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Abstract. Many real-world problems in Artificial Intelligence (Al) asell as in other areas of
computer science and engineering can be efficiently modmteldsolved using constraint pro-
gramming techniques. In many real-world scenarios thelpnobs partially known, imprecise
and dynamic such that some effects of actions are undesit@fbraseveral un-foreseen inci-
dences or changes can occur. Whereas expressivity, effyjcam optimality have been the typ-
ical goals in the area, there are several issues regardmgtreess that have a clear relevance in
dynamic Constraint Satisfaction Problems (CSP). Howebere is still no clear and common
definition of robustness-related concepts in CSPs. In thiep we propose two clearly differ-
entiated definitions forobustnessndstabilityin CSP solutions. We also introduce the concepts
of recoverabilityandreliability, which arise in temporal CSPs. All these definitions are thase
related well-known concepts, which are addressed in eagimgeand other related areas.

Keywords: Constraint Satisfaction Problems, Robustness, Stalilitpamic CSPs.

1. Introduction

Nowadays, many real problems can be modeled as Constraisfa8tdon Problems
(CSP) that are solved using constraint programming teciesi§3]. Much effort has
been spent to increase the efficiency of constraint satisfa@lgorithms: filtering,
learning and distributed techniques, improved backtraghkise of efficient representa-
tions, heuristics, etc. This effort has resulted in the glesif constraint reasoning tools
which have been used to solve numerous real problems. Hoyadhvthese techniques
assume that the set of variables and constraints, which aserhe CSP, is completely
known and fixed. This is a strong limitation when dealing wiglal situations where
the CSP under consideration may evolve because of (i) ckdngbe environment or
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in its execution conditions, (ii) evolution of user requirents in the framework of an
interactive design, and (iii) changes in other agents infithmework of a distributed
system [19].

Since the nature of the real world is dynamic, techniquesdtiampt to model it
should take this dynamicity into consideration [21]. It &sg to see that all possible
changes to a CSP (constraint or domain modifications, aditi removal of variables)
can be expressed in terms of addition or removal of consgr§l®]. We remark that
we only deal with aspects of pure satisfaction (i.e.: CSR}hke context of constraint
optimization, it is well known that relaxations do not presgeoptimality. This is an
interesting, but much more complex issue.

By reading the research carried out in dynamic constratigfaation, we found that
the terms robustness and stability are sometimes usedliategeably. Some authors
refer torobust solutionswith the same meaning that others use gtable solutions
For instance, one of the recent papers regarding dynamistreamt satisfaction [20]
states that the strategies that have been devised to haB#&le &e "methods for find-
ing robust solutions that are either more likely to remailutsons after change or are
guaranteed to produce a valid solution to the altered prnoklih a fixed number of as-
signment changes”. In the Handbook of Constraint Progrargifii6], the authors state
that "There are three key concerns in solving dynamic CSRe.fifst is to minimize
the need for change, and thus to find robust solutions thaikaig to remain solutions
even after the change has occurred, or to need only minaingh

In engineering, there is a clear agreement to distinguisiden stable and robust
concepts. However, the difference between stable andtrGi8R solutions is not clearly
stated. Robustness in CSP has multiple, sometimes camfligtiterpretations [11]. In
some areas, robustness has been assimilated to stabd]tafi2 more appropriately,
CSPs with temporal constraints has been related to noisetale [14], etc. Even in
related areas such as Operation Research, the multipleimysaaccorded to the term
"robust” are open to debate [1#Robustness can be related to, or integrated into, the
notions of flexibility, stability, sensitivity and even é@guln constraint satisfaction, only
a few works make a tiny distinction between robustness adily [9], [6]. However,
we consider that robustness and stability terms should dsglgldistinguished, since
they represent different behaviors of a CSP’s solutionraftenges in the environ-
ment: Robust solutions refer to solutions that are eitheertikely to remain valid after
change, whereas stable solutions are solutions that cant tida new valid solution
with only few assignment changes to variables.

In this paper, we focus our attention on the 'robustness’ 'atability’ concepts
in CSPs. We propose general engineering-based and cle#dyedt definitions for
robust and stable CSP solutions. Moreover, we also intthe concepts of recover-
ability’ and 'reliability’ which are relevant in real-wadltemporal-CSP domains. Clear
and common definitions are needed to be able to evaluateadtiffalternatives. After-
wards, new research lines will arise: How can we assess thestiess or stability of a
solution? What does it guarantee? How can we get a more reblugion? What is the
relationship between robustness and other problem pagasnstich as optimality and
constrainedness? Is it possible to obtain a model of robast etc.

Following some standard notations and definitions in thediure, we have sum-
marized the basic definitions that will be used throughaigtglper.

Definition 1. A Constraint Satisfaction Problem (CSP) is a triple=< X, D, C >,
whereX is a finite set of variable&ey, xo, ..., x,, }, D is a set of domain® = {d;, do,
...,d, } such that each variable € X has a finite set of possible valugs andC'is a
finite set of constraints’ = {C4, Cs, ..., Cy, } that restrict the values that the variables
can simultaneously take.
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Definition 2. The Solution Space is the portion of the search spbEe , , d;) that
satisfies all constraints. A solutighis afeasibleinstantiation of all variables, that is, it
satisfies all constraints.

2. Incidences (or changes) in CSPs

Since many real problems are dynamic, unexpected incidéndhe problem scenario
occur due to its dynamism, spurious actions, lack of coreptepbwledge, etc. Let’s

Z = {=,22,...,2i,...zm } be the finite set of possible incidences that can occur in
the future, which give rise to the finite set of possible clemig the CSP that models
the problem. Let us also assume that eacle Z is causally independent and has a
probability p(z;) to occur. By applying the concept of probability distritmrtioverZ,

we introducepd(z;) = %, as the normalized probability function ov&r such
zj€

thatpd(z;) describes the relative likelihood foy to occur andy_'" | pd(z;) = 1.

Each incidence; € Z can be modeled as a finite set of changes in variable do-
mains or constraints. Since changes in domains can be egpeelsas unary constraints,
it can be assumed that each incidencean be represented by a finite set of changes
(restriction or relaxation) of constraints. In this papee are interested in robust-
ness issues and how a CSP solution maintains its feasibftiégy occurrence of pos-
sible incidences. Therefore, we assume that, as incidestms, the previous set of
constraints always remains, so that the solution space rlgrbe reduced. Thus, we
will only consider changes that restrict the solution sp@@e: add new constraints
to the previous existing ones). The removal or relaxatiorcaristraints is not con-
sidered here since it does not restrict the solution spdaoetefore, each possible in-
cidencez; € Z is modeled as a new set of constraiis; to be added to the ini-
tial set of constraints, making the problem more restrictgdven inconsistent. Thus,
the final CSP, after the occurrence of the whole set of in@édefiz1, 2, ..., 2 | IS
CSP; =< X,D,CUCz UCz U....UCz, >.Due to the declarative nature of the
model, the order is not relevant.

We assume the incidences only restrict, but do not make ethptinitial solution
space; otherwise the problem would become inconsistemt.eftre, some of the fea-
sible solutions of the initial’’S P are also solutions of the final CSP. We also assume
that we know the typology of expected incidents (and thedbpbility). For example,
in scheduling, we can expect delays in task’s durationslyr¢ianes, etc. Obviously, it
is not possible to determine the robustness-related fesatfra system if no informa-
tion about the incidences is given. In this last case, we téaima rough estimation by
means of the inclusion of random incidences (and randonesdtrp(z;)) [5]. How-
ever, it is important to remark that, in the same way that a @®Bels the real-world
problem, the set of incidences Z should also model the setpdated incidences that
can occur in the real-world. Thus, Z should not be a set of samg generated mod-
ifications of the constraints and domains of the CSP, buerdtie result of modeling
({Cz;}) the set of possible changes(}) that can occur in the real-world problem that
it is modeled by the CSP.

3. Robustness

Robustness is a common feature in our environment. Systeatdélong to biolog-
ical life, chemical compositions, physical structureslased objects, etc. [18] per-
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sist, remain running, and maintain their main featuresiteespntinuous perturbations,
changes, incidences or aggressions. Thus, robustnessicept related to thpersis-
tenceof the system, its structure, its functionality, etc., agaexternal interferencéA
system is robust, if it persists”

Thus, in a general wayrdbustnesscan be defined as the ability of a system to
withstand stresses, pressures, perturbations, unpabtiathanges, or variations in its
operating environment without loss of functionality. A & that is designed to per-
form functionality in an expected environment i®Bust if it is able to maintain its
functionality under a set of incidences. For examptealgorithm is robust if it contin-
ues to operate despite unexpected inputs or erroneouslatitms

Intuitively, the notion of robustness is easy to define, ifarmalization depends
on the system, on its expected functionality, and on theiBpeet of incidences to be
confronted [15]. No general formal definition of robustnkas been proposed, except a
few exceptions or particular cases. Specifically, Kitar®g fhathematically defines the
robustness) of a functional systemqY S) with regard to function £') against a set
of perturbations ) as (in a simplified way):

REY = /Z p(2) % F(SY'S, z)dz (1)

where,p(z) is the probability for incidence € Z, andF(SY'S, z) is an evaluation
function that returns zero when the systéti S fails underz or it returns a relative
viability ]0, 1] otherwise. For instancéd,production drops 20% under a certain pertur-
bation (z) compared with standard production, then 0.8 fanmeed

Expression (1) formalizes how a systeS1(S) is able to maintain a certain level
of its expected functionality/{) against a given set of perturbatior$)( According to
(1), a systentY' .Sy is more robust thas'yY S, with regard to an expected functionality
F against a set of perturbatiodlswhen:

SYS SYS
Ry 7' > Rp,” (2)

The application of expression (1) is highly dependent orsjfstem being assessed.
Let us apply (1) to CSPs:

— S is a solution of the CSP, whose robustness we want to assebsstRess is a
concept related to CSP solutions, not to CSP itself. ThessyistemSY S in (1) can
be related to the solutiofi in a CSP.

— Z is the discrete set of unexpected incidences.

— F'is the expected functionality of the system. In CSP, the etqukfunctionality of a
solution is its feasibility.

Therefore, by applying (1), the robustness of a CSP sol|#$rcan be defined as
follows:

Definition 3. A solution (S) of a CSP is-—robust with respect to a set of incidences
Z,where each; € Z has a normalized probability of occurrenez;), when:

T(Sv Za P) = Rg‘,Z,P = Z pd(zl) * F(S’ Zi) (3)
A

whereP is the set of normalized probabilitie® (= {pd(z;),Vz; € Z}) and func-
tion F(S, z;) is the consistency of afterz;:

— F(S, z;) = 1iff S also satisfie€ U Cz;.



Robustness, Stability, Recoverability and ReliabilityJanstraint Satisfaction Problems 5

— F(S,z) =0, iff S does not satisfy' U C'z;. More concretely, iffS does not satisfy
CZl'.

Robustness of a solution represents its probability of reimg@ a solution of the
new problem after Z and it varies from 0 to 1 singe, ., pd(z;) = 1 and F(S, z;)
€ {0,1}. The greater it$ — robust, the more robust a solution is and more likely to
remain feasible after Z.

From expression (3), we can see that the algorithm for catig the robustness
r — robust of a solution S against a set of incidencgds straightforward. It only
requires to check whethérmaintains its feasibility'( S, z;) for each incidence; € Z.
Thus, for eachy; € Z, the cost of checking its feasibility is O(n).

On the other hand, note that robustness does not requirsitigeness of the prob-
lem modeled by the CSP. For instance, the constraints oftii@gm could dramatically
vary due toz;, such that'z; could greatly reduce the solution space. However, a robust
solution S with respectC'z; would remain feasible after the incidence.

Note that the robustness of a soluti$idoes not depend on the behavioSohgainst
an incidence;, but on how the feasibility of' is maintained over a set of unexpected
incidencesZ. Thus, the robustness Sfdepends on the probabilipyz;) of each possi-
ble incidence:; € Z and howC'z; affects to the feasibility of the solutioR(S, z;). In
other words, the only way to characterize the robustness &ha given CSP solution
is to determine how its feasibility is maintained over savéevels of probability of
incidences.

Note that we do not take into account other aspects, thatusualy been taken into
account when the robustness of a CSP solution is assessdtidryaathors (e.g.: the
number of variables that must change their values to makaiti@ solution feasible
after the incidence, the number of unsatisfied constraintedinitial solution, etc.). In
our approach, a solution is not more/less robust under agiedence if the solution
needs to be more/less repaired to deal with the incidenceclslm that robustness
cannot be assessed on the basis that only small changescessaigy to obtain a new
feasible solution. In problems related with satisfiabiligbustness should be related to
feasibility maintenance.

3.1. Example

Let us apply the above definition (3) to the following examlet P be a CSP with
two variablesr; andxz, with domainsD; : {3..7} and D, : {2..6}, respectively. The
constraints are:

—Cr:xp+a9 <12
—Cy:ia9+11>6
—(C3:29 —21 <2
—Cy:x1—29 <4

Figure 1 represents the solution space of the CSP, whichnigeosed of 21 solu-
tions. Let us suppose the following sétof expected incidences:
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CiXi+X,<=12 Cy-X +Xp <=2

Xz

Fig. 1. CSPP and its solution space.

Incidencez; | Probabilityp(z;) | Likelihood pd(z;) zi — Cz;
21 0.45 0.15 {SCl + o <= 9,562 <= 5}
29 0.30 0.10 {$1 + 2o >=10,21 >= 4}
23 0.75 0.25 {—Il + To <= O}
Za 0.90 0.30 {01 — 23 <= 2]
25 0.60 0.20 {x, >4}

The robustness of each solution can be assessed accordixgéssion 3. Then, we
can deduce thdtr; = 5,22 = 3) and(z; = 5,22 = 4) are the most robust solutions,

according to the above set of expected mmdenﬁ}1 =0we=8) _ pin=hea=d)
pd(z1) + pd(z3) +pd(24) + pd(zs) = 0.9. Likewise, (z; = 4,22 = 6) is the Ieast
robust solutlonR r1=4,@2=6) _ = pd(z2) + pd(z4) = 0.4.

Even though the solution space of the above example is coned& that it is not
required for assessing the robustness of CSP solutiongmanplicit representation
of the CSP constraints. Moreover, the robustness of eaatli@okcan be assessed inde-
pendently of the assessment of other solutions.

3.2. What does r-Robustness guarantee?

The more robust solution is, the more likely it will remainlidaafter changes in the
constraints. The following conclusions can be obtainenhf(8): (i) A 1-robust solution
is a solution that maintains its feasibility over the whad¢ af expected incidence@i)

a 0-robust solution is a solution that becomes inconsistéhtany expected incidence
that may occur, andiii) an r-robust solution is a solution that maintains its feiasib
ity over (100*r)% of probabilistically-pondered incidesg For instance, the solution
(x1 = 4, z9 = 2) of the above example is able to maintain robustness over T@k&o
expected likelihood incidences. Specifically, this sa@ntis robust against;, z3 and
z4, Which have an accumulated probability density of 0.7.



Robustness, Stability, Recoverability and ReliabilityJanstraint Satisfaction Problems 7

4. Stability

Stability is an old concept that derives from astronomy amgbfes [22]. Loosely speak-
ing, a solution (meaning an equilibrium state) of a dynamsggatem is said to bstable

if small perturbations to the solution result in a new saatthat stays ¢los€ to the
original solution. Perturbations can be viewed as smdidihces that occur in the ac-
tual state of the system [11]. Therefore, by applying thisrimal definition to CSPs, a
solution is stable if small modifications of the constraktt allow a new solution (new
consistent variable assignment) that remains close tortmal solution:

Sol(X, D, C) is stable (with respect;, C' U Cz;) iff
3Sol(X,D,CUCz): Sol(X,D,C) = Sol(X,D,CUCz)

Definition 4. A solution S of a CSP is-stable, with respect to an incideneg if
there exist a new feasible solution S in the s-neighborhdé&d o

The neighborhood of solutions can be formally defined in geohnorms in the
n-dimensional space [8]. Thus above definition can be @etai$ follows.

Definition 5. A solutionS = (21 = v1, 22 = v, ..., x, = vy,) IS S-Stablef, given
an incidence;, there is a solutiort’ = (1 = v}, 22 = v}, ...,z, = v/,), such that:
IIS” — S| < s, where]|.|| is somen-dimensional norm defined in the solution space to
evaluate the difference betwesrands’.

In relation to the implementation ef-dimensional norms, we have:

1. Metric domains, we can apply the Euclidean distance batweand S’, with a op-
tional weighted factop; for each assigned variahig:

n
> pilag - 3:)?
=1

but normalizing with the maximum distance between any twaesi in the space
of solutions. Note that the domaidg;} are finite in a CSP. Thus, the normalized
relative distance in a metric domain betwegand.S’ becomes:

iy pi(] — x;)?
HSI _ S”z — \/Zl::lp ( 3 2) (5)
21:1 pi | di|
Note that the similarity given in (5) betweehiand S’ may be very low if the two
solutionsS and S’ are very close in the-dimensional space even though all the
variables ofS change their values. This-dimensional norm measures the relative
distance betweef and.S’, such that|S’ — S||. € [0, 1] due to a change in the value
of one or all variables.

2. Non-metric domains (like non-ordered sets of value®),Hlamming distanceH)
can be applied. This-dimensional norm measures the number of variables that hav
different values inS and.S’. Therefore, the distance betwegmndS’ on non-metric
domains can be defined as:

r o piH (2, @
Is' - 5. = Zi=2ol@n o) ©

n

(4)

where H (x}, z;) is equal to O iffz; = z;, and 1 otherwise. The expression is nor-
malized with respect ta, such that this criterion evaluates the relative number of
variables that change their values gl — S||. € [0, 1]. Note that this concept is
related to the super-solution concept given in [10].
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These measures evaluate the closeness of solutions inabe spsolutions. There-
fore, given an incidence;, the s-stability for a solutiory’ quantifies the distance to
S of the closest feasible solutio$! in the n-dimensional space of the CSP, by apply-
ing expression 5 or 6 depending on metric or non-metric doman other words, we
should determine how much the new soluti®/ndiffers from the initial oneS in order
to address the incidence. A robust solution is a 0-stabléisal

The proposed measures of s-stability require finding a ieolun the closest neigh-
borhood ofS, among the complete set of new feasible solutions, suchdiadation
with respect to the previous solutiosis minimized. Let us denot&/(S, z;) as the
value of||S” — S|| for the closest solutiols’ to S, after the occurrence af;:

N(S, z) = ming/||S" — S| (7)

Note thatN (S, z;) = 0iff F(S,2;) =1 (i.e.: S satisfie€'z;).
According to definition 5, we can define the s-stabilifI{4) of a solution )
against a given set of perturbatiodisvith a probability P as:

s(S,2,P) = STAS p =Y pd(z) - N(S, z) (8)
2, €2

where P is the set of normalized probabilitie® (= {pd(z;),Vz; € Z}). STA3
varies from O to 1 in both cases, metric and non-metric CSRs.IGwer its s-stability
is, the more stable the solution is.

Obtaining stability of a CSP solution implies obtaining S, z;) for eachz; € Z,
which derives in a Constraint Satisfaction and OptimizatRyoblem (CSOP) whose
constraints ar€'UC z; and whose optimality criteria is to minimizes” — S|| (Equation
7). In general, solving a CSOP is NP-hard. However, this attatnal cost can be
reduced by searching for a solution S’ in the closest neidioad of S. Note that the
notion of distance between S’ and S should take into accohativer or not the domain
is metric. Therefore, an incremental process can be defiligdrithm 1 for metric-
domains and Algorithm 2 for non-metric domains). In Algbnit 1, each iteratiok in
the process has a cd&t«k+4)™, such that the computational cost for obtaining stability
of a solution can be decreased if a solution exists in theeah@sghborhood of S. In
Algorithm 2, each iteration in the process has a co@) (d;)°. Thus, computational
cost for obtaining stability of a solution can be decreasadblution exists in the close
neighborhood of S.

Algorithm 1 Incremental Stability Process for obtaining(S, z;) in metric domains.

LetCSP =< X,C,D >,letS = (v1, v, ..., v,) be a solutionS of the CSP, and let
0 be the granularity of the search process.
k=1;
NSz =1,
repeat
if 357, a solutiontoaC'SP' =< X,C U Cz;, D' >, where
D" C D:dj; = {[vj — k6], [v; + k* 4]} Nd;, Vj € 1..nthen
NSz =||S" — S|
else
k=k+1;
end if
until D" ¢ D
return NSz;
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Table 1. Stability of some robust solutiong5,3), (5,4} and a non-robust solution (4,6).
Solution | Closestsol| Closestsol. Closestspl. Closest[sdClosest sol.| Robustness Stabilit
(71, 2) with 21 with zo with z3 with z4 with z5
(5,3) satisfies (6,4) satisfies satisfies| satisfies 0,9 0.14A/50
(5,4) satisfies (6,4) satisfies satisfies satisfies 0,9| 0.1A/50
(4,6) (4,5) satisfies (5,5) satisfies (5,6) 0,4 0.7R/50
4.1. Example

Let’s apply the above definition of stability (8) to the prews example (Figure 1) for
the most and least robust solutions.
For instance, the stability of solutidd, 6), according to expression (8), is:

0.15%x1+025%xv/24+02x1 0.7

V52 452 V50

Thus, following Table 1{x; = 5,22 = 4) is the most robust (0.9) and the most
stable solution (0.1/50) according to the given set of expected incidences.

ST A — (9)

4.2. What does s-stability guarantee?

Stability of a solution S represents the expected minimurmiatized distance between
S and a new feasible solution of the new problem after Z. Theerstable the solution,
the less need for change will be necessary to obtain a new@ohfter changes in the
constraints. The following conclusions can be obtainedhf(&xpression 8):

— Asolution S, withST A = 0, is a 1-robust solution. It is fully stable over the whole
set of expected incidences.

— A solution S of a non-metric CSP, with7' A3, = n, requires changing the assign-
ments of the whole set of variables to become consistentsigany expected in-
cidence that may occur. A solution S of a metric CSP, WitiA3, = 1, requires
moving to the far extreme point of the solution space to bexoonsistent against
any expected incidence that may occur.

— A solution S of a non-metric CSP, with7' A%, = k, requires changing k variables,
as average, to become consistent over the whole set of plisbeally-pondered

Algorithm 2 Incremental Stability Process for obtaining(S, z;) in non-metric domains.

LetCSP =< X,C,D >, and letS = (v1, va, ..., v,) be a solutionS of the CSP.
0=1;
NSz =n;
repeat
if 3.5 = (v],vh,...,v),), asolutionto CSP'z X,C U Cz;, D >, where
> i H(vj,v5) =0 then
NSz =¢;
else
0=0+1,;
end if
until 6 =n
return NSz;
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incidences. A solution S of a metric CSP, wiil"'A3 = k, requires moving to a

distance(k = />, d?), as average, to become consistent over the whole set of
probabilistically-pondered incidences.

5. Temporal Constraint Satisfaction Problems

A Temporal Constraint Satisfaction Problem (TCSP) is ayqudobf CSPs, where vari-
ables represent temporal primitives (time points or terapiotervals), such that inter-
pretation domain is the time, variable assignments areaeatlg ordered and solutions
have a temporal interpretation [7], [2]. This is the typicase of scheduling problems,
where variables can be instantiated on the time line (sear&ig) so that they can be
associated to starting or ending times of tasks (see Figure 3

Besidesrobustness and stability concepts, in TCSP, not only is it important to
know how different the new feasible solutiéfis from the original oneS, given an in-
cidencez; (i.e.: stability), but it is also important to knof how longthe new solution
S’ differs from the initial solutionS (recoverability), andii) how longthe actual solu-
tion S can be maintained after the incidence (reliability). There, two new properties
appear in relation to theemporal stabilityor temporal robustnessecoverabilityand
reliability.

An example of TCSP: A Scheduling Problem

Figure 3a shows a TCSP that represents a flow-shop schegubbtem with two
jobs Ji, Jo, each of which has three activiti¢s.;, z2;,4,j = 1..3) and one resource
that should be shared by all activities. Each row correspdada job, and an activ-
ity («;;) is represented as a rectangle whose length correspontisdaration. This
problem can be modeled as a TCSP, where variables repraserpaints (starting or
ending times) of different activitiesc(; ..., z:j.orr). There exist constraints that refer
to non-overlap and precedence constraints among acsiviflereover, it is known that
223 should be performed at least k-units afigs (ConstraintCs3_55). The first solu-
tion (Figure 3a) minimizes the makespan and it is considterée the optimal solution.
The projection of variables;; on time represents the optimal assignment of variables
of the TCSP.

5.1. Recoverability

Recoverability refers to the ability to restore a systenh®goint at which a failure oc-
curred. Despite proactive approaches, itis clear thatstoless is not always completely
guaranteed. Thereforescovery strategieshould be used once disturbing events occur
in order to keep the feasibility of the pre-computed solutiRobustness and recover-
ability are closely related and, in some optimization frarakks, they have been unified
into an integrated notion @écoverable robustne$&3]. For TCSP, where solutions are
projected over time, the recoverability of a solution camiasured by the required
amount of time §t) (after an incidence; occurs) to restore part of the initial solution
(Figure 2). Therefore, it must be taken into account thaipi@rmal variables, in a solu-
tion of a TCSP, are distributed over time, so we can defineah&trecoveredsolution
maintains the same assigned values in the variablesftafier the incidence:

Solsi(X,D,CUCz;) = Sols (X, D, C)
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t (time when incidence occurs)
t+ot
(the initial solution is restored after t+5t)

TIME

v V2 V3 V-1 Vk Vet Vkez Vi Vikener Vikeniz Viepez Vot Vn
|\ ~ J
variables are instantiated over time Sols,

h-recoverable

Fig. 2. Recoverability of a solution in a TCSP.

whereSols; covers the set of variables fron after the incidence (Figure 2). The
objective of a recovery process is to minimize Likewise, since the variables of a
TCSP are temporally ordered (i.e., they are instantiatea time), the objective of a
recovery process is to minimize the set of variables, franeti (when the incidence
occurs) tot + Jt that require changing their values in order to obtain a neasifde
solution.

Definition 6. A TCSP solution S i&1-recoverableff, at mosth variables (consecu-
tive variables after the incidence occurs) require chamtfieir values in order to obtain
a new feasible solutiof’.

Variables of a TCSP are instantiated over the time line, shiahvariables of a so-
lution S = (z1 = vy, 22 = va, ..., x, = v,) are temporally ordered. Thus, as corollary
of Definition 6, in a h-recoverable solutigh= (z1 = vy, 2 = va, ..., T, = vy,), given
an incidence; that occurs int (v, <t < vg1) the incidence affectS in the temporal
interval [¢, ¢ + dt], such that the variables,, ..., z; andzyp41, ..., 2, CAN Maintain
their initial values, while the variables in the interyalt + 6t] (vg+t1, ..., x4n) Must
change their valuesf ,, ...,v;_,) (see Figure 2). The initial solution is recovered
afterzy.p,thatis aftert + dt.

Note that the definition of h-recoverability is similar teettiefinition of(k, 0) —super
solutionswhere ifh variables lose their assigned values, another solutiotedound
by reassigning a new value to these variables.

The only difference is that, ih—recoverability the variables to be repaired are
consecutive over time, while, in (h,0)-super solutions, variables to be repaired are
not consecutive.

From Definition 6, it can be concluded tHaK h-recoverability< n. The lower is
h-recoverability, the more recoverable a solution is. A €ereerable solutioty does not
require changing any variable after incidence in order tintaa the feasibility ofS
(equivalent to 1-robust solution) Amrecoverable solutio§ does require changing all
the variables after incidence. Thuisrecoverability can be considered to be a temporal
s-stability.

5.2. Reliability
In engineering, reliability is associated to the confideties a system will perform its

intended function during a specified period of time undetesta@onditions, as well as
under unexpected circumstances. Mathematically it caxpeessed as:

R(t) = / " f(a)da (10)
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a X21‘,cn X22.0n ><23‘,on
i C2.23 ; Y
| -2 - ]
X21.6ff X22'off X23'off
X
x11-°“ X12;.0n 13.0n
X11.off Xq2ioff X13off TIME
»
Lt
l} X21.0n X22;°" Incidence X23.0n
{ o ) ; )
l l —/
Xa1.4f X23.6ff
X Xi3.
X11.0n 12.0n, >on
H 2| =
— ' —=
X11off X12'off X13off TIME
o,
>
i} Incidence: X210 delayed
Xoton  t  X220n t+At X23.0n
X'21.0ff X2 off Xa3.off
X12. X13.0n
):<11.on i o" H
X11 ot X1Zioff X13off TIME
[
Lt
iJ Incidence: X,, o delayed
X21,0n X220n t t+At  X230n
; ; o T ———— ;
X21.6ff X'22.0f X'23.off
X X
):(11.% 12.0n ; / 13.on
: X413 0ff
X1 off X12off FIME
.
Ll

Fig. 3. A scheduling problem: four solutions.

where f(z) is the failure probability density function andis the length of the
period of time (which is assumed to start from time zero).réhg always some chance
for failure, butR(t) means that the system has a specified probability that ibpérate
without failure before time.

In TCSP, variables of solution are distributed over timeugha solution found
initially may be invalid for variables that are related toime greater that after
incidence. Thus, by applying the above concepts, we carsasisat a TCSP solution
is dt-reliable, if given an incidence; at timet, the solution remains valid until+ 6t
(Figure 4). Thus, the set of variables that represent thatisal of the problem from
timettot + dt maintain their assigned values:

SOlt*}(;t(X, D, cu CZZ) = SOltﬁgt(X, D, C)

where Sols, covers the set of variables from tinigo ¢ + 6¢. The way to obtain
a reliable solution is to maximiz&, or alternatively, to maximize the set of variables
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t (time when incidence occurs)

* u-reliable tTat
TIME

1T 17T " 1T7T T77T 1 ]

Vi V2 Vs Vk1  Vk | Vker Vkez  Vke Vit Vo1 Vo

(the initial solution is maintained until t+5t)

Fig. 4. Reliability of a solution in a TCSP.

from time ¢, (when incidence occurs) to+ dt) that can maintain their values (Figure
4).

Similarly to recoverability, the reliability of a solutiofi can be defined in terms of
the number of assignments fthat remain valid after the incidence occurs (i.e., they
can take part of a solution @fC'S Pz).

Definition 7. A TCSP solution S isi-reliableif, at least,u assignments of variables
in S (consecutive variables after the incidence occurs) campakt of a solution of the
TCSPy.

As corollary of Definition 7, in a u-reliable TCSP solutich= (z1 = v1,z2 =
va,...,T, = vp) given an incidence; that affects the problem in, wherev, <
t < wvg41, the assignments of variablés; = vi,x0 = vo, ...,z = Vg, Thp1 =
Vkt1s ooy Thtu = Vk+u)s 1 < k+u < n, can take part of a solution @fC'S Pz, while
the variables from+6t (), ,, 1, .-, 27,) must change their valueg;(,, . ; , ..., v;,) (see
Figure 4). The initial solution is maintained from to xx,, that is fromt to ¢ + dt.

As in the above case, from Definition 7, it can be concludetidha u-reliability
< n. The greater the u-reliability is, the more reliable a soluts. A O-reliable solution
S cannot maintain values in any variable after incidence faintaining feasibility ofS.

A n-reliable solutionS can maintain the assigned values in all variables. Thezgoe
can consider that u-reliability is a concept that is reldatethe temporary maintenance
of robustness from time of occurrence. Moreover, a n-ridiablution is a O-recoverable
solution, which can also be considered to be a temporaltgblsor 1-robust solution.

Note thath-recoverabilityandu-reliability of a solutionS are not contradictory nor
complementary concepts. If an incidence occurs at tin(@ the initial solutionS can
be maintained feasible fromuntil ¢ + §,,(u variables), and (i) the initial solution S can
be restored fromt + o;, (h variables), wheré, < d;. Of course, (h-recoverability +
u-reliability) < n.

Recoverability and Reliability in the example

With respect to the scheduling problem presented in Figukdlire 3b shows a
robust solution. To this end, some buffer times have beended between some ac-
tivities in order to absorb incidences. For instance, if sotgce is broken for a short
time, (Incidence in Figure 3b), the solution is not affechgdthe incidence. Thus, all
assignments to variables remain valid. Furthermore, tiigisn is also stable. If vari-
ableszaioff, T22.0ff, T12.0ff OF T13.04¢ @re minimally delayed, the rest of the vari-
ables maintain the same values. Moreover, the typical todideetween robustness and
optimality can be observed in Figure 3a/b.
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Figure 3c shows a 3-recoverable solution for an incidences; . is delayed to
Ty ,p¢ IN time ¢, In this case, only 3 variables must change their values ;,
T22.0n, T22.0¢f), While assigned variables with assigned values greater tht dt,
(T12.0ns T12.0f > T13.0n» T13.0ff+ L23.0ns T23.0ff), dO NOt require change their values.
On the other hand, Figure 3d shows a 4-reliability solutimnan incidence: xa2.off
is delayed t0c’22_off intimet. In this case, the next 4 variables § o, T12.0f f, 13.0n,
Z13.0ff) do not change their values. The solution is maintained unti 6. However,
activity xo3 must satisfyCo3_ 22, such thatros ., and further variables must change
their values.

6. Generalizing concepts

In the previous sections, the concepts of robustness|istat@coverability, and reli-
ability have been defined by analyzing how a solutibabsorbs or can be adapted to
cope with an incidence;. These concepts can be generalized, such that we can assess
the achievable levels of robustness, stability, recovlingtand reliability of solutions

of a CSP for a given typology of incidencés;, pd(z;)}, a desired level of optimality

of solution, and a given constrainedness of the CSP whiafhisrent to the problem.
Thus:

— Robustness guarantees that perturbations can be absagriieel $olution. Thus, ro-
bustness decreases as the level of incidences increases.

— Stability guarantees that the consequences of perturisatan be minimized by the
new solution. Thus, stability decreases as the level ofrtbielénces increases.

— A low-restricted CSP with a large solution space will usgallow more robust and
stable solutions.

— A more optimized solution will usually be more sensitive teanges in the envi-
ronment. Optimal solutions are usually located at edge®litisn’s space where
robustness is lowest. There exists a clear trade-off betwaaustness and optimal-
ity/quality [4].

These ideas introduce the main concepts to which robuststesslity, recoverabil-
ity, and reliability of solutions in CSP are related and appe many CSP’s applications
[1]. Figure 5 represents the existing relationship amormistness, stability, recover-
ability, and reliability of solutions with{(i) the constrainedness of CSPs (which is a
problem-dependent featurd)i) the incidence level (which is a feature of the problem
and/or application scenario; afid) optimality of S' (which is a feature of each solu-
tion). Thus, typology of expected incidences and theirtsistic features, optimality of
solutions, and constrainedness of problems are the maioréaihat limit the desired
level of robustness, stability, recoverability, and relligdy of solutions in CSPs. A more
detailed model of robustness would allow us to parameténzémplicit relations pre-
sented in Figure 5, by relating the concepts of robustnetbstive characteristics of the
problems or their application scenarios.

The evaluation of the robustness, stability, recovergbdnd reliability of a solution
S can be viewed as a guarantee of the behavio$ fith respect to the expected set
of incidencesZ. Moreover, recoverability and reliability can be consitbas forms of
partial robustness, where part of the solution remainslvalkewise, the concepts and
situations described in this section occur not only with PCI8ut more generally with
dynamic CSP [9, 5] and, particularly, with Planning and SttHieg problems modeled
as CSP.
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Robustness, Stability,
Recoverability, Reliability

A more optimized, but
less robust solution

Problem’s
Constrainedness

Optimality -~

Incidence’s
Degree
A more robust, but less
optimized solution

Fig. 5. Robustness and problem-related concepts.

7. Conclusions

While expressivity, efficiency, and optimality have beee tipical goals in the devel-
opment of CSP techniques, there are robustness-relatezsifisat have received less
attention. However, robustness requirements have a dksance in dynamic environ-
ments (usually with incomplete or imprecise knowledge)sTork aims to review the
concepts of robustness, stability, recoverability, an@dity in dynamic Constraint
Satisfaction Problems. This supposes an advance in tleecdtifte art in constraint pro-
gramming, and new models and techniques can be developeHitgva this properties
in CSP solutions.

The general notion of robustness includes several diffezencepts. Despite the
existence of several works on dynamic CSP, there is stillegr@and common definition
of robustness-related concepts. In this paper, these ptailtave been characterized and
formalized, such that they can be used, in a general way,sesagobustness-related
features of solutions in CSPs.

In this paper, a definition and formalization of these cotedas been proposed,
on the basis of their meaning in other areas of science, dsawein how they can
be evaluated, and what it guarantees. They can be used, inesiagjgvay, to assess
robustness-related features of solutions in CSPs. Phatiguthe introduced concepts
have been applied to simple problems, which allows us torashthe differences be-
tween them, as well as, the different ways that a solutionreant to incidences: it
can bemaintained it can beadapted it can bemaintained duringlor restored aftey
a given time. This different behavior becomes relevant wl&8P is applied to solve
real-world problems in a dynamic and partially unknown woFfrom this point, other
relevantissues remain open. Particularly, the desigrfiofeit algorithms for obtaining
robust, stable, recoverable and reliable solutions isestiloff relevant research lines.
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