node sends an ACK every time an event, or part of it, is received

and saved. This information, with a defined format that includes timestamp

information, is stored for further analysis. Monitor node is responsible for attaching

the timestamp to collected data, and store it in an adequate format into the

interchange layer. For connection between sensor node and monitor node we have

considered standard interfaces available in most of nodes.

Figure 3. Components of hybrid monitor by layer.

As Figure 3 shows, in the actual implementation the interchange layer consists of

a non-volatile memory where the events information will be stored. This approach is

similar to the used in Lightweight Tracing [10], but memory is attached to the

monitor node instead of to the sensor node. In our implementation a Secure Digital

(SD) card is used. Further versions of the interchange layer would include a radio

interface to transmit the collected information, either in real time or in scheduled

manner.

4.2. Monitor Operation

The main idea of hybrid monitor is that event logs are generated during working

time—when sensor node is operating—or when an interruption is activated. Figure 4

- 15 -

shows a scheme of monitor operation. A signal—with information of the event—is

sent from sensor node to monitor node when a relevant event—that we want to

register—occurs.

Figure 4. Hybrid monitor operation scheme.

The operation time of the monitor has to be simple in order to reduce the intrusion

in the network nodes. Figure 5 shows the data flow and operation of hybrid monitor.

Figure 5. Flowchart of hybrid monitor operation.

- 16 -

Specific functions have been defined to register node events, and they are

included in the node. There are two functions added to sensor network node: One can

be located where log information required, and the other is activated by an

interruption when the ACK is received. When sensor node reaches a software trap, it

invokes the Start Send Function in order to make relevant data (contained in

TXData[] structure) to be sent to the monitor node. This function prepares the

data to be transmitted, and then it sends the first part of data to the monitor node, and

activates a flag that indicates a transmission process. Then the function returns the

control to the main node application.

The data sent to the monitor may include additional information with the event

code. The way to obtain the additional data depends of the sensor node.

This possibility allows increasing the accuracy of obtained information. For

example, a log of an error event with an additional code that describes the kind of

error may be obtained. It is also possible, when dealing worth retransmission events,

to add to the trap part or the entire message, in order to differentiate between

messages.

Finally, it is also possible add a code to indicate the reason of the wakes up of the

node. This is a significant improvement in comparison with other proposals that only

register events but cannot handle additional information about them.

The monitor node is always waiting for information sent from the sensor node.

When data from sensor node is received, monitor node stores it with the appropriated

timestamp. This timestamp has to be generated in case of a new event log. Then an

ACK message is sent to the sensor node. When the sensor network node receives the

ACK the next part of information may be sent if necessary; or transmission flag may

be deactivated. This mechanism can be considered semi-blocker and reduces the

intrusion for the sensor node.

The events are coded in 4 bits. These codes have already been defined earlier in

[22] and are shown in Table 1, although this definition can be modified or increased,

in order to enhance the accuracy.

- 17 -

Monitor node stores information with a predefined format. This format includes

the timestamp, the log code, and additional information if apply; and it must be easy

to analyze with an adequate application.

Table 1. Event codes defined by authors in [22].

Code Meaning
#define Log_Reset 0x00 //Node Reset/Initialization
#define Log_Sense0 0x01 //Read sensor 0 (first/unique)
#define Log_Sense1 0x02 //Read sensor 1 (second if it’s)
#define Log_Sense2 0x03 //Read sensor 2 (third if it’s)
#define Log_Wakeup 0x04 //Wake up from sleep/stop
#define Log_RxData 0x05 //Node receives data
#define Log_TxData 0x06 //Node sends data
#define Log_RxACK 0x07 //Node receives ACK
#define Log_RRoute 0x08 //Node reroutes data (if apply)
#define Log_Sleep 0x09 //Node goes to sleep mode
#define Log_Stop 0x0A //Node goes to stop mode
#define Log_LowBat 0x0B //Low battery indication
#define Log_SinkRx 0x0C //Sink receives data
#define Log_SinkTx 0x0D //Sink sends data
#define Log_SinkEr 0x0E //Error in sink
#define Log_Error 0x0F //Error in node

4.3. Monitor Implementation

The monitor node has been developed on a STM32F051R8T6 ARM Cortex-M0

microcontroller (MCU) [25] implemented on a STM32F0 Discovery Board [26].

This microcontroller is a 32-bits core high performance MCU, and it has these main

features:

 ARM Cortex-M0 core up to 48MHz.

 Memory: 64KB of flash memory, 8KB of RAM.

 Several GPIO (General Purpose Input-Output) ports.

 Connectivity: USART (Universal Synchronous Asynchronous Receiver-

Transmitter), SPI, I2C.

 Control: 3-phase PWM (Pulse-Width Modulation) control timer, PWM

timers, basic timer, comparators.

- 18 -

 Real Time Clock onboard or externally supplied.

 Digital-Analog and Analog-Digital converters.

The monitor board has been connected to a SD card through its SPI interface.

Figure 6 shows the implementation of the hybrid monitor. The monitor node—at left

side—is connected to a sensor node—at right side—that is used for testing. It has

attached the SD card used to store data. In case of Figure 6 the SPI interface is also

used to connect the monitor node to the sensor node.

 Figure 6. Picture of a sensor node connected to the monitor node.

In order to evaluate the most appropriate communications interface between

sensor node and monitor node, three different interfaces implementation—usually

found in most of microcontrollers—have been used: SPI, USART, and finally

parallel transmission, using 16 GPIO ports. Parallel and SPI data width is 16 bits, and

USART data width is 8 bits. Besides, three transmission speeds were evaluated for

SPI interface. To compare the performance of each interface, four sizes of

transmitted data (common sizes of 16, 32, 64, and 128 bits per trap) have been

assumed. . The bigger the data being transmitted, more detailed the information

provided in each trap, but higher the interference.

A library should be added to the code implementation on sensor node with the

instruction sets for initialization and data transmission. As far as the ARM

- 19 -

architecture may be the most used in sensor node implementation, and in order to

provide a standardized level CMSIS (Cortex Microcontroller Software Interface

Standard) has been used to create this library. CMSIS is a vendor-independent

hardware abstraction layer and can be used on many microcontrollers [27]. This

library can be adapted easily for others architectures with the correspondent

instructions. As far as the messages sent through the interface between sensor node

and monitor node (SPI, USART or Parallel) are the same that previously cited ones,

monitor node needs no modification.

For evaluation of the monitor node a sensor node based in an ARM Cortex-M0 at

48MHz was used. Every time this sensor node wakes up from sleep mode, it takes a

measurement from a temperature sensor, transmits the measurement via wireless, and

turns back to sleep mode for 60 seconds again.

Traps have been inserted in the program of the sensor node to register three kinds

of events: wake up, transmission, and sleep. These codes are sent to the monitor

node, which reflects them into ASCII text separated by commas, and stores these

data and its timestamp in a SD card. Figure 7 shows part of the information

generated by the hybrid monitor and recovered from this SD card.

Figure 7. Information recovered from the SD card attached to the monitor node.

In case of Figure 7 information includes date, time, microseconds, event code, and

additional data. Event codes 04, 06 and 09 (Table 1) have been used for wake up,

- 20 -

transmission and sleep events, respectively. Additional values for wake up and

transmission events—also sent as additional information—indicate the iteration

number. All this data can be delivered to the visualization and control subsystem

(Figure 1) by using the information layer services.

- 21 -

5. Evaluation and Results

In order to evaluate the characteristics of the proposed monitor, intrusion analysis

is required. Three are the main intrusion aspects that must be considered. Time

intrusion deals with the increment of execution time on sensor node caused by the

monitor. Taking into account that sensor nodes use to be limited in RAM memory,

Code intrusion evaluates how many bytes have to been added to source program of

this sensor node. Finally, Power intrusion evaluates the amount of energy that this

monitoring technique requires from the sensor node, and thus reducing its battery

life. Several experiments have been performed, considering the previously cited

interfaces and data sizes, to measure the intrusion of the active hybrid monitor.

Obtained results are shown in this section.

5.1. Intrusion on Time

Time intrusion was determined by measuring the amount of time needed to fulfill

one thousand wake-up iterations in the sensor node without traps (reference time),

and then measuring when traps were added. Three interface implementations and

four data sizes were combined to provide the table 2. This table shows the difference

between the obtained time and the reference time, and thus the time intrusion.

Table 2. Intrusion on time for each log event with different interfaces and data sizes

(microseconds).

Data Size
Parallel
(16bits)

SPI 18mbps
SPI

4.5mbps
SPI

2.25mbps
USART

115.2kHz

16bits 3.80 3.10 3.10 3.20 6.20

32bits 7.30 6.10 6.20 6.20 13.60

64bits 16.50 13.00 13.10 13.10 28.80

128bits 31.90 28.10 28.10 28.20 60.60

As shown, the intrusion time is similar for different interfaces with the same data

size, due to the implementation of the monitor code in the sensor node: As far as data

transmission through the interface is performed by specific hardware (SPI controller,

USART, others), trap routines only write the outgoing data into the interface buffers

- 22 -

and the sensor node program may continue. These hardware controllers take care of

transmission in parallel to this program execution.

Parallel interface has no dedicated hardware controller. That is the reason that the

time is little bigger than the others. An additional line is used to generate the

transmission interruption in the monitor node. As expected, intrusion time increases

for larger data sizes.

However, values in Table 2 cannot be used as a reference to know the maximum

frequency for the event log generation, because it depends on the peripheral using

time (communication hardware) and the monitor node hardware. Besides, the times

of Table 2 are a sum of non-continue values. Time limitations on SPI controller,

USART and parallel ports must also be considered. In case of USART the intrusion

time is about double because it only sends 8 bits per transmission and it has to

manage twice of interruptions.

The processing time in the monitor node was measured too. Each event log has to

be processed in one or more data reception interruption, according to data size

transmitted from sensor node. The processing time is considered from the arrival of

the first data to the receiving of the last piece of information. The timestamp

generation takes 15.8 microseconds, and is done when the first piece of data arrives.

Table 3 shows the obtained values.

Table 3. Processing time in monitor node for each event log (microseconds).

Data Size
Parallel
(16bits)

SPI 18mbps
SPI

4.5mbps
SPI

2.25mbps
USART

115.2kHz

16bits 17.80 17.40 17.40 17.40 88.40
32bits 22.90 23.40 25.40 27.80 262.00
64bits 32.90 34.40 40.10 48.20 612.00
128bits 52.80 56.20 69.80 88.00 1300.00

As shown in Table 3, when dealing with 16 bits events the obtained times are

similar for every interface, as far as process time depends mainly on timestamp

generation. For larger data size the processing time is a bit less when using parallel

interface instead of SPI, especially when the SPI speed is low.

- 23 -

In the case of the USART interface, the processing time is very larger, because its

low transmission speed and the fact that it only can send 8 bits at a time, whereas

other considered options can send 16 bits at a time. As expected, the processing time

increases for larger data sizes.

Should be noted, values of Tables 2 and 3 may change in some cases. A monitor

node based on a faster microcontroller will reduce the timestamp generation time,

hence will reduce the processing time and increase the performance. Besides, the

time intrusion and processing time could change depending of sensor network node

characteristics, such as core frequency, availability of buffers, architecture, interface

to monitor, and others.

USART interface has not been considered as an option to be used in our monitor

because of its low speed and high processing time—compared with the others

interfaces—, which results in low performance. Thus it is not considered in

further results.

5.2. Intrusion on Code

As far as memory resources are limited for sensor nodes, the evaluation of the

intrusion on program code is relevant. Code used in the sensor node was generated

by Keil MDK (Microcontroller Development Kit) version 5, a comprehensive

software development environment for Cortex-M processor based microcontrollers

that includes IDE (Integrated Development Environment), Compiler, and

Debugger [28].

Size difference in bytes has been considered between the pure application code

and the trap-modified code, in binary compiled program. Main differences between

both codes consist on the addition of the port initialization subroutine and several

data transmission instructions.

Table 4 shows the intrusion in bytes on program code in sensor node. As expected,

intrusion is not related to the communication speed, thus this parameter has not been

considered. Since transmission code is reused for all the traps, a new event may be

monitored by just adding to the code of the sensor node a trap call of 8 bytes.

- 24 -

Table 4. Intrusion on Code: Initialization and one event log (Bytes).

Interface 16bits 32bits 64bits 128bits

Parallel 228 252 268 276
SPI 428 452 468 476

Code intrusion (SIntrusion) may be predicted by means of the Equation (1), where Sinit

is the initialization value appearing in Table 4, and n is the number of trap calls

included in the application code. As expected, for a small number of traps monitored,

the code intrusion is mostly determined by the initialization code.

S Intrusion=Sinit+8× (n−1) (1)

5.3. Intrusion on Power Consumption

Taking into account that sensor nodes usually are powered with batteries or

harvesting techniques, power consumption is a key aspect in sensor network nodes.

Due the working time is very low—some milliseconds as maximum—power

consumption was determined by modifying the application program of the sensor

node, avoiding sleep mode and keeping used peripherals enabled. About 7000

samples of sensor node electrical power were taken—18 samples per second—and

averaged them. Measurements were taken with an Agilent 34405A Multimeter. This

multimeter has a 5.5 digit resolution, with an accuracy of ±(0.05% of reading +

0.015% of range) for our measuring conditions [29].

The obtained results showed that the instantaneous power consumption was the

same for all the evaluated communication speeds. Data size was also found to be

irrelevant in power consumption.

The sensor node electrical current required in clear operation, without monitoring,

was found to be 53.4 mA. The total electrical current required when monitoring was

performed through each interface and the differences with normal operation are

shown in Table 5.

- 25 -

Table 5. Electrical Power by interface (milliamps).

Interface Total Power
Difference with no-
monitor operation

Parallel 53.61 0.21
SPI 53.95 0.55

Since power consumption seems not to be related with trap implementation, the

power intrusion may be considered directly related with the wake-up time. In this

sense, it is possible to evaluate the impact of each technique by multiplying the

values of power (Table 5) and time intrusion (Table 2). Table 6 shows the obtained

values. The power consumption has been found to be proportional to the intrusion

time, and it can be considered low in relation of normal operation of the sensor node

(below 2%). It can be seen in Table 6 that the power consumption intrusion increases

with the data size, and is little higher for parallel interface, as expected for the

number of lines involved in trap transmission.

Table 6. Intrusion on Power Consumption at pico-Amps-hours (pAh).

Data Size
Parallel
(16bits)

SPI 18mbps SPI 4.5mbps SPI 2.25mbps

16bits 56.58 46.46 46.46 47.96
32bits 108.70 91.42 92.91 92.91
64bits 245.70 194.82 196.32 196.32
128bits 475.01 421.11 421.11 422.61

5.4. Frequency for Event Log Generation

Values of Tables 2 and 3 are not enough to calculate the maximum frequency of

event log generation. Intrusion time consists of non-continuous values, and

processing time does not include times for preparing data, first and last transmission

times, and last ACK reception in sensor node.

Figure 8 shows a scheme of communication between sensor network node and

monitor node. The period for event log generation—the total time to record an event

—starts when software trap is activated and ends when the last ACK is received and

transmission flag is deactivated. Hence, for the same monitor node, this period will

depend of the interface used to communicate with sensor network node, and of the

sensor node characteristics.

- 26 -

Figure 8. Time scheme for event log generation.

Once the period (TEventGen) is determined, the maximum frequency for log event

generation (fLog) can be calculated by applying the Equation (2). However, this

frequency is theoretical, because there may be others incidents that affect it.

f Log=
1

T EventGen
(2)

- 27 -

6. Discussion

The intrusion generated by the hybrid monitor at the three evaluated aspects—

time, code, and power consumption—may be considered low. This section studies

the influence of these intrusion effects when applied to real applications.

The study about percentage of time intrusion during working time on a sensor

node Figure 9 shows an example graphic with different estimated working times for

a sensor network node similar to the used one in tests. At the example of Figure 9 we

consider the log of 4 events—e.g. waking up, sensing, transmission, go to sleep—and

a data size of 128 bits. The percentage of intrusion is very low—less than 1.5% in the

worst case—even at the smallest case (10 milliseconds).

10msec 20msec 30msec 40msec 50msec
0,00%

0,20%

0,40%

0,60%

0,80%

1,00%

1,20%

1,40%

Parallel (16bits)

SPI 18mbps

SPI 4.5mbps

SPI 2.25mbps

Figure 9. Examples of percentage of time intrusion (128bits / 4 event logs).

The estimated values used as reference in Figure 9 are similar to real

implementations found in literature. For example in [30]—a wireless sensor node to

monitor track bicycle performance—the sensor node active time is 30msec. In others

cases as [31]—an application for heating and cooling loads—and as [32]—a wireless

node enabled by wireless power with some sensors—the active time reaches

100msec or more. However, times of Table 2—intrusion time—cannot be

extrapolated to these cases because the microcontroller characteristics of these nodes

are different to our sensor node. Anyway, the percentage of time intrusion— despite

being three times bigger than the values shown in Figure 9—should be

considered low.

- 28 -

Figure 10 shows an example graphic with different application code sizes for

having a better idea about percentage of code intrusion on sensor node. Again, the

log of 4 events and a data size of 128 bits were considered. The percentage of

intrusion is low—only in SPI and 8 KB of program code it is little up of 6%—and is

smaller with parallel interface.

8KB 12KB 16KB 24KB 32KB
0,00%

1,00%

2,00%

3,00%

4,00%

5,00%

6,00%

7,00%

Parallel (16bits)

SPI

Figure 10. Examples of percentage of code intrusion (128bits / 4 event logs).

The maximum event generation frequency in the SPI bus, at high speeds, is a little

faster than the parallel transmission. This is because in the second case it is necessary

to generate interrupts to the monitor, while for SPI is not necessary. However, code

intrusion when we use SPI is nearly twice that using parallel transmission, but it not

pass from 500 Bytes, with a low percentage intrusion as Figure 10 shows. In all

cases, for each event that we want to monitor, 8 bytes are added to the

application code.

Moreover, processing time in monitor, when SPI is used instead of parallel

interface, is little higher. Besides, this time increases for SPI lower transmission

speeds, as it is shown in Table 3. Hence, used interface—as well as hardware

characteristics of sensor network node and monitor node—affects the frequency for

events log generation.

Since the power consumption in the sensor node is directly proportional to time

intrusion, and that the difference in additional electrical current by using the

peripheral to pass information is very low, this aspect will not be too transcendental

when choose an interface to connect the monitor node.

- 29 -

A subject pending to define and standardize is the criteria and aspects for establish

levels and categories—e.g. very low, low, medium, high—of monitor intrusion. Not

only for sensor network monitors but for any monitor system. In this topic is needed

be done a future work.

- 30 -

7. Conclusions

In this work an active hybrid monitor has been presented. It is able to collect

directly from a sensor node detailed information about its operation with a very low

intrusion, and thus without perturbing the node performance. It is based on an Open

Architecture that provides many advantages, such as flexibility, reusability, and

standardization.

As a part of the Open Architecture, many interfaces may be used to communicate

sensor node. Performance of these interfaces influences the overall intrusion caused

to sensor node operation, and thus reducing the accuracy of the obtained results.

Several interfaces have been evaluated and characterized, being parallel or SPI

interfaces the ones with the best performance. However, as far as eighteen pins are

necessary for parallel communication, which are not always available for monitoring

purposes in sensor network nodes, it can be concluded that SPI, when available, uses

to be the better option in most of cases.

Due intrusion in sensor network node is considered very low, the main aspects to

choose an way to active monitoring are intrusion on time and code, but not

necessarily intrusion on power consumption that is proportional to time.

To achieve this goal it is necessary the standardization of the data format. Diverse

monitoring data sources, even from different manufacturers, may then be joined to

observe the whole network behavior.

Finally, it can be concluded that hybrid monitoring allows a deep knowledge of

the internal operation of sensor nodes in a sensor network with a bounded—and

usually very small—intrusion to its operation. Thus, it can be considered a very

interesting option when designing, implementing, deploying and debugging sensor

networks.

- 31 -

8. Future Work

Adding the monitor to a passive monitoring system—e.g. a sniffers network like

mentioned proposed above—can result in a complete monitoring system that can

observe the whole network behavior. Hence, a future work that integrates the active

monitor to a passive monitoring network (sniffers) should be developed.

For a faster analysis of log data captured by the monitor, a radio interface can be

added to the monitor node to transfer the data from memory card to a host. This host

can be the same device that works as sniffer.

The format of stored data—in the information layer—can be standardized, so it

can comply with the main goal of purposed architecture in which the hybrid monitor

is based. A practical and easy way to do it is to use an existing standard format or

adapt it to this purpose.

A model to determinate intrusion is necessary. The considered intrusion aspects of

this model must be at least the three covered in this work. The model should define

levels and thresholds of intrusion, as well as formulas to calculate these ones.

A Program for collected data analysis must be developed. This program can be a

plugin for be used with any known network traffic analyzer—e.g. Wireshark—or a

new application developed for this goal.

- 32 -

References

1. Patel, M.; Aggarwal, A. Security Attacks in Wireless Sensor Networks: A

Survey. In Proceedings of the IEEE International Conference on Intelligent

Systems and Signal Processing (ISSP), Anand, India, 1–2 March 2013; pp. 329–

333.

2. Mahapatro, A.; Khilar, P.M. Fault Diagnosis in Wireless Sensor Networks: A

Survey. Communications Surverys & Tutorials, 2013, Vol. 15, No. 4, pp 2000–

2026.

3. Rodrigues, A.; Camilo, T.; Silva, J.S.; Boavida, F. Diagnostic Tools for Wireless

Sensor Networks: A Comparative Survey. Journal of Network and Systems

Management, 2012, Vol. 21 Iss. 3, pp. 408–452.

4. Rachedi, A. Monitoring Mechanism for Wireless Sensor Networks: Challenges

and Solutions. In Wireless Sensor Networks, El Emary, I,; Ramakrishan, S., Eds;

CRC Press: Boca Raton, FL, USA, 2013; pp. 595–621.

5. Schoofs, A.; O'Hare, G.M.P.; Ruzzelli, A.G. Debugging Low-Power and Lossy

Wireless Networks: A Survey. IEEE Communications Surveys & Tutorials,

2012, Vol. 14, No. 2, pp. 311–321.

6. Piqueras, I.; Campelo, J. C.; Ors, R.; Serrano, J. J. Hybrid monitoring of

wireless sensor networks. In Proceedings of the IEEE International Conference

on Wireless Information Technology and Systems (ICWITS), Maui, Hl, USA,

11–16 November 2012; pp. 1–4.

7. Tolle, G.; Culler, D. Design of an Application-Cooperative Management System

for Wireless Sensor Networks. In Proceedings of 2nd European Workshop on

Wireless Sensor Networks (EWSN), Istanbul, Turkey, 31 Jan. –2 February 2005;

pp. 121–132.

8. FAQ – TinyOS Wiki. Available online: http://tinyos.stanford.edu/tinyos-

wiki/index.php/FAQ (accessed on 15 December 2014).

9. Rost, S.; Balakrishnan, H. Memento: A Health Monitoring System for Wireless

Sensor Networks. In Proceedings of 3rd Annual IEEE Communications Society

on Sensor and Ad Hoc Communications and Networks (SECON), Reston, VA,

USA, 25–28 September 2006; Vol. 2, pp. 575–584.

10. Sundaram, V.; Eugster, P.; Zhang, X. Lightweight tracing for wireless sensor

networks debugging. In Proceedings of the 4th International Workshop on

Middleware Tools, Services and Run-Time Support for Sensor Networks

(MidSens 09), Urbana Champaign, Il, USA, 30 Nov. – 4 December 2009; pp.

13–18.

- 33 -

11. Liu, Y.; Liu, K.; Li, M. Passive Diagnostics for Wireless Sensor Networks.

IEEE/ACM Transactions on Networking, 2010, Vol. 18, No. 4; pp. 1132–1144.

12. Ramanathan, N.; Chang, K.; Kapur, R.; Girod, L.; Kohler, E.; Estrin, D.

Sympathy for the Sensor Network Debugger. In Proceedings of 3rd ACM

Conference on Embedded Networked Sensor Systems (ACM SenSys 2005), San

Diego, CA, USA, 2–4 November 2005; pp. 255–267.

13. Ringwald, M.; Römer, K.; Vialetti, A. SNIF: Sensor Network Inspection

Framework. Department of Computer Science, ETH Zurich, Technical Report

No. 535; 2006.

14. Awad, A.; Nebel, R.; German, R.; Dressler, F. On the Need for Passive

Monitoring in Sensor Networks. In Proceedings of 2008 11th EUROMICRO -

Conference on Digital System Design Architectures, Methods and Tools (DSD);

Parma, Italy, 3–5 September 2008; pp. 693–699.

15. Chen, B.; Peterson, G.; Mainland, G.; Welsh, M. LiveNet: Using Passive

Monitoring to Reconstruct Sensor Network Dynamics. In Proceedings of IEEE

Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini

Island, Greece, 11–14 June 2008; pp. 79–98.

16. Kuang, X,; Shen, J. SNDS: A Distributed Monitoring and Protocol Analysis

System for Wireless Sensor Network. In Proceedings of 2010 Second

International Conference on Networks Security, Wireless Communication and

Trusted Computing (NSWCTC), Wuhan, China, 24–25 April 2010; pp. 422–

425.

17. Zhonghua, Z.; Huangfu, W.; Linmin, S. NSSN: A Network Monitoring and

Packet Sniffing Tool for Wireless Sensor Networks. In Proceedings of 8th

International Wireless Communications and Mobile Computing Conference

(IWCMC), Limassol, Cyprus, 27–31 August 2012; pp. 537–542.

18. Garcia, F.; Andrade, R.; Oliveira, C.; de Souza J.N. EPMOSt: And Energy-

Efficient Passive Monitoring System for Wireless Sensor Networks. Sensors,

2014, 14, pp. 10804–10828.

19. Wireshark. Available online: https://www.wireshark.org/ (accessed on 20

January 2015)

20. Sommer, P.; Kusy, B. Minerva: Distributed Tracing and Debugging in Wireless

Sensor Networks. In Proceedings of the 11th ACM Conference on Embedded

Networked Sensor Systems (SenSys), Rome, Italy, 11–14 November 2013.

21. Hossain, M.S.; Lee, W.S.; Raghunathan, V. Spi-Nooper: A Hardware-Software

Approach for Transparent Network Monitoring in Wireless Sensor Networks. In

Proceedings of the 8th IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and Systems Synthesis (CODES+ISSS), Tampere,

Finland, 7–12 October 2012; pp. 53–62.

- 34 -

22. Navia, M.; Campelo, J.C.; Bonastre, A.; Serrano, J.J. Low Intrusion Active

Hybrid Monitor for Nodes of Sensor Networks. In Proceedings of Workshop on

Innovation on Information and Communication Technologies (ITACA-WIICT),

Valencia, Spain, 4 July 2014; pp. 111–120.

23. Capella, J.V.; Campelo, J.C.; Bonastre, A.; Ors, R. Proposal of a Reference

Model for WSN’s Monitoring Platforms. Journal of Network and Computer

Applications. Received (under revision.)

24. ISO/IEC. Information Technology – Open Systems Interconnection – Basic

Reference Model. International Standard ISO/IEC 7498-1, second edition, 1994.

25. STM32F051R8 ARM Cortex-M0 MCU. Available online:

http://www.st.com/web/catalog/mmc/ (accessed on 2 December 2014).

26. STM32F0DISCOVERY Discovery Kit for STM32F051. Available online:

http://www.st.com/web/catalog/tools/FM116/SC959/SS1532/PF253215

(accessed on 20 January 2015)

27. CMSIS - Cortex Microcontroller Software Interface Standard. Available online:

http://www.arm.com/products/processors/cortex-m/cortex-microcontroller-

software-interface-standard.php (accessed on 8 December 2014).

28. Keil MDK-ARM Version 5. Available online: http://www2.keil.com/mdk5/

(accessed on 10 January 2015).

29. 34405A Digital Multimeter, 5½ digit | Keysight (Agilent). Available online:

http://www.keysight.com/en/pd-686884-pn-34405A/ (accessed on 10 January

2015).

30. Gharghan, S.; Nordin, R.; Ismail, M. Energy-Efficient ZigBee-Based Wireless

Sensor Network for Track Bicycle Performance Monitoring. Sensors, 2014, 14,

pp. 15573–15592.

31. Molina-Garcia, A.; Fuentes, J.A.; Gómez-Lázaro, E.; Bonastre, A.; Campelo,

J.C.; Serrano, J.J. Development and Assessment of a Wireless Sensor and

Actuator Network for Heating and Cooling Loads. IEEE Transactions on Smart

Grid, 2012, Vol. 3 No. 3, pp. 1992-1202.

32. Lee, D.S.; Liu, Y.H.; Ling, C.R. A Wireless Sensor Enabled by Wireless Power.

Sensors, 2012, 12, pp. 16116–16143.

- 35 -

	Abstract
	1. Introduction
	2. Objectives and Justification
	3. Monitoring Tools
	3.1 Active Monitors
	3.2 Passive Monitors
	3.1 Others Monitors Purposes

	4. The Low Intrusion Active Hybrid Monitor
	4.1. Architecture of the Monitor
	4.2. Monitor Operation
	4.3. Monitor Implementation

	5. Evaluation and Results
	5.1. Intrusion on Time
	5.2. Intrusion on Code
	5.3. Intrusion on Power Consumption
	5.4. Frequency for Event Log Generation

	6. Discussion
	7. Conclusions
	8. Future Work
	References

