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The use of new or non-conventional technologies widens the food processing innovation 

possibilities. Among technologies with a potential application, high intensity ultrasonics has 

emerged. Ultrasound is a mechanical wave that can affect transport phenomena. Accordingly, 

the effect associated to ultrasonic application will be dependent on the medium where 

ultrasound is travelling and on the material to be affected. In this work, ultrasonic applications in 

different media, such as liquid, gas and supercritical fluid, are addressed as innovative 

alternatives to enhance transport phenomena and highlight the main factors affecting the 

process. 14 

1. Introduction15 

Food processing is in constant evolution in response to different challenges. The changes in 16 

consumer tastes and the need to produce safe and high quality foods are responsible for the 17 

evolution of the established food processes or the development of the new ones. In this sense, 18 

the introduction of new technologies could lead to a reduction of the processing time or an 19 

improvement in operating conditions. These aspects are closely linked to the search for high 20 

quality products that preserve the natural characteristics of foods. Another important aspect that 21 

must be taken into account is the reduction of the energy needs of the processes, thereby 22 

decreasing both environmental and financial costs. Ultrasound is an example of new technology 23 

and its application in food processing could lead to both these areas undergoing an 24 

improvement. On the one hand, ultrasound could be applied as a diagnosis technique to control 25 

aspects, food product or processes. On the other hand, ultrasound could be used to improve 26 

food processes by affecting the kinetics, the yield or the product quality. This work will  focus on 27 

the latter.  28 

Acoustic waves are mechanical waves that need a material medium to propagate. Usually, they 29 

are classified by taking the human audible frequency as reference. This range could be placed 30 

between 20 Hz to 20 kHz. Lower frequencies are referred to as infrasound and higher 31 

frequencies as ultrasound. The ultrasound waves suffer changes in their properties (velocity, 32 

attenuation, frequency spectrum,...) when travelling through a medium. The study of these 33 

variations is used in diagnosis applications to characterize the medium. In these applications, 34 

the frequency of the waves is in the range of MHz and the power applied is not higher than 1 35 

W/cm
2
 (Patist and Bates, 2008). When the applied power of ultrasound is higher, the acoustic36 

waves could affect the medium generating interesting effects for industrial applications. This use 37 

of ultrasonic technology is known as "power ultrasound" or "high intensity ultrasound" and the 38 

http://ees.elsevier.com/jfoodeng/viewRCResults.aspx?pdf=1&docID=8481&rev=1&fileID=291530&msid={7F023644-1E6A-493C-8CDD-8A55170EEE82}
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main objective is to induce changes in products or processes. In this case, the frequency is in 39 

the range of 20-100 kHz (Mason and Lorimer, 2002). 40 

41 The aim of this work was to address different power ultrasound applications in order to highlight 

factors affecting some innovative approaches to food processing. 42 

1.1. Effects of ultrasound 43 

The effects produced by high power ultrasound when travelling across a medium are diverse 44 

and their relative importance depends on the characteristics of the medium. In general, 45 

ultrasound produces alternating compression and decompression of the media. In liquids, when 46 

ultrasonic power attains a threshold, the rarefaction cycle may exceed the attractive forces and, 47 

from existing gas nuclei, cavitation bubbles could appear (Soria and Villamiel, 2010). These 48 

bubbles could maintain a stable increasing and decreasing size giving rise to the so-called 49 

"stable cavitation" generating a micro-agitation of the medium. However, the bubbles can also 50 

grow and collapse generating very high local temperatures (5000 K) and pressures (1000 atm), 51 

which produce, in turn, high energy shear waves and turbulence in the cavitation zone. This last 52 

effect is known as "transient cavitation" (Leighton, 1998). The implosions are asymmetric if 53 

produced near a solid surface generating a microjet that hits the solid (Mason, 1998). This is the 54 

main effect observed in the use of high intensity ultrasound in cleaning operations. Moreover, 55 

the microjets hitting the solid food surface may produce an injection of fluid inside the solid 56 

(Mason and Cordemans, 1996). The intensity of cavitation and its effects depend on the 57 

characteristics of the medium, such as viscosity, and/or process variables, like ultrasonic 58 

intensity, ultrasonic frequency or pressure.  59 

In gas media, the main challenge of the application of ultrasound is attaining an efficient 60 

transmission of the acoustic waves at high frequencies due to the acoustic impedance 61 

mismatch between transducers and gas as well as the high ultrasonic attenuation in gas media. 62 

However, when ultrasound is applied in an efficient way, it can produce intense effects on the 63 

interfaces, such as pressure variations or microstirring, which can affect the mass transfer 64 

phenomena (Carcel et al., 2007a) by reducing the boundary layer thickness. 65 

In solid materials, alternative compressions and expansions generated by the ultrasonic waves 66 

produce a similar effect to that observed when a sponge is squeezed and released repeatedly 67 

(De la Fuente et al., 2006). This “sponge effect” produces the release of liquid from the inner 68 

part of the particle to the solid surface and the entry of fluid from outside. The forces involved in 69 

this mechanism can be higher than the surface tension which maintains the water molecules 70 

inside the capillaries of the material, creating microscopic channels (Muralidhara et al., 1985) 71 

and making the interchanges of matter easier. Other effects to be considered are the variation 72 

of viscosity, surface tension or the deformation/degradation of the solid structure.  73 

From a general point of view, all the effects produced by ultrasound could influence mass 74 

and/or heat transfer phenomena. In treatments with a solid immersed in a fluid, ultrasound could 75 

accelerate the internal transport making the entry of fluids in the solid matrix and/or their exit 76 
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easier and also facilitating the exchanges between the solid surface and the surrounding fluid. 77 

Then, the use of ultrasound, when applied in an efficient way, could be interesting in 78 

applications involving heat or mass transport, decreasing both the external and internal 79 

resistance to transport.  80 

1.2. Applications of high intensity ultrasound in food processing 81 

The main applications of ultrasound in food processes are linked to the effects it has on heat or 82 

mass transfer operations. Most of the ultrasonic applications reported in literature are found in 83 

liquid-liquid and liquid-solid systems (Mulet et al., 2003) due to the relative ease with which 84 

ultrasonic waves are transmitted in liquids. There is a wide offer of commercial equipment 85 

available on the market, including ultrasonic baths and different probe systems, which may be 86 

adapted for different operations. Thus, ultrasound has been applied in osmotic dehydration 87 

(Cárcel et al., 2007b; Fernandes and Rodrigues, 2007; Jambrak et al., 2007), brining, (Cárcel et 88 

al., 2007c; Gabaldon-Leiva et al., 2007; Siró et al., 2009), freezing (Delgado et al., 2009), 89 

extraction (Vilkhu et al., 2008; Soria and Villamiel, 2010) or enhancement of heat transfer in 90 

heat exchangers (Gondrexon et al., 2010). Emulsions are also a field of interest, for example in 91 

the production of mayonnaise (Mason, 1998) or traditional products like Xixona turron (Mulet et 92 

al. 1999). 93 

The applications in gas-solid systems are less common, because, as mentioned before, the 94 

high impedance mismatch and the high ultrasonic energy attenuation in air makes the 95 

transmission of ultrasound from the transducer to the air and from the air to the solid difficult 96 

(Garcia-Perez et al., 2009). Nevertheless, some applications have been developed in the 97 

convective drying field to overcome these challenges. This is the case of the stepped plate 98 

ultrasonic transducers developed by Gallego-Juárez et al. (1999). These prototypes have been 99 

used in the convective drying of several food products, applying airborne ultrasound or with 100 

direct contact between the transducer and the solid (De la Fuente et al., 2006; Gallego-Juárez 101 

et al., 2007). Another alternative consists of the development of vibrating drying chambers to 102 

apply air borne ultrasonic energy (García-Pérez et al., 2006a). The promising results of this 103 

system will be addressed in the following sections. 104 

Ultrasonic applications in supercritical media are also scarce (Riera et al., 2004). The use of a 105 

supercritical fluid as solvent in the extraction operation has been receiving increasing attention 106 

due to its advantages when compared to the conventional extraction processes, such as the 107 

product quality or the use of a non-toxic, recyclable, cheap, relatively inert and non-flammable 108 

solvent. The main disadvantage of the process is the slow kinetics. Due to the high pressure 109 

needed to achieve and maintain the supercritical phase of the solvent, it appears to be difficult 110 

to introduce some agitation system inside the extractor. The effects produced by ultrasound 111 

(compression and decompressions, radiation pressure, high turbulence, etc.) could increase the 112 

extraction kinetics. In the literature, some works have approached this problem by locating the 113 

ultrasound application system outside the extractor (Balachandran et al., 2006) and others have 114 

succeeded in introducing the transducer inside the extractor (Riera et al., 2002)  115 
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However, the potential applications mentioned should be examined case by case, because it is 116 

not only the medium, solid, liquid, gas or supercritical, but also the process variables 117 

(temperature, flow regime, intensity, etc.) and the product structure which could affect the 118 

magnitude of the changes induced by ultrasound. These aspects, deriving from applications of 119 

ultrasound in different media (liquid-solid, gas-solid and supercritical-solid), will be illustrated. 120 

2. Solid-liquid systems121 

2.1. Equipment 122 

The application of ultrasound requires a system capable of producing a stable and reliable 123 

ultrasonic field from another type of energy, usually electrical. The transducers are the devices 124 

used to convert the energy, coming from a power generator, into mechanical energy in the form 125 

of ultrasonic vibrations. There are two main types of transducer: magnetostrictive and 126 

piezoelectric. The first, constructed from high-strength metallic alloys, has the advantage of 127 

being able to reach high levels of acoustic power intensity, over 150 W/cm
2
, is very stable,128 

reliable and does not age (Peshkovsky and Peshovsky, 2010). However, the relatively low 129 

efficiency (below 50%) when compared to piezoelectric systems (up to 95 %), the other type of 130 

transducer, is probably the main reason why the latter is more widely used, regardless of the 131 

relatively low levels of acoustic power intensity and the short life-span.  132 

The transducers are attached to the vibrating system whose function consists of transmitting the 133 

vibration from the transducer to the medium. In liquid applications, the most commonly used 134 

systems are baths and probe-type systems. In the ultrasonic baths, several transducers, 135 

vibrating in phase, are attached to the bottom of a metallic tank transmitting the vibration to the 136 

contained liquid. Due to the reflection of ultrasonic waves in the air-liquid interface, a stationary 137 

field, with maximum and minimum acoustic intensity zones, is created inside it (Figure 1). Then, 138 

the applied ultrasonic treatment can change depending on the location of the samples. 139 

In the probe systems, ultrasound is directly applied by a vibrating "horn". Depending on the 140 

geometry of the probe, it could be used simply to transmit the ultrasonic energy or to 141 

concentrate it on a lower surface in order to amplify the intensity and, therefore, their effects 142 

(Mason, 1998). In applications with this type of systems, the distance between the sound tip and 143 

the treated sample is an important parameter to be controlled due to the attenuation of the 144 

ultrasonic field with the distance. 145 

2.2. Influence of ultrasound on the transport resistance 146 

The effects produced by ultrasound in solid-liquid systems could affect the transport process 147 

reducing the external transport resistance. Carcel et al. (2004) addressed the influence of 148 

ultrasound on convective heat transport by introducing an aluminum cylinder in one ultrasonic 149 

cleaning bath (Fungsonics mod. 28 L, 20 kHz, Fungilab S.A., Barcelona, Spain) containing hot 150 

distilled water (28 L). The dimensions of the cylinder were chosen in order to neglect the 151 

internal resistance to heat transfer. The evolution of the temperature inside the cylinder was 152 

logged until there was less than 1 ºC difference when compared with the bath temperature. Four 153 
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types of heating tests were carried out: without any agitation of the bath water, with (USWAG) 154 

and without ultrasound application (WAG), and agitating the bath water, with (USAG) and 155 

without ultrasound application (AG). The experimental results were modelled considering 156 

Newton’s law of heating and the convective heat transfer coefficient (h) was identified. This 157 

model was adequate for describing the heating process, as confirmed by the close agreement 158 

between the experimental and calculated temperatures (Figure 2A). The h coefficient was 159 

significantly different (p<0.05) for the four kinds of experiments carried out and the identified 160 

values varied according to: WAG<USWAG<USAG<AG (Figure 2B). Therefore, the ultrasound 161 

treatment (USWAG) resulted in an h coefficient lower than that of a well-stirred medium (AG) 162 

but higher than that of the static condition experiments (WAG). That means that the application 163 

of ultrasound reduced the external resistance to heat transfer compared to natural convection. 164 

The limited effects on the h values compared to the mechanical stirring of the medium, could be 165 

explained by the low acoustic power provided by the ultrasonic bath systems, in order to avoid 166 

cavitation damage to the tank walls, and the low power density applied, because there is 167 

generally a large volume of liquid in the tanks (Mason, 1998). 168 

It must be highlighted that the h coefficient identified in experiments with the simultaneous 169 

application of agitation and ultrasound (USAG) presented an intermediate figure between 170 

USWAG and AG treatments. This fact could indicate the existence of an interaction between 171 

ultrasonic and mechanical agitation resulting in a reduction of the turbulences in the medium. As 172 

Figure 1 shows, the agitation of the medium affected the ultrasonic field decreasing both the 173 

average acoustic pressure and the difference between maximum and minimum pressure zones. 174 

In this sense, the h value of USAG experiments will indicate that the ultrasonic field could also 175 

affect the agitation of the medium, decreasing the turbulence level created. 176 

The level of acoustic intensity applied and the type of material treated could influence the 177 

magnitude of the ultrasound effects in the transport process. In this sense, it is important to take 178 

into account that the treated medium could affect the transmitted acoustic field. As can be 179 

observed in Table 1, the same ultrasonic system, working under the same conditions, produces 180 

different acoustic pressure when in brine than when in sucrose solution and, therefore, the 181 

ultrasonic effects can be different. On the other hand, the effects of ultrasound on the mass 182 

transport kinetics might not appear until an acoustic intensity threshold is attained. Studying the 183 

mass transport of moisture and solutes during the osmotic treatment of apple in a sucrose 184 

solution (30 ºBrix; 30 ºC), Carcel et al. (2007b) found an intensity threshold of 10 W/cm
2
, below185 

which no influence of ultrasound was observed. When the applied ultrasonic intensity was 11.5 186 

W/cm
2
, the identified effective diffusivity increased by 117% for moisture transport and 137% for187 

the dry matter transport, compared to the treatments without ultrasound application. This 188 

ultrasonic intensity threshold could vary for different products or transport processes. Carcel et 189 

al. (2007c) reported that intensity thresholds of 39 and 51 W/cm
2  

were needed in order to190 

observe some effects on the moisture or salt transport respectively during pork meat brining 191 

(saturated NaCl brine, 2 ºC). Above this threshold, the higher the level of applied ultrasonic 192 

intensity, the more the ultrasound was observed to affect mass transport. 193 
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However, the level of acoustic intensity can also affect the type of influence on the mass 194 

transport. The levels of acoustic intensity used by Carcel et al. (2007b) (11.5 W/cm
2
) in the195 

osmotic dehydration of apples increased the two main mass transport processes that took place 196 

in these treatments: moisture loss and solute gain, but the higher levels used by Carcel et al. 197 

(2007c) in meat brining (> 51 W/cm
2
) not only affected the kinetics of transport but, in the case198 

of moisture, the transport direction. The samples treated ultrasonically at the higher acoustic 199 

intensities tested (75.8 W/cm
2
) did not undergo a dehydration process like the conventionally200 

brined meat, but had a higher moisture content than fresh meat. Moreover, the NaCl content of 201 

the ultrasonically brined samples after 45 min of treatment was 115% higher than conventionally 202 

brined samples. That means that the conventional brining process produced a water loss and a 203 

NaCl gain while, at these intensity levels, the application of ultrasound, induced the gain of both 204 

water and NaCl. The influence of ultrasound on apple treatments can be explained by ultrasonic 205 

effects such as the "sponge effect" or the creation of microchannels, which can affect the 206 

internal mass transport resistance, and the generation of microstirring or cavitation, which affect 207 

the external resistance by reducing the boundary layer of diffusion. In the case of meat brining, 208 

the highest applied acoustic intensity generates a more intense cavitation in brine. The 209 

asymmetric implosion of cavitation bubbles near the meat surface produces the formation of 210 

microjets that hit the solid (Mason & Lorimer, 2002) and could produce the microinjection of 211 

brine into the meat samples. This fact could not only explain the increase in NaCl content but 212 

also the increase in sample water content.  213 

3. Solid-gas systems214 

3.1. Equipment 215 

216 

217 

218 

219 

220 

221 

222 

223 

224 

225 

226 

227 

228 

As already mentioned, the main drawback of the application of ultrasound in gas media is the 

transmission of the acoustic wave from the emitter’s surface to the samples. The air is a high 

attenuating medium that absorbs the acoustic energy preventing its transfer to the solids to be 

treated. On the other hand, the high impedance difference between the solid surface of emitters 

and the air, and between the air and the solid samples, produces the reflection of a high 

proportion of the generated acoustic signal (García-Pérez et al. 2006a). This is the reason why 

there are very few research groups working on the application of ultrasound in food drying. The 

applications of ultrasound during osmotic pre-treatments prior to the air drying process may be 

mentioned (Fernandes & Rodrigues, 2007), but these processes are applications in solid-liquid 

systems. Therefore, it is of great importance to gain further a more thorough knowledge of the 

mechanisms of the ultrasonic wave transmission in gas media in order to optimize the 

application systems (de la Fuente et al., 2006). Significant attempts have been made to alleviate 

these problems by developing a powerful source of airborne ultrasound that can achieve a more 

efficient transmission of energy to the material. 229 

The systems of sirens and whistles convert the kinetic energy of a fluid into an acoustic wave. In 230 

sirens, the fluid is forced to pass across a hole, thus generating turbulence that constitutes a 231 

mechanical wave. In whistles, the fluid is forced across a thin blade which causes the blade to 232 
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vibrate. For each vibrational movement, the leading face of the blade produces a pressure wave 233 

(Mason, 1998). In liquid application, the whistle constitutes a powerful tool for mixing and 234 

homogenization (Mason & Lorimer, 2002). Da Mota and Palau (1999) used a siren system to 235 

improve onion drying. A low frequency (1.6 and 3.2 kHz) was used in these experiments to 236 

partially avoid the acoustic energy attenuation; this action, however, may involve an intense 237 

noise that could be an obstacle to its use. 238 

239 

240 

241 

242 

243 

244 

245 

246 

247 

248 

249 

250 

251 

252 

253 

254 

255 

256 

257 

258 

259 

260 

261 

262 

263 

264 

265 

266 

267 

268 

269 

Another group of ultrasonic systems includes the use of a piezoelectric transducer attached to 

different types of emitters trying to adapt the signal in order to achieve a good transmission to 

the air. One of the main types is the stepped plate emitters, characterized by a surface emission 

with a stepped profile that is responsible for the best impedance match with air, the increase in 

the power capacity of the system and which avoids the phase cancellations produced in flat 

plate radiators (Gallego-Juárez et al., 1999; Gallego-Juárez, 2010). Circular and rectangular 

prototypes have been developed for the 10-40 kHz frequency range and power capacities of 

about 100 W and have been applied in forced air dehydration assisted by airborne ultrasound 

and also in the direct coupling of the ultrasonic vibrator and the solid matrix. Drying experiments 

have been carried out on different vegetables such as carrots, potatoes, and mushrooms (De la 

Fuente et al., 2006; Gallego-Juárez et al., 2007). The drying process which involved direct 

contact between the vibrating elements and the materials being dried showed a very intense 

effect which can increase when a low static pressure is applied. The effect that power ultrasound 

had on drying was reduced when the application was carried out using an airborne technique. 

The better transmission of vibrations to the sample in direct contact experiments is what is 

mainly responsible for this fact. Nevertheless, it is very difficult to adapt the direct contact 

systems to work on an industrial scale. An alternative consists of considering the drying 

chamber itself as the vibrating element to transmit the acoustic waves to the samples. To apply 

this concept, García-Pérez et al. (2006a) replaced the drying chamber of a conventional 

laboratory hot air drier (Sanjuan et al., 2003) by an aluminium vibrating cylinder (internal 

diameter 100 mm, height 310 mm, thickness 10 mm) driven by a piezoelectric composite 

transducer capable of generating a high-intensity ultrasonic field inside the cylinder. The driving 

transducer consists of an extensional piezoelectric sandwich element together with a 

mechanical amplifier (Figure 3). The whole has to be resonant at the frequency of the selected 

vibration mode of the chamber, 21.8 kHz. The average sound pressure level inside the chamber 

in stagnant air conditions was 154.3 dB, measured for an electrical power applied to the 

transducer of 75 W. Therefore, a high intensity acoustic field inside the chamber is obtained with 

relatively low applied electric power. This system has been used in the drying of different 

products, such as carrot (García-Pérez et al. 2008), persimmon (Cárcel et al, 2007a), lemon 

peel (García-Pérez et al., 2009) or olive leaves (Cárcel et al. 2010) and, despite the fact that the 

vibration transmission transducer-sample is not as good as the direct contact application, the 

results of the increase in the drying rate have been promising. 270 

271 
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3.2. Influence of process variables. 272 

The use of sonication to improve the dehydration process dates from the middle of the 20th 273 

century, promoted by the interest in the drying of heat-sensitive materials (Boucher, 1953) due 274 

to the limited heating effect of ultrasound on gas systems. Borisov and Ginkina (1973) reported 275 

a series of experiments carried out in the Academy of Science of the USSR to determine the 276 

influence of the main process variables using fluid driven transducers. Due to the development 277 

of more efficient devices with which to apply ultrasound in gas systems, especially the 278 

aforementioned vibrating drying chamber, studies into several food materials considering 279 

different process variables have been carried out in order to address their influence on the 280 

drying rate. 281 

In general, the application of ultrasound during drying increases the kinetics of dehydration, 282 

affecting both the internal and the external resistance. As can be observed in Figure 4, the 283 

application of ultrasound in the drying of carrot and lemon peel increased the effective diffusivity 284 

and the mass transfer coefficient. The influence on the effective diffusivity could be attributed to 285 

the "sponge effect" or the creation of internal microchannels that make it easier for the water to 286 

be released from the solid samples. In cryo-SEM observations, Ortuño et al. (2010) found that 287 

ultrasonically dried orange peel albedo showed a more compressed cellular structure with larger 288 

intercellular air spaces than conventionally dried samples. The alternating expansions and 289 

compressions produced by ultrasound created a highly porous material that facilitated the water 290 

movement. These authors also found that ultrasound affected the flavedo structure. The 291 

conventional air drying process scattered the waxy components, closing the pores and creating 292 

a waterproof barrier. Nevertheless, the original ring-shaped waxy accumulations in the pores 293 

continued to be well defined. On the contrary, in the samples dried using ultrasound application, 294 

these ring-shaped accumulations disappeared revealing the very intense effect that ultrasound 295 

had in the interface. The influence of ultrasound on the external resistance to mass transfer 296 

could be linked to the generation of differential pressures and the microstirring at the interfaces 297 

and these effects should also affect the surface of the treated solid. 298 

The magnitude of the effects of ultrasound depends on the process variables, such as air 299 

temperature, air velocity, mass load density, applied acoustic energy or the raw material 300 

processed. The air velocity has been found to be one of the most important variables involved in 301 

power ultrasound assisted air drying (Cárcel et al., 2007a; García-Pérez et al., 2007). From 302 

experimental measurements, Riera et al. (2011) found that the increase of the air velocity 303 

produced the reduction of the sound pressure level in the drying chamber. As a consequence, 304 

the energy available for the samples at high air velocities could not be enough to affect the 305 

mass transfer process. 306 

307 

308 

309 

The magnitude of the effects of ultrasound on the drying rate also depends on the ultrasonic 

power level applied. As can be seen in Figure 4, an ultrasonic intensity threshold can be 

achieved to find some evidence of the effect of ultrasound on the kinetic parameters of the 

process. Above this threshold, the more power is applied, the higher the values of diffusivity and 310 
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311 

312 

mass transfer coefficient that can be obtained and, therefore, the faster the drying process 

(García-Pérez et al. 2009). Above the threshold, the relationship between the kinetic parameters 

and the applied ultrasonic power was linear for the whole range tested.  313 

314 

315 

316 

317 

318 

319 

320 

321 

322 

323 

324 

325 

The influence of the power ultrasound also depends on the material to be processed. The 

structure of the material could be an important factor in the extension of the effects of 

ultrasound. This fact is also illustrated in Figure 4. The influence of ultrasound on diffusivity and 

mass transfer coefficient appeared in the case of carrots when over 20-30 W power was applied, 

whereas when drying lemon peel, it can even be observed at the lowest power level tested. 

Moreover, the slope of the linear relationship between kinetic parameters and the applied power 

was nearly one order of magnitude higher for lemon peel than for carrot. Lemon peel is more 

porous than carrot (García-Pérez et al., 2007) and so the expansions and contractions (sponge 

effect) produced by ultrasound may be more intense due to its low mechanical resistance; in 

addition, the effects on the interfaces would be more intense because of the large porous 

volume. Furthermore, a greater absorption of acoustic energy would be expected in high 

porosity products, thus increasing the energy available in the particle to affect mass transfer 

processes. 326 

327 

328 

329 

330 

331 

332 

333 

334 

The relative effect of ultrasound depends on the transfer resistance affected. If the resistance is 

low, the effect of ultrasound application is also low. For that reason, the effect of ultrasound 

application is more evident when drying is carried out at moderate temperatures. For example, 

when carrying out experiments of the drying of carrot samples at different air temperatures 

García-Pérez et al. (2006b) found that the influence of ultrasound on the diffusivity was different 

depending on the temperature. The application of power ultrasound significantly increased 

(p<0.05) the effective moisture diffusivity at temperatures lower than 60 ºC but was almost 

negligible at 70 ºC. A similar influence of the temperature on the effects of ultrasound was found 

by Gallego-Juárez et al. (1999). 335 

The effect of mass load density can be observed in Figure 5 for drying experiments performed 336 

on carrot cubes. In conventional air drying processes, it appears that, the increase of mass load 337 

density, in the range tested, does not affect the effective moisture diffusivity although it does 338 

produce a reduction of the mass transfer coefficient. This could be linked to perturbations in the 339 

air flow through the drying chamber, thus creating preferential pathways and, as a 340 

consequence, increasing external mass transfer resistance (Cárcel et al., 2011). When high 341 

intensity ultrasound was applied, the mass transfer coefficient and the effective moisture 342 

diffusivity increased when the mass load density used was moderate, although the acoustic 343 

influence on mass transfer coefficient became negligible at high mass load densities.  344 

Therefore, from previous results, for a specific ultrasonic application it appears to be important 345 

to carry out a study into the influence of different process variables in order to find the optimum 346 

drying conditions. The innovation of the process could fail if not properly addressed. 347 

348 
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4. Solid-supercritical systems349 

Ultrasound has been used extensively in the last two decades as an efficient extraction tool for 350 

food engineering purposes and nowadays it has even become the reference for other extractive 351 

technologies under development. Ultrasound assisted extraction has been applied in the 352 

extraction of valuable compounds, like different herbal extracts, polyphenols, anthocyanins, 353 

aroma compounds, polysaccharides or proteins (Vilkhu et al., 2008). The sonication in solid-354 

liquid systems could improve the extraction efficiency and rate, reduce the temperature needed 355 

and save solvents thus favouring the solubilisation of the interesting compounds. However, 356 

ultrasound assisted extraction is not only related to pure diffusion processes, in fact, the 357 

cavitation of bubbles generated by the application of ultrasound in an elastic medium can 358 

implode at the surface of the plant and destroy the plant cells (Veillet et al, 2010). However, it 359 

frequently presents similar drawbacks to the conventional extraction processes: the use of toxic 360 

solvents dangerous both for the environment and for the final quality of the product. 361 

Supercritical fluid extraction has become a promising technique with which to solve these 362 

problems due to the fact that the solvent commonly used, CO2, is non-toxic, recyclable, cheap, 363 

relatively inert and the process improves the product quality and product recovery (Lang & Wai, 364 

2001). However, supercritical fluid extraction presents slow extraction kinetics even when solute 365 

free solvent is recirculated and, therefore, improvements in mass transfer are required (Berna et 366 

al., 2000). The use of high-intensity ultrasound represents a potentially efficient way of 367 

enhancing mass transfer processes (Riera et al., 2004) and, consequently, innovating the 368 

supercritical fluid extraction techniques.  369 

4.1. Equipment 370 

Supercritical CO2 fluid extraction takes place inside a reactor under high pressure conditions 371 

(pressure above 72 bar). This fact makes it difficult to introduce a mechanical agitation system 372 

in the reactor, as well as an ultrasonic transducer, which represents the main obstacle to the 373 

application of ultrasound in this kind of process. To address it, two different set-ups may be 374 

mentioned. One of them consists of the use of a commercial sound probe joined to the wall of 375 

the extractor. As the transducer is fitted externally, it is expected that there will be a power 376 

attenuation as the ultrasound passes through the stainless steel vessel walls (Balachandran et 377 

al., 2006).  378 

The other set-up consists of the introduction of the transducer inside the reactor. This solution, 379 

proposed by Riera et al. (2002), is based on a piezoelectric sandwich transducer designed and 380 

built for this application and inserted in the upper part of the vessel with a 100 W power 381 

capacity. The transducer is driven by an electronic generator, which incorporates a system to 382 

follow the resonance frequency (Figure 6). This is an essential device due to the changes that 383 

different process conditions may provoke in the characteristic impedance of the supercritical 384 

fluid (Riera et al. 2004). In fact, these authors achieved stable operation conditions when the 385 

values of density, pressure and temperature were kept at the operational values. Moreover, any 386 

change in the flow rate or density was immediately detected and followed by the control system 387 
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of the transducer. Therefore, it is possible to use this control system to monitor the extraction 388 

process.  389 

4.2. Influence of ultrasound on supercritical fluid extraction 390 

The application of ultrasound during supercritical fluid extraction affects both the kinetics and 391 

the yield. Balachandran et al. (2006) studied the application of ultrasound in the supercritical 392 

extraction of pungent compounds from ginger using a commercial probe system externally 393 

attached to the extractor. The nominal power used was 300 W but, due to the ultrasonic 394 

transducer being outside the extractor, the reflection and adsorption of the acoustic wave 395 

decreased the actual intensity received by the samples. However, they found an important 396 

increase in yield when ultrasound was applied. The particle size could be an important factor to 397 

take into account, in fact, the effects of ultrasound increased when the particles were smaller. 398 

Thus, for a particle size of 4 mm, the yield was 30 % higher in experiments carried out with 399 

ultrasound application compared to non-ultrasonic experiments. Similar behavior was found by 400 

Riera et al. (2004) working on almond oil extraction. They used a system where the ultrasonic 401 

transducer was inside the reactor and found that ultrasound had a greater influence on the yield 402 

at the lowest particle size tested (3-4 mm compared to 9-10 mm), achieving an increase of 20 % 403 

in oil recovery. It is likely that the highest surface area to volume ratio favors the action of 404 

ultrasound, pointing to an influence of ultrasound on the external resistance. From microscopic 405 

pictures (field emission scanning electron microscopy, FESEM), Balachandran et al. (2006) 406 

observed that the structure of the material treated with ultrasound showed cellular damage that 407 

could favor the removal of the cell contents. This fact could indicate that the effect of ultrasound 408 

could also be located in the internal resistance to mass transfer. 409 

The influence of ultrasound may also be important in the extraction kinetics. Riera et al. (2004) 410 

report a 30 % reduction of the extraction time for a similar extraction yield and found that the 411 

influence of ultrasound was more evident in the second period of extraction, after the period 412 

when the solubility of the solute in the solvent controls the extraction. On the contrary, 413 

Balanchandran et al. (2006) found that ultrasound had the greatest influence on the extraction 414 

kinetics in the first phase of extraction, doubling the effective diffusivity identified for a 415 

conventional process. The ultrasound enhancement in the second stage of extraction, although 416 

significant, was lower than in the first extraction phase. These results show that, the magnitude 417 

of the influence of ultrasound on extraction could be different for each specific application. 418 

The effects of ultrasound could be related to the compressions and decompressions, the 419 

radiation pressure or the streaming (Riera et al., 2004). No clear evidence of cavitation was 420 

found under the conditions used for supercritical fluids (Balachandran et al., 2006). The high 421 

pressure needed to achieve supercritical conditions, above 72 bar, makes the appearance of 422 

cavitation bubbles difficult.  423 

424 

425 
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5. Conclusions426 

The application of ultrasound affects the heat and mass transport processes. The effects linked 427 

to ultrasound include cavitation, compressions and expansions, microstirring, etc. and affect 428 

both the external and the internal heat and mass transfer resistance. The importance of each 429 

effect in the global influence of ultrasound on transport is different for the system considered: 430 

solid-liquid, solid-gas or solid-supercritical, since, for example, cavitation does not take place in 431 

a gas or supercritical medium. The process variables influence the magnitude of the ultrasound 432 

effects and it is necessary to establish the optimum value for each specific application. This 433 

offers new possibilities for food process innovation, ranging from energy savings to process 434 

yield or product quality. The use of ultrasound is opening up a field of activity in food 435 

processing. 436 
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558 

TABLE CAPTION 559 

560 

Table 1. Acoustic pressure measurements (bar) carried out using a hydrophone in 800 mL of a 561 

saturated brine and a sucrose solution (30 ºBrix). Ultrasound applied with a probe 562 

system (probe diameter of 13 mm and at 1.5 cm distance from the emitter’s surface) 563 

supplying different percentages of the total electric power of the equipment (100 W). 564 

565 
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566 

FIGURE CAPTIONS 567 

Figure 1. Variation of acoustic pressure inside an ultrasonic bath (Fungsonics mod. 28 L, 20 568 

kHz, Fungilab S.A., Barcelona, Spain) containing distilled water (28 L) with the distance from 569 

the bottom. Measurements carried out with and without water agitation. 570 

Figure 2. A. Evolution of experimental and calculated temperature on an aluminum cylinder 571 

during the heating in a bath with ultrasound application. B. Identified heat transfer coefficient, 572 

h, for heating treatments with agitation (USAG with ultrasound application and AG without) 573 

and without agitation (USWAG with ultrasound application and WAG without) of heating 574 

medium. 575 

Figure 3. Detail of the ultrasonic application system of an ultrasonically assisted convective 576 

drier (Cárcel et al., 2007a). 577 

Figure 4. Identified effective diffusivity (De) and mass transfer coefficient (k) for the drying of 578 

carrot and lemon peel with ultrasound application at different acoustic powers. Air 579 

temperature of 40 ºC and air velocity 1 m/s (García-Pérez et al. 2009). 580 

Figure 5. Mass transfer coefficient (k) and effective moisture diffusivity (De), identified during the 581 

drying of carrot cubes at 40 ºC and 1 m/s with (US; 75 W, 21.7 kHz) and without (AIR) 582 

ultrasound application (Cárcel et al., 2011). 583 

Figure 6. Scheme of the supercritical fluid extractor provided with an ultrasonic system to assist 584 

the extraction (Riera et al., 2004). 585 

586 
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Figure 1. Variation of acoustic pressure inside an ultrasonic bath (Fungsonics mod. 28 L, 20 
kHz, Fungilab S.A., Barcelona, Spain) containing distilled water (28 L) with the distance from 
the bottom. Measurements carried out with and without water agitation. 
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Figure 2. A. Evolution of experimental and calculated temperature on an aluminum cylinder 
during the heating in a bath with ultrasound application. B. Identified heat transfer coefficient, 
h, for heating treatments with agitation (USAG with ultrasound application and AG without) 
and without agitation (USWAG with ultrasound application and WAG without) of heating 
medium. 
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Figure 3. Detail of the ultrasonic application system of an ultrasonically assisted convective 
drier (Cárcel et al., 2007a). 
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Figure 4. Identified effective diffusivity (De) and mass transfer coefficient (k) for the drying of 
carrot and lemon peel with ultrasound application at different acoustic powers. Air 
temperature of 40 ºC and air velocity 1 m/s (García-Pérez et al. 2009).  
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Figure 5. Mass transfer coefficient (k) and effective moisture diffusivity (De), identified during the 
drying of carrot cubes at 40 ºC and 1 m/s with (US; 75 W, 21.7 kHz) and without (AIR) 
ultrasound application (Cárcel et al., 2011). 
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Figure 6. Scheme of the supercritical fluid extractor provided with an ultrasonic system to assist 
the extraction (Riera et al., 2004). 

Figure 6



Table 1. Acoustic pressure measurements (bar) carried out using a hydrophone in 800 mL of a 

saturated brine and a sucrose solution (30 ºBrix). Ultrasound applied with a probe 

system (probe diameter of 13 mm and at 1.5 cm distance from the emitter’s surface) 

supplying different percentages of the total electric power of the equipment (100 W).  

Percentage of the applied electric power 

20 40 60 80 100 

Brine 0.63  0.07 0.68  0.02 0.73  0.05 0.88  0.01 0.92  0.09 
Sucrose solution 0.56  0.05 0.60  0.04 0.66  0.03 0.77  0.06 0.86  0.05 

Table 1


