
Universitat Politècnica de València

Departamento de Sistemas Informáticos y
Computación

Máster Universitario en Ingeniería y Tecnología de
Sistemas Software

Tesis de Máster

Inferencia de especificaciones para
programas C

Candidato:

Daniel Pardo Pont

Directores:

María Alpuente Frasnedo
Alicia Villanueva García

Año Académico 2014-2015

Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera, s/n
46022 Valencia

España

Resumen

A pesar de los abundantes beneficios que ofrecen, las especificaciones formales no

acostumbran a emplearse en el desarrollo industrial de software. Con la finalidad de

reducir el tiempo y el esfuerzo requerido para escribir especificaciones formales, en la

presente Tesis de Máster se propone una técnica que obtiene de manera automática

especificaciones a partir de código real. La metodología propuesta se basa en explotar

las capacidades de ejecución simbólica recientemente proporcionadas por el marco K
para inferir automáticamente especificaciones formales de programas escritos en un

fragmento no trivial de C, denominado KernelC. En términos generales, el análisis

simbólico de programas KernelC explica la ejecución de una función (modifica-

dora) a través de otras rutinas (observadoras) del programa. Esta técnica ha sido

implementada en la herramienta automática KindSpec 2.0, la cual genera axiomas

que describen el comportamiento de entrada/salida de rutinas C que gestionan es-

tructuras basadas en punteros (es decir, valores resultado y cambios de estado). En

esta disertación se describe la implementación de dicho sistema y se analizan las dife-

rencias respecto de trabajos previos relacionados con la inferencia de especificaciones

sobre código C.

Palabras clave: especificaciones, inferencia automática, ejecución simbólica, se-

mántica formal.

Resum

Tot i que ofereixen abundants beneficis, les especificacions formals no acostumen a

emprar-se en el desenvolupament industrial de programari. Amb la finalitat de reduir

el temps i l’esforç requerits per escriure especificacions formals, en la present Tesi

de Màster es proposa una tècnica que obté de manera automàtica especificacions

a partir de codi real. La metodologia proposta es basa en explotar les capacitats

d’execució simbòlica recentment proporcionades pel marc K per tal d’inferir auto-

màticament especificacions formals de programes escrits en un fragment no trivial

de C, denominat KernelC. En termes generals, l’anàlisi simbòlica de programes

KernelC explica l’execució d’una funció (modificadora) a través d’altres rutines (ob-

servadores) del programa. Aquesta tècnica ha estat implementada en la ferramenta

automàtica KindSpec 2.0, la qual genera axiomes que descriuen el comportament

d’entrada/eixida de rutines C que gestionen estructures basades en punters (és a dir,

valors resultat i canvis d’estat). En aquesta dissertació es descriu la implementació

de dit sistema i s’analitzen les diferències respecte de treballs previs relacionats amb

la inferència d’especificacions sobre codi C.

Paraules clau: especificacions, inferència automàtica, execució simbòlica, semàn-

tica formal.

Abstract

Despite its many unquestionable benefits, formal specifications are not widely used

in industrial software development. In order to reduce the time and effort required

to write formal specifications, in this Master Thesis we propose a technique for auto-

matically discovering specifications from real code. The proposed methodology relies

on the symbolic execution capabilities recently provided by the K framework that we

exploit to automatically infer formal specifications from programs that are written

in a non-trivial fragment of C, called KernelC. Roughly speaking, our symbolic

analysis of KernelC programs explains the execution of a (modifier) function by

using other (observer) routines in the program. We implemented our technique in

the automated tool KindSpec 2.0, which generates axioms that describe the precise

input/output behavior of C routines that handle pointer-based structures (i.e., result

values and state change). We describe the implementation of our system and discuss

the differences w.r.t. previous work on inferring specifications from C code.

Keywords: specifications, automatic inference, symbolic execution, formal seman-

tics.

Contents

1 Introduction 1

1.1 Motivation and Background . 2

1.2 Related Work . 5

1.3 Objectives of the Work . 6

1.4 Structure of the Dissertation . 7

2 Preliminaries 9

2.1 Rewriting Logic . 10

2.2 Maude . 11

2.3 The K Framework . 15

3 The KernelC Language 19

3.1 Introduction . 20

3.2 Running Example . 22

3.3 Specification of KernelC in K . 26

4 Symbolic Execution 33

4.1 Introduction . 34

4.2 The symbolic machinery in K . 36

5 Inference Process 39

6 Implementation of the System 45

7 Conclusions and Future Work 51

Bibliography 55

Appendix: Full KernelC Specification 59

ii Contents

List of Figures

3.1 Abstract syntax of KernelC. 21

3.2 KernelC implementation of a doubly-linked list. 24

3.3 Expected specification for the append(list,d) function call. 25

3.3 Extended KernelC grammar specified in K. 28

3.4 Desugaring rules for extended KernelC. 29

3.5 K concrete configuration of the implementation of KernelC. 31

6.1 Structure of the specification inference system KindSpec 2.0. 47

6.2 Example of krun output for the symbolic execution of append. 49

6.3 Computed specification for the append(list,d) function call. 50

iv List of Figures

1
Introduction

2 1. Introduction

1.1 Motivation and Background

Formal specifications can be used for various software engineering activities rang-

ing from documenting software to automated debugging, verification, and test-case

generation. Specifications can take the form of contracts, interfaces, summaries,

assumptions, invariants, properties, component abstractions, process models, rules,

graphs, automata, etc. Despite its many unquestionable benefits, formal specifi-

cations are not widely used in industrial software development mainly due to the

required writing effort, complexity, and tool support. Specification inference can

help to mitigate these problems and is also useful for legacy program understanding

and malware deobfuscation [5].

This thesis describes our steps towards a specification inference system for heap-

manipulating programs that are written in a non-trivial fragment of C called KernelC

[26], which includes functions, structures, pointers, and I/O primitives. We rely on

the (rewriting logic) semantic framework K [25], which facilitates the development

of executable semantics of programming languages and also allows formal analysis

tools for the defined languages to be derived with minimal effort.

A language definition in K essentially consists of three parts: the BNF language

syntax (annotated with K specific attributes), the structure of program configura-

tions, and the semantic rules. Similarly to the classic operational semantics, program

configurations contain an encoding for the environment, the heap, stacks, etc. and

are represented as algebraic datatypes in K. Program configurations organize the

state in units called cells, which are labeled and can be nested.

For example, following the K notation, the program configuration〈
〈tv(int, 0)〉k〈x 7→ x〉env〈x 7→ tv(int, 5)〉heap

〉
cfg

(1.1)

models the final state of a computation whose return value is the integer 0 (stored

in the k cell, which contains the current code to be run), while program variable x

(stored in the env cell) has the value 5 (stored in the memory address given by x

in the heap cell, where information about pointers and data structures is recorded).

Variables representing symbolic memory addresses are written in sans-serif font.

In K, the configuration (1.1) is a friendly representation for the term

<cfg>

<k> tv(int,0) </k>

<env> x => pointer(x) </env>

1.1. Motivation and Background 3

<heap> pointer(x) => tv(int,5) </heap>

</cfg>

Symbolic execution (SE) is a well-known program analysis technique that allows the

program to be executed using symbolic input values instead of actual (concrete) data

so that it executes the program by manipulating program expressions involving the

symbolic values [20, 24]. Unlike concrete execution, where the path taken is deter-

mined by the input, in symbolic execution the program can take any feasible path.

That path is given by a logical constraint on past and present values of the variables,

called path condition because it is formed by constraints that are accumulated on

the path taken by the execution to reach the current program point. Each symbolic

execution path stands for many actual program runs (in fact, for exactly the set of

runs whose concrete values satisfy the logical constraints). One of the traditional

drawbacks of SE-based techniques is the high cost of decision procedures to solve

path conditions. Recently, SE has found renewed interest due in part to the huge

recent advances in decision procedures for logical satisfiability.

K semantics is traditionally compiled into Maude [8] for execution, debugging,

and model checking. K implements reachability logic in the same way that Maude

implements rewriting logic. In reachability logic, a particular class of first-order

formulas with equality (encoded as (boolean) terms with logical variables and con-

straints over them) is used. These formulas, called patterns, specify those concrete

configurations that match the pattern algebraic structure and satisfy its constraints.

Since patterns allow logical variables and constraints over them, by using patterns,

K rewriting becomes symbolic execution with the semantic rules of the language

[3]. The SMT solver Z3 [10] is used in K for checking the satisfiability of the path

constraints.

Symbolic execution in K relies on an automated transformation of both K con-

figurations and K rules into corresponding symbolic K configurations (i.e., patterns)

and symbolic K rules that capture all required symbolic ingredients: symbolic values

for data structure fields and program variables; path conditions that constrain the

variables in cells; multiple branches when a condition is reached during execution,

etc. The transformed, symbolic rules define how symbolic configurations are rewrit-

ten during computation. Roughly speaking, each data structure field and program

variable originally holds an initial, symbolic value. Then, by symbolically executing

a program statement, the configuration cells (such as k, env and heap in the example

above) are updated by mapping fields and variables to new symbolic values that

4 1. Introduction

are represented as symbolic expressions, while the path conditions (stored in the

path-condition cell) are correspondingly updated at each branching point.

For instance, the following pattern〈 〈tv(int, 0)〉k
〈··· x 7→ x, s 7→ s ···〉env

〈··· s 7→ (size 7→ ?s.size, capacity 7→ ?s.capacity) ···〉heap

〉
cfg

〈
s 6= NULL ∧ ?s.size > 0

〉
path-condition

specifies the set of configurations as follows: (1) the k cell contains the integer value

0; (2) in the env cell, program variable x (in typographic font) is associated to the

memory address x and s is bound to the pointer s; and (3) in the heap cell, the field

size of s contains the symbolic value ?s.size (following the standard notation, symbolic

values are preceded by a question mark). Additionally, s is not null and the value of

its size field is greater than 0.

In this work, we redesign the technique of [1] for discovering specifications for

heap-manipulating programs by adapting the symbolic infrastructure of K to support

the specification inference process for KernelC programs. Specification inference

is the task of discovering high-level specifications that closely describe the program

behavior. Given a program P, the specification discovery problem for P is typically

described as the problem of inferring a likely specification for every function m in P

that modifies the state of encapsulated, dynamic data structures defined in the pro-

gram. Following the standard terminology, any such function m is called a modifier.

The intended specification for m is to be cleanly expressed by using any combination

of the non-modifier functions of P (i.e., functions, called observers), which inspect

the program state and return values expressing some information about the encap-

sulated data. However, because the C language does not enforce data encapsulation,

we cannot assume purity of any function: every function in the program can po-

tentially change the execution state, including the heap component of the state. In

other words, any function can potentially be a modifier ; hence we simply define an

observer as any function whose return type is different from void (i.e., potentially

expresses a property concerning the final heap contents or the return value of the

function call).

The key idea behind our inference methodology was originally described in [1].

Given a modifier procedure for which we desire to obtain a specification, we start

from an initial symbolic state s and symbolically evaluate m on s to obtain as a

result a set of pairs (s, s′) of initial and final symbolic states, respectively. Then, the

observer methods in the program are used to explain the computed final symbolic

states. This is achieved by analyzing the results of the symbolic execution of each

1.2. Related Work 5

observer method o when it is fed with (suitable information that is easily extracted

from) s and s′. More precisely, for each pair (s, s′) of initial and final states, a

pre/post statement is synthesized where the precondition is expressed in terms of

the observers that explain the initial state s, whereas the postcondition contains

the observers that explain the final state s′. To express a (partial) observational

abstraction or explanation for (the constraints in) a given state in terms of the

observer o, our criterion is that o computes the same symbolic values at the end of

all its symbolic execution branches.

In contrast to [1], in this work we rely on the newly defined symbolic machinery for

K, while [1] was built on a symbolic infrastructure for KernelC that was manually

developed in a quite ad-hoc and error prone way, by reusing some spare features

of the formal verifier MatchC [28]. This strategic technological change will allow us

to define a generic and more robust framework for the inference of specifications of

languages defined within the K framework.

1.2 Related Work

The wide interest in program specifications as helpers for other analysis, validation,

and verification processes have resulted in numerous approaches for (semi-)automatic

computation of different kinds of specifications. Specifications can be property ori-

ented (i.e., described by pre-/post conditions or functional code); stateful (i.e., de-

scribed by some form of state machine); or intensional (i.e., described by axioms).

In this work we focus on input-output relations: given a precondition for the state,

we infer which modifications in the state are implied, and we express the relations

as logical implications that reuse the program functions themselves, thus improving

comprehension since the user is acquainted with them. A thorough comparison with

the related literature can be found in [1]. Here we only try to cover those lines of

research that have influenced our work the most.

Our axiomatic representation is inspired by [30], which relies on a model checker

for symbolic execution and generates either Spec] specifications or parameterized

unit tests. In contrast to [30], we take advantage of K symbolic capabilities to

generate simpler and more accurate formulas that avoid reasoning with the global

heap because the different pieces of the heap that are reachable from the function

argument addresses are kept separate. Unlike our symbolic approach, Daikon [13]

and DIDUCE [17] detect program invariants by extensive testing. Also, Henkel and

Diwan [18] dynamically discover specifications for interfaces of Java classes by gener-

6 1. Introduction

alizing the results of automated tests runs as an algebraic specification. QuickSpec

[6] relies on the automated testing tool QuickCheck to distill general laws that a

Haskell program satisfies. Whereas Daikon discovers invariants that hold at exist-

ing program points, QuickSpec discovers equations between arbitrary terms that

are constructed using an API, similarly to [18]. AbsSpec [4] is a semantic-based

inference method that relies on abstract interpretation and generates laws for Curry

programs in the style of QuickSpec. A different abstract interpretation approach

to infer approximate specifications is [29]. A combination of symbolic execution with

dynamic testing is used in Dysy [9]. An alternative approach to software specifica-

tion discovery is based on inductive matching learning: rather than using test cases

to validate a tentative specification, they are used as examples to induce the specifi-

cation (e.g., [31, 16]). Finally, Ghezzi et al. [15] infer specifications for container-like

classes and express them as finite state automata that are supplemented with graph

transformation rules.

This work improves existing approaches in the literature in several ways. Thanks

to the handling of Maude’s (hence K’s) equational attributes [8], algebraic laws such

as associativity, commutativity, or identity are naturally supported in our approach,

which 1) leads to simpler and more efficient specifications, and 2) makes it easy to

reason about typed data structures such as lists (list concatenation is associative

with identity element nil), multisets (bag insertion is associative-commutative with

identity ∅), and sets (set insertion is associative-commutative-idempotent with iden-

tity ∅). Since our approach is generic and not tied to the K semantics specification of

KernelC, we expect the methodology developed in this work to be easily extendable

to other languages for which a K semantics is given.

1.3 Objectives of the Work

Within the background described above, we can establish the following objectives

for our work:

• To migrate the specification discovery technique of [1] to the holistic framework

of the latest K release, which is based on symbolic execution, whereas [1]

relied on the MatchC verification infrastructure of the old K platform, which is

currently unsupported.

• To adapt the symbolic mechanism of K to deal with KernelC, also adapting

and implementing the lazy initialization technique for manipulating complex

1.4. Structure of the Dissertation 7

KernelC input data.

• To implement the specification inference technique in the KindSpec 2.0 sys-

tem, building it on the capabilities of the SMT solver Z3 [10] not to only prove

the accumulated path constraints as in K but also to incrementally simplify

them on the fly.

• To integrate and put into practice the theoretical and practical skills acquired

during the Master program. In particular, the knowledge on automated anal-

ysis and verification, multi-paradigm programming, logic and algebraic funda-

mentals, formal computation models and semantics of programming languages.

1.4 Structure of the Dissertation

The rest of the chapters of this document are organized as follows: Chapter 2 sum-

marizes the technical background of Rewriting Logic and K that is needed for this

thesis. Chapter 3 formalizes the language KernelC that is considered for the au-

tomated specification inference and show how we adapted it for the objectives of

the work. Chapter 4 presents the key concepts regarding symbolic execution and

the symbolic machinery of the K framework. Chapter 5 describes our specification

discovery algorithm, and Chapter 6 shows how it is implemented in the prototype

system KindSpec 2.0. Finally, Chapter 7 presents the conclusions of the work and

discusses future research directions.

8 1. Introduction

2
Preliminaries

10 2. Preliminaries

In this section, we provide the technological infrastructure that makes the basis

of our specification inference system.

2.1 Rewriting Logic

Rewriting Logic is a computational logic and a powerful semantic framework that

can be used for naturally specifying a wide range of systems and languages in vari-

ous application fields; for instance, models of concurrency and parallelism, network

protocols or distributed algorithms. It is also a flexible metalogical framework for

representing and mechanizing different logics and inference systems [14]. Rewrit-

ing Logic has been efficiently implemented in several languages, such as ASF+SDF,

CafeOBJ or Maude, which are widely used for formal specification, analysis and

verification.

In the context of programming languages, a language definition can be specified

by means of a rewriting logic theory, which consists of a set of uninterpreted op-

erations equationally constrained along with a set of rewrite rules that define the

transitions which represent the evolution of the system. Formally speaking, a rewrit-

ing logic theory is a triple T = (Σ, E,R) where (Σ, E) is an equational theory with

signature Σ and equation set E, and R is the set of rewrite rules [23]. In this way,

T represents a concurrent system whose states are elements of the algebra speci-

fied by (Σ, E), and whose transitions are specified by the rules in R. The initial

state is provided as an uninterpreted Σ-term, which will evolve accordingly through

its corresponding transition system until a state is achieved that cannot be further

rewritten. Note that the equations in E describe the non-concurrent features of T

whereas the set R defines the concurrent features.

The rewrite rules are ordered pairs of terms (accepted in the signature of the

language) represented in the form l → r, where both terms may contain variables.

These rules are executed by a rewrite engine following the match-and-apply principle

of term rewriting [21]: whenever a term t is obtained which can be seen as an

instance of the left-hand-side l of a rule, say with a substitution θ, it is replaced by

the right-hand-side r of the rule, maintaining the assignments of variables to values

in θ. In other words, given l → r ∈ R, and a fragment t of the current state such

that t = θ(l), then t := θ(r). It is important to note that the substitution θ must

be propagated to the whole term that represents the current state in order to keep

consistency.

The rules of rewriting logic theories describe which local transitions may occur

2.2. Maude 11

in a certain state of the specified system, and allow us to reason about which general

concurrent transitions are possible in a system satisfying such a description [23].

Thus, computationally, each rewriting step can be seen as a parallel local transition

in the concurrent system. However, that is not the only possible reading: we can

adopt a logical viewpoint, interpreting the rewrite rules as metarules for correct

deduction in a logical system. In this case, the meaning of the rules turns into that

of inference rules, indicating that the term at the right-hand-side can be derived from

the expression at the left-hand-side.

Unlike most other logics, Rewriting Logic is fully neutral about the structure and

properties of the expressions. The symbols and logical connectives in the signature

Σ and their structural properties in the set of equational axioms E are entirely

user-definable, which provides some interesting properties like great flexibility and

the capacity to naturally express many different types of concurrent systems and

represent many other logics in a general way.

2.2 Maude

Maude [7] is a high performance multiparadigm language that provides a very ef-

ficient implementation of Rewriting Logic. It was developed in 1993 as part of an

international initiative to design a common platform for investigation, teaching and

application of declarative languages1. As such, Maude presents a wide range of

applications, including formal specification and verification of concurrent systems,

declarative programming or theorem proving, to cite a few. In particular, the most

interesting feature for the objectives of our work is its capacity to support executable

environments and formal analysis tools for programming languages, computation

models and logics as a powerful metalanguage based on logical reflection.

A Maude specification is composed by different modules. There are essentially

two kinds of modules: functional modules, which define equational theories, and

system modules, which describe rewrite theories. Rewrite rules can only appear

in system modules and are declared with the keywords rl or crl (in the case of

conditional rules, i.e., rules that can only be applied when certain conditions hold

in the current state), whereas equations can appear in both types of modules and

are declared with the keywords eq or ceq (for conditional equations). They both

characterize the behavior of the function symbols of the signature, called operators,

but carrying different meaning for the specification: the rewrite rules represent the
1Further information and an extensive manual can be found at http://maude.cs.uiuc.edu.

12 2. Preliminaries

concurrent dynamics of the specified system, while the equations describe structural

properties over operators. Since the inherent behavior of equations is non-concurrent,

they are commonly oriented to be used for equational simplification of terms, thus

improving efficiency.

Additionally, the language supports the declaration of certain equational axioms

by means of operational attributes, i.e., specified together with the operators that

satisfy them by using keywords. For instance, some typical algebraic properties like

associativity (assoc), commutativity (comm), identity (id) or idempotence (idem) can

be represented using this notation. This allows Maude to deal with these structural

properties efficiently in a built-in way, even avoiding termination problems when the

axiom can be applied repeatedly (as in the case of commutativity).

Example 1 Let us consider the specification of a simple system such as a vending

machine which dispenses coffee and cakes. The machine accepts dollars or dollar

quarters as input and returns a coffee or a cake depending on the customer’s selection.

A coffee costs a dollar, and a cake costs three quarters. For simplicity, we consider

that both cakes and coffee can only be bought using dollars, and that the machine can

change four quarters into a dollar to still allow quarters as input. Whenever buying

a cake with a dollar, the machine gives both the item and a quarter in return. These

requirements are modeled by the following Maude specification:

fmod VENDING-MACHINE-SIGNATURE is

sorts Coin Item State .

subsorts Coin Item < State .

op null : -> State .

op _ _ : State State -> State [assoc comm id: null] .

op $: -> Coin .

op q : -> Coin .

op cf : -> Item .

op ck : -> Item .

endfm

mod VENDING-MACHINE is

including VENDING-MACHINE-SIGNATURE .

var St : State .

2.2. Maude 13

rl [add-d] St => St $. --- Input of 1 dollar

rl [add-q] St => St q . --- Input of 1 quarter

rl [buy-cf] $ => cf . --- 1 coffee for 1 dollar

rl [buy-ck] $ => ck q . --- 1 cake and 1 quarter for 1 dollar

eq [change] q q q q = $. --- 4 quarters = 1 dollar

endm

The keywords fmod and endfm enclose a functional module, which we named

VENDING-MACHINE-SIGNATURE, and the keywords mod and endm delimitate a system

module identified as VENDING-MACHINE. As its name suggests, our functional module

defines the signature of our system; i.e., the accepted operators along with their equa-

tional attributes and their types, called sorts. In Maude, every function symbol must

belong to a sort explicitly indicated, and can take one or more arguments that are

also sorted. The sorts can be nested by the keyword subsort, forming a hierarchy. In

the example, the sorts Coin and Item are both specializations of the sort State, and

the second operator in the list gives State the meaning of a list of mixed coins and

items where each element is separated by a blank. Note that this operator is quali-

fied by the algebraic axioms of associativity, commutativity (preventing the execution

environment to endlessly loop in list inversions) and establishing null as the identity

element of the list. With this, the operator null becomes the empty list of states, and

every list of 1 or more State elements will implicitly end with null.

Meanwhile, the system module VENDING-MACHINE defines the rules and equations

that describe the behavior of the system. In order to be able to work with the operators

previously declared, the VENDING-MACHINE-SIGNATURE module has to be imported first

using the keyword including. The rules and equations in Maude can be labeled (though

this is optional), and they can contain sorted variables. The variables can be declared

and bound to their sorts on their own, using the keyword var, or in the left-hand-side

of the rule where they appear. Note that, although the coin input and item purchase

functionalities have been modeled through rewrite rules, the change of four quarters

into a dollar is represented by an equation, since the correspondence between those

two units is a structural property of the operators and thus does not trigger a state

transition.

The Maude system includes an interpreter and some formal tools that allow

Maude specifications to be: 1) executed, taking a term provided by the user as

14 2. Preliminaries

initial state; 2) model checked, either with the search command of the interpreter

or with Maude’s LTL model checker; and 3) formally analyzed. In this way, just by

specifying the semantics of any programming language as a Maude program, we get

for free an interpreter and formal analysis tools for that language. This scales up

to real languages, such as Java, C, Verilog or, in the case of this work, KernelC.

However, although Maude specifications are inherently concurrent (except in the

particular case that the whole system behavior is modeled through equations), the

interpreter is sequential, so the concurrent behavior is simulated by interleaving

sequential rewriting steps. In practice, this means that non-determinism can arise

from the rewrite rules of the specification whenever the current state can be rewritten

by applying two or more of those rules, generating a search tree in a way similar to

logic programming languages. That does not happen with equations, though, since

they represent structural properties of functions and the non-concurrent behavior

of the system, hence being determinist. The equation set in a Maude specification

is expected to be confluent and terminating, but since there is no compiler that

automatically ensures it (thus, it can only be proven by external checkers), if two

different equations are applicable in a determined context and lead to independent

execution paths, the behavior of the system can become unpredictable and some

computations may be lost.

Example 2 (Example 1 continued) Consider again our specification for the vending

machine. If we observe the rules of the system, they are clearly non-confluent (there

are two possible, non-convergent transitions when the current state is $) and non-

terminating (the machine can always get more money as input). Hence, if we were to

run a search for all possible action sequences starting from a given initial state, it will

not end since the search space is infinite. To illustrate how the non-determinism and

search works in Maude, let us replace the system module in the previous specification

with the following version without the non-terminating add rules:

mod VENDING-MACHINE-TERMINATING is

including VENDING-MACHINE-SIGNATURE .

rl [buy-cf] $ => cf . --- 1 coffee for 1 dollar

rl [buy-ck] $ => ck q . --- 1 cake and 1 quarter for 1 dollar

eq [change] q q q q = $. --- 4 quarters = 1 dollar

endm

2.3. The K Framework 15

Now, if we run the search command of the interpreter to search the possible

outcomes of the state q q q q (four dollar quarters), we get these results:

Maude> search q q q q =>! X:State .

search in VENDING-MACHINE-TERMINATING : q q q q =>! X:State .

Solution 1 (state 2)

X:State --> cf

Solution 2 (state 3)

X:State --> ck q

No more solutions.

Note that the four quarters state was deterministically rewritten to a $ state by

the equation change, and then two parallel paths arose since there are two rules

applicable to the rewritten state. After changing the state in each path accordingly to

the corresponding rule, the search ends since there are no more possible rewritings,

and the final states cf and ck q are returned as solutions.

2.3 The K Framework

K [27] is a rewrite-based framework for engineering language semantics. Given a syn-

tax and a semantics of a certain language, K generates a parser, an interpreter, and

formal analysis tools such as model checkers and deductive theorem provers at no

additional cost. It also supports various backends, such as Maude and, experimen-

tally, Coq [25]. In other words, language semantics defined in K can be translated

into Maude or Coq definitions; and there is also a Java backend under development,

which is expected to be released with K 4.0 version. There are even non-executable

backends that compile K specifications to visual formats, like LATEX or PDF, allowing

for automated documentation and document exchange.

In this work, we have chosen to use the Maude backend available in version 3.4

of K, the latest one that is stable, since the syntax and semantics of the specification

language of K are really close to Maude’s, which improves the understandability of

the K specification and makes compilation and execution more efficient. Moreover,

Maude’s backend in the 3.4 version automatically extends the compiled language

16 2. Preliminaries

with symbolic execution features, simplifying our preparatory work and making us

easier to focus on the specification inference process.

A programming language definition in K mainly consists of three components:

the syntax of the constructs of the language, declared via the conventional BNF

notation, the semantic rules which give meaning to those constructs, and the program

configuration scheme. To build those elements with independence of the backend

that will be used to compile them, K provides a language on its own, known as

KIL (which stands for K Intermediate Language). However, some keywords and

attributes of KIL hold a correspondence with Maude’s, so we can predict how the

functions of the K specification will behave and create complex specifications without

extensive training.

The productions accepted in the grammar of the language are declared through

the keyword syntax, followed by the name of a non-terminal symbol which represents

a syntactic category. The term declared can be either a terminal function symbol or

another syntactic category, allowing non-terminals to be nested in order to establish

a hierarchy. Provided that K makes no distinction between algebraic signatures and

their context-free notation, syntactic categories correspond to sorts and productions

to operations in the signature [26]. As in Maude, the operators can be annotated

with attributes which specify properties that the language construct satisfies. For

this thesis’ work, the most important attributes are associativity (declared with the

keywords left or right, depending on the orientation) and strictness.

A language construct is strict in a subset of its arguments when those arguments

have to be evaluated before the whole term. For instance, the variable assignment

in imperative languages is a typical case of strict operation, since the value to be

assigned can be either stored in a variable or pending to be computed by a function;

then, the variable name or the function call are processed first to get the actual

value. The strictness is specified using the keyword strict(a), where a is a set of

positions of the arguments of the operator separated by commas; or simply strict

when all the arguments are strict. No order is assumed to the evaluation of two or

more arguments of a function through strictness; if the arguments of an expression

must be evaluated in a given order, then we say that the operator is sequentially

strict and it is specified with the keyword seqstrict.

Program configurations are represented in K as potentially nested structures

of labeled cells (or containers) that represent the program state. They include a

computation stack or continuation (named k), environments (env, heap), and a call

2.3. The K Framework 17

stack (stack), among others. K cells can be lists, maps, (multi)sets of computations,

or a multiset of other cells. Computations carry “computational meaning” as special

nested list structures that sequentialize computational tasks, such as fragments of a

program.

Rules in K state how configurations (terms) evolve throughout the computation.

K rules are contextual; they mention a configuration context to which they apply,

together with local changes they make to that context. As in Maude, K distin-

guishes between the rules that model a (concurrent) transition of the system state,

and the rules that represent structural properties over terms. However, in contrast

to Maude, they are both defined with the same keyword, rule. The difference be-

tween the equivalent to Maude’s rules and the counterpart to Maude’s equations is

provided by means of qualifier attributes, specifically the attribute structural; i.e.,

rules specified with the attribute structural will be translated into an equation

when compiling the specification in the Maude backend, thus giving it a determin-

istic meaning. Conditions can also be specified for the semantic rules of a language,

triggering the rewriting of the terms in the configuration only when those conditions

hold. Whenever a rule is restricted by a condition, the directive requires is used,

followed by a boolean expression representing the requirements that have to be sat-

isfied in order for the rule to apply. In this way, rules defined with conditions in a K
specification translate through the Maude backend into either conditional rules crl

or conditional equations ceq, depending on the companion qualifiers.

Similarly to configurations, rules can also be graphically represented and are split

in two levels. Changes in the current configuration (which is shown in the upper level)

are explicitly represented by underlining the part of the configuration that changes.

The new value that substitutes the one that changes is written below the underlined

part. As an example, we show the KernelC rule for assigning a value V of type

T to the variable X. This rule uses three cells: k, env, and heap. The env cell is a

mapping of variable names to their memory positions, whereas the heap cell binds

the active memory positions to the actual values. Meanwhile, the k cell represents a

stack of computations waiting to be run, with the left-most (i.e., top) element of the

stack being the next computation to be undertaken.

〈 X = tv(T, V) ··· 〉k〈 ··· X 7→ X ··· 〉env〈 ··· X 7→ _ ··· 〉heap

tv(T, V) tv(T, V)

This rule states that, if the next pending computation (which may be a part of

the evaluation of a bigger expression) consists of the assignment X = tv(T, V), then

18 2. Preliminaries

we look for X in the environment (X 7→ _) and we update the associated mapping

in the memory with the new value V of type T (tv(T, V)). The value tv(T, V) is kept

at the top of the stack (it might be used in the evaluation of the bigger expression).

The rest of the cell’s content in the rule does not undergo any modification (this is

represented by the ··· card). This example rule reveals a useful feature of K: «rules

only need to mention the minimum part of the configuration that is relevant for their

operation». That is, only the cells read or changed by the rule have to be specified,

and, within a cell, it is possible to omit parts of it by simply writing “··· ”. For

example, the rule above emphasizes the interest in: the instruction X = tv(T, V)

only at the beginning of the k cell, and the mapping from variable X to its memory

pointer X at any position in the env cell. Except for the subterms that are explicitly

identified, upon variable assignment everything is kept unchanged.

The (desugared) K rule for KernelC variable assignment is

rule <k> X = tv(T,V) => tv(T,V) ...</k>

<env>... X |-> pointer(X) ...</env>

<heap>... pointer(X) |-> (_ => tv(T,V)) ...</heap>

where the underscore stands for an anonymous variable. The ellipses are also part

of the desugared K syntax and are used to replace the unnecessary parts of the

cells. Hence, also in the desugared rule, the developers typically only mention the

information that is absolutely necessary in their rules.

The K tool offers support for semantics-based execution and formal analysis of

programs. It is mainly composed of a compiler, called kompile, which transforms

KIL code to the language or visual style of the selected backend, and an interpreter,

called krun, which runs programs in the compiled language specifications. We can

think of K specifications as transition system generators, where the states are defined

by the configurations and the transitions are described by the rules of the specifica-

tion. Given a program and a list of arguments explicitly declared in the language

specification, the K interpreter is capable of creating an initial state (configuration)

and then generating the possible behaviors of the program by means of transitions,

applying the language semantics. The K tool offers the possibility to take just one

path or explore all feasible paths through a space search in a way similar to the

Maude interpreter, thus providing the interpreter with both execution and model

checking capabilities.

3
The KernelC Language

20 3. The KernelC Language

In this chapter, we describe the language KernelC that we consider for speci-

fication inference, and we justify the reasons for this selection. We also describe a

KernelC program used as leading example to test the inference method, along with

the expected inferred specification. Finally, we explain how the language specifica-

tion was implemented in K and adapted to make it more suitable for our needs.

3.1 Introduction

Since it was conceived in the 70s, C (together with its variants, like C] or C++) has

become the most widely used imperative programming language. Different systems

and applications have been developed on the basis of the C platform, ranging from

simple text processors to performance-critical applications such as operating systems

(specially those of the UNIX family) or video games. The main reason for the

success of C is its capability to directly access the information stored in memory

through pointer arithmetics, casting, and explicit allocation and deallocation, which

allows developers to optimize the usage of computer’s resources and obtain highest

performance, yet generally achieving this at the expense of safety.

Testing our inference technique on C programs would be an interesting option

that would instantly provide an important set of potential real and complex appli-

cations as a consequence of the widespread use of the language. However, C is a

rather complex platform to be considered for the first try-outs of a system that in-

fers specifications automatically from the complete semantics of a language. Some of

its features, like the various data types that the language can handle or the importa-

tion of external function libraries, can cause the complexity of the inference process

to grow to the point of turning it too much cost-expensive and even unpredictable,

since in most cases the code of the imported libraries is not available (e.g., binaries

installed in the operating system or built-in packages). That is why, in this thesis,

we have chosen to start with a simplified language derived from the semantics of C,

called KernelC.

KernelC is defined in [26] as a formal definition of the executable semantics of

a non-trivial fragment of C, which includes essential imperative statements (variable

assignment and lookup, arithmetic and logic operations and flow control directives,

just to mention a few) as well as function definition and calling, declaration of data

structures, pointers and routines for allocating and deallocating dynamic memory.

The amount of primitive data types supported by C for variable values gets reduced

to just one in KernelC: signed mathematical integers, i.e., the type identified by

3.1. Introduction 21

Abstract syntax:

Nat ::= N
Int ::= Z
Id ::= identifiers (as character strings)
K ::= Nat |Int |Id

| !K | K &&K | K || K
| K op K, op ∈ {+,−, ∗, /,<,≤, >,≥,==, !=}
| K = K

| K;K

| {K}
| {}
| NULL
| malloc(K)

| free(K)

| ∗K
| if (K) K | if (K) K else K
| while (K) K

Desugaring of non-core constructs:

NULL = 0

!K = if (K) 0 else 1
K1 &&K2 = if (K1) K2 else 0
K1 || K2 = if (K1) 1 else K2

if (K1) K2 = if (K1) K2 else {}

Figure 3.1: Abstract syntax of KernelC.

the keyword int. Nevertheless, integer-type pointers and structured objects with in-

teger (or pointer) fields are also handled by the language. These restrictions endow

KernelC with the simplicity needed for developing the specification inference pro-

totype tool and evaluating our system with reasonable effort, yet preserving enough

capabilities and expressive power to write rather useful code, as we will show in

Section 3.2.

The abstract syntax of KernelC was also defined in [26], and a summary in

BNF notation is given in Figure 3.1. As stated before, the only arithmetic data

considered by the language are integers; however, natural numbers and identifiers

are also supported to represent memory addresses and variable names, respectively.

22 3. The KernelC Language

The constructs are grouped inside a unique syntactic category called K, which stands

for the minimal infrastructure to define terms that is available in the K framework,

and thus they do not belong to any specific sort. Arithmetic and relational operators,

simple flow control statements (if-else conditionals and while loops), sequences

of expressions and grouping blocks are the productions composing the syntax of

KernelC. We can also use logical operators (AND, OR, and NOT), conditional

statements without an else clause and the NULL value, although these are considered

syntactic sugar for specific combinations of core constructs, and so they have to be

desugared first in order to be interpreted.

Note that there are no productions in the shown syntax that serve for calling

functions or variable declarations, and not even for defining struct types; the reason

is that this abstract syntax establishes the indispensable core KernelC features

although they can be extended as far as it is needed in each implementation. In our

case, not only functions and structures will be considered in addition to the basic

syntax, but also pointers of the undefined type void* and other ingredients that we

will tackle later in Section 3.3.

3.2 Running Example

Our inference technique relies on the classification scheme developed in [22] for data

abstractions, where a function (method) may be either a constructor, a modifier or

an observer. A constructor returns a new object1 of the class from scratch (i.e.,

without taking the object as an input parameter). A modifier alters an existing

class instance (i.e., it changes the state of one or more of the data attributes in the

instance). An observer inspects the object and returns a value characterizing one or

more of its state attributes. We do not assume the traditional premise of the original

classification in [22] that states that observer functions do not cause side effects on

the state. This is because we want to apply our technique to any program, which

may be written by third-party software producers that may not follow the observer

purity discipline.

Let us introduce the leading example that we use to describe the inference

methodology developed in this work and to assess the practicality of the proto-

type tool that implements it: a KernelC implementation of an abstract datatype

for representing doubly-linked lists. Since the whole example includes a total of 13

1In KernelC, we understand for object an instance of a data structure type, and a data structure
type is what we call a class.

3.2. Running Example 23

methods, due to space restrictions we have chosen to comment on just one modifier

and five observer methods (of which 2 are both modifiers and observers).

Example 3 In the KernelC program of Figure 3.2, we represent a doubly-linked

list as a data structure (struct List) that contains some content (field data), a

pointer to the previous element in the list (field prev), and another pointer to the

succesive element in the list (field next).

A call append(list,d) to the append function proceeds as follows: first, a new

node new_node is allocated in memory; it is filled with the value d and its next

pointer is initialized to NULL since it will become the last item in the list. Next, the

function checks that the provided list list is not NULL, in which case it binds the

next pointer of the final element of the list to the newly created node, and the prev

pointer of the new node to the final node of list, then returns the pointer to the whole

resulting list. Otherwise, when the input list list is null, then the prev pointer of

new_node is initialized to NULL and the resulting full-fledged list that consists of one

single element is simply returned.

The observer function length traverses the list by visiting every node in order to

count the number of elements in the list. The observer function head returns the data

field of the first node of the list; last delivers the data field of the last node of the

list, which is done by first invoking reverse(list) to compute a mirrored version of

the parameter list and then accessing the data field of its first node. The function

init(list) returns the same list after removing the last item of the list. Finally, the

observer find looks for the provided d value in the list, and returns 1 (which stands

for true) if the d value is found; otherwise, the value 0 (which stands for false) is

returned.

From the program code of Example 3, for each modifier function m, we aim to

synthesize an axiomatic specification that consists of a set of implication formulas

t1 ⇒ t2, where t1 and t2 are conjunctions of equations of the form l = r. The

left-hand side l of each equation can be either

• a call to an observer function and then r represents the return value of that

call;

• the keyword ret, and then r represents the value returned by the modifier

function m being observed.

24 3. The KernelC Language

#include <stdlib.h>

struct List {
void* data;
struct List* next;
struct List* prev;

};

struct List* append(struct List* list,
void* d) {

struct List* new_node;
struct List* final;

new_node = (struct List*) malloc(sizeof
(struct List));

new_node->data = d;
new_node->next = NULL;

if (list != NULL) {
final = list;
if (final != NULL) {

while (final->next != NULL)
final = final->next;

}
final->next = new_node;
new_node->prev = final;

return list;
}
else {

new_node->prev = NULL;
list = new_node;
return list;

}
}

int length(struct List* list) {
int len;

len = 0;
while (list != NULL) {
len = len + 1;
list = list->next;

}
return len;

}

struct List* reverse(struct List* list) {
struct List* final;

final = NULL;

while (list != NULL) {
final = list;
list = final->next;
final->next = final->prev;
final->prev = list;

}
return final;

}

void* head(struct List* list) {
if (list != NULL) {

while (list->prev != NULL)
list = list->prev;

}
return list->data;

}

struct List* last(struct List* list) {
struct List* reversed;

reversed = reverse(list);
return head(reversed);

}

int find(struct List* list, void* d) {
int found;

found = 0;
while (list != NULL && !(found)) {

if (list->data == d)
found = 1;

else
list = list->next;

}
return found;

}

struct List* init(struct List* list) {
struct List* aux;

if (list != NULL) {
if (list->next != NULL) {
aux = list->next;
while (aux->next->next != NULL)

aux = aux->next;
aux->next = NULL;
}
else
list = NULL;

return list;
}

Figure 3.2: KernelC implementation of a doubly-linked list.

3.2. Running Example 25

Informally, the statements on the left-hand and right-hand sides of the symbol

⇒ are respectively satisfied before and after the execution of a function call to m.

We adopt the standard primed notation for representing variable values after the

execution.

Example 4 Consider again the program of Example 3. The specification for the

(modifier) function append that inserts an element d at the end of the list list

is shown in Figure 3.3. The specification consists of two implications stating the


length(list) = 0 ∧
reverse(list) = NULL ∧
find(list, d) = 0 ∧
init(list) = NULL ∧
last(list) = NULL

 ⇒


length(list′) = 1 ∧
reverse(list′) = list ∧
find(list′, d) = 1 ∧
init(list′) = NULL ∧
last(list′) = d ∧
ret = list′


(

length(list) = x ∧
length(list) > 0

)
⇒


length(list′) = x+ 1 ∧
find(list′, d) = 1 ∧
last(list′) = d ∧
ret = list′


Figure 3.3: Expected specification for the append(list,d) function call.

conditions that are satisfied before and after the execution of a symbolic function

call append(list,d). The first formula can be read as follows: if, before execut-

ing append(list,d), the result of running length(list) is equal to 0, a call to

find(list,d) returns 0 (since no value can be found in an empty list) and the re-

sults of executing reverse(list), init(list), and last(list) are all NULL (i.e.,

the list is empty), then, after executing append(list,d), the length of the augmented

list is 1, the reversed list coincides with the list itself, the value d can now be found in

the list, the init segment of the list is NULL, the last element is the inserted value and

the call returns the pointer to the (augmented) list. The second formula represents

the general case: given a list with an arbitrary size x, the call append(list,d)

causes the length to be increased by 1, the inserted value is found in the list, in

particular it is returned by the last observer, and the (augmented) list is returned.

Since the append function does not restrict the insertion to the cases in which the d

value is still not inside the list, we cannot assume find to return 0 before running

the modifier function append.

Note that any implication formula in the specification may contain multiple facts (in

26 3. The KernelC Language

the pre- or post-condition) that refer to function calls that are assumed to be run in-

dependently under the same initial conditions. This avoids making any assumptions

about function purity or side-effects.

3.3 Specification of KernelC in K

A specification of the concrete syntax and formal semantics of KernelC was made

by the K team and is available within the provided examples in the K tool distri-

bution, yet it needs to be adapted to make it compatible with the 3.4 version of K
(i.e., the only one currently providing symbolic execution features). Thus, in this

work we use a modified version of the K specification for KernelC. In addition, we

have added some capabilities, thus we had to adjust the configuration scheme and

semantic rules in order to obtain an environment that fits best to our purposes.

A summary of the extended KernelC syntax of our approach is presented in

Figure 3.3. In addition to the general definition that we saw in Figure 3.1, our

specification considers the constructs from C that allow programmers to:

• handle typed values by means of the expression tv(Type, Value),

• declare function profiles and structured data types,

• define functions, call them from other parts of the code and return values,

• declare local variables of types either int, void, structured types or pointers,

• access struct object fields (yet only through pointers using the operator ->).

Some built-in elements of C are also taken in consideration: the headings #include

<stdio.h> and #include <stdlib.h> are in this syntax since they are common

imports used in real C programs, but no meaning is given to them so they will just

be ignored. However, the functions malloc, free and sizeof from the library stdlib

are included in the syntax, since they are relevant for the memory allocation and

deallocation features of KernelC. Note that, unlike sizeof, the malloc and free

functions are not considered as special constructs of the language but just particular

cases of function calling for which the specification provides a specific meaning.

The language is also provided with other auxiliary sugared expressions, such

as increment and decrement of variables (operators ++ and --), combinations of

arithmetic operation and assignment (+=, -=, *= and /=), and return statements

with no value associated, among others. However, in contrast to the abstract syntax

3.3. Specification of KernelC in K 27

syntax File ::= Globals

syntax Globals ::= List{Global, “”}

syntax Global ::= StructDeclaration
| FunctionDeclaration
| FunctionDefinition
| #include <stdio.h>
| #include <stdlib.h>

syntax FunctionDeclaration ::= Type Id(ParameterDeclarations) ;

syntax FunctionDefinition ::= Type Id(ParameterDeclarations)StatementBlock

syntax ParameterDeclarations ::= List{ParameterDeclaration, “ , ”}

syntax ParameterDeclaration ::= Type Id

syntax StructDeclaration ::= struct Id{VariableDeclarations} ;

syntax VariableDeclarations ::= List{VariableDeclaration, “”}

syntax VariableDeclaration ::= Type Id ;

syntax PrimitiveType ::= int
| void
| Type *

syntax Type ::= PrimitiveType
| struct Id

syntax FunctionProfile ::= no function
| Id(ParameterDeclarations)
| Id()

syntax StatementBlock ::= {VariableDeclarations Statements}

syntax Statements ::= List{Statement, “”}

syntax Statement ::= Expression = Expression ; [strict(2)]
| Expression += Expression ; [strict(2)]
| Expression -= Expression ; [strict(2)]
| Expression *= Expression ; [strict(2)]
| Expression /= Expression ; [strict(2)]
| Expression ++ ;
| Expression −− ;
| Expression ; [strict]
| if (Expression)Statement else Statement [avoid]
| if (Expression)Statement
| while (Expression)Statement
| return Expression ; [strict(1)]
| return ;
| ;
| StatementBlock

28 3. The KernelC Language

syntax Expression ::= Int
| Id
| NULL
| (Expression) [bracket]
| Expression -> Id
| Id(Arguments) [strict(2)]
| sizeof (Type)
| (Type)Expression [strict(2)]
| - Expression [strict]
| * Expression [strict]
| & Expression
| Expression * Expression [strict]
| Expression / Expression [strict]
| Expression + Expression [strict]
| Expression - Expression [strict]
| Expression < Expression [seqstrict]
| Expression <= Expression [seqstrict]
| Expression > Expression [seqstrict]
| Expression >= Expression [seqstrict]
| Expression == Expression [strict]
| Expression != Expression [strict]
| ! Expression
| Expression && Expression [strict(1)]
| Expression || Expression [strict(1)]

syntax Expression ::= EvaluatedExpression

syntax EvaluatedExpression ::= TypedValue
| Bool
| String

syntax TypedValue ::= tv (Type,Value)

syntax Value ::= Int
| Pointer
| undef
| objectValues (Map)

syntax Pointer ::= pointer (Expression)
| member (Expression, Id)
| null

syntax Arguments ::= List{Expression, “ , ”} [strict]

syntax EvaluatedArguments ::= List{EvaluatedExpression, “ , ”}

syntax Id ::= main
| malloc
| free

Figure 3.3: Extended KernelC grammar specified in K.

3.3. Specification of KernelC in K 29

rule
I : Int

tv (int, I)
[structural]

rule
NULL

tv (void *, null)
[structural]

rule
E1 : Expression += E2 : Expression ;

E1 = E1 + E2 ;
[structural]

rule
E1 : Expression -= E2 : Expression ;

E1 = E1 - E2 ;
[structural]

rule
E1 : Expression *= E2 : Expression ;

E1 = E1 * E2 ;
[structural]

rule
E1 : Expression /= E2 : Expression ;

E1 = E1 / E2 ;
[structural]

rule
E : Expression ++ ;

E = E + 1 ;
[structural]

rule
E : Expression −− ;

E = E - 1 ;
[structural]

rule
return ;

return tv (void, undef) ;
[structural]

rule
if (E : Expression)S : Statement

if (E)S else ;
[structural]

rule
while (E : Expression)S : Statement

if (E){S while (E)S}
[structural]

Figure 3.4: Desugaring rules for extended KernelC.

30 3. The KernelC Language

shown on Figure 3.1, the value NULL is not a syntactic sugar for the value 0 but for a

typed value that represents initialized pointers with no associated memory. It must

not be confused with uninitialized pointers or undefined values, for which the value

undef exists. Furthermore, the logical operators AND, OR and NOT are not just

derivative expressions of conditional clauses, but full-fledged syntactic expressions

with a meaning on their own. The while loop is defined in terms of the conditional

as usual. A list of the desugaring rules can be found in Figure 3.4.

Another important difference between the approach adopted for this thesis and

the baseline defined in [26] lies in the interpretation of how KernelC programs are

structured. In our case, the files that contain KernelC code do not simply consist

of a sequence of instructions, but rather a set of struct and function definitions, with

a layout close to that of real C code. That is why a non-terminal symbol named File

has been syntactically declared as the top-level construct, and is composed by a list

of Globals. Note that, without loss of generality, we assume KernelC programs to

not have global variables nor constants declared, thus simplifying the structure of

code files.

The concrete configuration adopted in our KernelC approach for computations

and execution is outlined in Figure 3.5. In essence, it is composed by nine cells:

the k cell is the standard K cell that keeps track of the remaining computations to

perform, and it is also known as the continuation stack. Since a program computation

in K is in practice a rewriting of the term at the top of the stack, the content of

the k cell is not type-restricted but simply defined as a sequence of K elements.

The cells env and heap represent the execution environment memory-wise: env is

a mapping between variables to memory addresses in which their actual values are

stored, whereas heap is the mapping between those addresses and its corresponding

values. Next, struct and fun are repositories of structure data types and functions,

respectively, which facilitates both the instantiation of structs in object variables

and the change of context whenever a function is called. The cell locals is a list of

the memory addresses that can be accessed in the current state, and so it is used to

control forbidden memory accesses in terms of scope; e.g., if a variable is declared

in a statement block and then referred to outside of the block. stack represents the

call stack in the execution environment, allowing to restore the previous state when

returning from a function call. Regarding function calls, the cell current-function-

call, as its name suggests, holds the profile of the current function call (or either no

function while initializing the environment), including the identifier of the method

3.3. Specification of KernelC in K 31

〈
〈K 〉k 〈Map〉env 〈Map〉heap 〈Map〉struct 〈Map〉fun 〈List〉locals
〈List〉stack 〈FunctionProfile〉current−function−call 〈List〉scope

〉
cfg

Figure 3.5: K concrete configuration of the implementation of KernelC.

and its arguments. Finally, the scope cell is a stack that stores the states (env and

locals) to be restored whenever a change of scope happens.

The original K specification of KernelC was not structure-oriented, and so the

struct cell did not exist. Neither did the cell scope, which was added as a part of

an alternate method for restoring the state when changing the environment because

the operations that were first used were incompatible with K 3.4. Regarding the

remaining cells, they already existed in the original specification, but their content or

use has been modified in order to orient the language toward the needs of the inference

process. For instance, the cell current-function-call used to hold just the identifier of

the function being executed, which did not allow to have overloaded methods, i.e.,

functions with the same name but different argument types. Furthermore, each

frame of the call stack stack now stores different information, since the concept of

environment has been augmented: some methods can return newly-created objects

through pointers (what we defined as constructors before), so the local heap must

not be erased when restoring the state before the call. And now there are more

constructions available for the values associated to memory addresses in the heap,

since we needed to add a representation for the struct objects. In this way, when

compiling this language specification with the K tool, we will have not only a fully

functional executable environment which can be used to run real programs with

results similar to any other C interpreter or compiler, but also a powerful tool that

simplifies the work of the specification inference system providing it with all the

information it may need to carry out the inference process.

It is important to note that the language definition exposed in this section is

just a fragment of a more structured and complex specification that also deals with

internal aspects such as memory management, variable scoping or syntactic and

runtime errors, to name a few. To get more detailed information about our KernelC

approach’s syntax and semantics, the whole specification is available for consulting in

the Appendix. Also, there are more elements in both the syntax and the configuration

of the language that have not been treated here since they are related to symbolic

execution, but that will be explained in the next chapter.

32 3. The KernelC Language

4
Symbolic Execution

34 4. Symbolic Execution

4.1 Introduction

Symbolic execution is a static analysis technique that consists of executing programs

with symbolic values instead of concrete values. It proceeds like standard execution

except that, when a function or routine is called, symbolic values are assigned to

the actual parameters of the call and computed values become symbolic expressions

that record all operations being applied. When symbolic execution reaches a con-

ditional control flow statement, every possible execution path from this execution

point must be explored. In order to keep track of the explored execution paths,

symbolic execution also records the assumed (symbolic) conditions on the program

inputs that determine each execution path in the so-called path conditions (one per

possible branch), which are empty at the beginning of the execution. A path con-

dition consists of the set of constraints that the arguments of a given function must

satisfy in order for a concrete execution of the function to follow the considered path.

Without loss of generality, we assume that the symbolically executed functions ac-

cess no global variables; they could be easily modeled by passing them as additional

function arguments.

Example 5 Consider again the append function of Example 3. Assume that the

input values for the actual parameters list and d are the symbolic pointer list and

the symbolic value ?d, respectively. Then, when the symbolic execution reaches the

first if statement in the code, it explores the two paths arising from considering

both the satisfaction and non-satisfaction of the guard in the conditional branching

statement. The path condition of the first branch is updated with the constraint

list 6= NULL, whereas list = NULL is added to the path condition in the second branch.

To summarize, symbolic execution can be represented as a tree-like structure

where each branch corresponds to a possible execution path and has an associated

path condition. The successful paths are those leading to a final (symbolic) configura-

tion that encloses a satisfiable path constraint and that typically stores a (symbolic)

computed result.

For the symbolic execution of KernelC programs, we must pay attention to

pointer dereference and initialization. In C and, by extension, in KernelC, a struc-

tured datatype (struct) is an aggregate type that is used to comprise a nonempty

set of sequentially allocated members, called fields, each of which has a name and a

type. When a struct value is created, C uses the address of its first field to refer to

the whole structure. In order to access a specific field f of the given structure type,

4.1. Introduction 35

C computes f’s address by adding an offset (the sum of the sizes of each preceding

field in the definition) to the address of the whole structure.

In our symbolic setting, the pointer arithmetics and memory layout machinery

are abstracted by 1) using symbolic variables as addresses, instead of the conventional

natural numbers; and 2) mapping each structure object into a single element of the

heap cell that groups all object fields (and associated values). A specific field is then

accessed by combining the identifiers of both the structure object and the field name.

Example 6 Consider the structure type List of Example 3. The following configu-

ration records a list variable l with: 1) the integer 7 in its data field; 2) a reference

(pointer) named pnode as the value of its prev field; and 3) a reference (pointer)

nnode as the value of its next field:〈
. . . 〈l 7→ l〉env〈··· l 7→ (data 7→ tv(int, 7), prev 7→ pnode, next 7→ nnode) ···〉heap . . .

〉
cfg

In order to access a field of the list l (e.g., its data field), the corresponding in-

dex is computed by juxtaposing the identifier of the data field to the pointer l, thus

mimicking how the concrete access would be done in C (i.e., l->data).

Another critical point is the undefinedness problem that occurs in C programs

when accessing uninitialized memory addresses. The KernelC semantics that we

use preserves the concrete well-definedness behavior of pointer-based program func-

tions of C while still detecting the undefinedness cases in a way similar to the C

operational semantics of [12]. However, in our inference setting, we have no a priori

information regarding the memory (specifically, information about the (un)initialized

memory addresses). Therefore, when symbolic execution accesses (potentially unini-

tialized) memory positions, two cases must be considered: the case in which the

memory is actually initialized and stores an object, and the case in which it stores a

null pointer. In contrast to the approach described in [1], we do not consider cases

where the pointer is undefined (i.e., when the execution is halted due to forbidden

pointer access). This avoids accumulating too many solutions with undefined behav-

ior, which could cause an explosion of axioms for programs that access new objects

frequently, resulting in huge and redundant output specifications. For the case when

the memory positions are actually initialized with non-null objects, a strategy to

reconstruct the original object in memory is needed. We adapt the lazy initialization

of objects of [19] to our setting: when a symbolic address (or address expression)

is accessed for the first time, SE initializes the memory object that is located at

36 4. Symbolic Execution

the given address with a new symbolic value. This means that the mapping in the

heap cell is updated by assigning a new free variable to the symbolic address of the

accessed field so that, from that point on, accesses to that field can only succeed.

As a result, undefined computations can only occur in the case of syntactic program

errors (i.e., expressions that are not accepted in the specification of the language).

Example 7 (Example 5 continued) Before executing the first if statement for the

first time, assume that the heap cell is empty, which means that nothing is known

about the structure of the heap. After symbolically executing the guard of the while

statement (which refers to the next field of the structured data final), by applying

the lazy initialization approach, the heap cell gets updated to:

〈 ···
〈··· list 7→ list, final 7→ list ···〉env〈

list 7→ (data 7→ undef, prev 7→ undef, next 7→ list.next)
list.next 7→ undef

〉
heap

···

〉

cfg

In other words, new symbolic bindings for the actual parameters are added, which rep-

resent the assumptions we made over the corresponding data structures. More specif-

ically, the accessed field is initialized with a fresh symbolic pointer list.next whereas

the fields that have not been accessed yet (temporarily) remain undefined, in a state

that is specified by the symbolic constant undef.

In the following section, we describe K’s symbolic execution machinery and how

we adapted it to support discovering program specifications.

4.2 The symbolic machinery in K

Recently, the K framework has been enriched with a tool that automatically compiles

language definitions into symbolic semantics. In other words, any language that is

formally defined in K can (ideally) benefit, without cost, from symbolic execution.

The K symbolic backend automatically attaches to the configuration a new cell,

called path-condition, for the conditions on the input arguments that are accumulated

during the symbolic execution. Roughly speaking, the mechanism works as follows:

whenever a non-deterministic choice is found (i.e., the term at the top of the k cell

can be rewritten by applying different rules), the symbolic engine considers each path

independently, storing the assumptions that enable each concrete execution path in

the path-condition cell. Therefore, the symbolic execution of programs under the K

4.2. The symbolic machinery in K 37

framework results in a set of patterns (consisting of the final symbolic configuration

that encloses the corresponding path-condition cell) which we call final patterns.

Example 8 Assume that our K specification contains these two rules, which repre-

sent the possible rewritings of an if statement:

〈 if (true) S else _ ··· 〉k

S

〈 if (false) _ else S ··· 〉k

S

Now assume that we are running the following piece of code:

if (x > y) return 1; else return 0;

with symbolic variables x and y, and no initial restrictions over them (i.e., the path-

condition cell is initialized to true). The compilation of the language with K’s sym-

bolic backend explores both branches (i.e., the case when the guard x > y is true and

the case when the guard evaluates to false), which respectively lead to the following

patterns1:

Branch 1:
〈
〈tv(int, 1)〉k . . .

〉
cfg

〈
?x > ?y

〉
path−condition

Branch 2:
〈
〈tv(int, 0)〉k . . .

〉
cfg

〈
?x ≤ ?y

〉
path−condition

As already mentioned, the exhaustive symbolic execution of all paths cannot

always be achieved in practice because an unbounded number of paths can arise

in the presence of loops or recursion. We follow the standard approach to avoid

the exponential blowup that is inherent in path enumeration by exploring loops up

to a specified number of unfoldings. In our implementation, this is achieved by

introducing extra conditions in the guards of the loops and additional parameters in

the recursive functions where the limit of iterations or calls to be made is specified.

This ensures that SE ends for all explored paths, thus delivering a finite (partial)

represention of the program behavior [11]. Obviously, not all the potential execution

paths are feasible, but K deals with this automatically and transparently to the user

by using the theorem prover Z3 [10] to check the satisfiability of the path condition

constraints.

It is important to note that the symbolic K engine is not endowed with the lazy

initialization technique. As a consequence, any branching in K’s symbolic execution

trees is associated to the evaluation of a guarded instruction (conditional, while loop,
1We only write those cells that are relevant for the example.

38 4. Symbolic Execution

etc.), whereas lazy initialization also adds bifurcations when mimicking the access

to complex data structures (objects) because all possible scenarios are considered.

In other words, branching is not only caused by the evaluation of guards (boolean

expressions), but also by other kinds of expressions (for instance when assigning a

value to a data structure).

Note that the path-condition cell (where constraints associated to guards are

stored) is not under our control but is automatically handled by the K symbolic

engine, which ensures language independence. For this reason, we have adopted the

solution to introduce two new cells into the configuration, called init-struct and init-

heap, that are used to store those constraints associated to non-guarded instructions

that refer to complex data structures. These cells represent the initial memory for its

corresponding symbolic execution branch, but in different formats and for different

purposes: init-heap uses the same mapped notation as in heap, whereas init-struct

represents the restrictions regarding the memory initialization through boolean ex-

pressions, more friendly and easy to join with the contents of the path-condition cell.

Both of them are only modified when applying lazy initialization, hence it is natural

that the memory stored in heap during computation does not satisfy some of the con-

straints of init-struct; for example, if the initial heap has a variable list initialized to

NULL and then the program creates an actual object and stores it in list, init-struct

will still contain the expression list = NULL, which does not hold anymore. By

abuse, when we refer to the path condition φ of a pattern, we implicitly consider

that φ includes the constraints in init-struct as well.

5
Inference Process

40 5. Inference Process

Let us introduce the basic notions that we use in our formalization. Given an

input program, let F be the set of functions in the program. We distinguish the set

of observers O and the set of modifiers M. A function can be considered to be an

observer if it explicitly returns a value, whereas any method can be considered to be

a modifier. Thus, the set O ∩M is generally non empty. For instance, the function

reverse in Example 3 is both an observer and a modifier function.

Given a function f ∈ F , we represent a call to f with the list of arguments args

by f(args). Then, f(args){φ} is the K pattern built by inserting the call f(args)

at the top of the k cell and initializing the path condition cells with φ. This is

helpful to start the execution of f(args) under the (possibly non–empty) constraints

of φ. We also denote by Se(f(args){φ}) the set of final patterns obtained from

the symbolic execution of the pattern f(args){φ} (i.e., the leaves of the deployed

symbolic execution tree).

Our specification inference methodology is formalized in Algorithm 1. First, the

Algorithm 1 Specification Inference.
Require: m ∈M of arity n;
1. S = Se(m(a1, . . . , an){true})
2. axiomSet := ∅;
3. for all p ∈ S with path-condition cell φp, init-heap cell ϕ and return value v do
4. eqspre := explain(〈〈m(a1, . . . , an)〉k〈ϕ〉heap . . . 〉cfg〈φp〉path−condition, [a1, . . . , an]);
5. eqspost := explain(p, [a1, . . . , an]);
6. eqret := (ret = v);
7. axiomSet := axiomSet ∪ {eqspre ⇒ (eqspost ∪ eqret)};
8. end for
9. spec := simplify(axiomSet)

10. return spec

modifier method of interest m is symbolically executed with fresh symbolic variables

a1, . . . , an as arguments and empty constraint true, and the set S of final patterns

is retrieved from the leaves of the symbolic tree. For each pattern in S, the corre-

sponding path condition is simplified (by calling the automated theorem prover Z3)

to avoid redundancies and simplify the analysis. Then, we proceed to compute an

axiom for each pattern p in S that explains (by using the observers) the properties

that hold in the state before and after the execution of the method. This is done

by means of the function explain(q, as), where q is a pattern and as is a list of

symbolic variables, given in Algorithm 2. The explanation for initial states whose

symbolic execution end in p (line 4) must ensure that the input data comply with

the conditions that make the path to p feasible, which is achieved by imposing the

41

conditions given by φ to the input pattern to be explained (i.e. by feeding its heap

cell with ϕ before invoking the routine explain). Then, we proceed to explain (also

with the observers) the properties of the considered final state (the final pattern p)

by invoking explain(p, [a1, . . . , an]). Finally, the return value v is retrieved from the

k cell of p, and the axiom ret = v is added to the specification inferred. This value

could be either undefined or a single typed value that represents the return from the

function m under the conditions given by φ.

The computed axioms are implications of the form li ⇒ ri, where li is a con-

junction of preconditions and ri is a conjunction of postconditions. Note that a

conjunction of equations is represented as an equation set in Algorithm 2. The

function simplify implements a post-processing which consists of: (1) disjoining the

preconditions li that have the same postcondition ri and simplifying the resulting

precondition; and (2) conjoining the postconditions ri that share the same precon-

dition and simplifying the resulting postcondition.

Let us illustrate the application of the inference algorithm with the following

example.

Example 9 Let us compute a specification for the append modifier function of Ex-

ample 3. Following the algorithm, we first compute Se(append(list,d)[true]) with

list and d (free) symbolic variables. Since there are no constraints in the initial sym-

bolic configuration, the execution covers all possible initial concrete configurations.

For simplicity, we set the number of loop unrollings to one; as a consequence, the

symbolic execution computes three final patterns. The following pattern e represents

the final state for the path where the body of the while statement never gets executed

(0 iterations):

〈 〈tv(struct List∗, list)〉k
〈list 7→ list, d 7→ d, new_node 7→ new_node, final 7→ list〉env〈 list 7→ (data 7→ undef, prev 7→ undef, next 7→ new_node)

new_node 7→ (data 7→ d, prev 7→ list, next 7→ NULL)
d 7→ tv(void, ?d)

〉
heap

〈list 6= NULL ∧ list->next = NULL〉init−struct

〉

cfg

The execution of this path returns the pointer to the resulting list: the returned

pointer is represented by the typed value tv(struct List∗, list) in the k cell. The field

list->next is accessed only after checking that list is not null: it has been assumed

list != NULL at the first conditional expression, thus the constraint list 6= NULL has

been added to the path condition, whereas final->next != NULL (the guard of the

42 5. Inference Process

while loop) is assumed false, thus the constraint list->next = NULL has been gathered.

Note that, although the variable accessed in the code is final, the generated path

constraint refers to the pointer list since both final and list are bound to the same

memory address in the environment.

Let us now describe Algorithm 2 which defines the function explain(q, as). Given

a K pattern q and a list of symbolic variables as, this function describes q as a set

of equations that are obtained by executing the observer functions in the state.

Each equation relates the call to an observer function (or built-in function) with the

(symbolic) value that the call returns. In the algorithm, As v as means that the list

of elements As is a permutation of some (or all) elements in as.

Algorithm 2 Computing explanations: explain(q, as)

Require: q : the pattern to be explained (with path condition φ)
Require: as : a list of symbolic variables
1. C: the universe of observer calls;
2. eqSet := ∅;
3. for all o(As) ∈ C with As v as do
4. S = Se(o(As){φ})
5. if @ q1, q2 ∈ S s.t. q1 and q2 contain a different return value k in their k cell

then
6. eqSet := eqSet ∪ (o(As) = k)
7. end if
8. end for
9. return eqSet

Roughly speaking, given a pattern q, explain(q, as) first generates the universe

of observer function calls C, which consists of all the function calls o(As) that satisfy

that:

• o belongs to O or to the set of (predefined) built-in functions,

• the argument list As v as respects the type and arity of o.

Then, for each call o(As) ∈ C, Algorithm 2 checks whether all the final sym-

bolic configurations (leaves) resulting from the symbolic execution of o(As), under

the constraints given by φ, have the same return value. When the call satisfies this

requirement, an equation is generated (line 6 in Algorithm 2). Otherwise, the ob-

servation is inconclusive and no explanation is delivered in terms of the executed

observer function. The algorithm finally returns the set of all the explanatory equa-

tions inferred.

43

Example 10 (Example 9 continued) Let us show how we compute the explana-

tion for the final state of pattern p in Example 9. Given the observer functions

length, reverse, head, last, find, and init, and the symbolic variables list

and d, the universe of observer calls is length(list), reverse(list), head(list),

last(list), find(list,d), and init(list). Let us consider the case for the ob-

server call length(list) in detail.

When we symbolically execute length(list) on the pattern p, we obtain a single

final pattern:

〈
〈tv(int, 2)〉k

〈list 7→ list, length 7→ length〉env〈 list 7→ (data 7→ undef, prev 7→ undef, next 7→ new_node)
new_node 7→ (data 7→ d, prev 7→ list, next 7→ NULL)

d 7→ tv(void, ?d)
length 7→ tv(int, 2)

〉
heap

〈list 6= NULL ∧ list->next = NULL〉init−struct

〉

cfg

Since there are no observer paths returning different values and the associated return

value is the integer 2, then the equation length(list) = 2 is computed as a (partial)

explanation for the final pattern under consideration. Thus, this term is added to the

set of equations eqSet that are computed by Algorithm 2.

44 5. Inference Process

6
Implementation of the System

46 6. Implementation of the System

A prototype implementation of the specification inference methodology presented

in this thesis has been developed in the automated tool KindSpec 2.0. In this

implementation chapter, we explain the system’s structure and operation and discuss

the results obtained for the running example of Section 3.2.

Roughly speaking, our specification inference system consists of a Java applica-

tion that takes as input: 1) a file that contains the source code and 2) the identifier

of the function to be specified (which is assumed to be defined inside that file). The

outcome is a list consisting of the axioms of the discovered formal specification. The

hard work is carried out by a modular structure which is shown in Figure 6.1, and

sequentially performs the computations needed to obtain the desired specification.

The process is as follows:

1. The front-end module calls out the K interpreter, krun, by using the command

line of the operating system. The arguments of the call are: the name of the

input function, symbolic values for all of its arguments, and a non-restricted

environment (empty initial heap and true path condition). The K tool must

be installed in the computer in order to run the system, since it is an external

component.

2. The K interpreter uses the compiled definition of KernelC to symbolically

execute the selected function and obtain the possible solutions (each one repre-

senting a feasible path). The compiled language must be inside the application

project (and binaries) due to a specific feature of the K tool: the extension of

the file that contains the source code is not restricted (it could even be a plain

text .txt file), but the language must be available in the same directory of

the file system where the call is made. This does not prevent our system from

being platform-independent; however, makes it more difficult to operate since

the working directory would have to change depending on the language.

3. The main module (the one in charge of the inference process) reads the output

of the interpreter by means of a buffer, splitting the information in solutions

and cells. First, it explores the fun repository to identify the observer functions

in the file; i.e., those whose return type is different from void. Then, for each

solution obtained, the return value is stored (to add the equation eqret to the

corresponding axiom, if any), and so are the heap and init-heap cells, which

characterize the final and initial patterns to be explained, respectively.

47

Specification Inference System Kindspec 2.0

Source code file

f(tx, ty, …)

Function to be analyzed

-

Inferred axioms of the

specification of the function

-

K interpreter KRUN Compiled K specification of

the language

Main inference module

Front-end

module

Parsing

module
Z3 library

Figure 6.1: Structure of the specification inference system KindSpec 2.0.

4. The symbolic engine of K does actually accumulate the path constraints in

bifurcation points (such as conditionals or loops) and prune unfeasible paths,

but the expressions in those constraints are not reduced, which can cause the

path conditions to contain junk and produce confusion. That is why, before

storing them and use them to create the initial and final patterns of each

solution, they are sent to the parsing module, which converts them into Z3

constructions in order to call the SMT solver for simplification. This module is

built upon the tools JFlex1 and CUP2, which provide an abstraction to create

scanners and parsers for custom languages in a rather simple way and offer

the capability to generate the corresponding Java code and attach it to any

project. After this simplification, the path conditions are translated back into

K native language and stored.

5. Now that the main module has been provided with the necessary information,

the inference algorithm formulated in Section 5 is applied. For each solution

s obtained from the symbolic execution of the modifier, and each observer o

recognized while scanning the fun cell (whose parameters are a subset of the

profile of the modifier), o is executed under the environment of the initial and

1http://jflex.de/
2http://www2.cs.tum.edu/projects/cup/

48 6. Implementation of the System

final patterns of s to check whether all the possible paths return the same

value (or if there is only one possible path). The comparison of the return

values is done by means of string equality (the construct for values contains

both the type and the value, so no more information is needed and the value

does not need to be parsed). Again, this execution is materialized by the front-

end module, who calls the K interpreter with the suitable arguments to set up

the right context. To explain the initial pattern of a solution, the initial heap

provided to the observer is the content of the initial-heap cell, whereas to explain

the final pattern the data to be passed in is the content of the heap cell. The

reason of this difference lies in the fact that, to run an observer function after

the execution of the modifier, the final state of the memory must be preserved.

6. Finally, the axioms sets are built, simplified, and printed in the standard output

(in our test run, the OS command terminal).

As we can observe, the operation of the system implies text processing to a great

extent; after all, the way the front-end module and the K interpreter communicate

is through a text-driven command console. That is one of the reasons why we chose

Java as the platform to build our specification inference tool: the String type is much

simpler to handle in Java than in C even providing methods to easily interpret the

output from the command line and navigate through it. Another important reason is

that, since the K tool is expected to be provided with a Java backend soon, it may be

possible to attach language compilations directly into the project, hence simplifying

the system so that its binaries do not have to worry anymore about directories and

working environments.

To get a glimpse of the information that the KindSpec 2.0 system will process,

Figure 6.2 showcases an example of how the output of krun looks like. The figure

shows the information associated to the (symbolic) path that ends after in the body

of the else clause (i.e., when the list passed as an argument is NULL) of the function

append from Example 3. Note that the init-struct and init-heap cells are consistent

with each other, whereas the (final) heap cell contents represent the memory after

the execution, thus the information stored in it is different to that described in

the restrictions of the init-struct cell. We also want to highlight how the storage

of struct objects is implemented in our approach: we use an auxiliary constructor

symbol named objectValues whose argument is a mapping from field identifiers to

the values associated to them. Finally, note the presence of a new program variable

contador that did not appear in Example 3, which is the auxiliary variable that we

49

Figure 6.2: Example of krun output for the symbolic execution of append.

50 6. Implementation of the System


length(list) = 0 ∧
reverse(list) = NULL ∧
find(list, data) = 0 ∧
init(list) = NULL ∧
last(list) = NULL

 ⇒


length(list′) = 1 ∧
reverse(list′) = list ∧
find(list′, data) = 1 ∧
init(list′) = NULL ∧
last(list′) = data ∧
ret = list′



(
length(list) = 1

) ⇒


length(list′) = 2 ∧
find(list′, data) = 1 ∧
last(list′) = data ∧
ret = list′



(
length(list) = 2

) ⇒


length(list′) = 3 ∧
find(list′, data) = 1 ∧
last(list′) = data ∧
ret = list′



Figure 6.3: Computed specification for the append(list,d) function call.

used to keep track of the number of loop unrollings and to limit them.

The specification computed for our leading example is shown in figure 6.3. Note

that, in contrast to the two axioms of Example 4, three axioms are computed. This is

due to the unrolling of loops. Also note that the second and third computed axioms

are instances of the second axiom of the intended specification.

Similarly to [1], due to bounded loop unrolling we cannot ensure completeness of

the inferred specifications since we do not cover all possible execution paths. This

is evident when comparing the automatically inferred axioms shown in the pattern

above w.r.t. the expected specification given in Example 4. An effective gener-

alization methodology is needed to properly cover all possible executions without

incurring (hopefully) in significant loss of correctness.

7
Conclusions and Future Work

52 7. Conclusions and Future Work

In this thesis we carried out the following contributions to the software engineer-

ing area: 1) we presented a technique for automated program specification inference

adapting the fundamental concepts and the methodology of [1] to recent technology;

2) we implemented that technique in a prototype tool that automatically obtains ax-

ioms describing the input/output behavior of programs; and 3) we formulated a new

specification for the semantics of a programming language, specifically KernelC,

providing it with more complex capabilities such as lazy initialization and manipu-

lation of structured data types. In the process, we also explored leading-edge tech-

niques that show great potential for making software verification more simple and

effective, and consequently improving the quality of software. Some of these tech-

niques are: static analysis, symbolic execution, formal semantics and satisfiability

problem solving, to name a few. We achieved to combine all of them to aim them

towards the automated discovery of specifications through the analysis of real source

code.

However, as part of a scientific research project, some improvements and exten-

sions are being considered for future lines of investigation. We are currently working

on defining a generalization algorithm that can distill more general axioms (such

as the second axiom in Example 4) that we are not yet able to obtain. We follow

the common synthesis approach that is based on using “skeletons” of generalizations,

which are then refined to obtain a correct generalization of a set of axioms (w.r.t.

the skeleton). The function that computes such skeletons basically induces them

from iterations (loops and recursive calls) and is considered to be a parameter of the

algorithm. Without entering into too much detail, candidate skeletons are given by

a so-called “admissible template”, that is, a non-ground K term that is used to guess

the form that a given general axiom can have. A common drawback when resorting

to skeletons is that the burden of defining/selecting the most suitable templates for a

given problem usually rests with the user; hence usability is a key point that we can-

not dismiss. Even if extensive research is still needed, our preliminary experiments

reveal that axioms like the aforementioned more general one can be easily inferred

automatically. Obviously, since we are using a threshold to stop loops, correctness

cannot be ensured for all the general axioms that we compute, but they can still

be useful for other verification processes or even be verified afterwards. A second,

longer-term direction for research is to follow the abstraction-based, subsumption

approach for symbolic execution of [2] to finitize symbolic execution while getting

rid of any thresholds.

53

From the experimental point of view, there are certainly several ways that our

prototype implementation can be improved. A refinement post-processing was de-

fined in [1] that improves the quality of inferred specifications. Roughly speaking,

when an observed pattern cannot be explained because its symbolic execution leads

to final patterns that do not agree in the same result, the call pattern is (incremen-

tally) split into multiple refined patterns until the considered observers eventually

suffice to explain it. We plan to implement this refinement process in KindSpec 2.0

and measure the inference power gains. Actually, the main motivation of our work

was not to improve efficiency w.r.t. [1], but rather to improve robustness, generality

and mantainability.

54 7. Conclusions and Future Work

Bibliography

[1] M. Alpuente, M. A. Feliú, and A. Villanueva. Automatic Inference of Spec-

ifications using Matching Logic. In Proc.e ACM SIGPLAN 2013 Workshop

on Partial Evaluation and Program Manipulation, PEPM 2013, pages 127–136.

ACM, 2013.

[2] S. Anand, C. S. Pasareanu, and W. Visser. Symbolic execution with abstrac-

tion. International Journal on Software Tools for Technology Transfer (STTT),

11(1):53–67, 2009.

[3] A. Arusoaie, D. Lucanu, V. Rusu, T.-F. Serbanuta, A. Stefanescu, and G. Roşu.

Language Definitions as Rewrite Theories. In 10th International Workshop on

Rewriting Logic and Its Applications (WRLA), Revised Selected Papers, pages

97–112, 2014.

[4] G. Bacci, M. Comini, M. A. Feliú, and A. Villanueva. Automatic Synthesis of

Specifications for First Order Curry Programs. In Proc. of the 14th Intl. Symp.

on ACM Principles and Practice of Declarative Programming (PPDP’12). ACM

Press, 2012.

[5] M. Christodorescu, S. Jha, and C. Kruegel. Mining Specifications of Malicious

Behavior. In Proc. of the 6th joint meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC/FSE 2007), pages 5–14. ACM, 2007.

[6] K. Claessen, N. Smallbone, and J. Hughes. QuickSpec: Guessing Formal Specifi-

cations Using Testing. In Proc, 4th Int’l Conf. on Tests and Proofs (TAP 2010),

volume 6143 of Lecture Notes in Computer Science, pages 6–21. Springer, 2010.

[7] M. Clavel, F. Durán, S. Ejer, P. Lincoln, N. Martí-Oliet, J. Meseguer, and

C. Talcott. All About Maude – A High-Performance Logical Framework, volume

4350 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and

C. Talcott. All About Maude: A High-Performance Logical Framework, volume

4350 of Lecture Notes in Computer Science. Springer-Verlag, 2007.

56 Bibliography

[9] C. Csallner, N. Tillmann, and Y. Smaragdakis. DySy: Dynamic Symbolic Exe-

cution for Invariant Inference. In Proc. 30th International Conference on Soft-

ware Engineering (ICSE 2008), pages 281–290. ACM, 2008.

[10] L. M. de Moura and B. Nikolaj. Z3: an efficient SMT solver. In 14th Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), pages 337–340, 2008.

[11] V. D’Silva, D. I. Kroening, and G. Weissenbacher. A survey of automated

techniques for formal software verification. IEEE Trans. on CAD of Integrated

Circuits and Systems, 27(7):1165–1178, 2008.

[12] C. Ellison and G. Roşu. An executable formal semantics of C with applications.

In Proceedings of the 39th Symposium on Principles of Programming Languages

(POPL’12), pages 533–544. ACM, 2012.

[13] M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S. Tschantz,

and C. Xiao. The Daikon System for Dynamic Detection of Likely Invariants.

Sci. Comput. Program., 69(1-3):35–45, 2007.

[14] S. Escobar, editor. Rewriting Logic and Its Applications - 10th International

Workshop, WRLA 2014, Held as a Satellite Event of ETAPS, Grenoble, France,

April 5-6, 2014, Revised Selected Papers, volume 8663 of Lecture Notes in Com-

puter Science. Springer, 2014.

[15] C. Ghezzi, A. Mocci, and M. Monga. Synthesizing Intensional Behavior Models

by Graph Transformation. In Proc. 3st Int’l Conf. on Software Engineering

(ICSE 2009), pages 430–440. IEEE, 2009.

[16] D. Giannakopoulou and C. S. Pasareanu. Interface Generation and Composi-

tional Verification in JavaPathfinder. In Proc. 12th In’l Conf. on Fundamental

Approaches to Software Engineering (FASE 2009), volume 5503 of Lecture Notes

in Computer Science, pages 94–108. Springer, 2009.

[17] S. Hangal and M. S. Lam. Tracking down Software Bugs using Automatic

Anomaly Detection. In Proc. 22rd International Conference on Software Engi-

neering (ICSE 2002), pages 291–301. ACM, 2002.

[18] J. Henkel and A. Diwan. Discovering Algebraic Specifications from Java Classes.

In Proc. ECOOP, pages 431–456, 2003.

Bibliography 57

[19] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic execution

for model checking and testing. In TACAS, pages 553–568, 2003.

[20] J. C. King. Symbolic execution and program testing. Commun. ACM,

19(7):385–394, July 1976.

[21] Formal Systems Laboratory. Term rewriting and rewriting logic, November

2011. URL: http://fsl.cs.illinois.edu/index.php/Term_Rewriting_and_

Rewriting_Logic.

[22] B. Liskov and J. Guttag. Abstraction and specification in program development.

MIT Press, 1986.

[23] N. Martí-Oliet and J. Meseguer. Rewriting logic as a logical and semantic

framework. Electr. Notes Theor. Comput. Sci., 4:190–225, 1996.

[24] C. S. Pasareanu and W. Visser. A Survey of new Trends in Symbolic Execution

for Software Testing and Analysis. STTT, 11(4):339–353, 2009.

[25] G. Roşu. From Rewriting Logic, to Programming Language Semantics, to Pro-

gram Verification. In Logic, Rewriting, and Concurrency - Festschrift Sympo-

sium in Honor of José Meseguer, Lecture Notes in Computer Science. Springer

Verlag, 2015. To appear.

[26] G. Roşu, W. Schulte, and T.-F. Serbanuta. Runtime verification of C mem-

ory safety. In Runtime Verification (RV’09), volume 5779 of Lecture Notes in

Computer Science, pages 132–152, 2009.

[27] G. Roşu and T.-F. Serbanuta. An Overview of the K Semantic Framework. J.

Log. Algebr. Program., 79(6):397–434, 2010.

[28] G. Roşu and A. Stefanescu. Matching Logic: A New Program Verification

Approach. In Proceedings of the 33rd International Conference on Software

Engineering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages

868–871. ACM, 2011.

[29] M. Taghdiri and D.Jackson. Inferring Specifications to Detect Errors in Code.

Autom. Softw. Eng., 14(1):87–121, 2007.

[30] N. Tillmann, F. Chen, and W. Schulte. Discovering Likely Method Specifica-

tions. In Proc. 8th Int’l Conf. on Formal Engineering Methods (ICFEM 2006),

58 Bibliography

volume 4260 of Lecture Notes in Computer Science, pages 717–736. Springer,

2006.

[31] J. Whaley, M. C. Martin, and M. S. Lam. Automatic extraction of object-

oriented component interfaces. In Proc. ISSTA 2002, pages 218–228, 2002.

Appendix: Full KernelC
Specification

K
E

R
N

E
LC

m
o
d
u
le

K
E
R

N
E
L
C

-S
Y

N
T
A

X

sy
n
ta

x
F
ile

::
=

G
lo
ba
ls

sy
n
ta

x
G
lo
ba
ls

::
=
L
is
t{
G
lo
ba
l,
“”
}

sy
n
ta

x
G
lo
ba
l:
:=

St
ru
ct
D
ec
la
ra
ti
on

|
Fu

nc
ti
on

D
ec
la
ra
ti
on

|
Fu

nc
ti
on

D
efi
ni
ti
on

|
#i

nc
lu

de
<s

td
io

.h
>

|
#i

nc
lu

de
<s

td
li

b.
h>

sy
n
ta

x
Fu

nc
ti
on

D
ec
la
ra
ti
on

::
=

T
yp
e
Id
(P

ar
am

et
er
D
ec
la
ra
ti
on

s)
;

sy
n
ta

x
Fu

nc
ti
on

D
efi
ni
ti
on

::
=

T
yp
e
Id
(P

ar
am

et
er
D
ec
la
ra
ti
on

s)
St
at
em

en
tB

lo
ck

sy
n
ta

x
P
ar
am

et
er
D
ec
la
ra
ti
on

s
::
=
L
is
t{
P
ar
am

et
er
D
ec
la
ra
ti
on
,“
,”
}

sy
n
ta

x
P
ar
am

et
er
D
ec
la
ra
ti
on

::
=

T
yp
e
Id

sy
n
ta

x
St
ru
ct
D
ec
la
ra
ti
on

::
=

st
ru

ct
Id
{V

ar
ia
bl
eD

ec
la
ra
ti
on

s}
;

sy
n
ta

x
V
ar
ia
bl
eD

ec
la
ra
ti
on

s
::
=
L
is
t{
V
ar
ia
bl
eD

ec
la
ra
ti
on
,“
”}

sy
n
ta

x
V
ar
ia
bl
eD

ec
la
ra
ti
on

::
=

T
yp
e
Id

;

sy
n
ta

x
P
ri
m
it
iv
eT

yp
e
::
=

in
t

|
vo

id
|
T
yp
e
*

sy
n
ta

x
T
yp
e
::
=

P
ri
m
it
iv
eT

yp
e

|
st

ru
ct

Id

sy
n
ta

x
St
at
em

en
tB

lo
ck

::
=
{V

ar
ia
bl
eD

ec
la
ra
ti
on

s
St
at
em

en
ts
}

sy
n
ta

x
St
at
em

en
ts

::
=
L
is
t{
St
at
em

en
t,
“”
}

sy
n
ta

x
St
at
em

en
t
::
=

E
xp
re
ss
io
n
=
E
xp
re
ss
io
n
;
[s
tr
ic
t(
2)
]

|
E
xp
re
ss
io
n
+=

E
xp
re
ss
io
n
;
[s
tr
ic
t(
2)
]

1

|
E
xp
re
ss
io
n
-=

E
xp
re
ss
io
n
;
[s
tr
ic
t(
2)
]

|
E
xp
re
ss
io
n
*=

E
xp
re
ss
io
n
;
[s
tr
ic
t(
2)
]

|
E
xp
re
ss
io
n
/=

E
xp
re
ss
io
n
;
[s
tr
ic
t(
2)
]

|
E
xp
re
ss
io
n
++

;
|
E
xp
re
ss
io
n
–

;
|
E
xp
re
ss
io
n
;
[s
tr
ic
t]

|
if

(E
xp
re
ss
io
n)
St
at
em

en
t
el

se
St
at
em

en
t
[a
vo

id
]

|
if

(E
xp
re
ss
io
n)
St
at
em

en
t

|
wh

il
e
(E

xp
re
ss
io
n)
St
at
em

en
t

|
re

tu
rn

E
xp
re
ss
io
n
;
[s
tr
ic
t(
1)
]

|
re

tu
rn

;
|

;
|
St
at
em

en
tB

lo
ck

|
<s

to
p>

sy
n
ta

x
E
xp
re
ss
io
n
::
=

In
t

|
Id
|

NU
LL

|
(E

xp
re
ss
io
n)

[b
ra
ck
et
]

|
E
xp
re
ss
io
n
.
Id

|
E
xp
re
ss
io
n
->

Id
|
Id
(A

rg
um

en
ts
)
[s
tr
ic
t(
2)
]

|
si

ze
of

(T
yp
e)

|
(T

yp
e)
E
xp
re
ss
io
n
[s
tr
ic
t(
2)
]

|
-
E
xp
re
ss
io
n
[s
tr
ic
t]

|
*
E
xp
re
ss
io
n
[s
tr
ic
t]

|
&
E
xp
re
ss
io
n

|
#
E
xp
re
ss
io
n

|
E
xp
re
ss
io
n
’

|
E
xp
re
ss
io
n
*
E
xp
re
ss
io
n
[s
tr
ic
t]

|
E
xp
re
ss
io
n
/
E
xp
re
ss
io
n
[s
tr
ic
t]

|
E
xp
re
ss
io
n
+
E
xp
re
ss
io
n
[s
tr
ic
t]

|
E
xp
re
ss
io
n
-
E
xp
re
ss
io
n
[s
tr
ic
t]

|
E
xp
re
ss
io
n
<
E
xp
re
ss
io
n
[s
eq
st
ri
ct
]

|
E
xp
re
ss
io
n
<=

E
xp
re
ss
io
n
[s
eq
st
ri
ct
]

|
E
xp
re
ss
io
n
>
E
xp
re
ss
io
n
[s
eq
st
ri
ct
]

|
E
xp
re
ss
io
n
>=

E
xp
re
ss
io
n
[s
eq
st
ri
ct
]

|
E
xp
re
ss
io
n
==

E
xp
re
ss
io
n
[s
tr
ic
t]

|
E
xp
re
ss
io
n
!=

E
xp
re
ss
io
n
[s
tr
ic
t]

|
!
E
xp
re
ss
io
n

|
E
xp
re
ss
io
n
&&

E
xp
re
ss
io
n
[p
re
fe
r,

st
ri
ct
(1
)]

|
E
xp
re
ss
io
n
||

E
xp
re
ss
io
n
[s
tr
ic
t(
1)
]

sy
n
ta

x
A
rg
um

en
ts

::
=
L
is
t{
E
xp
re
ss
io
n,

“,
”}

[s
tr
ic
t]

sy
n
ta

x
Id

::
=

ma
in

|
ma

ll
oc

|
fr

ee

en
d

m
o
d
u
le

2

m
o
d
u
le

K
E
R

N
E
L
C

-S
E
M

A
N

T
IC

S

ru
le

G
:G

lo
ba

l
G

s
:G

lo
ba

ls

G
y

G
s

[s
tr
uc

tu
ra
l]

ru
le

• G
lo
ba

ls

• K

[s
tr
uc

tu
ra
l]

ru
le

#i
nc

lu
de

<s
td

io
.h

>
• K

[s
tr
uc

tu
ra
l]

ru
le

#i
nc

lu
de

<s
td

li
b.

h>
• K

[s
tr
uc

tu
ra
l]

ru
le

—
:T
y
p
e

—
:I
d
(—

:P
a
r
a
m
et
er
D
ec
la
r
a
ti
o
n
s)

;
• K

[s
tr
uc

tu
ra
l]

ru
le

T
:T

y
pe

F
:I

d
(P

D
s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)S

B
:S

ta
te

m
en

tB
lo

ck

• K

k
• M

a
p

F
7→

fu
nc

ti
on

Bo
dy

(P
D

s
,T
,{

S
B

re
tu

rn
;}

)

fu
n

[s
tr
uc

tu
ra
l]

ru
le

st
ru

ct
S
:I

d
{M

em
be

rs
:V

a
ri

a
bl

eD
ec

la
ra

ti
o
n

s
}
;

ma
ke

Me
mb

er
Li

st
(M

em
be

rs
,S

)

k
• M

a
p

S
7→

st
ru

ct
Fi

el
ds

(•
L
is
t
)

st
ru

ct

[s
tr
uc

tu
ra
l]

ru
le

S
:S

ta
te

m
en

t
S

s
:S

ta
te

m
en

ts

S
y

S
s

[s
tr
uc

tu
ra
l]

3

ru
le

• S
ta

te
m
e
n
ts

• K

[s
tr
uc

tu
ra
l]

ru
le

V
D
:V

a
ri

a
bl

eD
ec

la
ra

ti
o
n

V
D

s
:V

a
ri

a
bl

eD
ec

la
ra

ti
o
n

s

V
D

y
V

D
s

[s
tr
uc

tu
ra
l]

ru
le

• V
a
r
ia
b
le
D
ec

la
ra

ti
o
n
s

• K

[s
tr
uc

tu
ra
l]

ru
le

T
:P

ri
m

it
iv

eT
y
pe

X
:I

d
;

• K

k

ρ
:M

a
p

• M
a
p

X
7→

tv
(T

*,
po

in
te

r
(X

))

en
v

H
ea

p
:M

a
p

• M
a
p

po
in

te
r
(X

)
7→

tv
(T
,
un

de
f)

he
ap

• L
is
t

tv
(T

*,
po

in
te

r
(X

))

lo
ca

ls

re
qu

ir
es
¬ B

o
o
lX

in
ke

ys
(ρ
)
∧ B

o
o
l
¬ B

o
o
l
po

in
te

r
(X

)
in

ke
ys

(H
ea

p
)

[s
tr
uc

tu
ra
l]

ru
le

T
:P

ri
m

it
iv

eT
y
pe

X
:I

d
;

• K

k

X
7→

tv
(T

*,
po

in
te

r
(ξ
:E

xp
re

ss
io

n
))

tv
(T

*,
po

in
te

r
(
#
ξ
))

en
v

• M
a
p

po
in

te
r
(
#
ξ
)
7→

tv
(T
,
un

de
f)

he
ap

• L
is
t

tv
(T

*,
po

in
te

r
(
#
ξ
))

lo
ca

ls

[s
tr
uc

tu
ra
l]

ru
le

T
:P

ri
m

it
iv

eT
y
pe

X
:I

d
;

• K

k

ρ
:M

a
p

• M
a
p

X
7→

tv
(T

*,
po

in
te

r
(I
))

en
v

po
in

te
r
(X

)
7→

—
—

:M
a
p

• M
a
p

po
in

te
r
(I
:I

d
)
7→

tv
(T
,
un

de
f)

he
ap

• L
is
t

tv
(T

*,
po

in
te

r
(I
))

lo
ca

ls

re
qu

ir
es
¬ B

o
o
lX

in
ke

ys
(ρ
)

[s
tr
uc

tu
ra
l]

4

ru
le

st
ru

ct
S
:I

d
X
:I

d
;

• K

k

ρ
:M

a
p

• M
a
p

X
7→

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

))

en
v

H
ea

p
• M

a
p

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(
in

it
ia

li
ze

Ob
je

ct
(F

ie
ld

s
))
)

he
ap

S
7→

st
ru

ct
Fi

el
ds

(F
ie

ld
s
:L

is
t)

st
ru

ct
• L

is
t

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

))

lo
ca

ls

re
qu

ir
es
¬ B

o
o
lX

in
ke

ys
(ρ
)
∧ B

o
o
l
¬ B

o
o
l
po

in
te

r
(X

)
in

ke
ys

(H
ea

p
)

[s
tr
uc

tu
ra
l]

ru
le

st
ru

ct
S
:I

d
X
:I

d
;

• K

k

X
7→

tv
(T

*,
po

in
te

r
(ξ
:E

xp
re

ss
io

n
))

tv
(
st

ru
ct

S
*,

po
in

te
r
(
#
ξ
))

en
v

• M
a
p

po
in

te
r
(
#
ξ
)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(
in

it
ia

li
ze

Ob
je

ct
(F

ie
ld

s
))
)

he
ap

S
7→

st
ru

ct
Fi

el
ds

(F
ie

ld
s
:L

is
t)

st
ru

ct

• L
is
t

tv
(
st

ru
ct

S
*,

po
in

te
r
(
#
ξ
))

lo
ca

ls [s
tr
uc

tu
ra
l]

ru
le

st
ru

ct
S
:I

d
X
:I

d
;

• K

k

ρ
:M

a
p

• M
a
p

X
7→

tv
(
st

ru
ct

S
*,

po
in

te
r
(I
:I

d
))

en
v

po
in

te
r
(X

)
7→

—
—

:M
a
p

• M
a
p

po
in

te
r
(I

d
)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(
in

it
ia

li
ze

Ob
je

ct
(F

ie
ld

s
))
)

he
ap

S
7→

st
ru

ct
Fi

el
ds

(F
ie

ld
s
:L

is
t)

st
ru

ct
• L

is
t

tv
(
st

ru
ct

S
*,

po
in

te
r
(I
))

lo
ca

ls

re
qu

ir
es
¬ B

o
o
lX

in
ke

ys
(ρ
)

[s
tr
uc

tu
ra
l]

ru
le

—
:T
y
p
ed
V
a
lu
e
;

• K

[s
tr
uc

tu
ra
l]

ru
le ; • K

[s
tr
uc

tu
ra
l]

5

ru
le

{V
D

s
:V

a
ri

a
bl

eD
ec

la
ra

ti
o
n

s
S

s
:S

ta
te

m
en

ts
}

V
D

s
y

S
s
y

En
dO

fB
lo

ck

k

E
n

v
:M

a
p

en
v

L
oc

a
ls
:L

is
t

lo
ca

ls
• L

is
t

st
at

eF
ra

me
(E

n
v
,L

oc
a
ls
)

sc
op

e

re
qu

ir
es

V
D

s
6=

K
• V

a
r
ia
b
le
D
ec

la
ra

ti
o
n
s

[s
tr
uc

tu
ra
l]

ru
le

{•
V
a
r
ia
b
le
D
ec

la
ra

ti
o
n
s

S
s
:S

ta
te

m
en

ts
}

S
s

[s
tr
uc

tu
ra
l]

ru
le

En
dO

fB
lo

ck
• K

k

—
:M

a
p

E
n

v

en
v

—
:L
is
t

L
oc

a
ls

lo
ca

ls

st
at

eF
ra

me
(E

n
v
:M

a
p
,L

oc
a
ls
:L

is
t)

• L
is
t

sc
op

e

[s
tr
uc

tu
ra
l]

ru
le

wh
il

e
(E

:E
xp

re
ss

io
n
)S

:S
ta

te
m

en
t

if
(E

){
S

wh
il

e
(E

)S
}

[s
tr
uc

tu
ra
l]

ru
le I
:I

n
t

tv
(
in

t,
I
)

[s
tr
uc

tu
ra
l]

ru
le

-
tv

(
in

t,
I
:I

n
t)

tv
(
in

t,
0
−

In
t

I
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
+

tv
(
in

t,
I2

:I
n

t)

tv
(
in

t,
I1

+
In

t
I2

)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
-

tv
(
in

t,
I2

:I
n

t)

tv
(
in

t,
I1
−

In
t

I2
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
*

tv
(
in

t,
I2

:I
n

t)

tv
(
in

t,
I1
∗ I

n
t

I2
)

[s
tr
uc

tu
ra
l]

6

ru
le

tv
(
in

t,
I1

:I
n

t)
/

tv
(
in

t,
I2

:I
n

t)

tv
(
in

t,
I1
÷

In
t

I2
)

re
qu

ir
es

I2
=
/
=

In
t

0
[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
<

tv
(
in

t,
I2

:I
n

t)

bo
ol

2i
nt

(I
1
<

In
t

I2
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
<=

tv
(
in

t,
I2

:I
n

t)

bo
ol

2i
nt

(I
1
≤

In
t

I2
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
>

tv
(
in

t,
I2

:I
n

t)

bo
ol

2i
nt

(I
1
>

In
t

I2
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
>=

tv
(
in

t,
I2

:I
n

t)

bo
ol

2i
nt

(I
1
≥

In
t

I2
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
==

tv
(
in

t,
I2

:I
n

t)

bo
ol

2i
nt

(I
1
=
=

In
t

I2
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
I1

:I
n

t)
!=

tv
(
in

t,
I2

:I
n

t)

bo
ol

2i
nt

(I
1
=
/
=

In
t

I2
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(T

:T
y
pe
,V

1
:V

a
lu

e
)
==

tv
(T
,V

2
:V

a
lu

e
)

bo
ol

2i
nt

(V
1
=

K
V

2
)

re
qu

ir
es

T
6=

K
in

t
[s
tr
uc

tu
ra
l]

ru
le

tv
(T

:T
y
pe
,V

1
:V

a
lu

e
)
!=

tv
(T
,V

2
:V

a
lu

e
)

bo
ol

2i
nt

(V
1
6=

K
V

2
)

re
qu

ir
es

T
6=

K
in

t
[s
tr
uc

tu
ra
l]

7

ru
le

!
B
:B

oo
l

bo
ol

2i
nt

(¬
B
o
o
lB

)

[s
tr
uc

tu
ra
l]

ru
le

si
ze

of
(
in

t)

tv
(
in

t,
1)

[s
tr
uc

tu
ra
l]

ru
le

si
ze

of
(T

:T
y
pe

*)

tv
(
in

t,
1)

[s
tr
uc

tu
ra
l]

ru
le

si
ze

of
(
st

ru
ct

S
:I

d
)

#l
en

gt
h
(M

em
be

rs
)

k

S
7→

st
ru

ct
Fi

el
ds

(M
em

be
rs
:L

is
t)

st
ru

ct

[s
tr
uc

tu
ra
l]

ru
le

X
:I

d

*
&

X [s
tr
uc

tu
ra
l]

ru
le

&
*

E
:E

xp
re

ss
io

n

E

[s
tr
uc

tu
ra
l]

ru
le

&
X
:I

d

T
V

k

X
7→

T
V
:T

y
pe

d
V

a
lu

e

en
v

[s
tr
uc

tu
ra
l]

co
n
te

x
t

&
(�

->
—

)

ru
le

&
(
tv

(
st

ru
ct

S
:I

d
*,

po
in

te
r
(X

:E
xp

re
ss

io
n
))

->
F
:I

d
)

tv
(T

*,
me

mb
er

(X
,F

))

k

S
7→

st
ru

ct
Fi

el
ds

(—
:L
is
t

fi
el

d
(F
,T

:T
y
pe

)
—

:L
is
t)

st
ru

ct

[s
tr
uc

tu
ra
l]

8

ru
le

m
al

lo
c(

tv
(
in

t,
S

iz
e
:I

n
t)
)

Cr
ea

te
Ne

wO
bj

ec
t
(S

iz
e
)

[s
tr
uc

tu
ra
l]

ru
le

(T
:P

ri
m

it
iv

eT
y
pe

*)
Cr

ea
te

Ne
wO

bj
ec

t
(1
)

Ne
wS

im
pl

eP
oi

nt
er

[s
tr
uc

tu
ra
l]

ru
le

tv
(T

:T
y
pe

*
*,

po
in

te
r
(X

:E
xp

re
ss

io
n
))

=
Ne

wS
im

pl
eP

oi
nt

er
;

tv
(T

*
*,

po
in

te
r
(X

))
=

tv
(T

*,
po

in
te

r
(
*

X
))

;

k
• M

a
p

po
in

te
r
(
*

X
)
7→

tv
(T
,
un

de
f)

he
ap

• L
is
t

tv
(T

*,
po

in
te

r
(
*

X
))

lo
ca

ls

[s
tr
uc

tu
ra
l]

ru
le

(
st

ru
ct

S
:I

d
*)

Cr
ea

te
Ne

wO
bj

ec
t
(S

iz
e
:I

n
t)

Ne
wS

tr
uc

tP
oi

nt
er

(S
iz

e
)

[s
tr
uc

tu
ra
l]

ru
le

tv
(
st

ru
ct

S
:I

d
*
*,

po
in

te
r
(X

:E
xp

re
ss

io
n
))

=
Ne

wS
tr

uc
tP

oi
nt

er
(S

iz
e
:I

n
t)

;

tv
(
st

ru
ct

S
*
*,

po
in

te
r
(X

))
=

tv
(
st

ru
ct

S
*,

po
in

te
r
(
*

X
))

;

k
• M

a
p

po
in

te
r
(
*

X
)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(
in

it
ia

li
ze

Ob
je

ct
(F

ie
ld

s
))
)

he
ap

• L
is
t

tv
(
st

ru
ct

S
*,

po
in

te
r
(
*

X
))

lo
ca

ls

S
7→

st
ru

ct
Fi

el
ds

(F
ie

ld
s
:L

is
t)

st
ru

ct

[s
tr
uc

tu
ra
l]

ru
le

fr
ee
(
tv

(T
:T

y
pe

*,
po

in
te

r
(X

:E
xp

re
ss

io
n
))
)

cl
ea

nM
em

or
y
(H
,
po

in
te

r
(X

))

k

H
:M

a
p

he
ap

[s
tr
uc

tu
ra
l]

ru
le

tv
(T

1
:T

y
pe

*
*,
—

:P
o
in
te
r
)
=

tv
(T

2
:T

y
pe

*

T
1
*

,
nu

ll
)
;

re
qu

ir
es

T
1
6=

K
T

2
[s
tr
uc

tu
ra
l]

9

ru
le

tv
(T

1
:T

y
pe

*,
—

:P
o
in
te
r
)
==

tv
(T

2
:T

y
pe

*

T
1
*

,
nu

ll
)

re
qu

ir
es

T
1
6=

K
T

2
[s
tr
uc

tu
ra
l]

ru
le

tv
(T

1
:T

y
pe

*

T
2
*

,
nu

ll
)
==

tv
(T

2
:T

y
pe

*,
—

:P
o
in
te
r
)

re
qu

ir
es

T
1
6=

K
T

2
[s
tr
uc

tu
ra
l]

ru
le

tv
(T

1
:T

y
pe

*,
—

:P
o
in
te
r
)
!=

tv
(T

2
:T

y
pe

*

T
1
*

,
nu

ll
)

re
qu

ir
es

T
1
6=

K
T

2
[s
tr
uc

tu
ra
l]

ru
le

tv
(T

1
:T

y
pe

*

T
2
*

,
nu

ll
)
!=

tv
(T

2
:T

y
pe

*,
—

:P
o
in
te
r
)

re
qu

ir
es

T
1
6=

K
T

2
[s
tr
uc

tu
ra
l]

ru
le

re
tu

rn
tv

(T
1
:T

y
pe

*

T
2
*

,
nu

ll
)
;

k

C
a
ll

ed
7→

fu
nc

ti
on

Bo
dy

(P
D

s
,T

2
:T

y
pe

*,
—

:S
ta
te
m
en
tB
lo
ck

)

fu
n

C
a
ll

ed
:I

d
(P

D
s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)

cu
rr

en
t-

fu
nc

ti
on

-c
al

l

[s
tr
uc

tu
ra
l]

ru
le

tv
(
in

t,
0)

&&
E
:E

xp
re

ss
io

n

tv
(
in

t,
0)

ru
le tv
(
in

t,
I
:I

n
t)

&&
E
:E

xp
re

ss
io

n

bo
ol

2i
nt

(
ex

pr
es

si
on

2B
oo

l
(E

))

re
qu

ir
es

I
=
/
=

In
t

0

ru
le tv

(
in

t,
0)

||
E
:E

xp
re

ss
io

n

bo
ol

2i
nt

(
ex

pr
es

si
on

2B
oo

l
(E

))

ru
le

tv
(
in

t,
I
:I

n
t)

||
E
:E

xp
re

ss
io

n

tv
(
in

t,
1)

re
qu

ir
es

I
=
/
=

In
t

0

10

ru
le

!
E
:E

xp
re

ss
io

n

ex
pr

es
si

on
2B

oo
l
(E

)
y

!
�

[h
ea
t]

ru
le

B
:B

oo
l
y

!
�

!
B

[c
oo

l]

ru
le

if
(t

ru
e)

S
:S

ta
te

m
en

t
el

se
—

:S
ta
te
m
en
t

S

ru
le

if
(f

al
se
)—

:S
ta
te
m
en
t
el

se
S
:S

ta
te

m
en

t

S

ru
le

if
(E

:E
xp

re
ss

io
n
)S

1
:S

ta
te

m
en

t
el

se
S

2
:S

ta
te

m
en

t

ex
pr

es
si

on
2B

oo
l
(E

)
y

if
(�

)S
1
el

se
S

2

[h
ea
t]

ru
le

B
:B

oo
l
y

if
(�

)S
1
:S

ta
te

m
en

t
el

se
S

2
:S

ta
te

m
en

t

if
(B

)S
1
el

se
S

2

[c
oo

l]

ru
le

*
tv

(T
:T

y
pe

*,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

tv
(T
,V

)

k

po
in

te
r
(X

)
7→

tv
(T
,V

:V
a
lu

e
)

he
ap

tv
(T

*,
po

in
te

r
(X

))

lo
ca

ls

re
qu

ir
es

V
6=

K
un

de
f

[t
ra
ns
it
io
n]

ru
le

*
tv

(T
:T

y
pe

*,
me

mb
er

(X
:E

xp
re

ss
io

n
,F

:I
d
))

tv
(T
,V

)

k

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
:I

d
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(T
,V

:V
a
lu

e
)
—

:M
a
p
))

he
ap

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

))

lo
ca

ls

re
qu

ir
es

V
6=

K
un

de
f

[t
ra
ns
it
io
n]

ru
le

E
1
:E

xp
re

ss
io

n
=

E
2
:E

va
lu

a
te

d
E

xp
re

ss
io

n
;

&
E

1
y

�
=

E
2
;

[h
ea
t]

11

ru
le

T
V
:T

y
pe

d
V

a
lu

e
y

�
=

E
2
:E

va
lu

a
te

d
E

xp
re

ss
io

n
;

T
V

=
E

2
;

[c
oo

l]

ru
le

tv
(T

:T
y
pe

*,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

=
tv

(T
,V

:V
a
lu

e
)
;

• K

k

po
in

te
r
(X

)
7→

tv
(T
,—

:V
a
lu
e

V

)

he
ap

tv
(T

*,
po

in
te

r
(X

))

lo
ca

ls

[t
ra
ns
it
io
n]

ru
le

tv
(T

:T
y
pe

*,
me

mb
er

(X
:E

xp
re

ss
io

n
,F

:I
d
))

=
tv

(T
,V

:V
a
lu

e
)
;

• K

k

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
:I

d
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(T
,—

:V
a
lu
e

V

)
—

:M
a
p
))

he
ap

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

))

lo
ca

ls

re
qu

ir
es

V
6=

K
un

de
f

[t
ra
ns
it
io
n]

ru
le

C
a
ll
ed

:I
d
(
E
A
rg
s
:E

v
a
lu
a
te
d
A
rg
u
m
e
n
ts
)
y

K

{
de
cl
ar
eP
ar
am
et
er
s
(
C
a
ll
ed

P
D
s
)

bi
nd
Pa
ra
me
te
rs

(
C
a
ll
ed

P
D
s
,
E
A
rg
s
,
S
B
)
}

k
E
n
v
:M

a
p

• M
a
p

en
v

H
ea

p
:M

a
p

he
ap

L
o
ca

ls
:L

is
t

lo
ca

ls
C
a
ll
ed
7→

fu
nc
ti
on
Bo
dy

(
C
a
ll
ed

P
D
s
:P

a
ra

m
e
te
r
D
ec

la
ra

ti
o
n
s
,
—

:T
y
p
e
,
S
B
:S

ta
te
m
e
n
tB

lo
c
k
)

fu
n

S
co

p
e
:L

is
t

• L
is
t

sc
op

e
• L

is
t

ca
ll
St
ac
kF
ra
me

(
C
a
ll
e
r
(
C
a
ll
e
r
P
D
s
)
,
K

,
E
n
v
,
H
ea

p
,
L
o
ca

ls
,
S
co

p
e
)

st
ac

k
C
a
ll
e
r
:I
d
(
C
a
ll
e
r
P
D
s
:P

a
ra

m
e
te
r
D
ec

la
ra

ti
o
n
s
)

C
a
ll
ed

(
C
a
ll
ed

P
D
s
)

cu
rr

en
t-

fu
nc

ti
on

-c
al

l

re
qu

ir
es

C
a
ll

ed
6=

K
m

al
lo

c
∧ B

o
o
l

C
a
ll

ed
6=

K
fr
ee

ru
le

C
a
ll

ed
:I

d
(E

A
rg

s
:E

va
lu

a
te

d
A

rg
u

m
en

ts
)

{
de

cl
ar

eP
ar

am
et

er
s
(P

D
s
)

bi
nd

Pa
ra

me
te

rs
(P

D
s
,E

A
rg

s
,S

B
)}

k

C
a
ll

ed
7→

fu
nc

ti
on

Bo
dy

(P
D

s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
,—

:T
y
p
e,

S
B
:S

ta
te

m
en

tB
lo

ck
)

fu
n

no
fu

nc
ti

on

C
a
ll

ed
(P

D
s
)

cu
rr

en
t-

fu
nc

ti
on

-c
al

l

re
qu

ir
es

C
a
ll

ed
6=

K
m

al
lo

c
∧ B

o
o
l

C
a
ll

ed
6=

K
fr
ee

ru
le

(
re

tu
rn

tv
(T

:T
y
pe
,V

:V
a
lu

e
)
;y

cl
ea

nA
nd

Re
st

or
eM

em
or

y
(H

:M
a
p
,L

:L
is

t)
y

K
1
)

cl
ea

nA
nd

Re
st

or
eM

em
or

y
(H
,L

)
y

re
tu

rn
tv

(T
,V

)
;

k [s
tr
uc

tu
ra
l]

12

ru
le

(
re

tu
rn

tv
(T

:T
y
pe
,V

:V
a
lu

e
)
;y

K
1
)

re
tu

rn
tv

(T
,V

)
;

k

re
qu

ir
es

K
1
6=

K
• K

[s
tr
uc

tu
ra
l]

ru
le

re
tu

rn
tv

(T
:T

y
pe
,V

:V
a
lu

e
)
;

tv
(T
,V

)
y

cl
ea

nA
nd

Re
st

or
eM

em
or

y
(C

a
ll

er
H

ea
p
,C

a
ll

er
L

oc
a
ls
)
y

K

k

—
:M

a
p

C
a
ll

er
E

n
v

en
v

C
a
ll

ed
7→

fu
nc

ti
on

Bo
dy

(C
a
ll

ed
P

D
s
,T
,—

:S
ta
te
m
en
tB
lo
ck

)

fu
n

—
:L
is
t

C
a
ll

er
S

co
pe

sc
op

e

ca
ll

St
ac

kF
ra

me
(C

a
ll

er
:F

u
n

ct
io

n
P

ro
fi

le
,K

,C
a
ll

er
E

n
v
:M

a
p
,C

a
ll

er
H

ea
p
:M

a
p
,C

a
ll

er
L

oc
a
ls
:L

is
t,

C
a
ll

er
S

co
pe

:L
is

t)

• L
is
t

st
ac

k

C
a
ll

ed
:I

d
(C

a
ll

ed
P

D
s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)

C
a
ll

er

cu
rr

en
t-

fu
nc

ti
on

-c
al

l

ru
le

re
tu

rn
tv

(T
:T

y
pe
,V

:V
a
lu

e
)
;

tv
(T
,V

)

k

C
a
ll

ed
7→

fu
nc

ti
on

Bo
dy

(P
D

s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
,T
,—

:S
ta
te
m
en
tB
lo
ck

)

fu
n

• L
is
t

st
ac

k
—

:L
is
t

• L
is
t

sc
op

e

C
a
ll

ed
:I

d
(P

D
s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)

cu
rr

en
t-

fu
nc

ti
on

-c
al

l

re
qu

ir
es

P
D

s
6=

K
• P

a
ra

m
e
te
r
D
ec

la
ra

ti
o
n
s

ru
le

re
tu

rn
tv

(T
:T

y
pe
,V

:V
a
lu

e
)
;

tv
(T
,V

)

k

C
a
ll

ed
7→

fu
nc

ti
on

Bo
dy

(—
:P
a
r
a
m
et
er
D
ec
la
r
a
ti
o
n
s,

T
,—

:S
ta
te
m
en
tB
lo
ck

)

fu
n

• L
is
t

st
ac

k
—

:L
is
t

• L
is
t

sc
op

e

C
a
ll

ed
:I

d
(•
P
a
ra

m
e
te
r
D
ec

la
ra

ti
o
n
s
)

C
a
ll

ed
()

cu
rr

en
t-

fu
nc

ti
on

-c
al

l

en
d

m
o
d
u
le

m
o
d
u
le

K
E
R

N
E
L
C

-A
U

X
IL

IA
R
Y

sy
n
ta

x
St
at
em

en
tB

lo
ck

::
=
{S

ta
te
m
en
ts
}

13

ru
le {

S
s
:S

ta
te

m
en

ts
}

{•
V
a
r
ia
b
le
D
ec

la
ra

ti
o
n
s

S
s
}

[s
tr
uc

tu
ra
l]

ru
le

if
(E

:E
xp

re
ss

io
n
)S

:S
ta

te
m

en
t

if
(E

)S
el

se
;

[s
tr
uc

tu
ra
l]

ru
le

E
1
:E

xp
re

ss
io

n
+=

E
2
:E

xp
re

ss
io

n
;

E
1
=

E
1
+

E
2
;

[s
tr
uc

tu
ra
l]

ru
le

E
1
:E

xp
re

ss
io

n
-=

E
2
:E

xp
re

ss
io

n
;

E
1
=

E
1
-

E
2
;

[s
tr
uc

tu
ra
l]

ru
le

E
1
:E

xp
re

ss
io

n
*=

E
2
:E

xp
re

ss
io

n
;

E
1
=

E
1
*

E
2
;

[s
tr
uc

tu
ra
l]

ru
le

E
1
:E

xp
re

ss
io

n
/=

E
2
:E

xp
re

ss
io

n
;

E
1
=

E
1
/

E
2
;

[s
tr
uc

tu
ra
l]

ru
le

E
:E

xp
re

ss
io

n
++

;

E
=

E
+

1
;

[s
tr
uc

tu
ra
l]

ru
le

E
:E

xp
re

ss
io

n
–

;

E
=

E
-

1
;

[s
tr
uc

tu
ra
l]

ru
le

re
tu

rn
;

re
tu

rn
tv

(
vo

id
,
un

de
f)

;
[s
tr
uc

tu
ra
l]

ru
le

NU
LL

tv
(
vo

id
*,

nu
ll

)

[s
tr
uc

tu
ra
l]

14

ru
le

E
:E

xp
re

ss
io

n
->

F
:I

d

*
&
(E

->
F
)

[s
tr
uc

tu
ra
l]

sy
n
ta

x
E
xp
re
ss
io
n
::
=

E
va
lu
at
ed
E
xp
re
ss
io
n

sy
n
ta

x
E
va
lu
at
ed
E
xp
re
ss
io
n
::
=

T
yp
ed
V
al
ue

|
B
oo
l

|
St
ri
ng

sy
n
ta

x
V
al
ue

::
=

In
t

|
P
oi
nt
er

|
un

de
f

|
ob

je
ct

Va
lu

es
(M

ap
)

sy
n
ta

x
P
oi
nt
er

::
=

po
in

te
r
(E

xp
re
ss
io
n)

|
me

mb
er

(E
xp
re
ss
io
n,
Id
)

|
nu

ll

sy
n
ta

x
E
va
lu
at
ed
A
rg
um

en
ts

::
=
L
is
t{
E
va
lu
at
ed
E
xp
re
ss
io
n,

“,
”}

sy
n
ta

x
Fu

nc
ti
on

P
ro
fil
e
::
=

no
fu

nc
ti

on
|
Id
(P

ar
am

et
er
D
ec
la
ra
ti
on

s)
|
Id
()

sy
n
ta

x
T
yp
ed
V
al
ue

::
=

tv
(T

yp
e,
V
al
ue

)

sy
n
ta

x
K
It
em

::
=

fu
nc

ti
on

Bo
dy

(P
ar
am

et
er
D
ec
la
ra
ti
on

s,
T
yp
e,
St
at
em

en
tB

lo
ck
)

|
ca

ll
St

ac
kF

ra
me

(F
un

ct
io
nP

ro
fil
e,
K
,M

ap
,M

ap
,L

is
t,
L
is
t)

|
st

ru
ct

Fi
el

ds
(L
is
t)

|
fi

el
d
(I
d,
T
yp
e)

|
st

at
eF

ra
me

(M
ap
,L

is
t)

sy
n
ta

x
St
at
em

en
t
::
=

En
dO

fB
lo

ck
|

cl
ea

nM
em

or
y
(M

ap
,P

oi
nt
er
)

|
cl

ea
nA

nd
Re

st
or

eM
em

or
y
(M

ap
,L

is
t)

|
ga

rb
ag

eC
ol

le
ct

(M
ap

)
|

re
st

or
eM

em
or

y
(M

ap
,L

is
t)

sy
n
ta

x
E
xp
re
ss
io
n
::
=

el
im

in
at

eP
oi

nt
er

(P
oi
nt
er
)

ru
le

cl
ea

nM
em

or
y
(
po

in
te

r
(Y

:E
xp

re
ss

io
n
)
7→

tv
(T

:T
y
pe
,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

H
:M

a
p
,
po

in
te

r
(X

))

cl
ea

nM
em

or
y
(H
,
po

in
te

r
(X

))

k

po
in

te
r
(Y

)
7→

—
tv

(T
,
un

de
f)

he
ap

[s
tr
uc

tu
ra
l]

15

ru
le

cl
ea

nM
em

or
y
(
po

in
te

r
(—

:E
x
p
r
es
si
o
n
)
7→

tv
(—

:T
y
p
e,

V
:V

a
lu

e
)

H
:M

a
p
,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

cl
ea

nM
em

or
y
(H
,
po

in
te

r
(X

))

re
qu

ir
es

V
6=

K
po

in
te

r
(X

)
[s
tr
uc

tu
ra
l]

ru
le

cl
ea

nM
em

or
y
(
po

in
te

r
(Y

:E
xp

re
ss

io
n
)
7→

tv
(
st

ru
ct

S
:I

d
,
ob

je
ct

Va
lu

es
(F

:I
d
7→

tv
(T

:T
y
pe
,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

O
V
:M

a
p
))

H
:M

a
p
,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

cl
ea

nM
em

or
y
(
po

in
te

r
(Y

)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(O

V
))

H
,
po

in
te

r
(X

))

k

po
in

te
r
(Y

)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

—
tv

(T
,
un

de
f)

—
:M

a
p
))

he
ap [s
tr
uc

tu
ra
l]

ru
le

cl
ea

nM
em

or
y
(
po

in
te

r
(Y

:E
xp

re
ss

io
n
)
7→

tv
(
st

ru
ct

S
:I

d
,
ob

je
ct

Va
lu

es
(—

:I
d
7→

tv
(—

:T
y
p
e,

V
:V

a
lu

e
)

O
V
:M

a
p
))

H
:M

a
p
,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

cl
ea

nM
em

or
y
(
po

in
te

r
(Y

)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(O

V
))

H
,
po

in
te

r
(X

))

re
qu

ir
es

V
6=

K
po

in
te

r
(X

)
[s
tr
uc

tu
ra
l]

ru
le

cl
ea

nM
em

or
y
(
po

in
te

r
(—

:E
x
p
r
es
si
o
n
)
7→

tv
(
st

ru
ct

—
:I
d
,
ob

je
ct

Va
lu

es
(•
M

a
p
))

H
:M

a
p
,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

cl
ea

nM
em

or
y
(H
,
po

in
te

r
(X

))

[s
tr
uc

tu
ra
l]

ru
le

cl
ea

nM
em

or
y
(•
M

a
p
,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

el
im

in
at

eP
oi

nt
er

(
po

in
te

r
(X

))

[s
tr
uc

tu
ra
l]

ru
le

el
im

in
at

eP
oi

nt
er

(
po

in
te

r
(X

:E
xp

re
ss

io
n
))

tv
(
vo

id
,
un

de
f)

k

(
po

in
te

r
(X

)
7→

—
)

• M
a
p

he
ap

tv
(—

:T
y
p
e,

po
in

te
r
(X

))

• L
is
t

lo
ca

ls

[s
tr
uc

tu
ra
l]

ru
le

el
im

in
at

eP
oi

nt
er

(
po

in
te

r
(X

:E
xp

re
ss

io
n
))

tv
(
vo

id
,
un

de
f)

k

(
po

in
te

r
(X

)
7→

—
)

• M
a
p

he
ap

L
oc

a
ls
:L

is
t

lo
ca

ls

re
qu

ir
es
¬ B

o
o
l
po

in
te

r
(X

)
in

li
st

Po
in

te
rs

(L
oc

a
ls
)

[s
tr
uc

tu
ra
l]

16

ru
le

(T
V
:T

y
pe

d
V

a
lu

e
y

cl
ea

nA
nd

Re
st

or
eM

em
or

y
(H

:M
a
p
,L

:L
is

t)
y

S
y

K
s
)

(T
V

y
S

y
cl

ea
nA

nd
Re

st
or

eM
em

or
y
(H
,L

)
y

K
s
)

k [s
tr
uc

tu
ra
l]

ru
le

cl
ea

nA
nd

Re
st

or
eM

em
or

y
(P

re
vi

o
u

sH
ea

p
:M

a
p
,P

re
vi

o
u

sL
oc

a
ls
:L

is
t)

(
ga

rb
ag

eC
ol

le
ct

(C
u

rr
en

tH
ea

p
)
y

re
st

or
eM

em
or

y
(P

re
vi

o
u

sH
ea

p
,P

re
vi

o
u

sL
oc

a
ls
))

k

C
u

rr
en

tH
ea

p
:M

a
p

he
ap

[s
tr
uc

tu
ra
l]

ru
le

ga
rb

ag
eC

ol
le

ct
(
po

in
te

r
(X

:E
xp

re
ss

io
n
)
7→

—
H

ea
p
C

o
p
y
:M

a
p
)

ga
rb

ag
eC

ol
le

ct
(H

ea
p
C

o
p
y
)

k

E
1
:M

a
p

—
:I
d
7→

tv
(—

,
po

in
te

r
(X

))
E

2
:M

a
p

en
v

[s
tr
uc

tu
ra
l]

ru
le

ga
rb

ag
eC

ol
le

ct
(
po

in
te

r
(X

:E
xp

re
ss

io
n
)
7→

—
H

ea
p
C

o
p
y
:M

a
p
)

ga
rb

ag
eC

ol
le

ct
(H

ea
p
C

o
p
y
)

k

H
1
:M

a
p

po
in

te
r
(—

:E
x
p
r
es
si
o
n
)
7→

tv
(—

,
po

in
te

r
(X

))
H

2
:M

a
p

he
ap

[s
tr
uc

tu
ra
l]

ru
le

ga
rb
ag
eC
ol
le
ct

(
po
in
te
r
(X

:E
x
p
re
ss
io
n
)
7→

—
H
ea

p
C
o
p
y
:M

a
p
)

ga
rb
ag
eC
ol
le
ct

(H
ea

p
C
o
p
y
)

k
H
1
:M

a
p

po
in
te
r
(—

:E
x
p
r
e
s
s
io
n
)
7→

tv
(
st
ru
ct

—
:I
d
,
ob
je
ct
Va
lu
es

(O
1
:M

a
p

—
:I
d
7→

tv
(—

,
po
in
te
r
(X

))
O
2
:M

a
p
))

H
2
:M

a
p

he
ap

[s
tr
uc

tu
ra
l]

ru
le

ga
rb

ag
eC

ol
le

ct
(
po

in
te

r
(X

:E
xp

re
ss

io
n
)
7→

tv
(T

:T
y
pe
,—

)
H

ea
p
C

o
p
y
:M

a
p
)

(
el

im
in

at
eP

oi
nt

er
(
po

in
te

r
(X

))
;y

ga
rb

ag
eC

ol
le

ct
(H

ea
p
C

o
p
y
))

k

E
n

v
:M

a
p

en
v

H
ea

p
:M

a
p

he
ap

re
qu

ir
es
¬ B

o
o
l
tv

(T
*,

po
in

te
r
(X

))
in

va
lu

es
(E

n
v
)
∧ B

o
o
l
¬ B

o
o
l
tv

(T
*,

po
in

te
r
(X

))
in

va
lu

es
(H

ea
p
)
∧ B

o
o
l
¬ B

o
o
l
tv

(T
*,

po
in

te
r
(X

))
in

li
st

Ob
je

ct
Va

lu
es

(H
ea

p
)

[s
tr
uc

tu
ra
l]

ru
le

ga
rb

ag
eC

ol
le

ct
(•
M

a
p
)

• K

[s
tr
uc

tu
ra
l]

17

ru
le

re
st

or
eM

em
or

y
(P

:P
o
in

te
r
7→

T
V
:T

y
pe

d
V

a
lu

e
H
:M

a
p
,L

:L
is

t)

re
st

or
eM

em
or

y
(H
,L

)

k

C
u

rr
en

tH
ea

p
:M

a
p

he
ap

re
qu

ir
es

P
in

ke
ys

(C
u

rr
en

tH
ea

p
)

[s
tr
uc

tu
ra
l]

ru
le

re
st

or
eM

em
or

y
(P

:P
o
in

te
r
7→

T
V
:T

y
pe

d
V

a
lu

e
H
:M

a
p
,L

1
:L

is
t

tv
(T

:T
y
pe
,P

)
L

2
:L

is
t)

re
st

or
eM

em
or

y
(H
,L

1
L

2
)

k

C
u

rr
en

tH
ea

p
:M

a
p

• M
a
p

P
7→

T
V

he
ap

• L
is
t

tv
(T
,P

)

lo
ca

ls

re
qu

ir
es
¬ B

o
o
lP

in
ke

ys
(C

u
rr

en
tH

ea
p
)

[s
tr
uc

tu
ra
l]

ru
le

re
st

or
eM

em
or

y
(P

:P
o
in

te
r
7→

T
V
:T

y
pe

d
V

a
lu

e
H
:M

a
p
,L

:L
is

t)

re
st

or
eM

em
or

y
(H
,L

)

k

re
qu

ir
es
¬ B

o
o
lP

in
li

st
Po

in
te

rs
(L

)
[s
tr
uc

tu
ra
l]

ru
le

re
st

or
eM

em
or

y
(•
M

a
p
,L

:L
is

t)

• K

[s
tr
uc

tu
ra
l]

sy
n
ta

x
T
yp
ed
V
al
ue

::
=

Cr
ea

te
Ne

wO
bj

ec
t
(I
nt
)

|
Ne

wS
im

pl
eP

oi
nt

er
|

Ne
wS

tr
uc

tP
oi

nt
er

(I
nt
)

sy
n
ta

x
K
It
em

::
=

ma
ke

Me
mb

er
Li

st
(V

ar
ia
bl
eD

ec
la
ra
ti
on

s,
Id
)
[fu

nc
ti
on

]

ru
le

ma
ke

Me
mb

er
Li

st
(T

:T
y
pe

X
:I

d
;

V
D

s
:V

a
ri

a
bl

eD
ec

la
ra

ti
o
n

s
,S

:I
d
)

ma
ke

Me
mb

er
Li

st
(V

D
s
,S

)

k

S
7→

st
ru

ct
Fi

el
ds

(L
:L

is
t

• L
is
t

fi
el

d
(X
,T

))

st
ru

ct

ru
le

ma
ke

Me
mb

er
Li

st
(•
V
a
r
ia
b
le
D
ec

la
ra

ti
o
n
s
,S

)

• K

sy
n
ta

x
M
ap

::
=

in
it

ia
li

ze
Ob

je
ct

(L
is
t)

[fu
nc

ti
on

]

ru
le

in
it

ia
li

ze
Ob

je
ct

(
fi

el
d
(F

:I
d
,T

:T
y
pe

)
L
:L

is
t)

F
7→

tv
(T
,
un

de
f)

in
it

ia
li

ze
Ob

je
ct

(L
)

18

ru
le

in
it

ia
li

ze
Ob

je
ct

(•
L
is
t
)

• M
a
p

sy
n
ta

x
V
ar
ia
bl
eD

ec
la
ra
ti
on

s
::
=

de
cl

ar
eP

ar
am

et
er

s
(P

ar
am

et
er
D
ec
la
ra
ti
on

s)
[fu

nc
ti
on

]

ru
le

de
cl

ar
eP

ar
am

et
er

s
(T

:T
y
pe

X
:I

d
,

P
D

s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)

T
X

;
de

cl
ar

eP
ar

am
et

er
s
(P

D
s
)

ru
le

de
cl

ar
eP

ar
am

et
er

s
(•
P
a
ra

m
e
te
r
D
ec

la
ra

ti
o
n
s
)

• V
a
r
ia
b
le
D
ec

la
ra

ti
o
n
s

sy
n
ta

x
St
at
em

en
ts

::
=

bi
nd

Pa
ra

me
te

rs
(P

ar
am

et
er
D
ec
la
ra
ti
on

s,
E
va
lu
at
ed
A
rg
um

en
ts
,S
ta
te
m
en
tB

lo
ck
)
[fu

nc
ti
on

]

ru
le

bi
nd

Pa
ra

me
te

rs
((
—

:T
y
p
e

X
:I

d
,

P
D

s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
),
(T

V
:T

y
pe

d
V

a
lu

e
,

E
A

rg
s
:E

va
lu

a
te

d
A

rg
u

m
en

ts
),

S
B
:S

ta
te

m
en

tB
lo

ck
)

X
=

T
V

;
bi

nd
Pa

ra
me

te
rs

(P
D

s
,E

A
rg

s
,S

B
)

ru
le

bi
nd

Pa
ra

me
te

rs
(•
P
a
ra

m
e
te
r
D
ec

la
ra

ti
o
n
s
,•

E
v
a
lu
a
te
d
A
rg
u
m
e
n
ts
,S

B
:S

ta
te

m
en

tB
lo

ck
)

S
B
• S

ta
te
m
e
n
ts

sy
n
ta

x
K
It
em

::
=

bo
ol

2i
nt

(B
oo
l)
[s
tr
ic
t]

ru
le

bo
ol

2i
nt

(t
ru

e)

tv
(
in

t,
1)

ru
le

bo
ol

2i
nt

(f
al

se
)

tv
(
in

t,
0)

sy
n
ta

x
K
It
em

::
=

ex
pr

es
si

on
2B

oo
l
(E

xp
re
ss
io
n)

[s
tr
ic
t]

ru
le

ex
pr

es
si

on
2B

oo
l
(
tv

(
in

t,
I
:I

n
t)
)

I
=
/
=

In
t

0
[s
tr
uc

tu
ra
l]

ru
le

ex
pr

es
si

on
2B

oo
l
(
tv

(T
:T

y
pe

*,
P
:P

o
in

te
r
))

P
6=

K
nu

ll
[s
tr
uc

tu
ra
l]

sy
n
ta

x
Id

::
=

Ex
pr

es
si

on
2I

d
(E

xp
re
ss
io
n)

[fu
nc

ti
on

]

ru
le Ex

pr
es

si
on

2I
d
(I
:I

n
t)

St
ri

ng
2I

d
(
In

t2
St

ri
ng

(I
))

[s
tr
uc

tu
ra
l]

19

ru
le

Ex
pr

es
si

on
2I

d
(I
:I

d
)

I

[s
tr
uc

tu
ra
l]

ru
le

Ex
pr

es
si

on
2I

d
(
*

E
:E

xp
re

ss
io

n
)

Ex
pr

es
si

on
2I

d
(E

)

[s
tr
uc

tu
ra
l]

ru
le

Ex
pr

es
si

on
2I

d
(E

:E
xp

re
ss

io
n
.

I
:I

d
)

St
ri

ng
2I

d
(
Id

2S
tr

in
g
(
Ex

pr
es

si
on

2I
d
(E

))
+

S
tr
in

g
Id

2S
tr

in
g
(I
))

[s
tr
uc

tu
ra
l]

sy
n
ta

x
T
yp
ed
V
al
ue

::
=

#l
en

gt
h
(M

ap
)
[fu

nc
ti
on

]
|

#l
en

gt
h
(L
is
t)

[fu
nc

ti
on

]
|

li
st

Le
ng

th
(L
is
t,
T
yp
ed
V
al
ue

)
[fu

nc
ti
on

]
|

ma
pL

en
gt

h
(M

ap
,T

yp
ed
V
al
ue

)
[fu

nc
ti
on

]

ru
le

#l
en

gt
h
(M

:M
a
p
)

ma
pL

en
gt

h
(M

,
tv

(
in

t,
0)
)

[s
tr
uc

tu
ra
l]

ru
le

ma
pL

en
gt

h
(—
7→

—
M

:M
a
p
,
tv

(
in

t,
L

en
))

ma
pL

en
gt

h
(M

,
tv

(
in

t,
L

en
+

In
t

1)
)

[s
tr
uc

tu
ra
l]

ru
le

ma
pL

en
gt

h
(•
M

a
p
,
tv

(
in

t,
L

en
))

tv
(
in

t,
L

en
)

[s
tr
uc

tu
ra
l]

ru
le

#l
en

gt
h
(L

:L
is

t)

li
st

Le
ng

th
(L
,
tv

(
in

t,
0)
)

[s
tr
uc

tu
ra
l]

ru
le

li
st

Le
ng

th
(—

L
:L

is
t,

tv
(
in

t,
L

en
))

li
st

Le
ng

th
(L
,
tv

(
in

t,
L

en
+

In
t

1)
)

[s
tr
uc

tu
ra
l]

ru
le

li
st

Le
ng

th
(•
L
is
t
,
tv

(
in

t,
L

en
))

tv
(
in

t,
L

en
)

[s
tr
uc

tu
ra
l]

20

sy
n
ta

x
B
oo
l:
:=

P
oi
nt
er

==
P
oi
nt
er

|
P
oi
nt
er

=/
=
P
oi
nt
er

sy
n
ta

x
Se
t
::
=

li
st

Ob
je

ct
Va

lu
es

(M
ap

)
[fu

nc
ti
on

]
|

li
st

Ob
je

ct
Va

lu
es

Fu
n
(M

ap
,S
et
)
[fu

nc
ti
on

]
|

li
st

Po
in

te
rs

(L
is
t)

[fu
nc

ti
on

]
|

li
st

Po
in

te
rs

Fu
n
(L
is
t,
Se
t)

[fu
nc

ti
on

]

ru
le li
st

Ob
je

ct
Va

lu
es

(H
:M

a
p
)

li
st

Ob
je

ct
Va

lu
es

Fu
n
(H
,•

S
e
t
)

[s
tr
uc

tu
ra
l]

ru
le

li
st

Ob
je

ct
Va

lu
es

Fu
n
(—
7→

tv
(—

,I
:I

n
t)

H
:M

a
p
,S

:S
et
)

li
st

Ob
je

ct
Va

lu
es

Fu
n
(H
,S

)

[s
tr
uc

tu
ra
l]

ru
le

li
st

Ob
je

ct
Va

lu
es

Fu
n
(—
7→

tv
(—

,P
:P

o
in

te
r
)

H
:M

a
p
,S

:S
et
)

li
st

Ob
je

ct
Va

lu
es

Fu
n
(H
,S

)

[s
tr
uc

tu
ra
l]

ru
le

li
st

Ob
je

ct
Va

lu
es

Fu
n
(—
7→

tv
(—

,
un

de
f)

H
:M

a
p
,S

:S
et
)

li
st

Ob
je

ct
Va

lu
es

Fu
n
(H
,S

)

[s
tr
uc

tu
ra
l]

ru
le

li
st

Ob
je

ct
Va

lu
es

Fu
n
(P

:P
o
in

te
r
7→

tv
(
st

ru
ct

T
S
:I

d
,
ob

je
ct

Va
lu

es
(—
7→

T
V
:T

y
pe

d
V

a
lu

e
O

V
:M

a
p
))

H
:M

a
p
,S

:S
et
)

li
st

Ob
je

ct
Va

lu
es

Fu
n
(P
7→

tv
(
st

ru
ct

T
S
,
ob

je
ct

Va
lu

es
(O

V
))

H
,(

T
V

S
))

[s
tr
uc

tu
ra
l]

ru
le

li
st

Ob
je

ct
Va

lu
es

Fu
n
(—
7→

tv
(
st

ru
ct

—
:I
d
,
ob

je
ct

Va
lu

es
(•
M

a
p
))

H
:M

a
p
,S

:S
et
)

li
st

Ob
je

ct
Va

lu
es

Fu
n
(H
,S

)

[s
tr
uc

tu
ra
l]

ru
le

li
st

Ob
je

ct
Va

lu
es

Fu
n
(•
M

a
p
,S

:S
et
)

S

[s
tr
uc

tu
ra
l]

ru
le li
st

Po
in

te
rs

(L
:L

is
t)

li
st

Po
in

te
rs

Fu
n
(L
,•

S
e
t
)

[s
tr
uc

tu
ra
l]

21

ru
le

li
st

Po
in

te
rs

Fu
n
(
tv

(T
:T

y
pe
,P

:P
o
in

te
r
)

L
:L

is
t,

S
:S

et
)

li
st

Po
in

te
rs

Fu
n
(L
,(

P
S
))

[s
tr
uc

tu
ra
l]

ru
le

li
st

Po
in

te
rs

Fu
n
(•
L
is
t
,S

:S
et
)

S

[s
tr
uc

tu
ra
l]

en
d

m
o
d
u
le

m
o
d
u
le

K
E
R

N
E
L
C

-E
X

C
E
P
T

IO
N

sy
n
ta

x
E
xc
ep
ti
on

::
=

EX
CE

PT
IO

N:
DI

VI
SI

ON
BY

ZE
RO

|
EX

CE
PT

IO
N:

NU
LL

PO
IN

TE
R
AC

CE
SS

|
SY

NT
AX

ER
RO

R:
IN

CO
RR

EC
T
RE

TU
RN

TY
PE

|
SY

NT
AX

ER
RO

R:
TH

E
FU

NC
TI

ON
CA

LL
ED

DO
ES

NO
T

EX
IS

T

ru
le

(T
1
:T

y
pe

d
V

a
lu

e
/

tv
(
in

t,
0)

y
K
)

EX
CE

PT
IO

N:
DI

VI
SI

ON
BY

ZE
RO

k [s
tr
uc

tu
ra
l]

ru
le

(
*

tv
(T

:T
y
pe

*,
nu

ll
)
y

K
)

EX
CE

PT
IO

N:
NU

LL
PO

IN
TE

R
AC

CE
SS

k [s
tr
uc

tu
ra
l]

ru
le

(
tv

(T
:T

y
pe

*,
nu

ll
)
=
—

;y
K
)

EX
CE

PT
IO

N:
NU

LL
PO

IN
TE

R
AC

CE
SS

k [s
tr
uc

tu
ra
l]

ru
le

(
&
(
tv

(
st

ru
ct

S
:I

d
*,

nu
ll

)
->

F
:I

d
)
y

K
)

EX
CE

PT
IO

N:
NU

LL
PO

IN
TE

R
AC

CE
SS

k [s
tr
uc

tu
ra
l]

22

ru
le

(
re

tu
rn

tv
(T

1
:T

y
pe
,—

)
;y

K
)

SY
NT

AX
ER

RO
R:

IN
CO

RR
EC

T
RE

TU
RN

TY
PE

k

F
:I

d
(P

D
s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)

cu
rr

en
t-

fu
nc

ti
on

-c
al

l
F
7→

fu
nc

ti
on

Bo
dy

(P
D

s
,T

2
:T

y
pe
,—

:S
ta
te
m
en
tB
lo
ck

)

fu
n

re
qu

ir
es

T
1
6=

K
T

2
[s
tr
uc

tu
ra
l]

en
d

m
o
d
u
le

m
o
d
u
le

K
E
R

N
E
L
C

-S
Y

M
B

O
L
IC

sy
n
ta

x
A
rg
um

en
ts

::
=

Sy
mb

ol
ic

sy
n
ta

x
K
It
em

::
=

ma
ke

Sy
mb

ol
ic

(P
ar
am

et
er
D
ec
la
ra
ti
on

s)
[fu

nc
ti
on

]

ru
le

F
:I

d
(
Sy

mb
ol

ic
)

ma
ke

Sy
mb

ol
ic

(P
D

s
)
y
• E

v
a
lu
a
te
d
A
rg
u
m
e
n
ts

y
F
(•
E
v
a
lu
a
te
d
A
rg
u
m
e
n
ts
)

k

F
7→

fu
nc

ti
on

Bo
dy

(P
D

s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
,—

:T
y
p
e,
—

:S
ta
te
m
en
tB
lo
ck

)

fu
n

[s
tr
uc

tu
ra
l]

ru
le

ma
ke

Sy
mb

ol
ic

(T
:T

y
pe

X
:I

d
,

P
D

s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)
y

S
y
m

A
rg

s
:E

va
lu

a
te

d
A

rg
u

m
en

ts

ma
ke

Sy
mb

ol
ic

(P
D

s
)
y

tv
(
in

t,
#
sy
m
I
n
t(

X
))
,

S
y
m

A
rg

s

re
qu

ir
es

T
=

K
in

t

ru
le

ma
ke

Sy
mb

ol
ic

(T
:T

y
pe

X
:I

d
,

P
D

s
:P

a
ra

m
et

er
D

ec
la

ra
ti

o
n

s
)
y

S
y
m

A
rg

s
:E

va
lu

a
te

d
A

rg
u

m
en

ts

ma
ke

Sy
mb

ol
ic

(P
D

s
)
y

tv
(T
,
un

de
f)
,

S
y
m

A
rg

s

re
qu

ir
es

T
6=

K
in

t

ru
le

ma
ke

Sy
mb

ol
ic

(•
P
a
ra

m
e
te
r
D
ec

la
ra

ti
o
n
s
)

• K
ru

le
S
:E

va
lu

a
te

d
E

xp
re

ss
io

n
,

S
y
m

A
rg

s
:E

va
lu

a
te

d
A

rg
u

m
en

ts
y

F
:I

d
(A

rg
s
:E

va
lu

a
te

d
A

rg
u

m
en

ts
)

S
y
m

A
rg

s
y

F
(S

,
A

rg
s
)

ru
le

• E
v
a
lu
a
te
d
A
rg
u
m
e
n
ts

y
F
:I

d
(A

rg
s
:E

va
lu

a
te

d
A

rg
u

m
en

ts
)

F
(A

rg
s
)

sy
n
ta

x
K
It
em

::
=

in
st

an
ce

Ne
wS

ym
bo

li
cP

oi
nt

er
(E

xp
re
ss
io
n)

[fu
nc

ti
on

]
|

in
it

ia
li

ze
Sy

mb
ol

ic
Ob

je
ct

(I
d,
E
xp
re
ss
io
n)

[fu
nc

ti
on

]
|

la
zy

In
it

ia
li

ze
St

ru
ct

Me
mb

er
s
(L
is
t,
Id
,E

xp
re
ss
io
n)

[fu
nc

ti
on

]

23

ru
le

in
st

an
ce

Ne
wS

ym
bo

li
cP

oi
nt

er
(X

:E
xp

re
ss

io
n
)

tv
(
in

t
*,

po
in

te
r
(X

))

k
• M

a
p

po
in

te
r
(X

)
7→

tv
(
in

t,
#
sy
m
I
n
t(

X
))

he
ap

• L
is
t

tv
(
in

t
*,

po
in

te
r
(X

))

lo
ca

ls
• M

a
p

po
in

te
r
(X

)
7→

tv
(
in

t,
#
sy
m
I
n
t(

X
))

in
it
-h

ea
p

[s
tr
uc

tu
ra
l]

ru
le

in
it

ia
li

ze
Sy

mb
ol

ic
Ob

je
ct

(S
:I

d
,X

:E
xp

re
ss

io
n
)

la
zy

In
it

ia
li

ze
St

ru
ct

Me
mb

er
s
(F

ie
ld

s
,S
,X

)

k
• M

a
p

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(•
M

a
p
))

he
ap

S
7→

st
ru

ct
Fi

el
ds

(F
ie

ld
s
:L

is
t)

st
ru

ct

• M
a
p

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
,
ob

je
ct

Va
lu

es
(•
M

a
p
))

in
it
-h

ea
p

[s
tr
uc

tu
ra
l]

ru
le

la
zy
In
it
ia
li
ze
St
ru
ct
Me
mb
er
s
(
fi
el
d
(
F
:I
d
,

in
t)

L
:L

is
t,

S
:I
d
,
X

:E
x
p
re
ss
io
n
)

la
zy
In
it
ia
li
ze
St
ru
ct
Me
mb

er
s
(
L
,
S
,
X

)

k
po
in
te
r
(
X

)
7→

tv
(
st
ru
ct

S
,

ob
je
ct
Va
lu
es

(
—

:M
a
p

• M
a
p

F
7→

tv
(
in
t,

#
s
y
m

I
n
t
(
St
ri
ng
2I
d
(
Id

2S
tr
in
g
(
Ex
pr
es
si
on
2I
d
(
X

)
)
+

S
tr
in

g
Id
2S
tr
in
g
(
F
)
)
)
)

)
)

he
ap

po
in
te
r
(
X

)
7→

tv
(
st
ru
ct

S
,

ob
je
ct
Va
lu
es

(
—

:M
a
p

• M
a
p

F
7→

tv
(
in
t,

#
s
y
m

I
n
t
(
St
ri
ng
2I
d
(
Id
2S
tr
in
g
(
Ex
pr
es
si
on
2I
d
(
X

)
)
+

S
tr
in

g
Id
2S
tr
in
g
(
F
)
)
)
)

)
)

in
it
-h

ea
p

[s
tr
uc

tu
ra
l]

ru
le

la
zy
In
it
ia
li
ze
St
ru
ct
Me
mb
er
s
(
fi
el
d
(
F
:I
d
,
T
:T

y
p
e
*)

L
:L

is
t,

S
:I
d
,
X

:E
x
p
re
ss
io
n
)

la
zy
In
it
ia
li
ze
St
ru
ct
Me
mb
er
s
(
L
,
S
,
X

)

k
po
in
te
r
(
X

)
7→

tv
(
st
ru
ct

S
,

ob
je
ct
Va
lu
es

(
—

:M
a
p

• M
a
p

F
7→

tv
(
T

*,
un
de
f)

)
)

he
ap

po
in
te
r
(
X

)
7→

tv
(
st
ru
ct

S
,

ob
je
ct
Va
lu
es

(
—

:M
a
p

• M
a
p

F
7→

tv
(
T

*,
un
de
f)

)
)

in
it
-h

ea
p

[s
tr
uc

tu
ra
l]

ru
le

la
zy

In
it

ia
li

ze
St

ru
ct

Me
mb

er
s
(•
L
is
t
,S

:I
d
,X

:E
xp

re
ss

io
n
)

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

))

k
• L

is
t

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

))

lo
ca

ls

[s
tr
uc

tu
ra
l]

ru
le

*
tv

(T
:T

y
pe

*,
po

in
te

r
(X

:E
xp

re
ss

io
n
))

tv
(T
,
nu

ll
)

k

po
in

te
r
(X

)
7→

tv
(T
,
un

de
f)

tv
(T
,
nu

ll
)

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(X

)
==

nu
ll

in
it
-s

tr
uc

t
• M

a
p

po
in

te
r
(X

)
7→

tv
(T
,
nu

ll
)

in
it
-h

ea
p

[t
ra
ns
it
io
n]

24

ru
le

*
tv

(T
:T

y
pe

*,
me

mb
er

(S
:E

xp
re

ss
io

n
,F

:I
d
))

tv
(T
,
nu

ll
)

k

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
:I

d
,
ob

je
ct

Va
lu

es
(F

M
1
:M

a
p

F
7→

tv
(T
,
un

de
f)

tv
(T
,
nu

ll
)

F
M

2
:M

a
p
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(S

.
F
)
==

nu
ll

in
it
-s

tr
uc

t

ρ
:M

a
p

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
,
ob

je
ct

Va
lu

es
(F

M
1

F
7→

tv
(T
,
nu

ll
)

F
M

2
))

in
it
-h

ea
p

re
qu

ir
es
¬ B

o
o
l
po

in
te

r
(S

)
in

ke
ys

(ρ
)

[t
ra
ns
it
io
n]

ru
le

*
tv

(T
:T

y
pe

*,
me

mb
er

(S
:E

xp
re

ss
io

n
,F

:I
d
))

tv
(T
,
nu

ll
)

k

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
:I

d
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(T
,
un

de
f)

tv
(T
,
nu

ll
)

—
:M

a
p
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(S

.
F
)
==

nu
ll

in
it
-s

tr
uc

t

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(T
,
un

de
f)

tv
(T
,
nu

ll
)

—
:M

a
p
))

in
it
-h

ea
p

[t
ra
ns
it
io
n]

ru
le

*
tv

(
in

t
*
*,

po
in

te
r
(X

:E
xp

re
ss

io
n
))

in
st

an
ce

Ne
wS

ym
bo

li
cP

oi
nt

er
(
*

X
)

k

po
in

te
r
(X

)
7→

tv
(
in

t
*,

un
de

f)

tv
(
in

t
*,

po
in

te
r
(
*

X
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(X

)
=/

=
nu

ll

in
it
-s

tr
uc

t
• M

a
p

po
in

te
r
(X

)
7→

tv
(
in

t
*,

po
in

te
r
(
*

X
))

in
it
-h

ea
p

[t
ra
ns
it
io
n]

ru
le

*
tv

(
in

t
*
*,

me
mb

er
(S

:E
xp

re
ss

io
n
,F

:I
d
))

in
st

an
ce

Ne
wS

ym
bo

li
cP

oi
nt

er
(S

.
F
)

k

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
:I

d
,
ob

je
ct

Va
lu

es
(F

M
1
:M

a
p

F
7→

tv
(
in

t
*,

un
de

f)

tv
(
in

t
*,

po
in

te
r
(S

.
F
))

F
M

2
:M

a
p
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(S

.
F
)
=/

=
nu

ll

in
it
-s

tr
uc

t

ρ
:M

a
p

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
,
ob

je
ct

Va
lu

es
(F

M
1

F
7→

tv
(
in

t
*,

po
in

te
r
(S

.
F
))

F
M

2
))

in
it
-h

ea
p

re
qu

ir
es
¬ B

o
o
l
po

in
te

r
(S

)
in

ke
ys

(ρ
)

[t
ra
ns
it
io
n]

25

ru
le

*
tv

(
in

t
*
*,

me
mb

er
(S

:E
xp

re
ss

io
n
,F

:I
d
))

in
st

an
ce

Ne
wS

ym
bo

li
cP

oi
nt

er
(S

.
F
)

k

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
:I

d
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(
in

t
*,

un
de

f)

tv
(
in

t
*,

po
in

te
r
(S

.
F
))

—
:M

a
p
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(S

.
F
)
=/

=
nu

ll

in
it
-s

tr
uc

t

po
in

te
r
(S

)
7→

tv
(
st

ru
ct

S
T
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(
in

t
*,

un
de

f)

tv
(
in

t
*,

po
in

te
r
(S

.
F
))

—
:M

a
p
))

in
it
-h

ea
p

[t
ra
ns
it
io
n]

ru
le

*
tv

(
st

ru
ct

S
:I

d
*
*,

po
in

te
r
(X

:E
xp

re
ss

io
n
))

in
it

ia
li

ze
Sy

mb
ol

ic
Ob

je
ct

(S
,
*

X
)

k

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
*,

un
de

f)

tv
(
st

ru
ct

S
*,

po
in

te
r
(
*

X
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(X

)
=/

=
nu

ll

in
it
-s

tr
uc

t

• M
a
p

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
*,

po
in

te
r
(
*

X
))

in
it
-h

ea
p

[t
ra
ns
it
io
n]

ru
le

*
tv

(
st

ru
ct

S
:I

d
*
*,

me
mb

er
(X

:E
xp

re
ss

io
n
,F

:I
d
))

in
it

ia
li

ze
Sy

mb
ol

ic
Ob

je
ct

(S
,X

.
F
)

k

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
T
:I

d
,
ob

je
ct

Va
lu

es
(F

M
1
:M

a
p

F
7→

tv
(
st

ru
ct

S
*,

un
de

f)

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

.
F
))

F
M

2
:M

a
p
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(X

.
F
)
=/

=
nu

ll

in
it
-s

tr
uc

t

ρ
:M

a
p

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
T
,
ob

je
ct

Va
lu

es
(F

M
1

F
7→

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

.
F
))

F
M

2
))

in
it
-h

ea
p

re
qu

ir
es
¬ B

o
o
l
po

in
te

r
(X

)
in

ke
ys

(ρ
)

[t
ra
ns
it
io
n]

ru
le

*
tv

(
st

ru
ct

S
:I

d
*
*,

me
mb

er
(X

:E
xp

re
ss

io
n
,F

:I
d
))

in
it

ia
li

ze
Sy

mb
ol

ic
Ob

je
ct

(S
,X

.
F
)

k

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
T
:I

d
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(
st

ru
ct

S
*,

un
de

f)

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

.
F
))

—
:M

a
p
))

he
ap

P
C

P
C
∧ B

o
o
l
po

in
te

r
(X

.
F
)
=/

=
nu

ll

in
it
-s

tr
uc

t

po
in

te
r
(X

)
7→

tv
(
st

ru
ct

S
T
,
ob

je
ct

Va
lu

es
(—

:M
a
p

F
7→

tv
(
st

ru
ct

S
*,

un
de

f)

tv
(
st

ru
ct

S
*,

po
in

te
r
(X

.
F
))

—
:M

a
p
))

in
it
-h

ea
p

[t
ra
ns
it
io
n]

26

en
d

m
o
d
u
le

m
o
d
u
le

K
E
R

N
E
L
C

sy
n
ta

x
K
R
es
ul
t
::
=

E
va
lu
at
ed
E
xp
re
ss
io
n

co
n
fi
g
u
r
at

io
n
:

$
P
G
M

:F
il
e

y
in
it
ia
li
ze
Lo
ca
ls

(
$
IH

E
A
P
:M

a
p
)
y

$
F
U
N

:I
d
(
$
A
R
G
S
:A

rg
u
m
e
n
ts
)

k
• M

a
p

en
v

$
IH

E
A
P
:M

a
p

he
ap

• M
a
p

st
ru

ct
$
S
P
C
:B

o
o
l

in
it
-s

tr
uc

t
$
IH

E
A
P
:M

a
p

in
it
-h

ea
p

no
fu
nc
ti
on

cu
rr

en
t-

fu
nc

ti
on

-c
al

l
• M

a
p

fu
n

• L
is
t

lo
ca

ls
• L

is
t

st
ac

k
• L

is
t

sc
op

e

C
fg

sy
n
ta

x
E
xp
re
ss
io
n
::
=

in
it

ia
li

ze
Lo

ca
ls

(M
ap

)

ru
le

in
it

ia
li

ze
Lo

ca
ls

(P
:P

o
in

te
r
7→

tv
(T

:T
y
pe
,—

:V
a
lu
e)

IH
:M

a
p
)

in
it

ia
li

ze
Lo

ca
ls

(I
H
:M

a
p
)

k
• L

is
t

tv
(T

*,
P
)

lo
ca

ls

[s
tr
uc

tu
ra
l]

ru
le

in
it

ia
li

ze
Lo

ca
ls

(•
M

a
p
)

• K

[s
tr
uc

tu
ra
l]

en
d

m
o
d
u
le

27

