

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/ 10.1007/978-3-319-07551-
8_10

http://link.springer.com/chapter/10.1007/978-3-319-07551-8_10

http://hdl.handle.net/10251/68286

Springer

Esparcia García, S.; Boissier, O.; Argente Villaplana, E. (2014). Design of forces driving
adaptation of agent organizations. En Advances in Practical Applications of Heterogeneous
Multi-Agent Systems. The PAAMS Collection. Springer. 110-121. doi:10.1007/978-3-319-
07551-8_10.

Design of Forces Driving Adaptation of Agent
Organizations

Sergio Esparcia,1 Olivier Boissier,2 and Estefanı́a Argente1

1 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València

Camino de Vera s/n, 46022 - Valencia (Spain)
{sesparcia,eargente}@dsic.upv.es

2 Fayol Institute
École Nationale Supérieure des Mines de Saint-Étienne

158 Cours Fauriel, 42023 - Saint-Étienne (France)
olivier.boissier@emse.fr

Abstract. Adaptation is an important feature of human organizations. Being able
to change allows them not only to survive, but to evolve to get new advantages
from new situations happening in their environment or from inside the organiza-
tion. The same way human organizations do, agent organizations should be able
to adapt. Even if adaptation is addressed in the literature, it lacks the ability to
clearly manage the reasons for change. These reasons are known in the social
science bibliography as forces that drive the organizational change. These forces
were introduced in a previous work in the computational domain, but only for the
analysis phase of the engineering of agents organizations. In this work, a set of
templates is presented to define these forces at design time. These templates have
been applied in the design of components for detecting the ‘obtaining resources’
force, which have been implemented using Jason agents and CArtAgO artifacts
within an agent organization.

Key words: multi-agent systems, agent organizations, adaptation, driving forces

1 Introduction

As stated in the studies of human organizations by Organizational Theory3 (OT) [15],
these structures are dynamic and able to adapt at runtime. The OT is one of the inspi-
rations for Organization-Centered Multi-Agent Systems4 (OCMAS) [10] developers.
Multiple proposals have been presented to design and implement such systems, like [7,
8, 11], most of them focusing on the way the change is done, or the cost of this change in
the organization. However, they do not take into account the reasons that make human
organizations to change, leaving aside the forces that drive organizational change, which
are an important concept when dealing with adaptation. These forces have been widely

3 Organizational theory is the sociological study of formal social organizations, such as busi-
nesses and bureaucracies, and their interrelationship with the environment where they operate.

4 Organization-Centered Multi-Agent Systems are Multi-Agent Systems where organizational
elements (such as structure, goals, roles, norms, etc.) are explicitly defined.

studied by Social Sciences researchers such as Aldrich [2] and Lewin5 [13]. Aldrich
classifies forces into external and internal forces, depending on where the pressure for
change comes from. A force is external if the reason for change comes from the orga-
nizational environment, and internal if this reason comes from inside the organization.
Moreover, forces have been introduced in [9] for the analysis of OCMAS where two
sets of guidelines for expressing a force are proposed: (i) condition factors detecting
the action of the force and (ii) solutions for reacting to the force in the organization.

The objectives of this paper are: (i) to take the existing guidelines described in [9],
which are used for the analysis of the forces, to a more formal description that works
as a design step, (ii) to show how this description facilitates the implementation of
forces, and finally (iii) to implement the condition factors and solutions of the forces
as adaptation mechanisms distributed among agents (implemented as Jason agents [6])
and artifacts (implemented using the CArtAgO platform [16]), which can be accessed
by Jason agents. Both Jason and CArtAgO are part of the JaCaMo framework [5]. Due
to the lack of space, we focus on the force named ‘Obtaining resources’ [2] at the
design and implementation phases of an agent organization. It is an external force that
states that a failure when obtaining resources can drive to an organizational change to
guarantee organizational survival. Therefore, it could be necessary for organizational
survival to improve the way in which resources are obtained. For example, by extend-
ing the organization to a place where resources are easily obtained, or by reaching an
agreement with another organization that has a better access to the required resources.

The rest of this paper is structured as follows: Section 2 positions our contribution in
the context of previous works on adaptation in agent organizations. Section 3 presents
the templates to describe a force at the design time. Section 4 presents the room alloca-
tion case study. Section 5 presents the definition of a force at the design time, using the
Obtaining resources force as an example. Section 6 describes the implementation of
this force. Finally, Section 7 presents the conclusion of this paper as well as the future
work on this topic.

2 Adaptation in Agent Organizations

Several works deal with adaptation in OCMAS. This section focuses on some of them
to highlight the main directions that have been explored so far. Some works approach
adaptation from the knowledge and skills required by the agents. For instance, DeLoach
et al. [7] define adaptive organizations as distributed systems that can autonomously
adapt to their environment thanks to organizational knowledge, based on the current
goals and capabilities. In [12], the adaptation is considered from the coordination point
of view by defining a reorganization group composed of different roles,6 responsible of
executing the reorganization scheme, a plan to realize the adaptation process.

5 Lewin states that change is only carried out if the forces supporting the change are stronger
than the forces against the change.

6 OrgManager role is in charge of managing the adaptation process, Monitor role monitors
the organizational activity, Historian role maintains history of the organization, Designer role
analyzes the organization so as to identify problems and propose alternatives, and Selector role
is in charge of selecting one of these alternatives.

Other works focus on the adaptation process itself seeing it as a state transition
problem. For instance, in [8], authors propose a formal semantics framework where
adaptation is treated as a design issue where changes of the organization are represented
as transitions between states. Two activities are considered to realize this adaptation: (i)
evaluation of the current organizational state, computing its ‘distance’ to the desired
state; and (ii) change of organizational elements (structure, agent population, objec-
tives) in order to achieve the desired state. The proposed strategy to decide about adap-
tation is based on the cost of this adaptation. A similar cost-based adaptation framework
is also proposed in [1]. The costs are based on concepts like Organization Transition
Impact and Organization Utility. They propose a Multi-dimensional Transition Delib-
eration Mechanism (MTDM) where three types of transition are considered, depending
on the organizational dimension that changes: role reallocation transition, acquaintance
transition, and agent population transition.

Even though these works are proposing complementary and interesting approaches
for dealing with adaptation, they mainly focus on the management of the process to
carry the changes out. They do not specify the reasons for change which is an important
topic when dealing with adaptation. For instance, in [11] authors present a model for
organizational change which states that a change in an organization is provoked by two
opposing forces: resistant forces and driving forces towards a new organization. Based
on these forces, authors propose a change along a three-phase process: (i) unfreezing
phase, where the driving forces are stronger than resistant forces; (ii) movement phase,
where all the changes are carried out; and (iii) equilibrium, after all changes have been
deployed, where resistant forces are stronger than driving forces.

However, the authors of [11] do not specify the reasons of these forces to appear
in an organization. Knowing the specific reasons of the forces facilitates the task of
offering better solutions to the problems caused by such forces. Since the OT studies
these forces, we are working on their definition into the OCMAS domain. After having
defined a set of guidelines for the analysis phase in [9], we propose in this paper to go a
step further in this direction by proposing templates to identify, describe, and implement
these forces.

3 Templates to define forces

Force detection has to be carried out along the organizational life-cycle. For that pur-
pose, guidelines may help to develop tools to identify the factors and the solutions of
forces. The factors express the conditions making possible to state if the force is cur-
rently active or not. The solutions express the actions to execute in the organization
in order, either to take advantage of the benefits that the force may imply, or to min-
imize the possible damages produced by the force in the organization. The guidelines
presented in [9] focus on the analysis step, identifying and describing the factors and
solutions using plain text and include one table for factors and force description, and an-
other table depicting the solutions. In this paper, since it is addressing the design phase,
we propose templates7 for identifying and describing the factors and solutions of forces.

7 We use the word template to differentiate the products of the design step from the guidelines
produced at the analysis step, and also from the design patterns from software engineering.

Their contents are more formal, closer to an actual implementation. In this case, a force
is defined by means of a template, where the factors and solutions are pointed out. Both
are fully described in separate tables making possible to reuse a factor or a solution in
the definition of another force.

A force (Table 1) is defined by its name, a textual description, a type stating if
the force is internal or external, a set of factors participating on the detection of the
action of the force, a force detection condition, a set of solutions and a selection criteria
among the solutions. The force detection condition is a boolean expression bearing on
the factors.

Field Description
Name Name of the force.
Description Textual description of the force acting over the organization.
Monitor The role of the organization responsible of monitoring the force.
Type Internal or external.
Factors Names of factors involved in the detection of the force.
Force detection condition Logical combination of factors stating that the force is in action.
Solutions Solutions that can be applied in case the force is active.
Solution choice criteria Depicts how a solution is chosen.

Table 1. Force description template

Since we are defining templates to be filled along the organization definition, rather
than guidelines, references to the organizational model such as roles, goals, etc. may
appear in the definition of the factors and solutions.

3.1 Factors Stating that a Force is Acting

Table 2 defines the components of the factors for expressing the conditions testing that
a force is acting over the organization. A factor is a set of monitoring mechanisms in
the organization to detect if the force is acting, and it is characterized by its name, a
description, the parameters referring to organizational values, and the condition which
states when the factor is active.

Factor
Name The name of the factor that helps identifying the force.
Description Textual description of the factor.
Parameters Organizational elements concerned by the action of the force, which help in the detection of its action.
Condition The condition stating the relations among the parameters that help in the detection of the action of the force.

Table 2. Force factor description template

3.2 Solutions to face the Force

Table 3 defines the actions that should be carried out in the organization in order to take
advantage or to prevent damage from the force that has been detected. Each solution
is described by a name, a textual description, a condition that points out the particular
factors that need to be satisfied to execute this solution, the parameters involved in the
actions of the solution, the actions to execute, and the roles of the organization that will
be in charge of executing the solution.

Field Description
Name Name of the solution.
Description Text describing this solution.
Condition The condition (related to factors) that must hold in order to apply this solution.
Parameters Describes the elements that have to be known prior to apply the solution.
Actions The set of actions that must be carried out to apply this solution.
Cost The cost of applying this solution to the organization.
Roles The responsible roles for applying this solution.

Table 3. Force solution description template

4 Case study

A case study is employed to illustrate the use of the templates from the previous section.
This case study focuses on how to manage the distribution of activities assigned to
the different rooms of a smart building in a university.8 The three types of activities
that a room can carry out are: teaching, meeting, and brainstorming. Fig. 1 represents
the organizational model issued from the analysis phase. This model is based on the
graphical notation used by the GORMAS9 methodology [4].

Building

Room
Room

manager

Client

Scheduler

Meeting

manager

Teaching

manager
Brainstorming

manager
Delete

reservation
Teaching

reservation

Manage

activities

A

Contains

Internal

agent

Client

Plays

Client

Plays

Meeting

reservation

Brainstorming

reservation

RoleOrganizational

Unit

Goal

A

Service

Agent

Legend

Building

managerInternal

agent

Fig. 1. Structural dimension of the building represented with the GORMAS notation.

As it can be seen in Fig. 1, the organization is composed of a Building organiza-
tional unit, which contains Room units, as many as needed. Each Room unit represents
the way agents and services governing the room will be organized. It contains an Inter-
nal agent that plays the Room Manager role and one of the following roles: Teaching
Manager, Meeting Manager, Brainstorming Manager. At the system initialization
it only plays the Room Manager role, which is in charge of managing utilities, equip-
ment, and other tasks related to the room management. With the objective of specifying
the activity to be carried out in a specific Room at a specific time, the Internal Agent
also plays one of any of the other three roles, which are exclusive between them, since

8 This case study is inspired in [17].
9 GORMAS is an agent-oriented software engineering methodology for the analysis, design, and

implementation of OCMAS. It has been chosen because the authors have a high knowledge of
it, thus facilitating the definition of the case study.

a Room can only develop one type of activity at the same time. In each Room, there
can be Client agents that request activities. The type of activities of each Room is
changed dynamically depending on the requests issued by the Client agents. All Rooms
are equipped to be able to develop any of the three types of activities at any time.

Additionally, the Building unit also contains the roles Client (played by the Client
agents), and Scheduler and Building Manager, played by Internal Agents. The Build-
ing Manager specifies the type of the activities to be carried out in each Room by as-
signing a specific role (Brainstorming, Meeting, or Teaching Manager) to each Internal
Agent playing the Room Manager role. The agents populating the Building unit are in
charge of achieving the Manage Activities goal to assure a correct organizational per-
formance. Finally the Building Unit is composed of one service for deleting existing
reservations and three types of reservation services: Teaching Reservation, Meeting
Reservation, and Brainstorming Reservation.

The scheduling of activities that are carried out in the Rooms of the Building are
controlled by the Scheduler. The Clients of the Building (external agents) send their
petitions (that include the type of room, the day, the start time and the duration of the
activity expressed in number of hours) to the Scheduler, who is responsible of assigning
a specific activity to a room at the required time. In this application, the organization
may be subject to many sources of change. For example, the number of requests re-
ceived by the organization or the number of clients populating the organization are two
of these sources.

In this paper, we focus on the aforementioned Obtaining Resources external force.
In this case study, the resources are considered to be the rooms. Access to the rooms
is managed by the reservation services. Therefore, it is considered that the access to a
resource fails if the access to the service that manages the Room fails. The solution for
this force implies changing the role of some Room Managers, or adding new virtual
Rooms to the organization.

5 Description of Forces at the Design Step

In this paper we want to go one step further from [9] where the forces were described
by means of the guidelines using plain text descriptions. Following the templates de-
fined in Section 3, forces will be described using a formal language, which will con-
nect the description of the forces with the organizational definition in GORMAS nota-
tion. Each element of the organizational model has associated properties or functions.
They are accessed using the notation element.property (for accessing properties) or el-
ement.function(parameters) (for accessing functions). This section presents the design
phase, where the templates to describe a force are filled, making references to the or-
ganizational model presented in Fig. 1. The following subsections define the Obtaining
resources force, including the factors and solutions. Section 6 describes how an imple-
mentation of the case study has been carried out, including elements for dealing with
the Obtaining resources force.

Additionally, aside from the functionalities of the organizational elements, generic
functions refer to the actions for adding or removing organizational elements (e.g. Ad-
dRole, DeleteOrgUnit, GetRole, LeaveRole, etc.). To structure these actions in an adap-

tation process one may use sequence operator (;), choice operator (|), parallel execution
(||), optional execution ([]), iteration (an) to order the different actions when adapting.

5.1 Obtaining resources force at the design time

In the room allocation scenario, the services that are considered to check if the Ob-
taining resources force is triggered or not are the services to make a reservation (one
for each type of room). A service is considered to fail if the request for a service is
not fulfilled because there are not enough available rooms. In this case, it is necessary
to modify the type of activity the rooms have been assigned to allow the organiza-
tion to satisfy the requirements of their Clients. This operation is done by modifying
the role assigned to one of the Room Managers whose controlled Room has an empty
schedule. The Obtaining Resources external force is described in Table 4. Its triggering
factor is FailedServiceCallsRate and two solutions are defined: ChangeRoomActivity
and ExtendBuilding. Their description is depicted in the next subsections.

Field Description
Name ObtainingResources
Description A resource cannot be allocated by a service of an organization.
Monitor Monitor element
Type External
Factors FailedServiceCallsRate
Force Detection Condition FailedServiceCallsRate.Condition = T RUE
Solutions sol1 =ChangeRoomActivity, sol2 = ExtendBuilding
Solution choice criteria max(utilitysol1,utilitysol2,utilitynoSol)

Table 4. Definition of the Obtaining resources force, design step

FailedServiceCallsRate Factor. This factor (Table 5) takes into account the failures
of the reservation services in a time duration dur and is activated if failure rate is higher
than 1 - QoS. The Quality of Service (QoS) [14] defines the expected success rate when
calling a service. For example, in the case of having a QoS of 90%, the maximum
allowed failure rate is 10%. Each service has a different QoS, so the factor will be
differently triggered depending on each service.

To detect whether the factor is active in the organization, the number of requests for
activities and the number of failures of such requests by the Reservation service are con-
sidered. In our application, a request is defined as a tuple r = {type, time,status}. Let
us define the set Rdur,res = {r|r.type = res∧ res = {teaching,meeting,brainstorming}}
as the set of requests received by the (teaching, meeting, or brainstorming) reservation
service in the period of time dur, and the set R′dur,res = {r ∈ Rdur,res|r.status = f ail}
that records the number of failures on requests to the (teaching, meeting, or brainstorm-
ing) reservation service during the same period of time. The failure rate for the service
Reservation for a time period dur is calculated as:

Monitor.Failures(Reservation,dur) =

{ |R′dur,Reservation|
|Rdur,Reservation|

: |Rdur,Reservation| 6= 0
0 : |Rdur,Reservation|= 0

(1)

where Reservation is a parameter representing the type of reservation service to be
checked (i.e., TeachingReservation, MeetingReservation, or BrainstormingReservation)
according to our organizational model. Then, if the failure rate is higher than the ex-
pected one, it is necessary to apply one of the two possible solutions, described in the
next subsection.

Factor
Name FailedServiceCallsRate
Description If the failed service calls rate (i.e., requesting a spot for developing an activity) is higher than the allowed

failure rate threshold, then the force is considered as acting.
Parameters Reservation ∈ {TeachingReservation,MeetingReservation,BrainstorminReservation}, dur
Condition Monitor.Failures(Reservation,dur)> ((1−Reservation.QoS)∗Monitor.Requests(Reservation,dur))

Table 5. Description of the FailedServiceCallsRate factor, design step

Applying the solution of the force After the detection of the force, it is necessary to
take a decision about the adaptation action to develop into the building. In our use case,
the Obtaining Resources Force defines two possible solutions: ChangeRoomActivity
and ExtendBuilding (cf. Table 6 and 7). As can be seen in the solution choice criterion
of the force in table 4, the solution which provides the highest utility will be deployed.

The first solution (cf. Table 6) consists, as expressed in the field ‘Action’, in the
modification of the type of activity being developed inside one or more rooms, to get
free spots in the schedule for developing activities. Once the FailedServiceCallsRate
is active, the Scheduler builds the RoomManagerList set, containing pairs of the form
〈rmi,nri〉 containing the Room Manager agent (rmi) of Roomi whose role is required
to change, and the new role that the agent will take (nri). This gives the Roomi the
opportunity to host a new type of activities. This solution is, in most situations, the less
costly. This cost is calculated as:

cost(ChangeRoomActivity) = ∑
∀〈rmi,nri〉∈RoomManagerList

(CostPlay(nri)+

CostChange(rmi.Role,nri)−CostPlay(rmi.Role)) (2)

This is, for each room that might change its type of activity, it is calculated the
cost of having the new role in the organization compared to the cost of the current role
the room manager is playing, and also the cost of changing from one role to another.
Playing a role has a cost because depending on the role, a different subset of the room
equipment is used, thus having different costs in terms of energy consumption, etc.

The second solution proposed by this force (cf. Table 7) is to extend the building
with more virtual rooms to make possible more activities in it at the same time. This
change will suppose adding one or more Room organizational units inside the building.
The types of the rooms to be added are described inside the NewRoles set. Each role in
this set corresponds to a type of room to be added. Therefore, for each role nri in the
set, the BuildingManager adds a new room Roomi to the building by using the function

Field Description
Name ChangeRoomActivity
Description The type of activity being carried out in a room is modified by changing the role of the room manager agent.
Condition FailedServiceCallsRate
Parameters RoomManagerList = {〈rmi,nri〉, where rmi ∈ RoomManager∧

nri ∈ {MeetingManager,TeachingManager,BrainstormManager}
Actions ∀〈rmi,nri〉 ∈ RoomManagerList : rmi.LeaveRole(Role);rmi.GetRole(nri)
Cost ∑∀〈rmi ,nri〉∈RoomManagerList (CostPlay(nri)+CostChange(rmi.Role,nri)−CostPlay(rmi.Role))
Roles Scheduler

Table 6. ChangeRoomActivity solution, design step

AddOU , then adds a new internal agent RoomManageri in this room (AddAgent), and
finally assigns the role nri ∈ NewRoles to this newly created agent. The cost of this
solution is calculated as the cost of creating all the new rooms. Creating a room implies
to add a new organizational unit (CostAddOU), a new internal agent that manages the
room (CostAddAgent), and also includes the cost of this agent playing a specific role
(CostPlay). Then, this cost is calculated as:

cost(ExtendBuilding) = |NewRoles| ∗ (CostAddOU(Room)+

CostAddAgent(InternalAgent))+ ∑
nri∈NewRoles

CostPlay(nri) (3)

Field Description
Name ExtendBuilding
Description The building is extended with new rooms that allow it to fulfil all the received petitions.
Condition FailedServiceCallsRate
Parameters NewRoles = 2{MeetingManager,TeachingManager,BrainstormManager}

Actions ∀nri ∈ NewRoles : Building.AddOU(Roomi);Building.AddAgent(RoomManageri);
RoomManageri.GetRole(nri)

Cost |NewRoles| ∗ (CostAddOU(Room)+CostAddAgent(InternalAgent))+∑nri∈NewRoles CostPlay(nri)

Roles Building manager

Table 7. ExtendBuilding solution, design step

5.2 Selection between solutions

As stated in [1], to select between different options for change it is necessary to have
a utility function that has to express the costs and benefits (both direct and indirect) of
both the current and future states of the system, as well as the adaptation costs.

In some situations two forces may apply their solutions to the same organizational
elements, thus being necessary to take a decision about which option to take. For this
reason, applying the solution for one of these forces may make the organization to solve
the effects of both forces. Therefore, in order to exactly choose one of those solutions,
the one which maximizes the utility is selected.

For calculating the utility, not only the cost of applying the solution is taken into
account, but also the cost of having failures, and the benefits obtained by the organi-
zation. In the case of the Obtaining resources force, its benefits are represented as the

requests that have been correctly placed in a room. Therefore, the utility of a solution
to this force is calculated as:

utilitysol = bene f itsol− (cost(sol)+ costsol(Failures)) (4)

where bene f itsol is the benefit obtained for placing the activities into the schedule
of the rooms, calculated as bene f itsol = AccReq∗UnitBen where AccReq is the number
of requests accepted and placed in the schedule of a room and UnitBen is the unitary
benefit of having a request correctly scheduled. cost(sol) is the cost associated to the
solution sol. Finally, costsol(Failures) is the cost of the remaining failures among the
requests, calculated as costsol(Failures) = RemFails∗UnitFail, where RemFails is the
number of remaining failures after applying the solution, and UnitFail is the unitary
cost of having a failure in the organization.

Then, the action to apply in the organization is decided following this equation:

max(utilitysol1,utilitysol2,utilitynoSol) (5)

where utilitysol1 is the utility of the first solution, utilitysol2 is the utility of the
second solution, and utilitynoSol is the utility without applying any solution. As it can
be noticed, in some situations where the cost of applying the solution is too high it is
recommended to not take any action because it is the option with the maximum utility.

Applying the solution of a force could provoke the triggering of a factor of another
force. Then, an action to solve the newly appeared force would have to be taken.

6 Implementation

In order to exemplify the implementation of the forces described in the previous section
in the context of the use case described in Section 4, let us set a scenario with a building
of three rooms (room1, room2, and room3) each being able to host one of the three
following activities: teaching, meeting, and brainstorming. Each room is managed by a
room manager (RoomManager1, RoomManager2, and RoomManager3, respectively)
which has to check that the room is properly running. The building manager sets the
following QoS: 90% for teaching, 60% for meeting, and 50% for brainstorming reserva-
tions.10 At the start of a week, the rooms can be randomly distributed, or they can follow
the distribution of the week before. In this example, they are randomly distributed.

This scenario, as described in Section 4, is based on the GORMAS organizational
model. Agents and forces are implemented using Jason [6], for programming autonomous
agents, and CArtAgO [16] for programming environment artifacts. Both components
are available in the Multi-Agent Programming framework JaCaMo [5] that provides the
infrastructure and abstractions for running distributed multi-agent systems combining
agents, artifacts and organizations.

– Agents are: Building manager (responsible of selecting the solution and to apply
the ExtendBuilding solution), client (generates a request for activity), room man-
ager (manages the room and the role it plays is the activity carried out inside the

10 Such QoS mean that the building management will only accept a maximum of 10%, 40%, and
50% of failures for teaching, meeting, and brainstorming requests for activities, respectively.

room), and scheduler (distributes the petitions around the different rooms, calcu-
lates the failures of the petitions, and is responsible of the ChangeRoomActivity
solution). Each type of agent has a different set of skills and capabilities, related to
the roles defined at the design time.

– Artifacts, implemented as CArtAgO classes, provide functionalities to the agents.
The monitor and room artifacts store the number of requests and occupancies. The
room artifact is controlled by the room manager agent. The monitor artifact (men-
tioned in Table 4) controls that the behavior and performance of the system is cor-
rect by checking the factor of the Obtaining resources force (by taking into account
the QoS of each service). To carry out the experimentations, a date generator arti-
fact generates random requests of activities in the system.

At the first execution cycle, the building manager creates both the Monitor artifact
and the date generator artifact. Additionally, in this phase each of the defined room
manager agents randomly receives a type of role (teaching, meeting, and brainstorm-
ing), creates the room artifact it manages, and sends this information to the scheduler.

Then, on each execution cycle, each client executes an operation of the date gen-
erator artifact to generate a random petition for an activity. Each petition for a room
includes a specific day of the week (from Monday to Friday), with a specific start time
(from 9am to 6pm, in 1-hour intervals, thus having the opportunity to start the activity
in 10 different hours each day), and a length (of 1, 2, or 3 hours). In this example, the
duration dur taken into account when monitoring the organization refers to a week. All
clients send this information to the Scheduler, which tries to allocate all the petitions
around the different rooms at the required times. After all the requests have been pro-
cessed, and after deciding whether they can be allocated into a room or not (failures
are calculated using Equation 5.1), the Monitor artifact reacts and computes if an adap-
tation is required or not, following the condition of Table 5. Then, the Monitor sends
a specific signal if an adaptation is required. As previously stated, an adaptation is re-
quired if any of the values of the QoS is lower than the acceptable value. In order to do
this, the monitor counts the different types of the petitions separately, and then checks
the QoS for all the reservation services (TeachingReservation, MeetingReservation,
BrainstormingReservation).

In this case, the building manager requests the Monitor artifact to compute the utility
of the two possible solutions (described in Tables 6 and 7) so as to decide which solution
to apply, or to not take any further action.

Some experimentation has been carried out. However, due to the lack of space, this
section only focuses on how a design template is implemented.

7 Conclusions and future work

In this work, templates for the design of the forces that drive organizational change,
including the factors that help to detect if they are active or not, and the solutions that
will take advantage of the forces or to prevent damage to the organization, have been
defined. They have been used to implement the concept of forces into an OCMAS with
adaptation features. These templates extend the guidelines presented in [9] that are used
during the analysis phase of the development process.

As future work, more forces based on this example will be designed and imple-
mented, and also different case studies will be studied. Finally, the implementation of
the force detection and solution will be applied in other MAS-supporting frameworks
such as THOMAS [3].

Acknowledgment This work is supported by the MINECO/FEDER grant TIN2012-
36586-C03-01, the TIN2009-13839-C03-01 project of the Spanish government, and
CONSOLIDER-INGENIO 2010 under grant CSD2007-00022.

References

1. J. M. Alberola, V. Julian, and A. Garcia-Fornes. A cost-based transition approach for multi-
agent systems reorganization. In 10th International Conference on Autonomous Agents and
Multiagent Systems-Volume 3, pages 1221–1222. IFAAMAS, 2011.

2. H. Aldrich. Organizations evolving. Sage Publications Ltd, 1999.
3. E. Argente, V. Botti, C. Carrascosa, A. Giret, V. Julian, and M. Rebollo. An abstract architec-

ture for virtual organizations: The thomas approach. Knowledge and Information Systems,
29(2):379–403, 2011.

4. E. Argente, V. Botti, and V. Julian. Gormas: An organizational-oriented methodological
guideline for open mas. In Agent-Oriented Software Engineering X, pages 32–47. Springer,
2011.

5. O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and A. Santi. Multi-agent oriented pro-
gramming with jacamo. Science of Computer Programming, 2011.

6. R. H. Bordini, J. F. Hübner, and M. Wooldridge. Programming multi-agent systems in
AgentSpeak using Jason, volume 8. Wiley. com, 2007.

7. S. A. Deloach, W. H. Oyenan, and E. T. Matson. A capabilities-based model for adaptive
organizations. Autonomous Agents and Multi-Agent Systems, 16(1):13–56, 2008.

8. V. Dignum and F. Dignum. Towards formal semantics for reorganization. Technical report
UU-CS, 2006.

9. S. Esparcia and E. Argente. Forces that drive organizational change in an adaptive virtual
organization. In 2012 Sixth International Conference on Complex, Intelligent and Software
Intensive Systems (CISIS), pages 46–53. IEEE, 2012.

10. J. Ferber, O. Gutknecht, and F. Michel. From agents to organizations: an organizational
view of multi-agent systems. In Agent-Oriented Software Engineering IV, pages 214–230.
Springer, 2004.

11. M. Hoogendoorn, C. Jonker, M. Schut, and J. Treur. Modeling centralized organization of
organizational change. Comput Math Organ Theory, 13(2):147–184, 2007.

12. J. Hubner, J. Sichman, and O. Boissier. Moise+: towards a structural, functional, and deontic
model for mas organization. In Proc. of Int. Conf. on Autonomous Agents and Multiagent
Systems, pages 501–502. ACM, 2002.

13. K. Lewin and D. Cartwright. Field theory in social science. Harper & Brothers, 1951.
14. M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and directions. In

Proc. Web Information Systems Engineering. WISE 2003, pages 3–12. IEEE, 2003.
15. D. S. Pugh and M. Weber. Organization theory: selected readings. Penguin, 1971.
16. A. Ricci, M. Piunti, M. Viroli, and A. Omicini. Environment programming in cartago. In

Multi-Agent Programming:, pages 259–288. Springer, 2009.
17. A. Sorici, O. Boissier, G. Picard, and A. Santi. Exploiting the jacamo framework for re-

alising an adaptive room governance application. In Proc. DSM’11, TMC’11, AGERE!’11,
AOOPES’11, NEAT’11, & VMIL’11, pages 239–242. ACM, 2011.

