

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/s11227-015-1607-5

http://link.springer.com/article/10.1007/s11227-015-1607-5

http://hdl.handle.net/10251/67965

Springer

Alvarruiz Bermejo, F.; Martínez Alzamora, F.; Vidal Maciá, AM. (2016). Improving the
performance of water distribution systems’ simulation on multicore systems. Journal of
Supercomputing. 1-13. doi:10.1007/s11227-015-1607-5.

The Journal of Supercomputing manuscript No.
The final publication is available at Springer via
http://dx.doi.org/10.1007/s11227-015-1607-5

Improving the Performance of Water Distribution
Systems Simulation on Multicore Systems

Fernando Alvarruiz ·
Fernando Mart́ınez Alzamora ·
Antonio M. Vidal

Received: date / Accepted: date

Abstract Hydraulic solvers for the simulation of flows and pressures in water
distribution systems (WDS) are used extensively, and their computational per-
formance is key when considering optimization problems. This paper presents
an approach to speedup the hydraulic solver using OpenMP with two efficient
methods for WDS simulation. The paper identifies the different tasks carried
out in the simulation, showing their contribution to the execution time, and
selecting the target tasks for parallelization. After describing the algorithms
for the selected tasks, parallel OpenMP versions are derived, with emphasis
on the task of linear system update. Results are presented for four different
large WDS models, showing considerable reduction in computing time.

Keywords Water Distribution Systems · simulation · Epanet · multicore ·
OpenMP · GGA · loop method

1 Introduction

Hydraulic solvers for the simulation of flows and pressures in water distribution
systems (WDS) are used extensively to solve a large number of problems, such

This work has been partially supported by Ministerio de Economı́a y Competitividad from
Spain, under the project TEC2012-38142-C04-01, and by project PROMETEO FASE II
2014/003 of Generalitat Valenciana

F. Alvarruiz
Dept. Sistemas Informáticos y Computación, Universitat Politecnica de Valencia, 46022 Va-
lencia, Spain. E-mail: fbermejo@dsic.upv.es

F. Mart́ınez-Alzamora
Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politec-
nica de Valencia, 46022 Valencia, Spain

A. M. Vidal
Dept. Sistemas Informáticos y Computación, Universitat Politecnica de Valencia, 46022
Valencia, Spain

http://dx.doi.org/10.1007/s11227-015-1607-5

2 Fernando Alvarruiz et al.

as network optimal design, maintenance, model calibration or risk analysis
problems. In many cases the simulation needs to be repeated many times
within an optimization framework [13], even more when demands are pressure
dependent as in head driven models. In the particular case of running water
quality models, all pipes must be considered in the model, thus enlarging its
size and consequently the computing time. This also applies when models are
synchronized with GIS databases. Thus, the computational performance of the
hydraulic solver is extremely important.

Epanet [16] is a very efficient public domain WDS simulation software
package, considered a reference in this field. Outperforming Epanet is not
easy, and efforts to do so by introducing HPC [13,14,6,9] have had limited
success, with a reduction in computing time of less than 20%, as we shall see
in the following section. A recent work by the authors [4], which focused on
using OpenMP to speedup Epanet, achieved a reduction of 36%.

Another way to increase the speed is to improve the simulation method,
or to consider an alternative one. Recently, several papers [7,8,10,2,1] have
considered the loop method for simulation of WDS, first introduced in [11],
as an alternative to the more widely used Global Gradient Algorithm (GGA),
implemented in Epanet. The authors presented in [5] some contributions to
the loop method, with an efficient implementation that is shown to be faster
than Epanet for the test networks considered.

This paper explores the use of OpenMP to accelerate the simulation of
WDS, extending the work of the authors both in [4] and [5]. While [4] only
considers the parallelization of Epanet, this paper also tackles that of the loop
method. We present complete results on a set of test networks, showing better
results than existing related work. The results also extend those of [5], by
considering networks with automatic valves.

After reviewing related work in the next section, an introduction to the
problem and the two methods under consideration is made. Then, section
4 identifies the tasks involved and selects the target tasks for parallelization.
Section 5 describes the tasks, before parallel algorithms for them are presented
in section 6. Finally, results are shown and conclusions are presented.

2 Related work

Among the different approaches to introduce HPC in the simulation of WDS,
[3] explores the parallelization of Epanet in distributed memory platforms
using MPI, considering the simulation of heads and pressures using GGA,
and also the simulation of water quality and leakage minimization. In the
parallelization of GGA, the key point is the solution of the linear system,
which is carried out by means of a multifrontal sparse Cholesky method.

In [13], an analysis is made of the computational blocks involved in the
simulation of WDS by means of GGA, using the code of the library CWSNet
[12]. It points out that the task of linear system update is the most time con-
suming one, due to the computation of the coefficients related to the link head

Improving the Performance of WDS Simulation on Multicore Systems 3

losses (as will be seen in section 4). In the same paper, both vector instructions
(SIMD) and Graphics Processing Units (GPU) are applied to accelerate the
simulation of WDS using GGA. SIMD instructions are applied mainly to the
computation of the link headloss coefficients, obtaining a reduction in comput-
ing time between 11% and 28% with respect to CWSNet, or up to 19.5% with
respect to Epanet. A 240-core GPU is also used for the computation of the
headloss coefficients, obtaining a reduction in computing time of up to 19%
with respect to CWSNet, or up to 3.7% with respect to Epanet.

[14] tries to speedup the code of Epanet by using GPUs. In this case the use
of GPUs focuses on the linear solver, using a Jacobi-preconditioned Conjugate
Gradient method. However, the method fails to converge in some cases when
applied to WDS simulation, showing that it is not stable enough for its use
with the linear systems produced by Epanet with large networks.

[9] evaluates the use of GPUs for the solution of linear systems in the
context of WDS simulation, concluding that GPUs would only reduce the
execution time in cases of exceptionally large networks. [6] considers replacing
the Epanet linear solver code by different modern multicore-capable linear
solvers. They report that “none of the tested solvers was found to perform
faster than the original solver for networks with a real-world character”.

3 The problem of WDS simulation

The subject of the simulation is a network of m link elements (pipes, valves
and pumps) through which the water flows. Links connect to nodes, ns of
them being source nodes, feeding the network, and n of them being junction
nodes, which consume or demand water. Each node has an associated head
(or equivalently, pressure), and there is a non-linear relationship between the
flow through a link and the head loss between its end nodes. Figure 1 shows
a simple network with 8 links (P1-P8), 4 junctions (N1-N4) and 2 sources
(N5-N6).

The problem of WDS simulation, as considered in this paper, consists of
computing the flows q through the links, and the heads h at the nodes, for
a given simulation period. This is done through the solution of a sequence of
steady-state problems, which is known as extended period simulation.

These steady-state problems can be solved using different methods. One of
the most effective ones is the GGA [17], which is a Newton-Raphson method
requiring at each iteration the solution of a linear system with a sparse, sym-
metric positive definite n×n matrix. The GGA is the method used in Epanet
[16]. An alternative to the GGA is the loop method [11], which is also a
Newton-Raphson process working with a sparse, symmetric positive definite
matrix. However, the size of the matrix is in this case nl×nl, where nl = m−n
is the number of independent loops that can be found in the network, which is
usually much smaller that n. Some recent papers [5,7,10,2,1] have addressed
the loop method as a competitive alternative to GGA. The authors developed
contributions to this method, with the corresponding implementation [5].

4 Fernando Alvarruiz et al.

Fig. 1 Sample water supply network

This paper considers the parallelization of both the GGA, as implemented
in Epanet, and the loop method, with the implementation described in [5].

4 Identification of computational blocks

In this section we present the different computational tasks involved in the
process of WDS simulation, for both the GGA and the loop methods. We
discuss their contribution to the execution time and select the tasks to be
the subject of parallelization. A similar analysis is done in [13], although only
GGA, as implemented in CWSNet, is considered.

Algorithm 1 presents a general view of the Epanet code for simulation of a
time step using GGA. Several tasks or computational blocks can be identified,
and are shown in parenthesis. The while loop corresponds to the Newton-
Raphson method, in which an implicit linear system leading to the new values
of h and q is reduced to a smaller system (with the unknowns h), and the
computation of q is done separately.

Algorithm 1 Simulation of a time step using GGA.
set demands, valve and pump settings (demands)
while not converged do

update linear system (system update)
solve linear system, obtaining node heads h (linear solver)
update flows q (flow update)
update status of valves, pumps and pipes (status update)

end while

Algorithm 2 presents the corresponding general view of the simulation
using the loop method, in the implementation described in [5]. In the Newton-
Raphson method (the while loop) the same implicit linear system is reduced
to a smaller system with the vector of unknowns q̂, consisting of the flow
corrections for each network loop.

In order to determine the contribution of each of these tasks to the total
execution time of the simulation, a set of four test networks have been selected.

Improving the Performance of WDS Simulation on Multicore Systems 5

Algorithm 2 Simulation of a time step using the loop method.
set demands, valve and pump settings (demands)
balance network flows (balance)
while not converged do

update linear system (system update)
solve linear system, obtaining loop flow corrections q̂ (linear solver)
update flows q (flow update) and heads h (head update)
update status of valves, pumps and pipes (status update)

end while

Table 1 Battery of test networks.

Network nodes links S/P/V Duration/step
net1 12527 14831 4/4/5 26h 55min/5min
net2 26653 29046 26/0/0 48h/20min
net3 4240 4649 4/0/6 96h/5min
net4 25816 29345 3/0/51 24h/1h

Table 2 Contribution of each task to the sequential execution time.

GGA loop method
net1 net2 net3 net4 net1 net2 net3 net4

initialization 7.6% 27.0% 1.2% 27.0% 3.6% 9.3% 0.9% 10.3%
demands 8.4% 5.3% 9.1% 1.0% 8.2% 6.3% 8.2% 1.1%

balance 10.3% 9.9% 10.6% 1.8%
sys update 38.7% 29.2% 42.0% 38.3% 42.3% 41.0% 42.6% 40.5%
linear solver 32.9% 29.7% 34.0% 27.8% 9.8% 8.1% 13.4% 31.5%
flow update 5.8% 4.3% 6.4% 3.7% 10.8% 10.8% 10.4% 6.8%
head update 8.8% 9.6% 8.1% 5.8%

status update 4.3% 2.6% 4.7% 1.6% 4.1% 3.0% 4.0% 1.6%

Total time 0.834 1.001 0.796 0.976 0.864 0.849 0.902 0.880

Table 1 presents the details of the networks, including the number of source
nodes (S), pumps (P) and valves (V), the duration of the simulated period, and
the time step between successive steady-state problems. Network 1 corresponds
to one of the networks used in [15], while the other three networks are real-life
hydraulic networks from Spain.

Table 2 presents the execution time (in seconds) for the simulation of the
networks, and the contribution to it of each of the tasks, for both methods.
Executions were run on a single CPU core with the computer and compiler
described in section 7. The task of initialization is done at the beginning of
the simulation and includes the reordering and symbolic factorization of the
system matrix. It can be seen that GGA is faster for networks 1 and 3, while
the loop method is faster for 2 and 4. With respect to the different tasks, the
update of the linear system stands out as the most time-consuming. The linear
solver has also an important contribution in the case of GGA, while it is less
important in the loop method (because of the smaller size of the systems).

The tasks considered for parallelization in this paper are those shown in
bold in table 2 (demands, system update and flow update). This selection has

6 Fernando Alvarruiz et al.

Table 3 Maximum speedup with the proposed parallelization. max S(p) indicates the max-
imum speedup with p cores.

GGA loop method
network net1 net2 net3 net4 net1 net2 net3 net4
max S(2) 1.36 1.24 1.40 1.27 1.44 1.41 1.44 1.32
max S(4) 1.66 1.41 1.76 1.48 1.85 1.78 1.85 1.57
max S(8) 1.86 1.51 2.01 1.60 2.16 2.04 2.15 1.74
max S(16) 1.98 1.57 2.17 1.68 2.35 2.20 2.35 1.83
max S(32) 2.05 1.60 2.26 1.71 2.46 2.29 2.46 1.88

been done taking into account both the potential benefit which is likely to be
gained from the parallelization, and also the difficulty of parallelization.

In particular, the solution of the linear system, which is done by means
of a Cholesky factorization process for sparse matrices, could be done in par-
allel using elimination trees. However, as [13] exposes, the performance gain
obtained could be null or minimal, taking into account the relatively small
size of the matrices arising in WDS simulation. The initialization task has
a reduced time contribution for long simulations. The tasks of balance and
head update involve traversing a tree of the network nodes. This is done very
efficiently in the sequential code because the order in which the nodes have to
be visited has been pre-computed, which means that a parallel version could
lead to little or no improvement, except in very large networks.

To end this section, table 3 presents the maximum speedup achievable with
the proposed parallelization. These values have been computed according to
Amdahl’s law, by taking into account the percentages of time corresponding
to parallelized and sequential parts.

Next section describes the tasks that are the subject of parallelization.

5 Target computational blocks

5.1 Linear system update

In the case of GGA, as described in [16], the linear system update entails the
computation of two coefficients, pk and yk, for each link, and the assembly of
them in the system matrix and vector. The coefficients are related to the head
loss in a link and are computed differently depending on the type of link. For
pipes, e. g., they are obtained as:

pk =
1

βrk|qk|β−1 + 2ρk|qk|
, yk = pkqk(rk|qk|β−1 + ρk|qk|) (1)

where k is the link index, r and ρ are pipe resistance coefficients, and β is an
exponent with the same value for all the pipes.

Once those values have been obtained, they are assembled in the linear
system Ax = b. In particular, the matrix A is given by:

ai,i =
∑
k∈Ii

pk, ai,j = −
∑
k∈Ii,j

pk, j 6= i (2)

Improving the Performance of WDS Simulation on Multicore Systems 7

where Ii is the set of links connected to junction i, and Ii,j corresponds to the
set of links having i and j as end nodes.

Concerning vector b, each of its elements is computed as:

bi =
∑
k∈I+

i

qk −
∑
k∈I−

i

qk − ci −
∑
k∈I+

i

yk +
∑
k∈I−

i

yk +
∑
k∈If

i

pkhj

where I+i , I−i represent the set of links entering and leaving, respectively,

junction i, Ifi is the set of links having node i at one end and a source node
at the other end, and j refers to the source node connected to link k.

Taking into account the above considerations, the linear system update can
be done as described by algorithm 3. The algorithm takes into account that
the matrix A is symmetric, and is stored using a sparse structure, with the
diagonal elements kept in a vector (d) and the non-zero off-diagonal elements in
another one (v). It also considers that some reordering (such as a fill-reducing
ordering) has been performed on the rows/columns.

Algorithm 3 Linear system update in GGA
Input: Link parameters (r, ρ, · · ·), flow vector (q), demands (c). Sparse storage for matrix

A, with vectors for diagonal (d) and off-diagonal (v) elements.
Output: Matrix A, vector b
1: initialize A, b, to zeros
2: for all link k do
3: compute pk, yk, e.g. if it’s a pipe, use eq. (1)
4: let i, j be the initial and final nodes, respectively, of link k
5: if nodes i, j are both junctions then
6: vk′ ← vk′ − pk, where k′ is the index of the non-zero element for link k
7: end if
8: let i′, j′ be the rows of junctions i, j resp. (if nodes i, j are junctions)
9: if node i is a junction then

10: di′ ← di′ + pk, bi′ ← bi′ − qk + yk
11: else
12: bj′ ← bj′ + pkhi
13: end if
14: ... previous if block is repeated, now for node j
15: end for
16: for all junction i do
17: bi′ ← bi′ − ci, where i′ is the row of junction i
18: end for

Considering now the loop method, the linear system of equations is also
built by assembling two coefficients, p′k, y

′
k, for each link. They are also related

to the head loss in a link and, in the case of pipes, are computed as:

p′k = βrk|qk|β−1 + 2ρk|qk|, y′k = qk(rk|qk|β−1 + ρk|qk|) (3)

Once obtained, the linear system matrix A is formed as:

ai,i =
∑
k∈Im

i

p′k, ai,j =
∑
k∈Im

i,j

mi,kmj,kp
′
k, j 6= i (4)

8 Fernando Alvarruiz et al.

where Imi is the set of links forming the loop i, Imi,j corresponds to set of links
shared by loops i and j, while mi,k is either −1 or +1, depending on the
orientation of link k with respect to the assumed orientation of loop i. Each
element of the right-hand side vector b is obtained as:

bi = −
∑
k∈Im

i

mi,ky
′
k −

∑
j∈Im,f

i

mf
i,jhj

where, if i is a pseudo-loop (path going from a source node to another), Im,fi

contains its end nodes, and otherwise is empty. mf
i,j is −1 (+1) if j is the

initial (final) node of the pseudo loop.
Valves have been considered following the approach presented in [5]. The

resulting process of linear system update is presented in algorithm 4.

Algorithm 4 Linear system update in the loop method
Input: Link parameters (r, ρ, · · ·), flow vector (q). Network loops. Sparse storage for matrix
A, with vectors for diagonal (d) and off-diagonal elements (v).

Output: Matrix A, vector b
initialize A, b to zeros.
for all link k do

compute p′k, y
′
k, e.g. if it’s a pipe, use eq. (3)

for all loop i containing link k do
let δ be the sign of link k in loop i, and i′ the row corresponding to loop i
di′ ← di′ + p′k, bi′ ← bi′ − δy′k

end for
for all index i of nonzero coeff. contributed to by link k do
vi ← vi + δ p′k, where δ is the sign of the contribution

end for
end for
for all source node j do

for all loop i with j as an end node do
let δ be the sign of node j in loop i, and i′ the row corresponding to loop i
bi′ ← bi′ − δhj

end for
end for

5.2 Update of demands and flows

The update of demands is done in the same way for both methods. The de-
mands are modeled using demand patterns, which consist of a base value and
a sequence of multiplication coefficients that are applied to the base value
to obtain a time-based modulation. Each junction can have several demand
patterns associated to it, resulting in the following expression to update the
demands at each iteration:

ci =
∑
j

ĉi,jµi,j,k, 1 ≤ i ≤ n (5)

Improving the Performance of WDS Simulation on Multicore Systems 9

where ci is the demand of junction i, j iterates over the demand patterns of
junction i, ĉi,j is the base demand of the pattern and µi,j,k is the multiplication
coefficient of the pattern at time step k.

With respect to the update of flows, in GGA the following increment is
applied to the flow of a link k from node i to j:

∆qk = −yk + pk(hi − hj), 1 ≤ k ≤ m (6)

Additionally, the following fraction is computed, which corresponds to the rela-
tive change of the flows at the current iteration, and is used in the convergence
check for the algorithm: ∑m

k=1 |∆qk|∑m
k=1 |qk|

(7)

In the case of the loop method, the flow increment is:

∆qk =
∑
i

mi,kq̂i, 1 ≤ k ≤ m (8)

where i iterates over each of the network loops where link k is contained, and
q̂i is the flow correction associated to the network loop i. The relative change
of the flows is also computed, using eq (7).

6 Parallel algorithms

6.1 Parallel linear system update

We first consider the GGA method. Note that in the sequential algorithm 3,
a given element of the matrix A or the vector b is modified in several different
iterations of the loop that goes over the links. To obtain a parallel version
of the algorithm, the idea is to reorganize the code by grouping in the same
iteration all the updates that are made to a given element. Then, the iterations
can be done in parallel.

The result is shown in algorithm 5, where the updates are organized in
four different loops. The first one simply computes the coefficients pk and yk
and can be readily parallelized. The second loop, starting at line 5, computes
the elements of the matrix diagonal and the vector b. Each iteration of the
loop computes a different diagonal element dj′ and its corresponding vector
element bj′ , so that there is no conflict between iterations. The last two loops
compute the off-diagonal coefficients. We take into account that a given off-
diagonal coefficient can be affected by several links, although this happens
rarely. To cope with this, the approach taken is to initially consider only the
contribution of the first link for each off-diagonal coefficient, which is done in
parallel in the third loop (line 16), and then consider the rest of the links in
the last sequential loop.

Considering now the system update in loop method, the idea is again to
reorganize algorithm 4 in order to group in a single iteration all the different
updates affecting a given system element.

10 Fernando Alvarruiz et al.

Algorithm 5 Parallel linear system update in GGA
Input: Link parameters (r, ρ, · · ·), flow vector (q), demands (c). Sparse storage for matrix

A, with vectors for diagonal (d) and off-diagonal (v) elements.
Output: Matrix A, vector b
1: initialize A, b, to zeros
2: parallel for all link k do
3: compute pk, yk, e.g. if it’s a pipe, use eq. (1)
4: end for
5: parallel for all junction j do
6: let j′ be the row of junction j
7: for all link k connected to junction j do
8: let δ = +1 (δ = −1) if link k enters (leaves) junction j
9: dj′ ← dj′ + pk, bj′ ← bj′ + δ(qk − yk)

10: if the other end of link k is a source node then
11: bj′ ← bj′ + pkhi, where i is the source node
12: end if
13: end for
14: bj′ ← bj′ − cj
15: end for
16: parallel for all non-zero off-diagonal coefficient k′ do
17: vk′ ← vk′ − pk, where k is the first link of the nonzero coefficient
18: end for
19: for all link k not considered in the previous loop do
20: vk′ ← vk′ − pk, where k′ is the index of the off-diagonal element for link k
21: end for

That is what algorithm 6 does. The first loop in the algorithm, as in the
case of the GGA counterpart, corresponds to the computation of the headloss-
related coefficients for each link. The second loop (line 5) computes the matrix
off-diagonal elements, each of them corresponding to an adjacency of two net-
work loops (i.e. a pair of loops with some links in common). Since each iteration
modifies a different element, this can be done in parallel. Then the third loop
in the algorithm (line 11) performs updates on the matrix diagonal and the
vector b. Since each iteration affects a different element of the diagonal and
its corresponding vector element, this too can be done in parallel.

In order to balance the load of some parallelized loops, a preprocessing
step is done to determine the best distribution of iterations among threads.

6.2 Parallel update of demands and flows

The task of demand update corresponds to eq. (5) in both methods. Since
each demand ci can be computed independently, the parallelization is straight-
forward. The update of other pattern-controlled source node heads and pumps
is also done using a formula similar to (5), and has also been parallelized.

Concerning the task of flow update, which corresponds to eqs. (6) and (7)
in GGA, and to eqs. (8) and (7) in the loop method, the parallel version is also
quite straight-forward, since the computation of each of the flow increments
∆qk is independent of the others. Computation of eq. (7) requires the use of
a reduction clause to obtain the values of the sums.

Improving the Performance of WDS Simulation on Multicore Systems 11

Algorithm 6 Parallel linear system update in the loop method.
Input: Link parameters (r, ρ, · · ·), flow vector (q). Network loops. Sparse storage for matrix

A, with vectors for diagonal (d) and off-diagonal (v) elements.
Output: Matrix A, vector b
1: initialize A, b to zeros.
2: parallel for all link k do
3: compute p′k, y

′
k, e.g. if it’s a pipe, use eq. (3)

4: end for
5: parallel for all adjacency between two loops do
6: let j′ the index of the off-diagonal element for the adjacency
7: for all link k associated to the adjacency do
8: vj′ ← vj′ + δp′k, where δ is the sign of the link in the adjacency
9: end for

10: end for
11: parallel for all loop i do
12: let i′ be the row of loop i
13: for all link k in loop i do
14: di′ ← di′ + p′k, bi′ ← bi′ − δy′k, where δ is the sign of link k in loop i
15: end for
16: if loop i is a pseudo-loop from a source node (j) to another (j′) then
17: bi′ ← bi′ + hj − hj′
18: end if
19: end for

Table 4 Sequential time tseq and speedup S(#cores) for complete simulation.

GGA loop method
net1 net2 net3 net4 net1 net2 net3 net4

tseq 0.837 1.005 0.797 0.981 0.771 0.747 0.814 0.808

S(2) 1.21 1.14 1.17 1.20 1.31 1.30 1.31 1.24
S(4) 1.37 1.27 1.32 1.34 1.60 1.54 1.55 1.42
S(8) 1.55 1.36 1.50 1.46 1.80 1.74 1.75 1.54
S(14) 1.63 1.40 1.59 1.52 1.92 1.81 1.82 1.59
S(20) 1.65 1.41 1.60 1.52 1.89 1.82 1.79 1.60
S(28) 1.56 1.36 1.53 1.46 1.75 1.73 1.67 1.56

7 Results and conclusions

Results are presented for the set of test networks described previously in table
1. All simulations have been carried out on a computer with 2 Intel R© Xeon R©
E5-2697 v3 processors at 2.60GHz and 14 cores each (28 cores in total). The
Intel R© compiler has been used for all programs. Times are in seconds.

Table 4 presents the sequential time and the speedup for the complete simu-
lation for both GGA and the loop method. Table 5 focuses on the performance
of the tasks that have been parallelized.

We can see that the speed-up achieved for the complete simulation is not
far from the ideal one shown in table 3. Table 4 shows speedups of up to 1.65
in the case of GGA and up to 1.92 in the case of the loop method, with re-
spect to the corresponding sequential codes. The reduction in computing time
is of up to 39% for GGA and up to 48% for the loop method. Comparing the
time of the parallel loop method with respect to Epanet (sequential GGA),

12 Fernando Alvarruiz et al.

Table 5 Sequential time tseq and speedup S(#cores) for parallelized part.

GGA loop method
net1 net2 net3 net4 net1 net2 net3 net4

tseq 0.440 0.386 0.456 0.420 0.443 0.404 0.467 0.371

S(2) 1.57 1.58 1.42 1.71 1.81 1.88 1.83 1.88
S(4) 2.41 2.58 1.98 2.79 3.27 3.35 3.10 3.38
S(8) 4.05 4.38 3.02 4.95 5.70 6.09 4.95 6.04
S(14) 5.81 6.41 3.83 7.38 8.73 9.45 6.08 8.98
S(20) 6.84 7.73 4.14 8.77 10.37 11.80 6.09 11.30
S(28) 6.20 6.91 3.92 6.91 8.88 13.67 4.95 13.10

the reduction in computing time goes from 44% (for net3) to 59% (for net2).
These numbers are obtained from table 4, e.g for net2 the time using sequen-
tial GGA is 1.005, and the best time using the parallel loop method can be
obtained as 0.747/1.82 = 0.410, yielding a reduction of 59%. These results are
clearly better that the related work reviewed in section 2, where the maximum
reduction in computing time with respect to Epanet was 19.5%.

We also note that the sequential time for the loop method reduces with
respect to table 2, which is due to the fact that reorganizing the code for
algorithm 6 also led to a faster sequential code.

The results show important improvements in the performance of WDS
simulation with respect to Epanet, which come as a result of different contri-
butions. One of them is to consider the loop method, with the improvements
described by the authors in [5], while reducing the sequential execution time as
a result of code restructuring, and extending the results of [5] by considering
networks with automatic valves. The other one is the parallelization over mul-
ticore systems of the simulation both for GGA and the loop method, where
the loop method is shown to have better speedup.

Taking into account that problems such as network design or network op-
timization make intensive use of simulation, the increase of speed shown in
this paper can have great impact on the time needed to solve such problems.

References

1. Abraham, E., Stoianov, I.: Efficient preconditioned iterative methods for hydraulic sim-
ulation of large scale water distribution networks. Procedia Engineering 119, 623 – 632
(2015)

2. Abraham, E., Stoianov, I.: Sparse null space algorithms for hydraulic analysis of large-
scale water supply networks. Journal of Hydraulic Engineering pp. 04015,058–04015,058
(2015). DOI 10.1061/(ASCE)HY.1943-7900.0001089

3. Alonso, J.M., Alvarruiz, F., Guerrero, D., et al: Parallel computing in water network
analysis and leakage minimization. J. Water Resour. Plann. Manage. 126(4), 251–260
(2000)

4. Alvarruiz, F., Mart́ınez-Alzamora, F., Vidal, A.M.: Efficient simulation of water distri-
bution systems using openmp. In: 15th Int. Conf. Math. Methods in Sci. and Eng., pp.
125–129 (2015)

5. Alvarruiz, F., Mart́ınez-Alzamora, F., Vidal, A.M.: Improving the efficiency of the loop
method for the simulation of water distribution systems. J. Water Resour. Plann.
Manage. 141(10), 04015,019 (2015)

Improving the Performance of WDS Simulation on Multicore Systems 13

6. Burger, G., Sitzenfrei, R., Kleidorfer, M., Rauch, W.: Quest for a new solver for
EPANET 2. Journal of Water Resources Planning and Management (2015). DOI
10.1061/(ASCE)WR.1943-5452.0000596

7. Creaco, E., Franchini, M.: Comparison of Newton-Raphson global and loop algorithms
for water distribution network resolution. J. Hydraul. Eng. 140(3), 313–321 (2014)

8. Creaco, E., Franchini, M.: The identification of loops in water distribution networks.
Procedia Engineering 119, 506 – 515 (2015). Computing and Control for the Water
Industry (CCWI2015) Sharing the best practice in water management

9. Crous, P.A., van Zyl, J.E., Roodt, Y.: The potential of graphical processing units to
solve hydraulic network equations. Journal of Hydroinformatics 14, 603–612 (2012)

10. Elhay, S., Simpson, A., Deuerlein, J., Alexander, B., Schilders, W.: Reformulated co-
tree flows method competitive with the global gradient algorithm for solving water
distribution system equations. J. Water Resour. Plann. Manage. 140(12), 04014,040
(2014)

11. Epp, R., Fowler, A.G.: Efficient code for steady-state flows in networks. Journal of the
Hydraulics Division 96(1), 43–56 (1970)

12. Guidolin, M., Burovskiy, P., Kapelan, Z., Savić, D.: Cwsnet: An object-oriented toolkit
for water distribution system simulations. In: Proc. 12th Water Distribution System
Analysis Symp., ASCE, Reston, VA (2010)

13. Guidolin, M., Kapelan, Z., Savic, D.: Using high performance techniques to accelerate
demand-driven hydraulic solvers. Journal of Hydroinformatics 15(1), 38–54 (2013)

14. Guidolin, M., Kapelan, Z., Savic, D., Giustolisi, O.: High performance hydraulic simu-
lations with epanet on graphics processing units. In: Proc. 9th Int. Conf. on Hydroin-
formatics (2010)

15. Ostfeld, A., Uber, J., Salomons, E., et al: The battle of the water sensor networks
(BWSN): A design challenge for engineers and algorithms. J. Water Resour. Plann.
Manage. 134(6), 556–568 (2008)

16. Rossman, A.L.: Epanet 2 Users manual. Water Supply and Water Resources Division,
US Environment Protection Agency (2000)

17. Todini, E., Pilati, S.: A gradient algorithm for the analysis of pipe networks. In: B. Coul-
beck, C.H. Orr (eds.) Computer Applications in Water Supply: Vol. 1—Systems Analysis
and Simulation. Research Studies Press Ltd., Letchworth, Hertfordshire, UK (1988)

