

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

 The final publication is available at Springer via http://dx.doi.org/10.1007/s10115-014-0778-
3

http://link.springer.com/article/10.1007/s10115-014-0778-3

http://hdl.handle.net/10251/68385

Springer

Barber Sanchís, F.; Salido Gregorio, MA. (2015). Robustness, stability, recoverability, and
reliability in constraint satisfaction problems. Knowledge and Information Systems.
44(3):719-734. doi:10.1007/s10115-014-0778-3.

Under consideration for publication in Knowledge and Information Systems

Robustness, Stability, Recoverability and
Reliability in Constraint Satisfaction Problems

Federico Barber and Miguel A. Salido
Instituto de Automática e Informática Industrial
Universitat Politècnica de València (Spain)

Abstract. Many real-world problems in Artificial Intelligence (AI) aswell as in other areas of
computer science and engineering can be efficiently modeledand solved using constraint pro-
gramming techniques. In many real-world scenarios the problem is partially known, imprecise
and dynamic such that some effects of actions are undesired and/or several un-foreseen inci-
dences or changes can occur. Whereas expressivity, efficiency and optimality have been the typ-
ical goals in the area, there are several issues regarding robustness that have a clear relevance in
dynamic Constraint Satisfaction Problems (CSP). However,there is still no clear and common
definition of robustness-related concepts in CSPs. In this paper, we propose two clearly differ-
entiated definitions forrobustnessandstability in CSP solutions. We also introduce the concepts
of recoverabilityandreliability, which arise in temporal CSPs. All these definitions are based on
related well-known concepts, which are addressed in engineering and other related areas.

Keywords: Constraint Satisfaction Problems, Robustness, Stability, Dynamic CSPs.

1. Introduction

Nowadays, many real problems can be modeled as Constraint Satisfaction Problems
(CSP) that are solved using constraint programming techniques [3]. Much effort has
been spent to increase the efficiency of constraint satisfaction algorithms: filtering,
learning and distributed techniques, improved backtracking, use of efficient representa-
tions, heuristics, etc. This effort has resulted in the design of constraint reasoning tools
which have been used to solve numerous real problems. However, all these techniques
assume that the set of variables and constraints, which compose the CSP, is completely
known and fixed. This is a strong limitation when dealing withreal situations where
the CSP under consideration may evolve because of (i) changes in the environment or

Received Nov 13, 2012
Revised May 21, 2014
Accepted Jul 26, 2014

2 F. Barber and M.A. Salido

in its execution conditions, (ii) evolution of user requirements in the framework of an
interactive design, and (iii) changes in other agents in theframework of a distributed
system [19].

Since the nature of the real world is dynamic, techniques that attempt to model it
should take this dynamicity into consideration [21]. It is easy to see that all possible
changes to a CSP (constraint or domain modifications, addition or removal of variables)
can be expressed in terms of addition or removal of constraints [19]. We remark that
we only deal with aspects of pure satisfaction (i.e.: CSP). In the context of constraint
optimization, it is well known that relaxations do not preserve optimality. This is an
interesting, but much more complex issue.

By reading the research carried out in dynamic constraint satisfaction, we found that
the terms robustness and stability are sometimes used interchangeably. Some authors
refer to robust solutionswith the same meaning that others use forstable solutions.
For instance, one of the recent papers regarding dynamic constraint satisfaction [20]
states that the strategies that have been devised to handle CSPs are ”methods for find-
ing robust solutions that are either more likely to remain solutions after change or are
guaranteed to produce a valid solution to the altered problem with a fixed number of as-
signment changes”. In the Handbook of Constraint Programming [16], the authors state
that ”There are three key concerns in solving dynamic CSPs. The first is to minimize
the need for change, and thus to find robust solutions that arelikely to remain solutions
even after the change has occurred, or to need only minor ’repairs’”.

In engineering, there is a clear agreement to distinguish between stable and robust
concepts. However, the difference between stable and robust CSP solutions is not clearly
stated. Robustness in CSP has multiple, sometimes conflicting, interpretations [11]. In
some areas, robustness has been assimilated to stability [23] and more appropriately,
CSPs with temporal constraints has been related to noise tolerance [14], etc. Even in
related areas such as Operation Research, the multiple meanings accorded to the term
”robust” are open to debate [17]:Robustness can be related to, or integrated into, the
notions of flexibility, stability, sensitivity and even equity. In constraint satisfaction, only
a few works make a tiny distinction between robustness and stability [9], [6]. However,
we consider that robustness and stability terms should be clearly distinguished, since
they represent different behaviors of a CSP’s solution after changes in the environ-
ment: Robust solutions refer to solutions that are either more likely to remain valid after
change, whereas stable solutions are solutions that can adapt to a new valid solution
with only few assignment changes to variables.

In this paper, we focus our attention on the ’robustness’ and’stability’ concepts
in CSPs. We propose general engineering-based and clearly different definitions for
robust and stable CSP solutions. Moreover, we also introduce the concepts of ’recover-
ability’ and ’reliability’ which are relevant in real-world temporal-CSP domains. Clear
and common definitions are needed to be able to evaluate different alternatives. After-
wards, new research lines will arise: How can we assess the robustness or stability of a
solution? What does it guarantee? How can we get a more robustsolution? What is the
relationship between robustness and other problem parameters, such as optimality and
constrainedness? Is it possible to obtain a model of robustness?, etc.

Following some standard notations and definitions in the literature, we have sum-
marized the basic definitions that will be used throughout this paper.

Definition 1. A Constraint Satisfaction Problem (CSP) is a tripleP =< X, D, C >,
whereX is a finite set of variables{x1, x2, ..., xn}, D is a set of domainsD = {d1, d2,
..., dn} such that each variablexi ∈ X has a finite set of possible valuesdi, andC is a
finite set of constraintsC = {C1, C2, ..., Cm} that restrict the values that the variables
can simultaneously take.

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 3

Definition 2. The Solution Space is the portion of the search space(
∏

i=1,n di) that
satisfies all constraints. A solutionS is afeasibleinstantiation of all variables, that is, it
satisfies all constraints.

2. Incidences (or changes) in CSPs

Since many real problems are dynamic, unexpected incidences in the problem scenario
occur due to its dynamism, spurious actions, lack of complete knowledge, etc. Let’s
Z = {z1, z2, ..., zi, ...zm} be the finite set of possible incidences that can occur in
the future, which give rise to the finite set of possible changes in the CSP that models
the problem. Let us also assume that eachzi ∈ Z is causally independent and has a
probabilityp(zi) to occur. By applying the concept of probability distribution overZ,
we introducepd(zi) = p(zi)

P

zj∈Z p(zj)
, as the normalized probability function overZ, such

thatpd(zi) describes the relative likelihood forzi to occur and
∑m

i=1 pd(zi) = 1.
Each incidencezi ∈ Z can be modeled as a finite set of changes in variable do-

mains or constraints. Since changes in domains can be represented as unary constraints,
it can be assumed that each incidencezi can be represented by a finite set of changes
(restriction or relaxation) of constraints. In this paper,we are interested in robust-
ness issues and how a CSP solution maintains its feasibilityafter occurrence of pos-
sible incidences. Therefore, we assume that, as incidencesoccur, the previous set of
constraints always remains, so that the solution space can only be reduced. Thus, we
will only consider changes that restrict the solution space(i.e.: add new constraints
to the previous existing ones). The removal or relaxation ofconstraints is not con-
sidered here since it does not restrict the solution space. Therefore, each possible in-
cidencezi ∈ Z is modeled as a new set of constrainsCzi to be added to the ini-
tial set of constraints, making the problem more restricted, or even inconsistent. Thus,
the final CSP, after the occurrence of the whole set of incidences{z1, z2, ..., zm} is
CSPZ =< X, D, C ∪ Cz1 ∪ Cz2 ∪ ∪ Czm >. Due to the declarative nature of the
model, the order is not relevant.

We assume the incidences only restrict, but do not make emptythe initial solution
space; otherwise the problem would become inconsistent. Therefore, some of the fea-
sible solutions of the initialCSP are also solutions of the final CSP. We also assume
that we know the typology of expected incidents (and their probability). For example,
in scheduling, we can expect delays in task’s durations, ready-times, etc. Obviously, it
is not possible to determine the robustness-related features of a system if no informa-
tion about the incidences is given. In this last case, we can obtain a rough estimation by
means of the inclusion of random incidences (and random values forp(zi)) [5]. How-
ever, it is important to remark that, in the same way that a CSPmodels the real-world
problem, the set of incidences Z should also model the set of expected incidences that
can occur in the real-world. Thus, Z should not be a set of randomly generated mod-
ifications of the constraints and domains of the CSP, but rather the result of modeling
({Czi}) the set of possible changes ({zi}) that can occur in the real-world problem that
it is modeled by the CSP.

3. Robustness

Robustness is a common feature in our environment. Systems that belong to biolog-
ical life, chemical compositions, physical structures, isolated objects, etc. [18] per-

4 F. Barber and M.A. Salido

sist, remain running, and maintain their main features despite continuous perturbations,
changes, incidences or aggressions. Thus, robustness is a concept related to thepersis-
tenceof the system, its structure, its functionality, etc., against external interference:”A
system is robust, if it persists”.

Thus, in a general way, ”robustness” can be defined as the ability of a system to
withstand stresses, pressures, perturbations, unpredictable changes, or variations in its
operating environment without loss of functionality. A system that is designed to per-
form functionality in an expected environment is ”robust” if it is able to maintain its
functionality under a set of incidences. For example,an algorithm is robust if it contin-
ues to operate despite unexpected inputs or erroneous calculations.

Intuitively, the notion of robustness is easy to define, but its formalization depends
on the system, on its expected functionality, and on the specific set of incidences to be
confronted [15]. No general formal definition of robustnesshas been proposed, except a
few exceptions or particular cases. Specifically, Kitano [12] mathematically defines the
robustness (R) of a functional system (SY S) with regard to function (F) against a set
of perturbations (Z) as (in a simplified way):

RSY S
F,Z =

∫

Z

p(z) ∗ F (SY S, z)dz (1)

where,p(z) is the probability for incidencez ∈ Z, andF (SY S, z) is an evaluation
function that returns zero when the systemSY S fails underz or it returns a relative
viability]0, 1] otherwise. For instance,if production drops 20% under a certain pertur-
bation (z) compared with standard production, then 0.8 is returned.

Expression (1) formalizes how a system (SY S) is able to maintain a certain level
of its expected functionality (F) against a given set of perturbations (Z). According to
(1), a systemSY S1 is more robust thanSY S2 with regard to an expected functionality
F against a set of perturbationsZ when:

RSY S1

F,Z > RSY S2

F,Z (2)

The application of expression (1) is highly dependent on thesystem being assessed.
Let us apply (1) to CSPs:

– S is a solution of the CSP, whose robustness we want to assess. Robustness is a
concept related to CSP solutions, not to CSP itself. Thus, the systemSY S in (1) can
be related to the solutionS in a CSP.

– Z is the discrete set of unexpected incidences.
– F is the expected functionality of the system. In CSP, the expected functionality of a

solution is its feasibility.

Therefore, by applying (1), the robustness of a CSP solution(S) can be defined as
follows:

Definition 3. A solution (S) of a CSP isr−robust with respect to a set of incidences
Z, where eachzi ∈ Z has a normalized probability of occurrencepd(zi), when:

r(S, Z, P) = RS
F,Z,P =

∑

zi∈Z

pd(zi) ∗ F (S, zi) (3)

whereP is the set of normalized probabilities (P = {pd(zi), ∀zi ∈ Z}) and func-
tion F (S, zi) is the consistency ofS afterzi:

– F (S, zi) = 1 iff S also satisfiesC ∪ Czi.

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 5

– F (S, zi) = 0, iff S does not satisfyC ∪ Czi. More concretely, iffS does not satisfy
Czi.

Robustness of a solution represents its probability of remaining a solution of the
new problem after Z and it varies from 0 to 1 since

∑

zi∈Z pd(zi) = 1 andF (S, zi)

∈ {0, 1}. The greater itsr − robust, the more robust a solution is and more likely to
remain feasible after Z.

From expression (3), we can see that the algorithm for calculating the robustness
r − robust of a solution S against a set of incidencesZ is straightforward. It only
requires to check whetherS maintains its feasibilityF (S, zi) for each incidencezi ∈ Z.
Thus, for eachzi ∈ Z, the cost of checking its feasibility is O(n).

On the other hand, note that robustness does not require insensitiveness of the prob-
lem modeled by the CSP. For instance, the constraints of the problem could dramatically
vary due tozi, such thatCzi could greatly reduce the solution space. However, a robust
solutionS with respectCzi would remain feasible after the incidence.

Note that the robustness of a solutionS does not depend on the behavior ofS against
an incidencezi, but on how the feasibility ofS is maintained over a set of unexpected
incidencesZ. Thus, the robustness ofS depends on the probabilityp(zi) of each possi-
ble incidencezi ∈ Z and howCzi affects to the feasibility of the solutionF (S, zi). In
other words, the only way to characterize the robustness level of a given CSP solution
is to determine how its feasibility is maintained over several levels of probability of
incidences.

Note that we do not take into account other aspects, that haveusually been taken into
account when the robustness of a CSP solution is assessed by other authors (e.g.: the
number of variables that must change their values to make theinitial solution feasible
after the incidence, the number of unsatisfied constraints by the initial solution, etc.). In
our approach, a solution is not more/less robust under a given incidence if the solution
needs to be more/less repaired to deal with the incidence. Weclaim that robustness
cannot be assessed on the basis that only small changes are necessary to obtain a new
feasible solution. In problems related with satisfiability, robustness should be related to
feasibility maintenance.

3.1. Example

Let us apply the above definition (3) to the following example. Let P be a CSP with
two variablesx1 andx2 with domainsD1 : {3..7} andD2 : {2..6}, respectively. The
constraints are:

– C1 : x1 + x2 ≤ 12

– C2 : x2 + x1 ≥ 6

– C3 : x2 − x1 ≤ 2

– C4 : x1 − x2 ≤ 4

Figure 1 represents the solution space of the CSP, which is composed of 21 solu-
tions. Let us suppose the following setZ of expected incidences:

6 F. Barber and M.A. Salido

1 2 3 4 5 6 7 8 9

1

2

3

 4

5

6

7

C3: -X1 + X2 <= 2

C4: -X2 + X1 <= 4

C1: X1 + X2 <= 12

C2: X2 + X1 >= 6

X1

X2

Fig. 1.CSPP and its solution space.

Incidencezi Probabilityp(zi) Likelihoodpd(zi) zi → Czi

z1 0.45 0.15 {x1 + x2 <= 9, x2 <= 5}
z2 0.30 0.10 {x1 + x2 >= 10, x1 >= 4}
z3 0.75 0.25 {−x1 + x2 <= 0}
z4 0.90 0.30 {x1 − x2 <= 2}
z5 0.60 0.20 {x1 > 4}

The robustness of each solution can be assessed according toexpression 3. Then, we
can deduce that(x1 = 5, x2 = 3) and(x1 = 5, x2 = 4) are the most robust solutions,

according to the above set of expected incidences:R
(x1=5,x2=3)
Z = R

(x1=5,x2=4)
Z =

pd(z1) + pd(z3) + pd(z4) + pd(z5) = 0.9. Likewise,(x1 = 4, x2 = 6) is the least

robust solution:R(x1=4,x2=6)
Z = pd(z2) + pd(z4) = 0.4.

Even though the solution space of the above example is convex, note that it is not
required for assessing the robustness of CSP solutions, noran implicit representation
of the CSP constraints. Moreover, the robustness of each solution can be assessed inde-
pendently of the assessment of other solutions.

3.2. What does r-Robustness guarantee?

The more robust solution is, the more likely it will remain valid after changes in the
constraints. The following conclusions can be obtained from (3):(i) A 1-robust solution
is a solution that maintains its feasibility over the whole set of expected incidences,(ii)
a 0-robust solution is a solution that becomes inconsistentwith any expected incidence
that may occur, and(iii) an r-robust solution is a solution that maintains its feasibil-
ity over (100*r)% of probabilistically-pondered incidences. For instance, the solution
(x1 = 4, x2 = 2) of the above example is able to maintain robustness over 70% of the
expected likelihood incidences. Specifically, this solution is robust againstz1, z3 and
z4, which have an accumulated probability density of 0.7.

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 7

4. Stability

Stability is an old concept that derives from astronomy and physics [22]. Loosely speak-
ing, a solution (meaning an equilibrium state) of a dynamical system is said to bestable
if small perturbations to the solution result in a new solution that stays ”close” to the
original solution. Perturbations can be viewed as small differences that occur in the ac-
tual state of the system [11]. Therefore, by applying this informal definition to CSPs, a
solution is stable if small modifications of the constraint set allow a new solution (new
consistent variable assignment) that remains close to the original solution:

Sol(X, D, C) is stable (with respectzi, C ∪ Czi) iff
∃Sol(X, D, C ∪ Czi) : Sol(X, D, C) ∼= Sol(X, D, C ∪ Czi)

Definition 4. A solution S of a CSP iss-stable, with respect to an incidencezi, if
there exist a new feasible solution S in the s-neighborhood of S.

The neighborhood of solutions can be formally defined in terms of norms in the
n-dimensional space [8]. Thus above definition can be detailed as follows.

Definition 5. A solutionS = (x1 = v1, x2 = v2, ..., xn = vn) is s-stableif, given
an incidencezi, there is a solutionS′ = (x1 = v′1, x2 = v′2, ..., xn = v′n), such that:
‖S′ − S‖ < s, where‖.‖ is somen-dimensional norm defined in the solution space to
evaluate the difference betweenS andS′.

In relation to the implementation ofn-dimensional norms, we have:

1. Metric domains, we can apply the Euclidean distance betweenS andS′, with a op-
tional weighted factorρi for each assigned variablexi:

√

√

√

√

n
∑

i=1

ρi(x′

i − xi)2 (4)

but normalizing with the maximum distance between any two tuples in the space
of solutions. Note that the domains{di} are finite in a CSP. Thus, the normalized
relative distance in a metric domain betweenS andS′ becomes:

‖S′ − S‖z =

√

∑n
i=1 ρi(x′

i − xi)2
√

∑n
i=1 ρi | di |2

(5)

Note that the similarity given in (5) betweenS andS′ may be very low if the two
solutionsS andS′ are very close in then-dimensional space even though all the
variables ofS change their values. Thisn-dimensional norm measures the relative
distance betweenS andS′, such that‖S′ − S‖z ∈ [0, 1] due to a change in the value
of one or all variables.

2. Non-metric domains (like non-ordered sets of values), the Hamming distance (H)
can be applied. Thisn-dimensional norm measures the number of variables that have
different values inS andS′. Therefore, the distance betweenS andS′ on non-metric
domains can be defined as:

‖S′ − S‖z =

∑n

i=1 ρiH(x′

i, xi)

n
(6)

whereH(x′

i, xi) is equal to 0 iffx′

i = xi, and 1 otherwise. The expression is nor-
malized with respect ton, such that this criterion evaluates the relative number of
variables that change their values and‖S′ − S‖z ∈ [0, 1]. Note that this concept is
related to the super-solution concept given in [10].

8 F. Barber and M.A. Salido

These measures evaluate the closeness of solutions in the space of solutions. There-
fore, given an incidencezi, the s-stability for a solutionS quantifies the distance to
S of the closest feasible solutionS′ in then-dimensional space of the CSP, by apply-
ing expression 5 or 6 depending on metric or non-metric domains. In other words, we
should determine how much the new solutionS′ differs from the initial oneS in order
to address the incidence. A robust solution is a 0-stable solution.

The proposed measures of s-stability require finding a solution in the closest neigh-
borhood ofS, among the complete set of new feasible solutions, such thatdeviation
with respect to the previous solutionsS is minimized. Let us denoteN(S, zi) as the
value of‖S′ − S‖ for the closest solutionS′ to S, after the occurrence ofzi:

N(S, zi) = minS′‖S′ − S‖ (7)

Note thatN(S, zi) = 0 iff F (S, zi) = 1 (i.e.: S satisfiesCzi).
According to definition 5, we can define the s-stability (STA) of a solution (S)

against a given set of perturbationsZ with a probabilityP as:

s(S, Z, P) = STAS
Z,P =

∑

zi∈Z

pd(zi) · N(S, zi) (8)

whereP is the set of normalized probabilities (P = {pd(zi), ∀zi ∈ Z}). STAS
Z

varies from 0 to 1 in both cases, metric and non-metric CSPs. The lower its s-stability
is, the more stable the solution is.

Obtaining stability of a CSP solution implies obtainingN(S, zi) for eachzi ∈ Z,
which derives in a Constraint Satisfaction and Optimization Problem (CSOP) whose
constraints areC∪Czi and whose optimality criteria is to minimize‖S′−S‖ (Equation
7). In general, solving a CSOP is NP-hard. However, this computational cost can be
reduced by searching for a solution S’ in the closest neighborhood ofS. Note that the
notion of distance between S’ and S should take into account whether or not the domain
is metric. Therefore, an incremental process can be defined (Algorithm 1 for metric-
domains and Algorithm 2 for non-metric domains). In Algorithm 1, each iterationk in
the process has a cost(2∗k∗δ)n, such that the computational cost for obtaining stability
of a solution can be decreased if a solution exists in the close neighborhood of S. In
Algorithm 2, each iterationδ in the process has a cost

(

n
δ

)

(di)
δ. Thus, computational

cost for obtaining stability of a solution can be decreased if a solution exists in the close
neighborhood of S.

Algorithm 1 Incremental Stability Process for obtainingN(S, zi) in metric domains.

Let CSP =< X, C, D >, let S = (v1, v2, ..., vn) be a solutionS of the CSP, and let
δ be the granularity of the search process.
k=1;
NSz = 1;
repeat

if ∃S′, a solution toCSP ′ =< X, C ∪ Czi, D
′ >, where

D′ ⊆ D: d′j = {[vj − k ∗ δ], [vj + k ∗ δ]} ∩ dj , ∀j ∈ 1..n then
NSz =‖S′ − S‖;

else
k=k+1;

end if
until D′ * D
return NSz;

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 9

Table 1.Stability of some robust solutions{(5,3), (5,4)} and a non-robust solution (4,6).
Solution Closest sol. Closest sol. Closest sol. Closest sol. Closest sol. Robustness Stability
(x1, x2) with z1 with z2 with z3 with z4 with z5

(5,3) satisfies (6,4) satisfies satisfies satisfies 0,9 0.14/
√

50

(5,4) satisfies (6,4) satisfies satisfies satisfies 0,9 0.1/
√

50

(4,6) (4,5) satisfies (5,5) satisfies (5,6) 0,4 0.7/
√

50

4.1. Example

Let’s apply the above definition of stability (8) to the previous example (Figure 1) for
the most and least robust solutions.

For instance, the stability of solution(4, 6), according to expression (8), is:

STA
(4,6)
Z =

0.15 ∗ 1 + 0.25 ∗
√

2 + 0.2 ∗ 1√
52 + 52

=
0.7√
50

(9)

Thus, following Table 1,(x1 = 5, x2 = 4) is the most robust (0.9) and the most
stable solution (0.1/

√
50) according to the given set of expected incidences.

4.2. What does s-stability guarantee?

Stability of a solution S represents the expected minimum normalized distance between
S and a new feasible solution of the new problem after Z. The more stable the solution,
the less need for change will be necessary to obtain a new solution after changes in the
constraints. The following conclusions can be obtained from (Expression 8):

– A solution S, withSTAS
Z = 0, is a 1-robust solution. It is fully stable over the whole

set of expected incidences.
– A solution S of a non-metric CSP, withSTAS

Z = n, requires changing the assign-
ments of the whole set of variables to become consistent against any expected in-
cidence that may occur. A solution S of a metric CSP, withSTAS

Z = 1, requires
moving to the far extreme point of the solution space to become consistent against
any expected incidence that may occur.

– A solution S of a non-metric CSP, withSTAS
Z = k, requires changing k variables,

as average, to become consistent over the whole set of probabilistically-pondered

Algorithm 2 Incremental Stability Process for obtainingN(S, zi) in non-metric domains.

Let CSP =< X, C, D >, and letS = (v1, v2, ..., vn) be a solutionS of the CSP.
δ=1;
NSz = n;
repeat

if ∃ S′ = (v′1, v
′

2, ..., v
′

n), a solution to CSP’=< X, C ∪ Czi, D >, where
∑n

j=1 H(v′j , vj) = δ then
NSz =δ;

else
δ = δ + 1;

end if
until δ = n
return NSz;

10 F. Barber and M.A. Salido

incidences. A solution S of a metric CSP, withSTAS
Z = k, requires moving to a

distance(k ∗
√

∑n

i=1 d2
i), as average, to become consistent over the whole set of

probabilistically-pondered incidences.

5. Temporal Constraint Satisfaction Problems

A Temporal Constraint Satisfaction Problem (TCSP) is a subtype of CSPs, where vari-
ables represent temporal primitives (time points or temporal intervals), such that inter-
pretation domain is the time, variable assignments are temporally ordered and solutions
have a temporal interpretation [7], [2]. This is the typicalcase of scheduling problems,
where variables can be instantiated on the time line (see Figure 2) so that they can be
associated to starting or ending times of tasks (see Figure 3).

Besidesrobustness andstability concepts, in TCSP, not only is it important to
know how different the new feasible solutionS′ is from the original oneS, given an in-
cidencezi (i.e.: stability), but it is also important to know(i) how longthe new solution
S′ differs from the initial solutionS (recoverability), and(ii) how long the actual solu-
tion S can be maintained after the incidence (reliability). Therefore, two new properties
appear in relation to thetemporal stabilityor temporal robustness: recoverabilityand
reliability.

An example of TCSP: A Scheduling Problem

Figure 3a shows a TCSP that represents a flow-shop schedulingproblem with two
jobs J1, J2, each of which has three activities(x1i, x2j , i, j = 1..3) and one resource
that should be shared by all activities. Each row corresponds to a job, and an activ-
ity (xij) is represented as a rectangle whose length corresponds to its duration. This
problem can be modeled as a TCSP, where variables represent time points (starting or
ending times) of different activities (xij.on, xij.off). There exist constraints that refer
to non-overlap and precedence constraints among activities. Moreover, it is known that
x23 should be performed at least k-units afterx22 (ConstraintC23−22). The first solu-
tion (Figure 3a) minimizes the makespan and it is consideredto be the optimal solution.
The projection of variablesxij on time represents the optimal assignment of variables
of the TCSP.

5.1. Recoverability

Recoverability refers to the ability to restore a system to the point at which a failure oc-
curred. Despite proactive approaches, it is clear that robustness is not always completely
guaranteed. Therefore,recovery strategiesshould be used once disturbing events occur
in order to keep the feasibility of the pre-computed solution. Robustness and recover-
ability are closely related and, in some optimization frameworks, they have been unified
into an integrated notion ofrecoverable robustness[13]. For TCSP, where solutions are
projected over time, the recoverability of a solution can bemeasured by the required
amount of time (δt) (after an incidencezi occurs) to restore part of the initial solution
(Figure 2). Therefore, it must be taken into account that temporal variables, in a solu-
tion of a TCSP, are distributed over time, so we can define thata δt-recoveredsolution
maintains the same assigned values in the variables fromδt after the incidence:

Solδt(X, D, C ∪ Czi) ≡ Solδt(X, D, C)

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 11

TIME

δ

(the initial solution is restored after t+δt

time when incidence occurs)

...

variables are instantiated over time Sol

h-recoverable

Fig. 2.Recoverability of a solution in a TCSP.

whereSolδt covers the set of variables fromδt after the incidence (Figure 2). The
objective of a recovery process is to minimizeδt. Likewise, since the variables of a
TCSP are temporally ordered (i.e., they are instantiated over time), the objective of a
recovery process is to minimize the set of variables, from time t (when the incidence
occurs) tot + δt that require changing their values in order to obtain a new feasible
solution.

Definition 6. A TCSP solution S ish-recoverableiff, at mosth variables (consecu-
tive variables after the incidence occurs) require changing their values in order to obtain
a new feasible solutionS′.

Variables of a TCSP are instantiated over the time line, suchthat variables of a so-
lution S = (x1 = v1, x2 = v2, ..., xn = vn) are temporally ordered. Thus, as corollary
of Definition 6, in a h-recoverable solutionS = (x1 = v1, x2 = v2, ..., xn = vn), given
an incidencezi that occurs int (vk < t ≤ vk+1) the incidence affectsS in the temporal
interval [t, t + δt], such that the variablesx1, ..., xk andxk+h+1, ..., xn can maintain
their initial values, while the variables in the interval[t, t + δt] (xk+1, ..., xk+h) must
change their values (v′k+1, ..., v

′

k+h) (see Figure 2). The initial solution is recovered
afterxk+h,that is aftert + δt.

Note that the definition of h-recoverability is similar to the definition of(h, 0)−super
solutionswhere ifh variables lose their assigned values, another solution canbe found
by reassigning a new value to these variables.

The only difference is that, inh−recoverability, the variables to be repaired are
consecutive over time, while, in (h,0)-super solutions, the variables to be repaired are
not consecutive.

From Definition 6, it can be concluded that0 ≤ h-recoverability≤ n. The lower is
h-recoverability, the more recoverable a solution is. A 0-recoverable solutionS does not
require changing any variable after incidence in order to maintain the feasibility ofS
(equivalent to 1-robust solution) Ann-recoverable solutionS does require changing all
the variables after incidence. Thus,h-recoverability can be considered to be a temporal
s-stability.

5.2. Reliability

In engineering, reliability is associated to the confidencethat a system will perform its
intended function during a specified period of time under stated conditions, as well as
under unexpected circumstances. Mathematically it can be expressed as:

R(t) =

∫

∞

t

f(x)dx (10)

12 F. Barber and M.A. Salido

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X22.off

X23.on

X23.off

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X22.off

X23.on

X23.off

a

b Incidence

X11.on

X11.on

X22.on

X22.on

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X’21.off

c

X11.on

Incidence: X21.off delayed

X’22.off

X’22.on

TIME

X12.on

X21.on

X11.off X12.off

X13.on

X13.off

X21.off X’22.off

X’23.on

X’23.off

d

X11.on

X22.on

Incidence: X22.off delayed

t t+ t

t+ tt

C22-23

C22-23

C22-23

C22-23

X23.on

X23.off

Fig. 3. A scheduling problem: four solutions.

wheref(x) is the failure probability density function andt is the length of the
period of time (which is assumed to start from time zero). There is always some chance
for failure, butR(t) means that the system has a specified probability that it willoperate
without failure before timet.

In TCSP, variables of solution are distributed over time. Thus, a solution found
initially may be invalid for variables that are related to a time greater thanδt after
incidence. Thus, by applying the above concepts, we can assess that a TCSP solution
is δt-reliable, if given an incidencezi at timet, the solution remains valid untilt + δt
(Figure 4). Thus, the set of variables that represent the solution of the problem from
time t to t + δt maintain their assigned values:

Solt→δt(X, D, C ∪ Czi) ≡ Solt→δt(X, D, C)

whereSolδt covers the set of variables from timet to t + δt. The way to obtain
a reliable solution is to maximizeδt, or alternatively, to maximize the set of variables

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 13

TIME

δ

time when incidence occurs)

...

(the initial solution is maintained until t+δt

u-reliable

Fig. 4. Reliability of a solution in a TCSP.

from time t, (when incidence occurs) tot + δt) that can maintain their values (Figure
4).

Similarly to recoverability, the reliability of a solutionS can be defined in terms of
the number of assignments inS that remain valid after the incidence occurs (i.e., they
can take part of a solution ofTCSPZ).

Definition 7. A TCSP solution S isu-reliableif, at least,u assignments of variables
in S (consecutive variables after the incidence occurs) can take part of a solution of the
TCSPZ .

As corollary of Definition 7, in a u-reliable TCSP solutionS = (x1 = v1, x2 =
v2, ..., xn = vn) given an incidencezi that affects the problem int, wherevk <
t ≤ vk+1, the assignments of variables(x1 = v1, x2 = v2, ..., xk = vk, xk+1 =
vk+1, ..., xk+u = vk+u), 1 ≤ k + u ≤ n, can take part of a solution ofTCSPZ , while
the variables fromt+δt (x′

k+u+1, ..., x
′

n) must change their values (v′k+u+1, ..., v
′

n) (see
Figure 4). The initial solution is maintained fromxk to xk+u, that is fromt to t + δt.

As in the above case, from Definition 7, it can be concluded that 0 ≤ u-reliability
≤ n. The greater the u-reliability is, the more reliable a solution is. A 0-reliable solution
S cannot maintain values in any variable after incidence for maintaining feasibility ofS.
A n-reliable solutionS can maintain the assigned values in all variables. Therefore, we
can consider that u-reliability is a concept that is relatedto the temporary maintenance
of robustness from time of occurrence. Moreover, a n-reliable solution is a 0-recoverable
solution, which can also be considered to be a temporally 0-stable or 1-robust solution.

Note thath-recoverabilityandu-reliability of a solutionS are not contradictory nor
complementary concepts. If an incidence occurs at timet, (i) the initial solutionS can
be maintained feasible fromt until t+ δu(u variables), and (ii) the initial solution S can
be restored fromt + δh (h variables), whereδu ≤ δh. Of course, (h-recoverability +
u-reliability)≤ n.

Recoverability and Reliability in the example

With respect to the scheduling problem presented in Figure 3, Figure 3b shows a
robust solution. To this end, some buffer times have been included between some ac-
tivities in order to absorb incidences. For instance, if a resource is broken for a short
time, (Incidence in Figure 3b), the solution is not affectedby the incidence. Thus, all
assignments to variables remain valid. Furthermore, this solution is also stable. If vari-
ablesx21.off , x22.off , x12.off or x13.off are minimally delayed, the rest of the vari-
ables maintain the same values. Moreover, the typical trade-off between robustness and
optimality can be observed in Figure 3a/b.

14 F. Barber and M.A. Salido

Figure 3c shows a 3-recoverable solution for an incidencez: ”x21.off is delayed to
x′

21.off in time t”. In this case, only 3 variables must change their values (x21.off ,
x22.on, x22.off), while assigned variables with assigned values greater than t + δt,
(x12.on, x12.off , x13.on, x13.off , x23.on, x23.off), do not require change their values.
On the other hand, Figure 3d shows a 4-reliability solution for an incidencez: x22.off

is delayed tox′

22.off in time t. In this case, the next 4 variables (x12.on, x12.off , x13.on,
x13.off) do not change their values. The solution is maintained until t + δt. However,
activity x23 must satisfyC23−22, such thatx23.on and further variables must change
their values.

6. Generalizing concepts

In the previous sections, the concepts of robustness, stability, recoverability, and reli-
ability have been defined by analyzing how a solutionS absorbs or can be adapted to
cope with an incidencezi. These concepts can be generalized, such that we can assess
the achievable levels of robustness, stability, recoverability, and reliability of solutions
of a CSP for a given typology of incidences{zi, pd(zi)}, a desired level of optimality
of solution, and a given constrainedness of the CSP which is inherent to the problem.
Thus:

– Robustness guarantees that perturbations can be absorbed by the solution. Thus, ro-
bustness decreases as the level of incidences increases.

– Stability guarantees that the consequences of perturbations can be minimized by the
new solution. Thus, stability decreases as the level of the incidences increases.

– A low-restricted CSP with a large solution space will usually allow more robust and
stable solutions.

– A more optimized solution will usually be more sensitive to changes in the envi-
ronment. Optimal solutions are usually located at edges of solution’s space where
robustness is lowest. There exists a clear trade-off between robustness and optimal-
ity/quality [4].

These ideas introduce the main concepts to which robustness, stability, recoverabil-
ity, and reliability of solutions in CSP are related and appear in many CSP’s applications
[1]. Figure 5 represents the existing relationship among robustness, stability, recover-
ability, and reliability of solutions with:(i) the constrainedness of CSPs (which is a
problem-dependent feature);(ii) the incidence level (which is a feature of the problem
and/or application scenario; and(iii) optimality of S (which is a feature of each solu-
tion). Thus, typology of expected incidences and their stochastic features, optimality of
solutions, and constrainedness of problems are the main factors that limit the desired
level of robustness, stability, recoverability, and reliability of solutions in CSPs. A more
detailed model of robustness would allow us to parameterizethe implicit relations pre-
sented in Figure 5, by relating the concepts of robustness with the characteristics of the
problems or their application scenarios.

The evaluation of the robustness, stability, recoverability, and reliability of a solution
S can be viewed as a guarantee of the behavior ofS with respect to the expected set
of incidencesZ. Moreover, recoverability and reliability can be considered as forms of
partial robustness, where part of the solution remains valid. Likewise, the concepts and
situations described in this section occur not only with TCSP, but more generally with
dynamic CSP [9, 5] and, particularly, with Planning and Scheduling problems modeled
as CSP.

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 15

Problem’s

Constrainedness

Robustness, Stability,

Recoverability, Reliability

Incidence’s

Degree

Optimality

A more robust, but less

optimized solution

A more optimized, but

less robust solution

Fig. 5.Robustness and problem-related concepts.

7. Conclusions

While expressivity, efficiency, and optimality have been the typical goals in the devel-
opment of CSP techniques, there are robustness-related issues that have received less
attention. However, robustness requirements have a clear relevance in dynamic environ-
ments (usually with incomplete or imprecise knowledge). This work aims to review the
concepts of robustness, stability, recoverability, and reliability in dynamic Constraint
Satisfaction Problems. This supposes an advance in the state of the art in constraint pro-
gramming, and new models and techniques can be developed to achieve this properties
in CSP solutions.

The general notion of robustness includes several different concepts. Despite the
existence of several works on dynamic CSP, there is still no clear and common definition
of robustness-related concepts. In this paper, these concepts have been characterized and
formalized, such that they can be used, in a general way, to assess robustness-related
features of solutions in CSPs.

In this paper, a definition and formalization of these concepts has been proposed,
on the basis of their meaning in other areas of science, as well as on how they can
be evaluated, and what it guarantees. They can be used, in a general way, to assess
robustness-related features of solutions in CSPs. Particularly, the introduced concepts
have been applied to simple problems, which allows us to contrast the differences be-
tween them, as well as, the different ways that a solution canreact to incidences: it
can bemaintained, it can beadapted, it can bemaintained during(or restored after)
a given time. This different behavior becomes relevant whena CSP is applied to solve
real-world problems in a dynamic and partially unknown world. From this point, other
relevant issues remain open. Particularly, the design of efficient algorithms for obtaining
robust, stable, recoverable and reliable solutions is subject of relevant research lines.

Acknowledgments

This work has been partially supported by the research project TIN2013-46511-C2-
1 (MINECO, Spain). We would also thank the reviewers for their efforts and helpful
comments.

16 F. Barber and M.A. Salido

References

[1] M. Abril, F. Barber, L. Ingolotti, M. A. Salido, P. Tormos, and A. Lova. An assessment of railway capacity.
Transportation Research Part E, 44(5):774–806, 2008.

[2] F. Barber. Reasoning on intervals and point-based disjunctive metric constraints in temporal contexts.
Journal of Artificial Intelligence Research, 12:35–86, 2000.

[3] R. Bartak and M. A. Salido. Constraint satisfaction for planning and scheduling problems.Constraints,
16(3):223–227, 2011.

[4] D. Bertsimas and M. Sim. The price of robustness.Operations Research, 52(1):35–53, 2004.
[5] L. Climent, R. Wallace, M. Salido, and F. Barber. Modeling robustness in csps as weighted csps. InInte-

gration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems
CPAIOR 2013, pages 44–60, 2013.

[6] L. Climent, R. Wallace, M. Salido, and F. Barber. Robustness and stability in constraint programming
under dynamism and uncertainty.Journal of Artificial Intelligence Research, 49(1):49–78, 2014.

[7] R. Dechter. Temporal constraint network.Artificial Intelligence, 49:61–295, 1991.
[8] M. Hazewinkel. Encyclopaedia of mathematics. Springer, 2002.
[9] E. Hebrard. Robust solutions for constraint satisfaction and optimisation under uncertainty. phd thesis.

University of New South Wales, 2007.
[10]E. Hebrard, B. Hnich, and T. Walsh. Super solutions in constraint programming. InIntegration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR-04),
pages 157–172, 2004.

[11]E. Jen. Stable or robust? what’s the difference?Complexity, 8(3):12–18, 2003.
[12]H. Kitano. Towards a theory of biological robustness.Molecular Systems Biology, 3(137), 2007.
[13]C. Liebchen, M. Lbbecke, R. Mhring, and S. Stiller. The concept of recoverable robustness, linear pro-

gramming recovery, and railway applications.LNCS 5868, 2009.
[14]P. Papapetrou, G. Kollios, S. Sclaroff, and D. Gunopulos. Mining frequent arrangements of temporal

intervals.Knowledge and Information Systems, 21:133–171, 2009.
[15]A. Rizk, G. Batt, F. Fages, and S. Solima. A general computational method for robustness analysis with

applications to synthetic gene networks.Bioinformatics, 25(12):168–179, 2009.
[16]F. Rossi, P. van Beek, and T. Walsh. Handbook of constraint programming.Elsevier, 2006.
[17]B. Roy. Robustness in operational research and decision aiding: A multi-faceted issue.European Journal

of Operational Research, 200:629–638, 2010.
[18]E. Szathmary. A robust approach.Nature, 439:19–20, 2006.
[19]G. Verfaillie and T. Schiex. Solution reuse in dynamic constraint satisfaction problems. InProc. of the

12th National Conference on Artificial Intelligence (AAAI-94), pages 307– 312, 1994.
[20]R. Wallace, D. Grimes, and E. Freuder. Solving dynamic constraint satisfaction problems by identifying

stable features. InProceedings of International Joint Conferences on Artificial Intelligence (IJCAI-09),
pages 621–627, 2009.

[21]D. Wang, Q. Tse, and Y. Zhou. A decentralized search engine for dynamic web communities.Knowledge
and Information Systems, 26(1):105–125, 2011.

[22]S. Wiggins. Introduction to applied nonlinear dynamical systems and chaos. Springer, 1990.
[23]Y. Zhou and W. Croft. Measuring ranked list robustness for query performance prediction.Knowledge

and Information Systems, 16:155–171, 2008.

Robustness, Stability, Recoverability and Reliability inConstraint Satisfaction Problems 17

Author Biographies

Federico Barber is Full Professor in the Department of Computer Science at Univer-
sidad Politcnica de Valencia, where he leads a research teamin artificial intelligence.
He has worked on the development of temporal reasoning systems, Constraint Satisfac-
tion Problems, planning and scheduling. He is the author of several articles, published
in international journals and conferences. His research has produced several tools for
solving real-world constrained optimization combinatoryproblems. He has participated
in and led national and European research projects related to these areas, and has led
several technology transference projects to relevant companies. He is the current presi-
dent of the IberoAmerican Society of Artificial Intelligence (IBERAMIA) and member
of several scientific committees and associations. More information can be found at:
http://users.dsic.upv.es/ fbarber

Miguel A. Salido is Associated Professor in the Department of Computer Science at
Technical University of Valencia. His expertise area is focused on constraint program-
ming and its application to planning and scheduling problems. He is the author of more
than 80 papers published in international journals and conferences. He is PC member of
international conferences in the area: IJCAI, AAAI, ECAI, ICAPS. He has participated
in several national and European research projects. More information can be found at:
http://users.dsic.upv.es/ msalido/.

