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Abstract. AMQP is a middleware protocol extensively used for ex-
changing messages in distributed applications. It provides an abstrac-
tion of the different participating parts and simplifies communication
programming details. AMQP provides reliability features and alleviates
the coordination of different entities of an application.
However, implementations of this protocol have not been well tested in
the context of mobile or unstable networks. This paper is the starting
point of an experimental evaluation of AMQP protocol in such kind of
scenarios. Our goal is to identify the limits of applicability of this mid-
dleware, assessing its the capacity in terms of message losses, latencies
or jitter, when wireless devices are interrupted and reconnected. This
evaluation is of interest for the upcoming applications in which personal
devices and vehicles will collaborate, forming part of large complex sys-
tems.
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1 Introduction

With current expectations around the Internet of Things (IoT) there is a need
to build and extend what is known as intelligent spaces. The idea behind these
spaces is to connect computing elements such as sensors and actuators through
a distributed network. The computing elements interact cooperatively in order
to offer services to users. The network is usually a MANET or the mobile phone
system (i.e. 3G, 4G) due to easy deployment. The massive use of smartphones or
even On Board Units (OBU) in vehicles are favouring the development of these
kinds of systems and applications.

The cooperation of the computing elements makes it easier to identify situa-
tions and then to provide data or to react when confronted with a set of stimulus.
Intelligent spaces are highly dynamic due to the spontaneity with which elements
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connect or disconnect to the network. A flexible way to communicate the com-
puting elements are message queuing middlewares such as the Java Message
Service (JMS) or the emerging Advanced Message Queuing Protocol (AMQP).

AMQP is an application layer protocol which takes into account Message-
oriented middleware (MOM) standards [1]. AMQP has been used in challenging
applications, including Autonomous Computing [2], Cloud computing [3] or in
security aspects related to the Internet of Things [4].

AMQP is designed to facilitate the dialogue among the components of a sys-
tem, by making easy the exchange of messages independently of their underlying
platforms. There are libraries available for most popular programming languages,
and there are implementations for most of common operating systems. In ad-
dition, AMQP cares about security and confidentiality issues without affecting
significantly the communication’s performance.

In AMQP the messages are self-contained and data content in a message
is opaque and immutable. The size of a messages in not limited. It can either
support a 4 GByte message or a 4 KByte one. For message delivering, several
possibilities are possible, as it can be point-to-point, store-and-forward or publish-
and-subscribe. For instance, when a message is sent to an AMQP broker, actually
it is sent to a queue, and after it is delivered to all subscribed customers to
this queue as a push notification [1]. With AMQP the number of subscribers is
unbounded.

This work is a starting point to test the behaviour of AMQP protocol over un-
stable networks. We call unstable networks those in which links can be frequently
modified or broken without control. Examples of unstable networks could be mo-
bile networks or wireless networks in urban environments, which suffer channel
interferences, as occurs in community networks. Our goal is to determine whether
AMQP provides satisfactory service, depending of the applications’ load needs,
in terms message size and communication rates. We detect the extreme working
values at which message losses starts, as well as the effect of network changes on
the messages’ jitter.

In the present paper we introduce the first results in which we test the effect
of a mobile producer which changes from one WiFi access point (AP) to another
in the same IP network. We have developed a synthetic load generator which we
call amqperf. This program sends messages with a sequence number to detect
losses or messages delivered in different sending order. The size of messages and
the frequency in which they are send by the producer can be modified. In the
results we use a simple scenario with just one producer and one consumer.

The rest of the article is organized as follows: Section 2 presents a literature
review related to the topic. In Section 3 there is a description of the methodology
used in this work, showing how measurements have been done in order to be
reproducible. The Section 4 presents the results and, finally, Section 5 provides
some conclusions and the next steps to follow in this research line.
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2 Related Work

There are several works in which the AMQP protocol is evaluated. In [5] the per-
formance of AMQP is assessed using Infiniband and Gigabit Ethernet networks
with Qpid as AMQP middleware. Five simple synthetic benchmarks modeled af-
ter the OSU Micro-benchmarks for MPI were used. They exercise the number of
Publishers, the number of Consumers, and the Exchange type. Each benchmark
measures performance for data capacity (the amount of raw data in MegaBytes
per second), message rate (the number of discrete messages transmitted), and
speed (average time one message takes to travel from the publisher to the con-
sumer).

In [6] it is shown a way to evaluate the performance of AMQP by using an
adapted version of the well-known SPECjms2007 and jms2009-PS benchmarks.
This would allow to compare AMQP with other messaging systems such as JMS
(Java Message Service), in terms of performance, stability and scalability.

In [7] a performance comparison between AMQP and RESTful web services
is presented. Three different tests are performed, which consist of several client
applications sending messages during 30 minutes to the broker or the web server
respectively; once the messages arrive to the server they are stored in a database.
Then, the average number of messages per second that have been sent is com-
pared to the total number of messages stored in the database. They conclude
that, when the AMQP protocol is used to exchange messages, a larger number
of messages per second is supported.

A study about MQTT, a “light weight” publish-subscribe based messaging
protocol, is presented in [8]. The correlation between the end-to-end latency and
loss of system messages is studied. Three different QoS levels with different sizes
of payload (from 1 to 16 Kbytes) are tested on a real world scenario with both
wired and wireless clients using 3G. They prove that there is a strong correlation
between these two variables.

However, few studies are focused on the effectiveness of AMQP over unstable
networks.

3 Methodology of the experiments

In the set of experiments we present in this paper we use a producer which,
at a given frequency, sends messages of a prefixed size to an AMQP broker.
The AMQP broker automatically creates a queue to the exchange of fanout
type. Finally, a consumer, connected to the same broker is always ready to get
messages. The producer is connected to a WiFi access point to reach the broker.
The broker and the consumer are executed in the same computer. This scenario
can be seen in Figure 1 and a picture can be seen in Figure 2.

The consumer records the sending (timestamped by the producer in each
message) and reception time and the sequence number in a log file. There is not
a strict synchronization between the producer and consumer clocks. When there
are changes in the producer link, the regularity in the reception of messages is
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Fig. 1: Schema of the network.

Fig. 2: A picture of the scenario.
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affected. The inter-message times is modified, bursts of messages can be delivered
to the consumer and even the sending order can be changed.

Message losses are produced when the hand-off time is too important with
respect the load parameters of the test. Current implementations of AMQP use
TCP connections to the broker in order to enhance reliability. If the producer
connection is interrupted, the producer’s AMQP client has to stock the messages
until it can send it to the broker. If the sending buffer is full, messages will be lost.
But this is not the only reason for losing sequence numbers. In the producer part,
we create a thread to produce and send each message. Thus, in some extreme
tests, the amount of threads exceeded the operating system limit. We have not
tuned this parameter given that the workload in these circumstances is far from
reasonable; for instance, bigger than high definition video streaming.

A testing application, which we call amqperf has been developed to generate
a workload for the message queuing system in the part of the producer. Amqperf
uses the RabbitMQ library [9], which is an AMQP implementation. An schema
of amqperf can be seen in Figure 3.

Fig. 3: Schema of amqperf.

In the experiments, we perform tests of 20 seconds because we are interested
in the AP migration of the producer. We checked whether there were message
losses or if messages arrive out of order. The nth message jitter of inter-arrival
times is computed with the following equation:

Jn = t′n− t′n−1−T , where t′n is the arrival time of message n to the consumer
and T is the (fixed) period between messages produced by the producer. T is one
of the variables fixed for each experiment. Note that with this formula we are
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not concerned by a possible asynchrony between the producer and the consumer,
which are executed in different computers. A simplification of the times involved
in the experiments can be seen in Figure 4.

Fig. 4: Times involved in the experiments.

The values we used in the test were decided considering the bandwidth needed
by high definition video streaming, which is about 5 Mbps. We obtain this value
by transmitting 12500 byte messages every 0.02 seconds or 625000 byte messages
each second. In any case, we have made some tests to detect the point at which
messages start being lost in both cases: if there is a migration of access point is
produced or without interruption in the WiFi network. These values are detailed
in the following section.

The AMQP broker was created on a server with an AMD 8-core processor
and 16Gb of RAM memory. The client had an Atom N450 processor and 1Gb
of RAM memory. Both of them were running Ubuntu 12.04 operating system.
For the wireless network we have used the OpenWRT operative system with
Attitude Adjustment version on a Alix PC-Enginees (alix2d2) and a Tplink
(TL-WDR3600) routers. And the test were run on a dedicated LAN with no
other traffic.

4 Results

In this section we present the results of the first set of experiments in which a
wireless producer migrates from access point but remaining in the same IP net-
work. In these tests, the TCP connection between the producer and the AMQP
broker is maintained. Each combination of message production frequency and
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message size is repeated 100 times and we analyse the distribution function of
the maximum jitter for each one of the tests.

4.1 Behaviour during access point transition

For the experiments, we have used a completely dedicated network without ex-
ternal traffic. If there is not any interruption in the wireless link of the producer,
a very limited jitter is observed for reasonable workloads, for instance, less than
5 Mbps.

In order to see a typical behaviour with an AP migration, we provide Fig-
ures 5 and 6. These figures shows the jitter for each message received by the
consumer. In these figures, the positive peak corresponds to the hand-off, and
the negative values are due to the reception of a burst of messages which the
producer have retained during this communication’s interruption.

In 5, the small oscillations after the handoff peak are produced because the
messages in the interruption burst are delivered in the inverted order (like in a
LIFO queue).

(a) 512 Bytes (b) 6 KBytes

Fig. 5: Behaviour of jitter with migration of access point. Both tests producing
a message each 10 ms and with messages sizes: a) 512 Bytes and b) 6 KBytes.

As expected, the number of messages with negative jitter can be approxi-
mated by the peak positive jitter divided by the message producing period. For
instance, in figure 6b, it is 4000/500 ≈ 8 messages.

4.2 Workload boundary

Without performing an exhaustive delimitation of the workloads producing mes-
sage losses, we have made some tests to provide hints about the applicability of
AMQP. Note that these “extreme” workloads can be dependent on the platform
used, and even the configuration of these platforms. These experiments have
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(a) 512 Bytes (b) 6 KBytes

Fig. 6: Behaviour of jitter with migration of access point. Both tests producing
a message each 500 ms and with messages sizes:a) 512 Bytes and b) 6 KBytes.

been conducted without access point migration, in order to know the capacity
of the system.

Figure 7 shows an approximation of the capacity of the system in terms of
message size and production frequency. For loads above the red line, the system
is saturated and not all produced messages arrive to consumers. The limits are
around to 20 Mbps. This bandwidth is close to that we obtain with the iperf
tool using the TCP test.

4.3 Jitter analysis

We analyse the jitter of the messages arriving to the consumer when the pro-
ducer makes an AP migration using the maximum jitter’s distribution function
after repeating 100 times the same scenario (the same combination of messages
production frequency and size). We know that the maximum jitter in our tests is
due to access point migration given that the network has not external traffic and
that the workloads used in these tests do not saturate the system (no message
losses are observed).

In Figure 8 it can be seen the distribution function of the maximum jitter
using a period of 10 ms for message production and two message sizes: a) 512
Bytes and b) 1024 Bytes. In both cases, the jitter is concentrated around 3 s.

In Table 1 it is shown the maximum, mean and standard deviation of the
maximum jitter in 100 tests for different combinations of message size (from 0.5
KByte to 6 KByte) and message production periods (10, 100, 500 and 1000 ms).

To see the jitter evolution depending on each of the two parameters we use in
the workload, we present the mean values in Table 1 in two ways: as a function of
the message size (Figure 9a) or as function of the message production frequency
(Figure 9b).
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Fig. 7: Threshold limit of message losses for different message production fre-
quency and message size.

(a) 512 Bytes (b) 1024 Bytes

Fig. 8: Distribution function of the maximum jitter using a period of 10 ms for
the production of messages and two message sizes: a) 512 Bytes and b) 1024
Bytes.
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message size (Bytes) period (ms) max mean sta. dev.

512

10 6594 3132 587
100 7361 1879 950
500 7043 1660 1006
1000 3367 1363 1010

1024

10 6711 3285 876
100 4104 1931 818
500 6346 1576 809
1000 3404 1375 875

3072

10 6552 4437 1714
100 3105 1599 587
500 4045 1672 823
1000 3701 1441 934

6144

10 6579 4708 1854
100 6402 1739 786
500 6426 1696 949
1000 3915 1272 949

Table 1: Statistical values of maximum jitter distribution for messages sent with
different size and period.

(a) (b)

Fig. 9: Evolution of maximum jitter as function of (a) message’s size, or (b)
message production period.
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In Figure 9 it can be seen that, concerning the jitter, the sending period is
more relevant than the size of messages. This is clearly shown in Figure 9(a) for
the line corresponding to 10 ms.

Also the combination of both parameters seems to have an important and
non linear influence, as it can be seen by the proximity of lines corresponding to
message sizes 3 and 6 KBytes and the difference between the 1 and 3 KBytes in
Figure 9 (b).

5 Conclusions and future work

In this paper we presented our first results concerning how jitter is affected when
using AMQP in unstable networks. AMQP is a middleware protocol which facil-
itates the development of applications based on producer-consumer or publish-
subscribe models and make them platform independent. We have checked a
simple workload model of one producer and one consumer in the presence of ac-
cess point migration in an extended wireless network (i.e. several access points
conforming a same Service Set). We have observed that the messaging system is
robust and guarantees message delivery without losses. The occurrences of mes-
sage losses are found when the load is higher than the system buffer capacity
in the producer side; but the transfer rate requirement for what is considered a
heavy traffic load, such as high quality video streaming across wireless networks,
is below the covered area under the curve of the threshold limit of message loss.

We can conclude that, in a simple and controlled scenario with roaming
between two access points, we observe jitters between 3 and 4.7 seconds, with
peaks of 7 seconds appearing only for high transmission rates (e.g., 100 messages
per second) which is a considerable rate for monitoring systems running on a
general purpose network. Also, using off-the-self inexpensive hardware, we have
tested extreme workloads from which message losses are detected.

As a follow-up of this work, we are planning more complex scenarios in which
a roaming producer switches between different IP networks and not only between
access point, thereby causing the TCP connection to be reset. Also, a deeper
analysis about the relation between jitter, message size and message produc-
tion rate is needed in order to provide a good characterization which will help
developers to decide whether protocols such as AMQP fit their requirements.
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