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Abstract  
 
Abstract – In recent years the omics disciplines have made their way across a wider spectrum of 
research groups, thus leading to the generation of multi-omics data sets in a great number of 
studies. While traditional omics studies only focused on a single biological level, the multi-omics 
approach has the potential of studying systems in further detail. However, along with this great 
potential comes the challenge of integrating and analyzing data far more complex in nature than 
that of a single omic discipline.  
 
One of such multi-omics data integration challenges is exemplified by the EU-funded DENAMIC 
project, which investigated neurotoxic effects of low-concentration mixtures of pesticides and a 
number of common environmental pollutants in children using a Rattus norvegicus animal model. 
To meet this feat, several omics platforms were employed using brain tissue samples from rats 
treated with the aforementioned pollutants: proteomics, metabolomics and transcriptomics (RNA-
seq and miRNA-seq). Clinical data in the form of learning tests was obtained prior to brain tissue 
sample extraction as well.  
 
This project aimed to develop a strategy for the integration of multi-omics and clinical data for the 
DENAMIC experimental set up by means of creating multi-omic models regarding the neural 
response to toxic compounds, as well as to confirm previous conclusions of the DENAMIC project 
and to obtain new information about the global effect of pesticide developmental exposure at 
both molecular and physiological levels from a multi-omic point of view. 
 
The strategy presented here tackles the different challenges of integrative analysis: First, the pre-
processing of multi-omic data and the treatment of missing values; second, the establishment of 
potential associations between mRNAs, miRNAs, proteins and metabolites, while trying to filter out 
spurious associations to increase the mapping specificity; third, the visualization of these 
associations by mapping onto KEGG pathways, which allows the identification and study of relevant 
pathways and components for the various omics studied as well as their interactions; and finally, 
the association of molecular changes to phenotypic changes, as represented by the clinical data. 
The results obtained could potentially help locate markers of neurotoxicity and explain the 
molecular basis of impaired neurodevelopment. 
 
 
 
Keywords – multi-omic data integration, multivariate statistics, transcriptomics, proteomics, 
metabolomics, bioinformatics, neurobiology, pesticide exposure 
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Resumen 
 
Resumen – En los últimos años las ciencias ómicas se han hecho hueco en un espectro cada vez 
más amplio de grupos de investigación, lo que ha resultado en la generación de datos multiómicos 
en un gran número de estudios. Mientras que los estudios ómicos tradicionales se centraban en un 
único nivel biológico, el enfoque multi-ómico permite estudiar los sistemas en mucho más detalle. 
No obstante, este gran potencial viene acompañado del reto de interpretar y analizar datos de 
naturaleza más compleja que los de una única ómica. 
 
Un estudio que ejemplifica el reto de la integración multi-ómica es el proyecto Europeo DENAMIC, 
que investigó los efectos neurotóxicos de mezclas de pesticidas a bajas concentraciones y de 
contaminantes ambientales comunes en niños, utilizando como modelo animal Rattus norvegicus. 
Para ello, se emplearon distintas plataformas ómicas utilizando muestras cerebrales de ratas 
tratadas con los pesticidas mencionados anteriormente: proteómica, metabolómica y 
transcriptómica (tanto RNA-seq como miRNA-seq). Además, se obtuvieron datos clínicos mediante 
tests de aprendizaje realizados con anterioridad al sacrificio de las ratas y extracción de tejido 
cerebral.  
 
Este proyecto pretende desarrollar una estrategia de integración de datos multi-ómicos y clínicos 
para el diseño experimental del proyecto DENAMIC mediante la creación de modelos multi-ómicos 
relacionados con la respuesta neuronal a compuestos tóxicos, así como confirmar conclusiones 
extraídas en previas etapas del proyecto DENAMIC y obtener nueva información acerca del efecto 
global de la exposición a pesticidas durante el desarrollo a niveles tanto moleculares como 
fisiológicos desde un punto de vista multi-ómico.  
 
La estrategia que presentamos aborda los retos de los análisis de integración: en primer lugar, el 
pre-procesado de los datos multi-ómicos y el tratamiento de los valores faltantes. En segundo 
lugar, el establecimiento de asociaciones potenciales entre mRNAs, miRNAs, proteínas y 
metabolitos, tratando de filtrar asociaciones falsas. En tercer lugar, la visualización de dichas 
asociaciones en rutas biológicas de KEGG, permitiendo la identificación y el estudio de rutas y 
componentes relevantes para las distintas ómicas así como su interacción. Finalmente, la 
asociación de los cambios moleculares con los cambios en el fenotipo representados por los datos 
clínicos. Los resultados obtenidos podrían servir para la identificación de marcadores de 
neurotoxicidad y para explicar las bases moleculares en un neurodesarrollo deficiente. 
 
 
 
Palabras clave – integración de datos multi-ómicos, estadística multivariante, transcriptómica, 
proteómica, metabolómica, bioinformática, neurobiología, exposición a pesticidas  
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Resum 
 
Resum – En els últims anys, les ciències òmiques s'han fet lloc en un espectre cada vegada més 
ampli de grups d'investigació, la qual cosa ha donat com a resultat la generació de dades 
multiòmiques en un gran nombre d'estudis. Mentres que els estudis òmics tradicionals se 
centraven en un únic nivell biològic, l'enfocament multiòmic permet estudiar els sistemes amb 
molt més detall. No obstant això, aquest gran potencial ve acompanyat del repte d'interpretar i 
analitzar dades de naturalesa més complexa que els d'una única òmica. 
  
Un estudi que exemplifica el repte de la integració multiòmica és el projecte Europeu DENAMIC, 
que va investigar els efectes neurotòxics de mescles de pesticides a baixes concentracions i de 
contaminants ambientals comuns en xiquets, utilitzant com a model animal Rattus norvegicus. Per 
a això, es van fer servir distintes plataformes òmiques emprant mostres cerebrals de rates 
tractades amb els pesticides mencionats anteriorment: proteòmica, metabolòmica i 
transcriptòmica (tant RNA-seq com miRNA-seq) . A més, es van obtenir dades clíniques per mitjà de 
tests d'aprenentatge realitzats amb anterioritat al sacrifici de les rates i extracció de teixit 
cerebral. 
  
Aquest projecte pretén desenvolupar una estratègia d'integració de dades multiòmiques i 
clíniques per al disseny experimental del projecte DENAMIC per mitjà de la creació de models 
multiòmics relacionats amb la resposta neuronal a compostos tòxics, així com confirmar 
conclusions extretes en etapes prèvies del projecte DENAMIC i obtenir informació nova sobre 
l'efecte global de l'exposició a pesticides durant el desenvolupament, tant a nivells moleculars 
com fisiològics, des d'un punt de vista multiòmic. 
  
L'estratègia que presentem consisteix a abordar els reptes de les anàlisis d’integració. En primer 
lloc, el preprocessat de les dades multiòmiques i el tractament dels valors faltants. En segon lloc, 
l'establiment d'associacions potencials entre mRNAs, miRNAs, proteïnes i metabòlits, tractant de 
filtrar associacions falses. En tercer lloc, la visualització de les dites associacions en rutes 
biològiques de KEGG, permetent la identificació i l'estudi de rutes i components rellevants per a les 
distintes òmiques, així com la seua interacció. Finalment, l'associació dels canvis moleculars amb 
els canvis en el fenotip representats per les dades clíniques. Els resultats obtinguts podrien servir 
per a la identificació de marcadors de neurotoxicitat i per a explicar les bases moleculars en un 
neurodesenvolupament deficient. 
 
 
 
Paraules clau – integració de dades multi-òmiques, estadística multivariant, transcriptòmica, 
proteòmica, metabolòmica, bioinformàtica, neurobiologia, exposició a pesticides 
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1.  Introduction 
1.1.  The “omics”  disciplines 
 
High-throughput and large scale data began being recognized as a potent tool in research in the 
biological field with the first whole-genome sequencing effort, performed by Fleischmann et al. in 
1995, of the bacteria Haemophilus influenzae. This led to the development of various omics 
disciplines, each focusing on a certain type of biomolecule within a sample. Nowadays, over 30 
omics disciplines have been recognized, being metabolomics, proteomics, genomics and 
transcriptomics the most studied (Mayer, 2011). What makes the omics disciplines unique is the 
potential to study biological systems by gathering large amounts of data on as many targets as 
possible rather than focusing on a few elements at a single biological level.  
 
In this project we focus on metabolomics, proteomics and transcriptomics, whose main difference 
when compared to the genomics discipline is that where an organism only has one genome, an 
organism can have more than one metabolome, proteome or transcriptome, due to differences 
between tissues or cells, developmental stages and environmental stimuli. This allows for the 
comparison of results between different conditions to identify genes, metabolites and proteins 
that are differentially expressed in distinct cell populations, or in response to different treatments, 
which in turn leads to a further understanding in organism-wide changes, the finding of new 
biomarkers for diseases and more.  

1.1.1.  Transcriptomics 
 
Transcriptomics aims to study all RNA transcripts found in a sample, under specific circumstances 
or in a specific cell, using high-throughput technologies such as microarrays or RNA-seq. The key 
aims of transcriptomics include: cataloguing all species of transcript, including mRNAs, non-coding 
RNAs and small RNAs; determining the transcriptional structure of genes, in terms of their start 
sites, 5’ and 3’ ends, splicing patterns and other post-transcriptional modifications; and quantifying 
the changing expression levels of each transcript during development and under different 
conditions.  
 
Various technologies have been developed to deduce and quantify the transcriptome, including 
hybridization or sequence-based approaches. Hybridization based approaches have several 
inconveniences, including reliance upon existing knowledge about the genome sequence, high 
background levels due to cross-hybridization and a limited range of detection due to both 
background and saturation of signals. Sequence-based technologies previously consisted on the 
use of Sanger sequencing of cDNAs and ESTs, but with the development of novel high-throughput 
sequencing technologies, a new method for both mapping and quantifying transcriptomes has 
since taken over, termed RNA-seq (short for RNA-sequencing) (Wang et al., 2009).   
 
RNA-seq is the application of any next generation sequencing (NGS) technique to study RNA. While 
the sequencing techniques are generally the same as those used in the study of DNA, the library 
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preparation and analysis widely differs between the two. For example, RNA-seq library preparation 
usually includes reverse transcription. Also, data analysis of RNA-seq may include transcript 
assembly, alternatively spliced transcript, or novel transcript discovery and transcript 
quantification  (Chu & Corey, 2012). 
 
Very briefly, the methodology employed by RNA-seq can be divided into the following steps: (1) A 
population of RNAs from the problem sample is converted to a library of cDNA fragments with 
adaptors attached to one or both ends. (2) Molecules are sequenced with the high-throughput 
technology of the researcher’s choosing, such as the Illumina, Applied Biosystems SOLiD or the 
Roche 454 Life Science platforms, from one end or both ends (single-end sequencing and pair-end 
sequencing respectively). (3) Reads are aligned to a reference genome or reference transcripts, or 
assembled de novo without the genomic sequence. (4) A genome-scale transcription map that 
consists of both the transcriptional structure and/or level of expression for each gene is created. 
This methodology is represented graphically in Figure 1.  

  
Figure 1. A typical RNA-seq experiment (Wang et al. 2009).  

MicroRNA-seq (also known as miRNA-seq) is a type of RNA-seq in which small-RNAs are enriched so 
as to study the population of microRNAs in a sample using NGS technologies. MicroRNAs (miRNAs) 
are a family of 21–25-nucleotide small RNAs that negatively regulate gene expression at the post-
transcriptional level (He & Hannon, 2004). The mode of action of the mature miRNA in mammalian 
systems is dependent on complementary base pairing primarily to the 3’-UTR region of the target 
mRNA, thereafter causing the inhibition of translation and/or the degradation of the mRNA 
(Picardi, 2015). Due to the important regulatory function that these molecules have, miRNA-seq is 
implemented in transcriptomics analyses in many research projects.  
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1.1.2.  Metabolomics and Proteomics 
 
Proteomics is the large-scale study of proteomes, known as a set of proteins produced by an 
organism, system or biological context. The proteome is associated with the underlying 
transcriptome, but protein expression is also modulated by many other factors, thus the 
importance of its study. Metabolomics can be defined as the systematic study of the chemical 
fingerprints that cellular processes leave behind, in other words, the study of their small-molecule 
metabolite profiles. This is also known as the metabolome. 
 
Several high-throughput technologies have been developed to analyze proteomes and 
metabolomes, being the most prominent mass spectrometry (MS) based techniques and gel-based 
techniques (Griffiths & Wang, 2009). 

1.2.  Multi -omics integration 
 
Advances in high-throughput sequencing methods, mass spectrometry, computational power and 
algorithmic have coordinately led to a higher ability to acquire multivariate datasets from different 
omics disciplines due to increased efficiency and ease of use as well as decreased costs. 
 
When studying multi-omics data, besides a difference inherent to the biology and biochemistry of 
each sample, discrepancies can also be found in the results that each omics discipline contributes, 
which depend on the technical evolution of the instruments used, each carrying a set of 
advantages and disadvantages. This often leads to the acquirement of scattered information 
across the omics, each bound to miss part of the complexity of a biological system. This has led to 
an increased interest in the integration of multiple complementary components, interactional or 
functional states datasets, leading to a practice known as the integration of multi-omics, whose 
goal is to obtain a more holistic and complete picture of a biological system (Assche et al., 2015). To 
gain a bigger picture of the system considered, taking into account the inherent relationships 
between the different biological levels represented by each omic discipline can prove useful. The 
most well known relationship is the central dogma of molecular biology, which considers the 
transformation from genes to transcripts and from transcripts to proteins. However, more 
relationships exist, as portrayed in Figure 2 (Buescher & Driggers, 2016).  
 

 
Figure 2. Relationship between omics disciplines beyond the central dogma of molecular biology. 
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The integration of multi-omics data has not proven to be an easy task. Its complexity lies not only 
in the homogenization of data from different omics sources for comparison, but also in the lack of 
efficient statistic methods that permit a correct analysis. To battle these challenges, several 
consortiums and projects have been created, including the FP7 STATegra project (Stategra.eu, 
2016), lead by the Genomics of Gene Expression Lab at the Príncipe Felipe Research Center (CIPF), 
where the efforts reflected in this work were completed.  

1.3.  The DENAMIC project  
 
In recent years, concern has arisen regarding the association between an increased incidence of 
learning and developmental disorders in children and pesticides. Studies have shown that the 
developing central nervous system is often more vulnerable than the adult one. This is due to the 
fact that the blood-brain barrier, the immune system and the detoxification system are not 
completely matured until later on in life, thus making a child more exposed to toxic agents and 
insecticides  (Giordano & Costa, 2012; Llop et al., 2013). 
 
Many of the almost 200 chemicals known to be neurotoxic are developmental neurotoxicants, thus 
their ability to contribute to a variety of neurodevelopmental and neurological disorders when 
exposed in utero or during childhood. Furthermore, they could also lead to silent damage diseases 
that only manifest as the individual ages, and include Parkinson’s and Alzheimer’s (Giordano & 
Costa, 2012). Sadly, this exposure is fairly common, as insecticides are widely used in the domestic 
setting, even during pregnancy or in the presence of school-age children, according to studies 
conducted in several countries. Just considering the Spanish population, 54% of pregnant women 
of the INMA (Environment and Childhood) cohort were listed as using at least one type of pesticide 
(Llop et al., 2013).  
 
In light of this situation, the European commission-funded project DENAMIC (Developmental 
Neurotoxicity Assessment of Mixtures in Children) was born, with the objective of developing 
methods and obtaining results that could guide risk management in the European Union (EU) and 
World Health Organization (WHO) as well as support the EU chemicals legislation for identifying 
potential neurotoxicants. During its run from January 2012 to December 2015, this project 
investigated neurotoxic effects of low-concentration mixtures of pesticides and a number of 
common environmental pollutants in children, focusing on effects on learning (cognitive skills) and 
developmental disorders (such as Attention Deficit Hyperactivity Disorder (ADHD), autism spectrum 
disorders and anxiety disorders). The DENAMIC project was made up of a unique consortium of 13 
partners of numerous universities, research institutes, and small and medium enterprises (SME’s) 
with extensive knowledge of a wide range of technologies, such as chemistry, toxicology and omics 
techniques (Denamic-project.eu, 2016).  
 
Amongst the many partners that this project had, the Laboratory of Neurobiology at the Centro de 
Investigación Principe Felipe (CIPF), led by Dr. Vicente Felipo, was at the center of a collaborative 
work between several of the project’s members, whose objective was to assess the effect of 4 
different pesticides on the neurodevelopment of the animal model Rattus norvegicus, based on 
learning tests which evaluated motor and cognitive skills, as well as the analysis of various brain 
tissue samples by several omics disciplines (proteomics, metabolomics and transcriptomics). 
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Having analyzed the different omics individually, the Neurobiology lab wanted to obtain a more 
thorough look at the results obtained through an integrative multi-omics effort, thus reaching out 
to the Genomics of Gene Expression Lab, beginning a new scientific collaboration on which this 
work is based. 
 
To understand how the data was obtained, and where this work fits into the global scheme of the 
DENAMIC project, the details regarding the experimental set-up leading up to this work are 
explained in the following section.  

1.3.1.  Experimental  design  
 
The animal model used was Rattus norvegicus, more precisely, pregnant Wistar rats. In charge of 
carrying out all tasks associated with the care and study of the experimental animals was Dr. 
Felipo’s Neurobiology lab. To assess the effects of pesticide exposure on the offspring, the 
pregnant rats were treated with 4 different pesticides (as well as combinations of them and a 
control) starting on the seventh day of gestation through the end of their pregnancy. Once the 
offspring was born, the mothers continued being treated up until post-natal day 21, the babies 
receiving the pesticides through the mother’s milk. From post-natal days 60 to 75 these rats went 
through several learning tests to assess their cognitive and motor abilities. Finally, on post-natal 
day 90 the offspring litter was sacrificed and brain samples from the hippocampus, cortex, striatum 
and cerebellum were obtained for each rat. These samples were later sent to different labs, each 
specialized in a different field, for a thorough omic analysis (Figure 3). The UK-based company 
Proteome Sciences was assigned the task of performing a proteomic analysis on the samples, while 
the Vrije Universiteit Amsterdam (VU) was in charge of the metabolic analysis. Finally, the Spanish 
company Imegen was sent brain samples for the transcriptomic analysis. Having received most of 
the data from the corresponding entities, the Genomics of Gene Expression lab at the CIPF began 
working on the integration of the individual omics disciplines. These efforts are the topic of this 
project.  

 
 

Figure 3. Experimental timeline. The upper axis represents the moment in time (G: gestation day, P: post-natal 
day) and the lower axis the event that was carried out at that moment. Explanation found in text. 
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The pesticides employed in the treatment of the pregnant Wistar rats include endosulfan, 
chlorpyrifos, carbaryl and cypermethrin. These were chosen due to their representativeness of a 
larger group of pesticides commonly found in our environment.   
 
Due to the impracticality of maintaining live rats in large numbers confined in a limited space, the 
work was carried out in batches (or sets) of rats. Each set corresponds to a different moment in 
time, and the rats corresponding to each set were treated simultaneously. Each set consists on a 
combination of offspring rats born from pregnant Wistar rats treated with several of the 
aforementioned pesticides, and for each rat different brain tissues were obtained. The so-called 
Set 01, 03 and 10 were destined towards proteomics (Sets 01, 03 and 10) and metabolomics (Sets 01 
and 10, the latter’s data pending arrival) studies. For the transcriptomics analysis, different rats 
were used; samples were obtained from rats corresponding to 3 different experimental batches.  
However, for ease of understanding, we will refer to this combination of rat batches as the 
transcriptomics set. 
 
Due to the fact that the main objective of this work was to integrate different omics data, out of the 
3 sets destined towards proteomics and metabolomics it was decided to continue this analysis 
only for the data corresponding to Set 01, for which both metabolomics and proteomics data was 
available. Therefore, only Set 01 and the transcriptomics set were considered in this integrative 
effort, even though Sets 03 and 10 will be used in the future. Details regarding these two sets of 
samples are found in Tables 1 and 2. Set 03 and 10 details can be found in Attachment XII. 
 
Set 01 contains rats treated with the vehicle/control substance (VH), endosulfan (END), and 
cypermethrin (CYP). For all these rats, 4 tissue samples were obtained for the brain areas 
hippocampus (HP), cortex (CX), cerebellum (CB) and striatum (ST). Samples destined towards 
transcriptomics, on the other hand, sometimes consisted on a pool of rat sub-samples, thus 
complicating later associations with scores obtained by the rats in the learning tests. Also, only 
tissue samples for the HP and CB were obtained. The treatments performed on these include the 
vehicle substance (VH), endosulfan (END), and a combination of cypermethrin and endosulfan (CYP 
+ END).  
 
The learning tests performed valued both cognitive and motor abilities, and they included the 
Radial Maze test (Olton & Samuelson, 1976), the Morris Water Maze (MWM) test, the Beam Walking 
test and the Rotarod test (Jones & Roberts, 1968)  (Figure 4). The Radial Maze and the Morris Water 
Maze (MWM) tested cognitive skill, while the Beam Walking and Rotarod tested value motor skill.  
 
Metabolomics samples were subjected to targeted and untargeted cross platform metabolomic 
approaches using LC-HRTOF-MS, GC-HRTOF-MS, and shotgun HRTOF-MS (lipids). Proteomics 
samples were homogenized and labeled with TMT6plex or TMT10plex reagents. MS were acquired in 
the Orbitrap and TOP10 MS/MS were acquired for peptide identification and quantitation. For MS2 
quantitation, HCD-MS2 was acquired in the Orbitrap. For MS3 quantitation, MS2 was acquired in the 
ion trap using CID for identification. MS2 fragments ions were selected for further HCD-MS3 
quantitation in the Orbitrap. MS data was processed with Proteome Discoverer. This proprietary 
TMT-MS3 discovery proteomics workflow enables accurate profiling of any sample set for as many 
proteins as possible. 
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The samples pertaining to the transcriptomics set were sequenced using RNA-seq and miRNA-seq 
procedures. For RNA-seq, the Illumina HiSeq2000 platform was employed, obtaining 100b paired-
end reads. For miRNA-seq, the Illumina HiSeq2500 platform was employed, obtaining 51b non-
paired-end reads.  
 

Table 1. Set 01.  Colors correspond to the different sexes, green for Females and orange for Males. Each row 
represents a treatment. The first four columns represent the 4 tissues, and the numbers correspond to the 
number of samples obtained per sex and per treatment. The last column indicates the number of rats used 

per treatment (male or female), or the number of samples per tissue. Finally, the total number of rats for the 
set is indicated in the bottom row.  

 
Table 2. Transcriptomics set. Same as Table 1 except for the last column, which represents the total number of 

samples for each treatment. The final row represents the number of samples employed total (36).  

 
 
 

 
Figure 4. Learning tests performed on rats prior to sacrifice.  



Integration of multi-omics data to discover link between developmental exposure to pesticides and 
impaired neurodevelopment 

8 
 

 

2.  Objectives 
 
 
This work’s main objective is analyzing the data obtained from multiple omics disciplines through 
their integration to understand the molecular basis of impaired neurodevelopment due to 
developmental exposure to pesticides. 
 
To do so, data will be pre-processed to minimize noise not due to biological causes. An exploratory 
analysis will accompany the pre-processing stage, allowing for a close observation and 
surveillance of how changes affect the data. A differential expression analysis will then be 
performed in order to gain a better understanding of the changes occurred in each individual omic. 
Finally, the data will be integrated as a new source of information in the quest for finding relevant 
pathways and components that could potentially act as biomarkers of neurotoxicity and explain 
the molecular basis of impaired neurodevelopment. 
 
Therefore, the main objective can be divided into several milestones: 
 

1. Manage data coming from different sources and of different natures, formatting 
accordingly for its future use. 
 

2. Develop a pre-processing and exploratory analysis pipeline for all the omics disciplines 
provided. 
 

3. Perform a differential expression analysis for all the omics disciplines provided. 
 

4. Integrate data by visualizing changes in omics levels on biological pathways using the 
Paintomics tool. 

 
5. Relate these results with values obtained in learning tests and previously published 

literature to gain a better understanding of how pesticides affect neural function after 
their exposure in developmental stages.  
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3.  Materials  and Methods 
 

3.1.  The DENAMIC data 

3.1.1.  Proteomics,  Metabolomics and Transcriptomics data 
 
Data for numerous rat sets was supplied. However, as mentioned in the Introduction, only data 
pertaining to Set 01 was considered in this effort, as it was the only set with metabolomics and 
proteomics data, as well as the transcriptomics set.  
 
Proteomics  
 
The proteomics data came in the form of a relative quantification for all sets. According to the 
protocol provided by Proteome Sciences, peptide measurements for each sample were median-
scaled, and then a ratio was calculated with this value relative to the average measurement for the 
references used by the technology. This ratio was then log2-transformed. To obtain quantitative 
protein data instead of peptide data, the peptide matrix was transformed into a protein matrix 
(log2-ratios of the peptides median-summarized to a protein ratio in log2-scale). Missing values 
indicate that a protein was not detected. 
 
Out of the proteomics data received, only Set 10 (not considered in this effort) was pre-processed. 
However, as the idea is to include Set 10 in the integration analysis as soon as all data is available, 
we tried to homogenize the pre-processing methodology as much as possible to compare results 
for all Sets in the future in a more accurate manner. Therefore, we decided to apply the pre-
processing strategies used by the Proteome Sciences team on Set 10 across all data sets, as 
described in section 3.4.2.  
 
Metabolomics 
 
The metabolomics data came in the form of an absolute quantification of those metabolites 
detected by the technology employed (LC-HRTOF-MS and GC-HRTOF-MS). According to the 
metabolomics team, the values provided pertain to the highest peak divided by the sample weight 
used for the analysis (normalization by wet weight).  Missing values indicate that the metabolite 
was not found. This is not equivalent to 0 as the limit of detection depends on the compound.  
 
Transcriptomics 
 
We obtained miRNA-seq and RNA-seq data in the form of FPKMs per isoform. Sequencing reads had 
already undergone quality control using FASTQC software, used to evaluate quality distribution 
across reads, GC content, the presence of adapters, indexes and/or over-represented reads. 
Afterwards trimming was performed on all bases or complete reads that did not follow the pre-
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requisites set. Furthermore, reads were aligned to the reference genome using TopHat2 and 
expression was quantified using Cufflinks.  

3.1.2.  Clinical  data 
 
As mentioned in the Introduction, learning tests were performed on our animal model prior to their 
sacrifice in order to assess their motor and cognitive capabilities. The same tests were performed 
on the rats independently of the Set to which they pertained. However, due to time constraints not 
all rats had these tests performed. All tests returned a quantitative value: 
 

§ For the Morris Water Maze, the value corresponds to the escape latency on Day 3 (larger 
values corresponding to lesser cognitive abilities). 

§ For the Rotarod test, the value corresponds to the time the rat was able to keep itself atop 
the device. Thus, higher values correspond to higher motor coordination abilities. 

§ For the Beam Walking test, the value corresponds to the number of faults performed by the 
rat, thus a higher value indicates lesser motor abilities. 

§ For the Radial Maze test, the value corresponds to the working and reference errors, so the 
higher the value the lower the cognitive skill.  

3.1.3.  Data to analyze and integrate 
 
The basic exploratory analysis and pre-processing for each omic was performed on all data from 
Set 01 and the transcriptomics set. However, for the integration effort we could only use those 
tissues and pesticides in common for Set 01 and the transcriptomic set. This means that only the 
data pertaining to the treatment with endosulfan (END) and the vehicle or control (VH), as well as 
only the tissues hippocampus and cerebellum were considered (Figure 5).   
 
In regards to the clinical data, only Set 01 is considered, as the transcriptomics set presented 
ambiguities in the matter of the rats from which each sample came from, thus establishing a 
difficulty in associating them to their learning test scores. 
 

3.2.  Platform and software 
 
This analysis has been performed on a Macbook Pro running Mac OS X with a 2,3 GHz Intel Core i7 
processor, 16GB 1600 MHz DDR3 memory, and an NVIDIA GeForce GT 750M 2048 MB graphics card.  
 
When coming across omics data analyses, heavy-duty statistics tools are required. R (Ihaka & 
Gentleman, 1996) is a system for statistical computation and graphics, and it consists of a language 
plus a run-time environment with graphics, a debugger, access to certain system functions, and the 
ability to run programs stored in script files (R-project.org, 2016). The bioinformatics community 
has embraced R as an essential player when coming across such analyses due to its wide array of 
statistics tools available by default, as well as the large support and user community surrounding 
the system, with a large development of open-source external implementations. These 
implementations, known as packages or libraries, are stored and organized in public repositories, 
being Bioconductor the most prominent in the Bioinformatics and Biomedical field. The 
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Bioconductor (Bioconductor.org, 2016) project is an initiative for the collaborative creation of 
extensible software for computational biology and bioinformatics. 
 

 
 

Figure 5. Summary of data provided. Arrow indicates intersection of the 3 omics in regards to tissues and 
pesticides. 

 
Several graphic interfaces have been developed for this programming language, being RStudio 
(Racine, 2011) one of the most popular due to its efficiency, productivity and the possibility of 
being used in any operating system.  
 
For all these reasons, most of this effort was performed in R. All scripts were programmed and run 
in R version 3.2.1 under the RStudio version 0.98.1102 graphic interface. Scripts can be found in 
section 7.1. 
 
Paintomics v3.0 (Bioinfo.cipf.es/paintomics, 2016), a web based tool explained in further detail in 
section 3.5, was also used and was the basis of the integration step.  

3.3.  Statist ical  tools  
 
Throughout this effort, data analysis and visualization tools of various natures and complexities 
were employed, some of the simplest ones including boxplots, histograms or Venn diagrams. In 
this section some of the most important ones are described.  

3.3.1.  Principal  Components Analysis  (PCA) 
 
Principal components analyses (Pearson, 1901) were used in order to identify patterns in the omics 
data, by expressing it in such a way as to highlight their similarities and differences by creating a 
new set of coordinates to represent both samples and features (proteins, genes and metabolites). 
Since patterns can be hard to find in data of high dimension, where graphical representation is not 
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available, PCA is a powerful analysis tool. Briefly, PCA is a procedure for identifying a smaller 
number of uncorrelated variables, called "principal components", from a large set of data. The goal 
of a PCA is to explain the maximum amount of variance with the fewest number of principal 
components, thus allowing for the reduction of dimensions in the data. The number of principal 
components is less than or equal to the number of original variables. This transformation is 
defined in such a way that the first principal component accounts for as much of the variability in 
the data as possible, and each succeeding component in turn has the highest variance possible 
under the constraint that it is orthogonal to the preceding components. PCAs were applied to all 
our omics data once it had been pre-processed to assess if there were any clear patterns 
separating samples differing in treatment, sex or tissue. However, they were also applied 
throughout the pre-processing pipeline in order to survey the effects of the changes applied.  

3.3.2.  Heatmaps 
 
Heatmaps were also used for the visualization of the metabolomics and proteomics data, being 
less useful in regards to transcriptomics due to the excessive number of genes and miRNAs, which 
limited their use to only those differentially expressed features. Heatmaps are essentially a color 
map that allows samples to be grouped by a hierarchical clustering according to the correlation 
between them, the color representing the expression value for a certain feature (in this case, 
genes, proteins or metabolites). In this biological case study, heatmaps were used to find groups of 
features that could be potentially associated as shown by matching expression patterns 
throughout the samples and vice-versa, in order to find groupings of samples corresponding to 
changes in sex, tissue and treatment. 

3.3.3.  Wilcoxon rank sum tests  
 
The Wilcoxon rank sum test (also known as the Mann-Whitney test) is the non-parametric 
alternative to Student’s t-test when the data does not follow a normal distribution. The null 
hypothesis to be tested is that the distributions of the two samples compared differ by a location 
shift. 
 
Wilcoxon rank sum tests were employed to compare clinical data values between different 
treatments (endosulfan and the vehicle substance), in order to find significant differences between 
the two to declare whether said treatment could potentially lead to a change in motor or cognitive 
skills. This test was chosen over Student’s t-test as it could not be assumed that the clinical 
variables were normally distributed.  

3.3.4.  Pearson correlation coefficient 
 
Another important statistical tool used was the Pearson correlation coefficient. In statistics, the 
Pearson product-moment correlation coefficient is a measure of the linear relationship between 
two variables X and Y, with a value between +1 and −1 inclusive, where 1 is total positive 
correlation, 0 is no correlation, and −1 is total negative correlation. This coefficient was employed 
in order to find a relationship between the different clinical data values and the expression of the 
DE proteins, metabolites, genes and miRNA, so as to find potential biomarkers or participants of 
what had been declared as significant changes between the pesticide treatment and the control in 
motor and cognitive skill by the Wilcoxon rank sum tests. To visualize these results correlation 
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plots were created using the corrplot() function from the corrplot R package (Cran.r-project.org, 
2016). 

3.4.  Data preparation 

3.4.1.  Data formatting 
 
Due to the difference in sources and participants in the omics disciplines, sample IDs were not 
homogeneous across the different data sets provided for the multi-omics integration, nor were 
they easily accessible for analysis. That is why the first step in this work was to organize and 
homogenize the data, to easily and intuitively use it to the work’s purpose. 
 
Since metabolomics and proteomics data corresponded to the same samples, the different excel 
files provided were transformed into a single tab-delimited file, as shown in Figure 6. The clinical 
data was also included for each sample ID, to ease future comparisons between learning tests and 
the omics. miRNA-seq and RNA-seq data was also re-formatted for ease of use. 
 
RNA-seq IDs came in the form of RefSeq transcripts. Due to the more global use of ENSEMBL IDs as 
well as their need in future steps regarding the integration of gene expression (as described in 
section 3.5), an ID change for the different transcripts was performed, in which each RefSeq 
transcript returned by the RNA-seq effort was transformed into its corresponding ENSEMBL Gene 
ID. Due to the fact that more than one transcript can be associated to a single gene ID, when this 
happened the median of FPKMs for the different transcripts was calculated. As a reference for this 
ID change, the Biomart database was downloaded for all known genes in Rattus norvegicus  
(Ensembl.org, 2016). 

 

 
Figure 6. Representation of metabolomic and proteomic data formatting. 

3.4.2.  Data pre-processing 
 
When coming across large data sets, the pre-processing step is often overlooked, when in truth it is 
one of the most important and defining steps in data analysis, on which the end-result and the 
obtaining of conclusions can depend. The methodologies employed have to be tailored to the data 
received, and many times this can result in a trial and error situation.  
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In this section, the final implemented pre-processing pipeline for this effort is explained. Worth 
noting is that this was not a pre-defined pipeline, meaning that observations made through 
exploratory analyses in the pre-processing stage guided it in certain ways. Some of the defining 
observations found throughout this process are represented in the Results and Discussion section. 
This methodology is also graphically represented in Figure 7 for ease of understanding.  

 
Figure 7. Formatting and pre-processing outline for the different omic disciplines. 

Missing value treatment 
 
As mentioned previously, the pre-processing methodology followed for both proteomics and 
metabolomics as well as the treatment of missing values closely resembles that performed by 
Proteome Sciences on Set 10, as described in their analysis report for the proteome analysis of the 
former. The next step for these two disciplines involved the removal of proteins and metabolites 
with over 25% missing values (NAs) for all samples. This removal was performed per tissue to 
preserve as many features as possible, characteristic of certain cell lines and not necessarily 
shared by others.  
 
While analyzing the data, a sample was found to be missing (END M II2 – HP). Also, one cortex 
sample was removed in the metabolomics analysis prior to pre-processing due to its high content 
in NAs. After the first formatting efforts were performed, the resulting data consisted on the 
features depicted in Table 3 for metabolites and proteins corresponding to Set 01. After the 
removal of NAs, the data was left looking as depicted in Table 4 and 5.    
 
In order to make the most out of the data provided, the remaining NAs were then imputed. 
Imputation methods involve replacing missing values with estimated ones based on information 
available in the data set, avoiding as much bias as possible and preserving the representativeness 
of the results. The data was imputed using the K-nearest neighbor (knn) imputation method (in R, 
the function knn() from the impute R package was used), being k = 2 (Altman, 1992; Hastie et al., 
2016). This imputation uses the k-nearest neighbors to fill in the unknown values in a data set. For 
each case with any NA value it will search for its k most similar cases and use the values of these 
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cases to fill in the unknowns. The function will use a weighted average of the values of the 
neighbors, which are given by the exponential Euclidean distance between the case with NAs and 
the neighbor k. 
 

Table 3. Original data features. Proteomics in light blue and metabolomics in dark blue. 

 
Table 4. Proteomics data after removal of NAs.                   Table 5. Metabolomics data after removal of NAs. 

 
 
Filtering low expressed genes  
 
It has often been argued that when quantifying gene expression with high-throughput sequencing 
techniques such as RNA-seq or miRNA-seq, expression estimation for low count genes is less 
reliable because read counts could have been assigned by chance (McIntyre et al., 2011). Thus, 
excluding features with low counts may improve the results of statistical analyses because the 
level of noise is reduced.  
 
In this work, the CPM (Counts Per Million) strategy in the filtered.data() function from the NOISeq R 
package (Tarazona et al., 2012) was employed in order to eliminate the low-count features in RNA-
seq and miRNA-seq. The CPM method removes those features that have an average expression per 
condition less than 1 CPM (1 FPKM in our case).  
 
After performing the RNA-seq ID change (which resulted in a reduction in the number of genes 
total left for analysis due to the missing equivalencies between databases as well as the fact that 
various mRNAs pertained to a single ENSEMBL gene ID) as well as filtering, the results were left as 
represented in Table 6.  

Table 6. Transcriptomics features before and after filtering. 
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Normalization  
 
Generally, normalization is an essential step in omics analyses because it helps reduce the 
potential biases of the technology and makes the samples and features comparable. Two types of 
normalization may be considered: within-sample and between-sample.  An example of the need for 
within-sample normalization is the gene length bias in RNA-seq, given that longer genes tend to 
obtain a higher number of read counts and hence a higher estimation of their expression level. 
FPKM normalization is one of the many methods aiming to reduce this length bias. On the other 
hand, between-sample normalization corrects systematic differences among samples that are not 
due to biological effects. In RNA-seq, for instance, genes in samples with higher sequencing depth 
(number of reads sequenced) tend to get a higher expression quantification, and the comparison 
of the gene expression across samples is not fair. There are plenty of methods that correct for this 
bias, being FPKM or TMM some examples. 
 
A between-sample normalization approach that is not specific for RNA-seq but can be used for any 
type of data is the quantile normalization. This technique makes the distribution of values of the 
different samples identical in statistical properties, meaning that the quantiles of each distribution 
will be identical and therefore the samples will be comparable. Due to anomalies observed in the 
data, as described in the Results and Discussion section, a quantile normalization was performed 
on the metabolomics, miRNA-seq and RNA-seq data.  
 
Noise reduction 
 
When a batch effect is detected in the data or the samples are not properly clustered due to an 
unknown source of technical noise, it is usually appropriate to remove this batch effect or noise 
before proceeding with the statistical analysis.  
 
ARSyNseq (ASCA Removal of Systematic Noise for sequencing data) is an R function implemented in 
the NOISeq R package (Tarazona et al., 2015) that is designed to filter the noise associated to 
identified or unidentified batch effects. The ARSyN method (Nueda et al., 2011) combines analysis 
of variance (ANOVA) modeling and multivariate analysis of estimated effects (PCA) to identify the 
structured variation of either the effect of the batch (if the batch information is provided) or the 
ANOVA errors (if the batch information is unknown). As ARSyN was initially designed for microarray 
data, it was adapted into ARSyNseq to be used on sequencing data. Thus, ARSyNseq returns a 
filtered data set that is rich in the information of interest and includes only the random noise 
required for inferential analysis. In this work, we applied ARSyNseq to all the omics in order to 
reduce the systematic noise, as shown in the Results section. 

3.5.  Integration:  Paintomics  
 
To integrate the biological case’s multi-omics data, Paintomics (García-Alcalde et al., 2011) was 
used, which is a web-based tool developed by the Genomics of Gene Expression lab for the 
integrative visualization of multiple omic datasets onto Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathways. Paintomics v3.0 differs from its predecessors in that it is able to accept widely 
diverse data, including common techniques such as Transcriptomics, Metabolomics and 
Proteomics, but also emerging approaches such as DNase-seq, ChIP-seq or Methyl-seq, when in the 
past it could only accept gene and metabolite expression data.  
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The KEGG (Kanehisa, 2000) Pathway database is a collection of pathway maps integrating many 
entities including genes, proteins, RNAs, chemical compounds, glycans, and chemical reactions, as 
well as disease genes and drug targets, which are stored as individual entries in the other 
databases of KEGG. By mapping the features introduced into Paintomics onto these pathways, the 
user can gain a more thorough, visual and integrated look at the events that occur inside the 
problem organism.  
 
Paintomics works in 3 main steps: data upload (it requires data matrices containing feature 
quantification data values as fold-changes as well as a list of significant features for each omic), ID 
and name matching as well as metabolite assignment, and finally pathway selection. 
 
KEGG pathways mainly consist on genes and metabolites. Gene-based data, such as RNA-seq or 
proteomics, is imputed back to an origin gene, which codifies for the corresponding mRNA and 
protein. Metabolite-based data is imputed to a corresponding metabolite. Worth noting is that 
Paintomics is unable to accept miRNA data directly, needing as an input miRNA targets in order to 
impute them to a gene. The current version requires the miRNA IDs to be substituted by their 
targets’ ENSEMBL IDs by the user. In the future, however, Paintomics will perform this step 
automatically, asking the user for a list of miRNA-target associations as well as their miRNA-seq 
data. 
 
IDs need to be given in a certain format. Metabolites can be recognized by name, proteins by their 
Uniprot ID or PDB ID and mRNAs (and miRNA targets) by their ENSEMBL or Entrez Gene ID. In order 
to map features onto KEGG pathways, all gene-based data will be translated by Paintomics to its 
corresponding Entrez Gene IDs, while metabolites will be mapped directly.  
 
To decide which pathways are significantly altered or not, and for which omics, Paintomics uses the 
significant features lists provided by the user. Briefly, for each omic Paintomics compares the list 
of significant features mapped to a pathway with the rest of the features also mapped to that 
pathway. As final step, the tool computes the significance of the overlap using Fisher’s exact test 
(Fisher, 1922). The obtained p-value can be interpreted as a measure of the confidence that this 
overlap is due to chance. In order to obtain the joint significance for all omics combined for a 
certain pathway, Paintomics uses Fisher’s combined probability test (Fisher, 1938), a statistical 
method that allows combining the results from several independent tests for similar null 
hypotheses. This method combines the p-values for each test into one test statistic (X) using the 
formula: 

 
where pi is the p-value for the ith hypothesis test, k is the number of tests being combined and 
with X following a χ2 distribution with 2k degrees of freedom, from which a p-value for the global 
hypothesis can be easily obtained. 
 
What Paintomics returns is a list of all the KEGG pathways to which the data has been mapped, 
highlighting significant omics (or a combination of them) for each pathway (p-value < 0.05). Each 
pathway can then be visualized individually, where the changes for each mapped component can 



Part III: Materials and Methods 

Integration of multi-omics data to discover link between developmental exposure to pesticides and 
impaired neurodevelopment 

18 

 

be observed for the different experimental conditions. Significant features are highlighted using a 
thicker black line around the component on the corresponding KEGG pathway. 
 
Paintomics and DENAMIC    
 
Paintomics was originally designed to easily visualize time-based omics studies. However, other 
experimental conditions can be visualized depending on the format of the input. The format 
chosen for this biological case is represented in Figure 8, allowing the user to visualize changes 
between two different tissues and the two different sexes. 
 

 
Figure 8. Paintomics data input for this biological case. 

 
The fold-change values for each condition were obtained manually by calculating the averages for 
each sex, tissue and treatment, while the significant features were obtained through a differential 
expression analysis, as described in 3.6. The assessment of the miRNA targets for this biological 
case study in order to correctly input miRNA-seq data is described in further detail in 3.7.  
 
For this biological case, Paintomics is run twice, once per Tissue considered (Cerebellum and 
Hippocampus). However, all fold-change (FC) data is inserted, the runs varying in the significant 
features used as an input for each tissue. Since the different tissues could have different features 
not present in the other, once joining the data missing values were replaced by 0. Also, all 
previously filtered features are added back into the data with FC = 0 so as to improve mapping 
efficiency, although this holds no biological meaning for metabolomics or proteomics. 
 
A toy example of a pathway returned by Paintomics for this biological case is shown in Figure 9.  
 

3.6.  Differential  expression analysis  
 
Differential expression analyses are probably the most performed tests in the omics disciplines, 
allowing for the discovery of features whose levels (expression, concentration, etc.) change 
between different conditions, an integral part of understanding the molecular basis of phenotypic 
variation (Soneson & Delorenzi, 2013). A differential expression analysis was carried out in this 
work to obtain the significant features for future input into Paintomics. 
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Figure 9. Paintomics toy example. On the left a KEGG pathway is represented, to which the provided features 
(metabolites, proteins, miRNAs and genes) have been mapped. On the right what Paintomics would show for 
each mapped feature in this biological case study is represented, two columns representing values for the 
Hippocampus tissue and two columns representing values for the Cerebellum tissue (as represented by the 

images, which do not appear in the live version of Paintomics and have been added for clarification). 
Differences between sexes are also shown. Blue represents under-expression and red over-expression. 

 
 
The tool of choice to perform this analysis was the Limma R package (Ritchie et al., 2015), which 
provides an integrated solution for analyzing data from gene expression experiments. It contains 
rich features for handling complex experimental designs and for information borrowing to 
overcome the problem of small sample sizes. The Limma pipeline includes linear modeling to 
analyze complex experiments with multiple treatment factors, quantitative weights to account for 
variations in precision between different observations, and empirical Bayes statistical methods to 
borrow strength between genes. Although it was initially designed for microarray gene expression 
data, it can be used for other omics as long as the data follows approximately a Gaussian 
distribution, which is one of the requirements of the linear modeling underlying Limma, or has 
undergone a proper transformation to meet this requirement. For instance, this is the case of RNA-
seq, whose expression quantification consists of integer counts, unlike microarrays, which yield 
intensities that are essentially continuous numerical measurements. Because of this, statisticians 
were interested in applying normal-based microarray like-statistical methods to RNA-seq read 
counts. However, an obstacle to applying normal-based statistical methods to read counts is that 
the counts have markedly unequal variabilities, even after log-transformation. In light of this, the 
voom transformation was created (Law et al., 2014).   
 
Therefore, in order to apply the Limma pipeline to our data, the first step consisted on the 
application of the voom transformation to the transcriptomics and metabolomics data. The 
proteomics data, which came as a log2 ratio, after first inspection looked to be normally 
distributed, and as such it was considered that the transformation was not required. 
 
To find the relevant features in this study we were interested in metabolites, proteins and genes 
that were differentially expressed due to the effects of either the pesticide or the interaction of the 
pesticide with the sex of the animal model. There was no interest in the differences due to sex, as 
the objective of this effort was to assess the effects of different pesticides on our model organism. 
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Visually, an example the expected expression profiles for those considered significant for these 
variables is shown in Figure 10.  
 

 
 

Figure 10. Expected expression profiles for significant pesticide effect (left), significant pesticide·sex effect 
(center) and significant sex effect (right). 

The linear regression model considered for each feature was: 
 

y = ß0  + ß1·xpesti + ß2·xsex + ß3·xpesti·sex 

 
Where y represents the feature expression quantification. Again, only those features whose p-value 
for the effect of the pesticide and/or the effect of the pesticide in combination with the sex was 
lower than 0.05 were considered to be significantly affected by the pesticide and thus provided 
relevant features for Paintomics.   
 

3.7.  miRNA target  predict ion 
 
As mentioned previously, Paintomics requires as an input miRNA targets for the miRNA data to be 
imputed back to a gene. Furthermore, as of right now this represents an extra step on behalf of the 
user, who is required to change their microRNA IDs by the targets of each corresponding microRNA. 
This extra step will be commented further in 3.7.1.  
 
To first associate each miRNA in our data to their target genes, various miRNA target prediction 
solutions were considered, looking to find targets for all known Rattus norvegicus miRNAs with the 
highest possible validity, so as to avoid noisy and false associations, one of the problems that 
many bioinformaticians are facing nowadays when coming across miRNA analyses. Another 
challenge to overcome was the heterogeneous nature of miRNA ID conventions. Furthermore, one 
major issue in miRNA studies is the lack of bioinformatics programs to accurately predict miRNA 
targets. Animal miRNAs have limited sequence complementarity to their gene targets, which makes 
it challenging to select relevant biological features to build target prediction models with high 
specificity. 
 
miRDB (Mirdb.org, 2016) is an online database for predicted microRNA targets in animals. It is 
based on a new miRNA target prediction program based on support vector machines (SVMs) and 
high-throughput training datasets. By systematically analyzing public high-throughput 
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experimental data, the database claims to have identified novel features that are important to 
target downregulation. These new features as well as other known features have been integrated in 
an SVM machine-learning framework for the training of the target prediction model. Also, the 
prediction algorithm has been validated by independent experimental data for its improved 
selectivity on predicting a large number of miRNA down-regulated gene targets.  
 
After evaluating the options we had, miRDB was found to be a convenient source for target 
predictions from which predictions for all known Rattus norvegicus miRNAs were downloaded, each 
with an associated prediction score from 50 to 100 (the higher the better). Right off the bat, a cut-
off score of 80 was picked as lower values were considered to be too permissive and a smaller 
number of predictions were favored. The distribution of genes associated to a single miRNA and 
miRNAs associated to a single gene can be found in Figure 11. A density plot with the effect of the 
cut-off can be found in Attachment XXI.  
 

 
Figure 11. Histograms of genes per miRNA and miRNAs per gene for miRDB Rattus norvegicus targets, using 

cut-off = 80. 

A reduction of the total number of target predictions found was of interest by means of picking a 
high score cut-off. A validation of the scores and the database was also of importance. To do so 
several approaches were employed: 
 

1. A PubMed search was done, looking for experimentally validated brain miRNAs and their 
target genes. These were later searched for in the miRDB database, checking their score. A 
comparison with miRTarBase, a database containing experimentally validated microRNA 
targets, was also performed, again checking the score in miRDB for all the entries. 

2. Finally, in order to make sure that the score picked was not too restrictive so as to reduce 
the data significantly, an analysis on how each score cut-off affected the number of 
miRNAs in each tissue for the DENAMIC miRNA-seq data was performed.  

 
From the Pubmed search recent articles associated with brain miRNAs were found where miRNAs 
were associated with an experimentally validated target (Hanin et al., 2014; Huang et al., 2015; Ma et 
al., 2015; Long et al., 2014; Lopez et al., 2015; Shen et al., 2015; Yang et al., 2015; Xing et al., 2015; Zou 
et al., 2014). The scores pertaining to these associations were then found in the miRDB predictions 
so as to check their validity. The basic statistics for the articles’ scores is found in Figure 12. To gain 
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a more thorough comparison, the miRTarBase database was downloaded and compared with the 
miRDB database scores, the resulting statistics again represented in Figure 12. From these 
comparisons, the validity of the miRDB database was proven, as most experimentally validated 
interactions were found to have a score over 80.  
 

 
Figure 12. Basic statistics for bibliography comparison with miRDB database predictions. 

 
However, the number of predictions was still fairly large, and the highest possible cut-off score was 
desirable so as to filter out the highest number of false positive miRNA targets without sacrificing a 
large amount of data from the miRNA-seq procedure. To choose said cut-off score a simple 
analysis comparing the effects of the different cut-off scores on our data was performed, the 
results depicted in Table 7. This analysis was performed over both filtered and non-filtered data, 
since all miRNAs, filtered or non-filtered, were due to be used as an input for Paintomics and thus 
required an ID change. After evaluating the results, cut-off score of 85 was chosen and used to 
filter lower-scored target predictions.  
 

Table 7. Effects of different cut-off scores on filtered and non-filtered data. 
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3.7.1.  Preparing miRNA data for  Paintomics 
 
Once the final list of microRNA-target interactions had been defined, each miRNA ID was converted 
to its target’s ENSEMBL gene ID in order to obtain the necessary input for Paintomics.  
 
Due to differences in naming conventions (miRNAs were represented in different ways in our data 
and in the target predictions), several resources were used as stepping stones when converting IDs, 
the first being the miRBase database (which possessed the equivalencies between different miRNA 
naming conventions) and the second being Biomart (which allowed changing targets (represented 
as RefSeq transcripts) to ENSEMBL genes. These were used to transform the predictions file, which 
in the end contained miRNAs as miRBase Accession Codes and targets as ENSEMBL Genes. 
 
Finally, using this pre-processed predictions file, our miRNA-seq ID’s were converted to their 
targets’ IDs. Due to the fact that each miRNA had several targets predicted, and that these targets 
could be shared between different miRNAs, to obtain an only entry for each target gene the sum of 
the fold changes of all the miRNAs sharing the same target was calculated. The significant features 
for the miRNA-seq data correspond to the genes that were targeted by at least one differentially 
expressed miRNA. The overall process followed is summarized in Figure 13.  
 

 
 

 
 

Figure 13. Diagram of ID changes for miRNAs and obtaining inputs for Paintomics. 
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4.  Results  and Discussion  
4.1.  Exploratory analysis  and pre-processing  
 
Proteomics and metabolomics 
 
Once the missing values were imputed, an exploratory analysis of the metabolomics and 
proteomics data was performed to check for preliminary patterns and anomalies that might 
require addressing. First of all, a PCA for each omic was performed, for which proteomics data was 
centered, and metabolomics data was log-transformed, centered and scaled. PCA results are 
represented in Figure 14.  
 
 

 
Figure 14. PCA plots for Principal Component 1 and 2 for each tissue in proteomics and metabolomics data. 

Color represents the treatment performed on the rat from which the sample was obtained (pesticide). 
Whether the shape is filled in or not corresponds to the sex. Finally, the shape corresponds to the mother of 

the rat from which the sample was obtained. 

 
 
In the metabolomics PCA, the first two principal components explained from 64% to 78% of the 
total variability in the data, depending on the tissue. Unfortunately this variability seemed to be 
due to unknown sources rather than to the effect of the pesticide or the sex of the rats. 
Interestingly, the boxplots (Figure 15) and the heatmaps (Attachment XIV) showed a systematically 
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lower expression of metabolites for CYP pesticide in the cortex and cerebellum that, according to 
the experts in the DENAMIC project, had no biological relevance. To make sure that this was not an 
artifact of the missing value imputation, the analysis was again performed on the data after 
removing all metabolites with missing values in any of the samples, and the same results were 
obtained. 
 

 

 
 

Figure 15. Boxplot representation of metabolomic data. Different colors correspond to different treatments for 
ease of visualization (reds to END, greens to CYP and blues to VH). The lighter shades correspond to females 

and the darker shades to males. 

 
To correct this, a quantile normalization was first applied per tissue to make all the samples vary in 
the same range and make them comparable. However, the normalization was not enough to 
remove the noise in the data so the ARSyN correction method was used as a last attempt to reduce 
as much as possible the unwanted sources of variability. The PCA for the final data (Figure 16) still 
showed a high variability of the replicates pertaining to the same experimental condition but, in 
general, an improvement of the separation among experimental conditions was seen, although still 
far from perfect, probably because there are no sets of metabolites acting in coordination but a 
few of them presenting changes amongst conditions. This makes sense since the effects of the low-
concentration pesticides are expected to affect only a small number of omic features in the 
organism. 
 
Regarding the proteomics data we did not find the strong clustering due to unknown effects that 
we’d observed in the metabolomics data. There was no need for quantile normalization but 
ARSyNseq was also applied to try to reduce the noise in the data.  
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Finally, for both metabolomics and proteomics, the PCAs returned showed that the effect of the 
mother in the clustering of the rats was not important, so it was not necessary to take it into 
account for further analyses.  
 

 
Figure 16. PCA plots for Principal Component 1 and 2 for each tissue in proteomics and metabolomics data 

after pre-processing. See Figure 14 caption for more details. 

 
All boxplot representations throughout these transformations can be found in Attachment XIII, as 
well as heatmaps in Attachment XIV and PCAs in Attachment XV. 
 
 
Transcriptomics  
 
Once low-count genes were filtered out of the data, patterns were also looked for through a PCA 
analysis, although no clear groupings were found. 
 
As the boxplots showed a very different data distribution amongst samples, especially in miRNA-
seq, the TMM normalization was performed. However, the differences were so pronounced that a 
stronger correction such as the quantile normalization needed to be applied. Again, the ARSyN 
method was also used. The PCA results for the final data (Figure 17) showed a clear reduction in 
noise as well as the visibility of certain patterns. For example, for RNA-seq in the Hippocampus, PC1 
is able to cluster treatments together, as well as sexes. The separation between sexes can also be 
visualized for RNA-seq in the cerebellum through PC1, although not as clearly.  
 
All PCAs and boxplots obtained throughout the pre-processing stages for the transcriptomics data 
can be found in Attachment XVI and XVII respectively. 
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Figure 17. PCA scores 1 & 2 for miRNA and RNA-seq data after normalization and arsynseq. Colors represent 
treatments and filled-in/empty shapes represent the sexes. 

 

4.2.  Differential  expression analysis  
 
As mentioned previously, to gain a further understanding into the changes that pesticide treatment 
brought upon the different omics, as well as to obtain the significant features for later use in the 
Paintomics analysis, a Limma analysis was performed on all omics data sets. The results are 
represented as Venn diagrams for the Cerebellum and Hippocampus tissues, as well as for the 
effects of the Pesticide and the interaction between Pesticide and Sex, in Figure 18, when 
considering p-value = 0.05 as a cut-off for significance.  
 
The fact that few features are returned as differentially expressed is coherent with the intra-
condition variability observed in the previous exploratory analyses. The expression profiles for 
each significant feature can be visualized in Appendix XVIII. Heatmaps corresponding to the 
significant features found for transcriptomics can be visualized in Appendix XX.   
 

 
Figure 18. Venn diagrams showing number of DE features per omic and tissue. Light blue corresponds to 

features with a p-value lower than 0.05 for the effect of the pesticide, and dark blue features significant for 
the effect of the interaction between sex and pesticide. Thus, their intersection corresponds to features that 

were called as significant for both the pesticide and the interaction.  
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4.3.  Learning tests  
 
Molecular changes have to be translated into phenotypic responses for them to be relevant, so a 
brief analysis of the learning tests to later correlate between physiological and molecular 
responses was of interest. Although the Neurobiology lab had already performed statistical tests 
using this same data along with that of other sets, we decided to contrast them through a simple 
series of Wilcoxon tests for the clinical data pertaining to Set 01 in order to deduce whether or not 
the END treatment had any considerable effect when compared to the control. Results are found in 
Table 8, being the most significant those highlighted in a darker color.  
 

Table 8. Results of Wilcoxon tests applied on learning test scores for Set 01 to compare rats treated with 
Endosulfan (END) or vehicle (VH) in general and for each sex. 

 
 
As can be observed, no significant effect of the pesticide (p-value < 0.05) was found. However, one 
must consider that a non-parametric test was performed, which although more robust and simple, 
requires larger sample sizes than a parametric test (such as a t-test) to draw conclusions with the 
same degree of confidence, which were not available in this case, where many times just 2 or 3 rats 
were available for each condition. Also, previous t-tests carried out by the Neurobiology lab further 
contribute to the idea that these highlighted effects were significant. 
 
An interesting and previously observed effect of endosulfan treatment was the decrease of motor 
coordination in female rats as measured by the Rotarod test. Motor coordination is modulated by 
extracellular glutamate and gamma-aminobutyric acid (GABA) in the cerebellum (Chiu et al., 2005; 
Hanchar et al., 2005) and an increase in GABA in the extracellular space has been associated with a 
decrease in motor coordination in previous studies (Boix et al., 2010). 
 
Another interesting effect found, also previously observed by the Neurobiology lab, was a 
difference in learning ability and memory in spatial tasks between males and females when treated 
with Endosulfan, as shown by the Radial Maze and MWM test scores, where the males were found 
to have a significant change but the females were not. Long-term potentiation in the hippocampus 
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is considered the basis for spatial learning and memory, which has been found to differ between 
male and female rats. The mechanism underlying this remains unknown, however, it has been 
postulated it could be due to differences in the cGMP-PKG signaling pathway for the different sexes 
(Monfort et al., 2015).  
 
Owing to the previously published bibliography and to the thorough knowledge of the 
Neurobiology team regarding these behaviors, when coming across the analysis of the integration 
results, the GABA synapse pathway in the cerebellum as well as the cGMP-PKG signaling pathway in 
the hippocampus was prioritized (section 4.5).  

4.4.  Integration 
 
Once the data had been formatted properly, Paintomics was run for the hippocampus and 
cerebellum data. As a result, 294 pathways were found to which the features were mapped, and 29 
and 9 were found significant for the combination of the omics in the case of the cerebellum and 
hippocampus respectively.  
 
Many pathways were returned, however, the objective of this work was to understand the 
molecular basis of impaired neurodevelopment, and so many of the pathways were not of interest, 
because they were not exclusive to neurons or associated with said event. In order to ease the 
analysis task, the pathways were reduced to those of interest, represented in Tables 9 and 10. 
 

Table 9. Returned Paintomics pathways of interest for the Cerebellum. 

 



Part IV: Results and Discussion 

Integration of multi-omics data to discover link between developmental exposure to pesticides and 
impaired neurodevelopment 

30 

 

 
Table 10. Returned Paintomics pathways of interest for the Hippocampus. 

 

4.5.  Discussion 
 
In this section only several pathways will be discussed briefly, assessing previously published 
literature, learning test data, Paintomics results and correlations between features and cognitive 
and motor abilities.  
 
Difference between tissues and sexes 
 
Paintomics returned 29 significant pathways for the cerebellum, while only 9 for the hippocampus. 
This difference between the tissues was to be expected, as the cerebellum receives a larger blood 
flow than the hippocampus, thus making it more susceptible to changes in the organism. 
 
Most features in this study presented clear differences in behavior between males and females, as 
shown by opposite fold changes as well as by the different learning tests. Sex-based differences in 
the toxic effects of endosulfan have already been observed in Rattus norvegicus (Paul et al., 1995). 
Endosulfan has been shown to have estrogenic effects in primary neural cultures (Briz et al., 2011) 
and estrogens in turn have been cited as potential neuroprotectors in brain areas that are not 
primarily involved in reproduction (such as the hippocampus or cerebellum) (Brann et al., 2007). 
This could potentially be the reason behind the differences observed between the sexes (Lafuente 
& Pereiro, 2013). 
 
The GABA pathway 
 
As mentioned in 4.3, it has been predicted that the observed reduction in female rat motor skill 
could be due to an increase in GABA in the cerebellum. GABA is an inhibitory neurotransmitter, so 
an increase in its concentration could act by potentially reducing neuronal excitability, thus 
leading to impaired coordination. 
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Involvement of endosulfan in the central nervous system (CNS) has been the subject of various 
studies. Those who have suffered occupational exposure to endosulfan have been reported to 
exhibit convulsions, epilepsy, hyperactivity, irritability, tremor, and paralysis, as well as 
neurobehavioral symptoms manifested by agitation, memory defects, partial aphasia, limited 
cognition and impairment of motor coordination (Chan et al., 2006). The mechanism of 
neurotoxicity of endosulfan has been documented to be dominated by its capacity to inhibit non-
competitively the GABA-A type of receptors, which function as chloride channels with the capacity 
to hyperpolarize and inhibit neurons in the central nervous system (Cole and Casida, 1986; Chan et 
al., 2006). When GABA binds to its receptor, the chloride ion channels are opened, leading to an 
influx of chloride into neurons through an electrochemical gradient. The result is hyperpolarization 
of the cell membrane and inhibited neuron firing. When endosulfan binds this event is inhibited, 
there’s a blockage of the influx of chloride ions into the nerve cells, causing uncontrollable 
excitation, as GABA’s binding to its receptor is unable to repress the neural response (Jang et al., 
2016). 
 
As mentioned in the introduction, the developing nervous system is proposed to be a potentially 
sensitive target for pesticide exposure. The occurrence of the aforementioned stress on the fetus 
as well as on the first few weeks of the offspring’s life, as modeled by the DENAMIC project, could 
lead to the observed increase in GABA and motor incoordination in females’ later life stages. 
 
To understand the molecular basis of this potential sequela on the brain post developmental 
exposure, we took a closer look at the GABA pathway returned by Paintomics (Figure 19), and we 
observed that 4 features had been marked as significant. We explored these four features in more 
detail (Figure 20), and observed that 2 proteins and 2 genes were significantly over or under 
expressed. To know whether these proteins or genes could be associated with decreased motor 
coordination in females owing to changes in the Cerebellum, the left-most column was of interest 
(according to the biological case study input used in this work), seeing that for some over-
expression had been observed but for others under-expression was found. Wanting to know if 
these changes were correlated in any way with the changes in clinical data, Pearson correlation 
coefficients were found between the clinical variables and the different features, their value also 
indicated in Figure 20. All correlation plots between the DE features for all omics and learning tests 
can be found in Appendix XIX.  
 
According to these preliminary findings, we found that the over expression of the GABA Vesicular 
Transporter (VGAT) is correlated with a decrease in the time a mouse is able to maintain itself on 
the Rotarod, thus its association with impaired motor coordination. This transporter is in charge of 
pumping GABA into the synaptic vesicle, which later fuses with the axon membrane to release GABA 
into the synaptic cleft (Saito et al., 2010).  
 
Interestingly, a study that employed mice as an in vivo model carried out by Wilson et al. (2014) 
found a significant reduction of VGAT in cortex GABAergic neurons of male offspring whose mothers 
had been exposed to endosulfan prior to their pregnancy. Also, previous studies observed 
significant alterations in GABA in the prefrontal cortex of male offspring whose mothers had been 
exposed to endosulfan during gestation and lactation (Cabaleiro et al., 2008). This supports the 
idea that alterations in VGAT levels could have profound effects on GABA levels.  
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Therefore, one could think that a reduction in GABA signaling in the cerebellum during early stages 
of development due to developmental endosulfan exposure could lead to changes that ensure an 
increase in GABA in later stages. Furthermore, a hypothesis to how the over-expression of VGAT 
could lead to an increase of extracellular GABA could be that an increase in the levels of this 
transporter could consequently lead to an increase in GABA in the synaptic vesicle, thus its 
increase when being released into the extracellular space. Of course, this is just a preliminary 
postulation and further studies are required.  
 
Also worth noting is that a decrease in the solute carrier family 38, member 5 (SLC38A5/SNAT5 
peptide) gene expression was associated with a decrease in motor coordination in females. SNAT5 
is a member of the System N family, expressed in glial cells in the adult brain, able to transport 
glutamine, histidine or glycine among other substrates (Cubelos et al., 2005, Rodriguez et al., 2014). 
How the under-expression of this gene could lead to an increase in GABA in the extracellular matrix 
is unknown. It could also potentially act through another underlying mechanism contributing to a 
decrease in motor coordination. Also, sadly, no proteomic data was available in order confirm 
whether this change in gene expression also translated into an important change in transporter 
concentration.  
 
As a conclusion it could be said that these features could potentially act as biomarkers or 
treatment targets for pesticide induced impaired neurodevelopment. However, further studies are 
required to validate these predictions.  
 

 
Figure 19. GABAergic synapse KEGG Pathway returned by Paintomics for the Cerebellum. 
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Figure 20. Expression profile of significant features in GABAergic Synapse pathway returned by Paintomics. 

Also shown is the Pearson correlation coefficient in regards to Rotarod test. 

 
cGMP-PKG signaling pathway 
 
As mentioned previously in section 4.3, a significant difference in learning and memory abilities 
was found between male rats treated with endosulfan and controls, while no significant effect was 
found in females. In tests of spatial ability, males outperform females both in rats and in humans, 
with previous studies concluding that this was due to reduced activation of soluble guanylate 
cyclase and the formation of cGMP, as well as the mechanisms that followed, in the Hippocampus 
(Monfort et al., 2015).   
 
Although the cGMP-PKG signaling pathway (Attachment XXII) was not found to be significant by 
Paintomics for any of the omics, the differences between males and females mapped visually onto 
this pathway were of interest to further validate previously made hypotheses or to understand the 
underlying molecular mechanism that differentiates behavior between the sexes.  
 
When taking a closer look, we found that no significant features, which were made-up by those 
relevant for the effects of the pesticide or the interaction between the pesticide and the sex, were 
mapped in the pathway. Therefore no explanation for the difference between sexes in regards to 
their behavior towards endosulfan as shown by the learning tests could be found in this pathway. 
However, future studies are required in order to understand the role of the cGMP-PKG pathway in 
these events.  
 
Parkinson’s disease 
 
Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by loss of 
dopaminergic neurons in the substantia nigra pars compacta (SNpc) of the midbrain. Parkinsonian 



Part IV: Results and Discussion 

Integration of multi-omics data to discover link between developmental exposure to pesticides and 
impaired neurodevelopment 

34 

 

patients also exhibit symptoms and signs suggestive of hypothalamic dysfunction (such as 
dysautonomia, impaired heat tolerance). Lewy body formation has been demonstrated in every 
nucleus of the hypothalamus, specifically the tuberomamillary and posterior hypothalamic (Sandyk 
et al., 1987). Furthermore, increasing evidence suggests that the cerebellum may have certain roles 
in the pathophysiology of Parkinson's disease. Anatomical studies identified reciprocal 
connections between the basal ganglia and cerebellum and Parkinson's disease-related 
pathological changes in this brain area (Wu & Hallet, 2013). 
 
As mentioned in the introduction, developmental exposure to pesticides such as endosulfan has 
been suggested to contribute to neurotoxicity leading to neurodegenerative diseases such as 
Parkinson’s disease. Our integrative efforts returned a total of 3 significant features mapped to the 
Parkinson’s disease KEGG pathway for the cerebellum (Attachment XXIII), and 2 for the 
hippocampus. 
 
In the cerebellum we found that the iron-sulfur protein subunit of succinate dehydrogenase 
(involved in the complex II of the mitochondrial electron transport chain and that is responsible 
for transferring electrons from succinate to ubiquinone) and the NADH dehydrogenase iron-sulfur 
protein 2 (core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase 
(Complex I) that is believed to belong to the minimal assembly required for catalysis) proteins 
were found to be DE, as well as adenosine.  
 
In the hippocampus, protein deglycase DJ-1 (protein deglycase that repairs methylglyoxal- and 
glyoxal-glycated amino acids and proteins, and releases repaired proteins and lactate or glycolate, 
respectively) as well as the Cox6b2 gene (that codes for cytochrome c oxidase subunit VIb 
polypeptide 2, a subunit of the cytochrome c oxidase complex, also known as Complex IV, the last 
enzyme in the mitochondrial electron transport chain) were found to be DE.  
 
Curiously, all genes and proteins found for both tissues are associated to mitochondrial function. 
Many lines of evidence suggest that mitochondrial dysfunction plays a central role in the 
pathogenesis of PD, starting in the early 1980s with the observation that an inhibitor (MPTP) of 
complex I of the electron transport chain can induce parkinsonism. Furthermore, recent findings 
have established that mitochondrial dysfunction is a common denominator of sporadic and 
familial PD, moving mitochondria to the forefront of PD research (Winklhofer & Haass, 2010). 
 
As is the case with most features in this study, the effects of endosulfan on these proteins are not 
homogeneous, meaning that its effect varies depending on the sex and the tissue. This complicates 
the biological analysis of the molecular basis of this disease as well as of the neurotoxicity of this 
pesticide, reaching outside the boundaries of this effort. However, these proteins could potentially 
be targets for further studies in the future.  
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5.  Conclusions  
 
To summarize and conclude this effort, several observations regarding the whole of the project are 
compiled in this section.  
 
 

§ Great challenges were found when manipulating data not only from different omics 
disciplines, and thus different in nature and significance, but from different entities as 
well, as each team has different work disciplines and distance and time can get in the way 
of an efficient communication, thus complicating a study beyond its scientific efforts.  

 
§ Pre-processing of the omics data, while many times over-looked as following a protocol, 

was also proven essential, and can determine whether relevant conclusions are found or 
not. Pipelines have to be adjusted to each scenario, and many times different methods will 
have to be tried until finding the correct match in order to ensure the maximum 
representation of the biological case study as represented by the data to be analyzed. This 
work has served as an example of the difficulty that comes with the pre-processing stage 
preceding multi-omics integration, and that it’s not always possible to obtain clean data 
due to the inherent noise associated to the omics disciplines.   

 
§ The data received was quite noisy, something that’s been come to expect from most omics 

efforts. No significant patterns were found through the exploratory analysis performed on 
the individual omics. However, this could be explained by the fact that the effects of the 
low-concentration pesticides affect only a small set of features in the organism, not 
enough to completely digress from the norm when analyzed for example through a 
Principal Components Analysis.  

 
§ A differential expression analysis was performed on all the omics disciplines, obtaining a 

relatively small number of differentially expressed features, few with large fold changes. 
Expression profiles were created for these features so as to easily visualize changes 
between sexes, tissues and treatments. Frequent differences were found between males 
and females, as was to be expected and is hypothesized to be due to the estrogenic nature 
of the pesticide considered, as well as between the cerebellum and the hippocampus, due 
to differences in blood irrigation.  

 
§ miRNA target prediction and analysis continues to be a problem, with large numbers of 

predicted targets that create difficult interaction webs yet to be validated experimentally. 
This is especially true in regards to animal miRNAs.  

 
§ Differences in nomenclature standardization as well as in database content make 

contrasting information difficult, and part of the data is usually lost along the way.  
 

§ Multi-omics data integration has great potential. Each omic has its limits due to 
technological handicaps, but when integrated some of these can be overcome and a bigger 
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picture of the biological case study can be obtained, as was the case in this work, as 
exemplified by the Paintomics results, where in many cases only an omic was found to be 
relevant for a certain pathway, usually to lack of data for the rest of the disciplines. 
Furthermore, integrating through a visual representation, especially through biological 
pathways, has proven to be helpful and intuitive when analyzing and discussing omics 
efforts.  

 
§ Potential biomarkers and treatment targets for impaired motor coordination in female rats 

treated with endosulfan were found, the most promising being the Vesicular GABA 
Transporter. However, further experimental tests need to be carried out in order to test the 
veracity of said result, as well as further statistical analyses.  

 
§ Parkinson’s disease was discussed in regards to our integration results, and several 

mitochondrial proteins were found to be of interest, further strengthening the role of this 
organelle in the pathogenesis of PD, as well as the involvement of the pesticide considered 
in neurodegenerative diseases.  

 
§ Bioinformatics goes hand in hand with biological advances and knowledge. This work was 

again an example of this, where without previous knowledge in neurobiology the analysis 
task would have proved impossible. Interdisciplinary efforts surround this field, and push it 
to its fullest potential. 

 
 
Due to time constraints as well as other factors, this work marks just the beginning of what is likely 
to be a longer project in which many other scientists will get to collaborate in the future. There are 
still many things left to be done, and in the future the Genomics of Gene Expression team plans on 
analyzing our results in further detail, integrating more data that is yet to be received for a 
different set of rats, integrating each omics data with their corresponding clinical data to get a 
more profound look at the interaction between them using more complex models, and assessing 
the regulatory effect of miRNAs and transcription factors on gene expression by means of 
regression models. 
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7.  Attachments 
7.1.  Scripts  

7.1.1.  Attachment I :  Master  data set  creation scr ipt  
  
###	IMPORTACIONES	###	
library("XLConnect")	
library("stats")	
library("devtools")	
library("FactoMineR")	
library("RColorBrewer")	
library("NOISeq")	
library("openxlsx")	
	
###	DIRECTORIOS	###	
dir_data_met	<-	"/Users/Elena/Dropbox/TFG/Analisis_WD/met/data"	
dir_data_prot	<-	"/Users/Elena/Dropbox/TFG/Analisis_WD/prot/data"	
dir_data_clinical	<-	"/Users/Elena/Dropbox/TFG/Analisis_WD/clinical"	
dir_output	<-	"/Users/Elena/Dropbox/TFG/Analisis_WD"	
	
###	IMPORT	METABOLOMIC	DATA	###	
setwd(dir_data_met)	
	
##	CYP	##	
data_CYP	<-	readWorksheetFromFile("Individual	data	CYP.xlsx",	sheet	=	1)	
rownames(data_CYP)	<-	data_CYP[,1]	#Add	names	
data_CYP	<-	data_CYP[,4:length(colnames(data_CYP))]	#Quitamos	las	columnas	con	los	codigos	de	KEGG	y	
otros	
	
##	END_ST	##	
data_END_ST	<-	readWorksheetFromFile("Individual	data	Endosulfan	males_females_final.xlsx",	sheet	=	1,	
startRow	=	3)	
rownames(data_END_ST)	<-	data_END_ST[,1]	#Add	names	
data_END_ST	<-	data_END_ST[,2:length(colnames(data_END_ST))]	
	
##	END_HP	##	
data_END_HP	<-	readWorksheetFromFile("Individual	data	Endosulfan	males_females_final.xlsx",	sheet	=	2,	
startRow	=	3)	
rownames(data_END_HP)	<-	data_END_HP[,1]	#Add	names	
data_END_HP	<-	data_END_HP[,2:length(colnames(data_END_HP))]	
	
##	END_CB	##	
data_END_CB	<-	readWorksheetFromFile("Individual	data	Endosulfan	males_females_final.xlsx",	sheet	=	3,	
startRow	=	3)	
rownames(data_END_CB)	<-	data_END_CB[,1]	#Add	names	
data_END_CB	<-	data_END_CB[,2:length(colnames(data_END_CB))]	
	
##	END_CX	##	
data_END_CX	<-	readWorksheetFromFile("Individual	data	Endosulfan	males_females_final.xlsx",	sheet	=	4,	
startRow	=	3)	
rownames(data_END_CX)	<-	data_END_CX[,1]	#Add	names	
data_END_CX	<-	data_END_CX[,2:length(colnames(data_END_CX))]	
	
	
###	IMPORT	PROTEOMIC	DATA	###	
setwd(dir_data_prot)	
data_prot	<-	read.xlsx("DataMat_Denamic_Set1.xlsx",	1,	startRow	=	5,	cols	=	c(c(1),	c(5:103)),	colNames	
=	TRUE,	rowNames	=	TRUE)	
data_prot	<-	as.data.frame(sapply(data_prot,	as.numeric),	row.names	=	rownames(data_prot))	
	
	
###	IMPORT	CLINICAL	DATA	###	
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setwd(dir_data_clinical)	
data_clinical	<-	readWorksheetFromFile("Table	Analysis	Behaviour-Proteomics	April	2015	(Ratas	
analizadas	proteomicamente).xlsx",	sheet	=	2)	
	
###	HOMOGENIZACION	DE	LOS	NOMBRES	###	
list_data_met	<-	list(data_CYP,	data_END_CB,	data_END_CX,	data_END_HP,	data_END_ST)	
for	(i	in	1:length(list_data_met))	{	
		names	<-	c()	
		for	(j	in	1:length(colnames(list_data_met[[i]])))	{	
				split	<-	unlist(strsplit(colnames(list_data_met[[i]])[j],	split	=	"\\."))	
				t	<-	split[1]	
				s	<-	split[2]	
				n	<-	split[3]	
				tis	<-	substr(split[4],	1,	2)	
				name	<-	paste(t,	s,	n,	tis,	sep	=	"	")	
				names	<-	c(names,	name)	
		}	
		colnames(list_data_met[[i]])	<-	names	
}	
	
names_prot	<-	c()	
treatment	<-	c()	
sex	<-	c()	
tissue	<-	c()	
numb	<-	c()	
for	(i	in	1:length(colnames(data_prot)))	{	
		split	<-	unlist(strsplit(colnames(data_prot)[i],	split	=	"\\."))	
		t	<-	split[1]	
		s	<-	split[2]	
		n	<-	paste(split[3],	split[4],	sep	=	"")	
		tis	<-	split[6]	
		treatment	<-	c(treatment,	t)	
		sex	<-	c(sex,	s)	
		numb	<-	c(numb,	n)	
		tissue	<-	c(tissue,	tis)	
		name	<-	paste(t,	s,	n,	tis,	sep	=	"	")	
		names_prot	<-	c(names_prot,	name)	
}	
colnames(data_prot)	<-	names_prot	
	
names_clinical	<-	c()	
for	(i	in	1:length(rownames(data_clinical))){	
		s	<-	substr(data_clinical[i,	1],	1,	1)	
		t	<-	data_clinical[i,	8]	
		n	<-	data_clinical[i,	2]	
		name	<-	paste(t,	s,	n,	sep	=	"	")	
		names_clinical	<-	c(names_clinical,	name)	
}	
rownames(data_clinical)	<-	names_clinical	
data_clinical	<-	data_clinical[,c(3:7)]	
	
	
###	NEW	DATA	FRAME	###	
master_frame	<-	as.data.frame(t(data_prot))	#Proteomics	added	to	master	frame	
#Now	we	add	the	metabolic	contents	to	the	new	master	frame	
for	(i	in	1:length(list_data_met))	{	
		for	(j	in	1:length(rownames(list_data_met[[i]])))	{	
				metabolite	<-	rownames(list_data_met[[i]])[j]	
				for	(z	in	1:length(colnames(list_data_met[[i]])))	{	
						individual	<-	colnames(list_data_met[[i]])[z]	
						master_frame[individual,	metabolite]	<-	list_data_met[[i]][j,	z]	
				}	
		}	
}	
	
#	INFO	REGARDING	INDIVIDUALS	
master_frame[,	"Treatment"]	<-	treatment	
master_frame[,	"Sex"]	<-	sex	
master_frame[,	"Tissue"]	<-	tissue	
master_frame[,	"Number"]	<-	numb	
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#	INFO	CLINICAL	DATA	
for	(i	in	1:length(rownames(master_frame)))	{	
		for	(j	in	1:length(rownames(data_clinical)))	{	
				full_name	<-	rownames(master_frame)[i]	
				name	<-	rownames(data_clinical)[j]	
				if	(grepl(name,	full_name))	{	
						master_frame[i,colnames(data_clinical)]	<-	data_clinical[j,]	
				}	
		}	
}	
	
###	OUTPUT	###	
setwd(dir_output)	
write.table(master_frame,	"master_frame.txt",	sep="\t")	
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7.1.2.  Attachment I I :  Pre-processing and exploration of  Set  01 scr ipt  
	
#Script	para	realizar	PCA	sobre	datos	pre-procesados	
library(NOISeq)	
	
###	DIRECTORIOS	###	
dir_analisis	<-	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01"	
dir_data	<-	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/data"	
dir_output	<-	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_exp/"	
	
###	IMPORT	DATA	###	
setwd(dir_data)	
metab	=	read.delim("metabolomics01.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	check.names	=	
FALSE,	dec	=	",")	
metab2	=	metab[-grep("END	F	I2	CX",	rownames(metab)),]	
proteom	=	read.delim("proteomics01.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,		
																					check.names	=	FALSE,	dec	=	",")	
	
metabTissue	=	lapply(c("	CX",	"	HP",	"	ST",	"	CB"),	function	(x)	metab2[grep(x,	rownames(metab2)),])	
names(metabTissue)	=	c("CX",	"HP",	"ST",	"CB")	
proteomTissue	=	lapply(c("	CX",	"	HP",	"	ST",	"	CB"),	function	(x)	proteom[grep(x,	
rownames(proteom)),])	
names(proteomTissue)	=	c("CX",	"HP",	"ST",	"CB")	
	
#	Count	and	remove	missing	values	-----------------------------------------	
	
NAmetab	=	apply(metab2,	2,	function(x)	sum(is.na(x)))	
NAproteom	=	apply(proteom,	2,	function(x)	sum(is.na(x)))	
	
metab25	=	metab2[,-which(NAmetab	>	0.25*nrow(metab2))];	dim(metab25)		#	98	98	
proteom25	=	proteom[,-which(NAproteom	>	0.25*nrow(proteom))];	dim(proteom25)		#	99	722	
	
##	Per	tissue	
NAmetabTissue	=	lapply(metabTissue,	function	(y)	apply(y,	2,	function(x)	sum(is.na(x))))	
NAproteomTissue	=	lapply(proteomTissue,	function	(y)	apply(y,	2,	function(x)	sum(is.na(x))))	
	
metabTissue25	=	lapply(1:length(metabTissue),		
																							function	(i)	metabTissue[[i]][,-which(NAmetabTissue[[i]]	>	
0.25*nrow(metabTissue[[i]]))])	
proteomTissue25	=	lapply(1:length(proteomTissue),		
																									function	(i)	proteomTissue[[i]][,-which(NAproteomTissue[[i]]	>	
0.25*nrow(proteomTissue[[i]]))])	
names(metabTissue25)	=	names(proteomTissue25)	=	names(metabTissue)	
	
#	Missing	value	imputation	------------------------------------------------	
library(impute)	
	
metabKNN	=	impute.knn(t(metab25),	k	=	2,	rowmax	=	0.5,	colmax	=	0.8,	maxp	=	1500,	
rng.seed=362436069)$data	
proteomKNN	=	impute.knn(t(proteom25),	k	=	2,	rowmax	=	0.5,	colmax	=	0.8,	maxp	=	1500,	
rng.seed=362436069)$data	
	
metabTissueKNN	=	lapply(metabTissue25,		
																								function	(x)	impute.knn(t(x),	k	=	2,	rowmax	=	0.5,	colmax	=	0.8,	maxp	=	1500,	
rng.seed=362436069)$data)	
proteomTissueKNN	=	lapply(proteomTissue25,		
																										function	(x)	impute.knn(t(x),	k	=	2,	rowmax	=	0.5,	colmax	=	0.8,	maxp	=	1500,	
rng.seed=362436069)$data)	
	
#	Quantile	normalization	of	metabolomics	----------------------------------	
	
metabTissueKNN	=	lapply(metabTissueKNN,	function(x)	normalizeBetweenArrays(x,	method="quantile"))	
	
#	Arsynseq	----------------------------------------------------------------	
	
setwd(dir_data)	
charac	=	read.delim("characteristics01.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	check.names	=	
FALSE)	
charac[,"Number"]	=	sapply(charac[,"Number"],	function	(x)	substr(x,	start	=	1,	stop	=	nchar(x)-1))	
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charac[,"TSTN"]	=	apply(charac[,c("Treatment",	"Sex",	"Tissue",	"Number")],	1,	paste,	collapse	=	"_")	
	
charac_l_m	=	list(1:4)	
for	(i	in	1:length(metabTissueKNN))	{	
		charac_l_m[[i]]	=	charac[colnames(metabTissueKNN[[i]]),]	
}	
metabTissueNOISeq	=	list(1:length(metabTissueKNN))	
for	(i	in	1:length(metabTissueKNN))	{	
		metabTissueNOISeq[[i]]	=	readData(metabTissueKNN[[i]],	charac_l_m[[i]])	
}	
metabTissueNoNoise	=	lapply(metabTissueNOISeq,	function	(x)	ARSyNseq(x,	factor	=	"TSTN",	norm	=	"n",	
logtransf	=	FALSE))	
names(metabTissueNoNoise)	=	names(metabTissueKNN)	
metabTissueNoNoise	=	lapply(metabTissueNoNoise,	function(x)	x@assayData$exprs)	
	
	
charac_l_p	=	list(1:4)	
for	(i	in	1:length(proteomTissueKNN))	{	
		charac_l_p[[i]]	=	charac[colnames(proteomTissueKNN[[i]]),]	
}	
proteomTissueNOISeq	=	list(1:length(proteomTissueKNN))	
for	(i	in	1:length(proteomTissueKNN))	{	
		proteomTissueNOISeq[[i]]	=	readData(proteomTissueKNN[[i]],	charac_l_p[[i]])	
}	
proteomTissueNoNoise	=	lapply(proteomTissueNOISeq,	function	(x)	ARSyNseq(x,	factor	=	"TSTN",	norm	=	
"n",	logtransf	=	TRUE))	
names(proteomTissueNoNoise)	=	names(proteomTissueKNN)	
proteomTissueNoNoise	=	lapply(proteomTissueNoNoise,	function(x)	x@assayData$exprs)	
	
	
setwd(dir_data)	
for	(i	in	1:length(proteomTissueNoNoise))	{	
		write.table(proteomTissueNoNoise[[i]],	paste(names(proteomTissueNoNoise)[i],	"prot_NoNoiseData.txt",	
sep	=	"_"),	sep	=	"\t")	
		write.table(metabTissueNoNoise[[i]],	paste(names(metabTissueNoNoise)[i],	"met_NoNoiseData.txt",	sep	=	
"_"),	sep	=	"\t")		
}	
	
#	Graphical	representations	-----------------------------------------------	
setwd(dir_output)	
pdf(file	=	"heatmaps_norm.pdf",	width	=	3.5*4,	height	=	3.5*3)	
par(mfcol	=	c(1,1))	
for	(i	in	1:length(metabTissueKNN))	{	
		heatmap(metabTissueKNN[[i]],	main	=	paste("Metabolomics	(",	names(metabTissueKNN)[i],	")",	sep	=""),	
										margins	=	c(7,3))	
		heatmap(proteomTissueKNN[[i]],	main	=	paste("Proteomics	(",	names(proteomTissueKNN)[i],	")",	sep	
=""),	
										margins	=	c(7,3))	
}	
dev.off()	
	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
pdf(file	=	"boxplots_norm.pdf",	width	=	3.5*6,	height	=	3.5*3)	
par(mfcol	=	c(2,4),	mar	=	c(10,5,5,5))	
for	(i	in	1:length(metabTissueKNN))	{	
		sorted_m	=	metabTissueKNN[[i]][,order(colnames(metabTissueKNN[[i]]))]	
		sorted_p	=	proteomTissueKNN[[i]][,order(colnames(proteomTissueKNN[[i]]))]	
		if	(i	==	1)	{	#cortex	has	one	less	sample	in	metabolomics	
				boxplot(sorted_m,	main	=	paste("Metabolomics	(",	names(metabTissueKNN)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	10,	1,	1,	1,	1,	11,	11,	11,	11,	11,	2,	2,	2,	2,	9,	9,	9,	9,	
7,	7,	7)])	
		}	else	{	
				boxplot(sorted_m,	main	=	paste("Metabolomics	(",	names(metabTissueKNN)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	10,	1,	1,	1,	1,	11,	11,	11,	11,	11,	11,	2,	2,	2,	2,	9,	9,	9,	
9,	7,	7,	7)])	
		}	
		boxplot(sorted_p,	main	=	paste("Proteomics	(",	names(proteomTissueKNN)[i],	")",	sep	=""),	las	=	2,	
										col	=	miscolores[c(10,	10,	10,	10,	1,	1,	1,	1,	11,	11,	11,	11,	11,	11,	2,	2,	2,	2,	9,	9,	9,	
9,	7,	7,	7)])	
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}	
dev.off()	
	
#	PCA	---------------------------------------------------------------------	
	
###	LOG	+	CENTER	###	
#Per	tissue	
protTissue_data	=	lapply(proteomTissueNoNoise,	function	(x)	scale(x,	center	=	TRUE,	scale	=	FALSE))	
metabTissue_data	=	lapply(metabTissueNoNoise,	function	(x)	scale(log(x),	center	=	TRUE,	scale	=	TRUE))	
protTissue_data	=	lapply(protTissue_data,	function	(x)	t(x))	
metabTissue_data	=	lapply(metabTissue_data,	function	(x)	t(x))	
	
###	APLICAMOS	PCA	###	
data2pca	=	list("Metabolomics	(Cortex)"	=	metabTissue_data[[1]],		
																"Metabolomics	(Hippocampus)"	=	metabTissue_data[[2]],	
																"Metabolomics	(Striatum)"	=	metabTissue_data[[3]],		
																"Metabolomics	(Cerebellum)"	=	metabTissue_data[[4]],	
																"Proteomics	(Cortex)"	=	protTissue_data[[1]],	
																"Proteomics	(Hippocampus)"	=	protTissue_data[[2]],	
																"Proteomics	(Striatum)"	=	protTissue_data[[3]],	
																"Proteomics	(Cerebellum)"	=	protTissue_data[[4]])	
pca.results	=	lapply(data2pca,	PCA.GENES)	
	
	
###	EXPLAINED	VARIANCE	###	
setwd(dir_output)	
samp	<-	c()	
for	(i	in	1:length(data2pca))	{	
		samp	<-	c(samp,	length(rownames(data2pca[[i]])))	
}	
	
pdf(file	=	"explainedvariance_mother_arsynseq_norm_log.pdf",	width	=	3.5*4,	height	=	3.5*2)	
par(mfcol	=	c(2,4))	
for	(i	in	1:length(pca.results))	{	
		barplot(pca.results[[i]]$var.exp[,1],	names	=	1:samp[i],	
		xlab	=	"PC",	ylab	=	"explained	variance",	ylim	=	c(0,0.7),	
		main	=	names(pca.results)[i])	
}	
dev.off()	
	
####	COLORS	AND	SHAPES	###	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
charac_l	=	list(1:length(data2pca))	
for	(i	in	1:length(data2pca))	{	
		charac_l[[i]]	=	charac[rownames(data2pca[[i]]),]	
}	
	
#Pesticides	as	colors	
col.pest	<-	miscolores[1:3]	
pesticides	<-	charac[,"Treatment"]	
names(pesticides)	<-	rownames(charac)	
names(col.pest)	<-	unique(pesticides)	
mycol	=	col.pest[pesticides]	
	
#Sex	as	shapes	and	tissues	as	filled-in	shapes	or	empty	shapes	
myshapes	=	c(0,	15,	2,	17,	1,	16,	5,	18)	
group_l	<-	list()	
for	(j	in	1:length(data2pca))	{	
		group	<-	c()	
		for	(i	in	1:length(rownames(charac_l[[j]])))	{	
				group	<-	c(group,	paste(charac_l[[j]][i,"Sex"],	charac_l[[j]][i,	"Number"],	sep	=	"-"))	
		}	
		group_l[[j]]	<-	group	
}	
mypch_l	=	list()	
for	(j	in	1:length(data2pca))	{	
		pch.group	=	myshapes[1:length(unique(group_l[[j]]))]	
		names(pch.group)	=	unique(group_l[[j]])		
		mypch	=	pch.group[group_l[[j]]]	
		mypch_l[[j]]	=	mypch	
}	
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setwd(dir_output)	
	
###	LOADINGS	PLOT	###	
pdf(file	=	"PCAloadings12_mother_arsynseq_norm_log.pdf",	width	=	3.5*4,	height	=	3.5*2)	
par(mfcol	=	c(2,4))	
for	(i	in	1:length(pca.results))	{	
		plot(pca.results[[i]]$loadings[,1:2],	col="white",	cex	=	0.5,	
							xlab	=	paste("PCA	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	"%",	sep=""),	
							ylab	=	paste("PCA	2	",	round(pca.results[[i]]$var.exp[2,1]*100,0),	"%",	sep=""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$loadings[,1:2])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1),	
							ylim	=	range(pca.results[[i]]$loadings[,1:2])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1))	
			
		points(pca.results[[i]]$loadings[,1],	pca.results[[i]]$loadings[,2],	pch	=	0)	
}	
dev.off()	
	
pdf(file	=	"PCAloadings13_mother_arsynseq_norm_log.pdf",	width	=	3.5*4,	height	=	3.5*2)	
par(mfcol	=	c(2,4))	
for	(i	in	1:length(pca.results))	{	
		plot(pca.results[[i]]$loadings[,1:3],	col="white",	cex	=	0.5,	
							xlab	=	paste("PCA	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	"%",	sep=""),	
							ylab	=	paste("PCA	3	",	round(pca.results[[i]]$var.exp[2,1]*100,0),	"%",	sep=""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$loadings[,1:3])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1),	
							ylim	=	range(pca.results[[i]]$loadings[,1:3])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1))	
		points(pca.results[[i]]$loadings[,1],	pca.results[[i]]$loadings[,2],	pch	=	0)		
}	
dev.off()	
	
###	PCA	SCORES	PLOT	(WITH	COLORS	AND	SHAPES)	###	
pdf("PCAscores12_mother_arsynseq_norm_log.pdf",	width	=	3.5*4,	height	=	3.5*2)	
par(mfcol	=	c(2,4))	
for	(i	in	1:length(pca.results))	{	
		rango	=	diff(range(pca.results[[i]]$scores[,1:2]))	
			
		plot(pca.results[[i]]$scores[,1:2],	col	=	"white",	
							xlab	=	paste("PC	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	
																				"%",	sep	=	""),	
							ylab	=	paste("PC	2	",	round(pca.results[[i]]$var.exp[2,1]*100,0),	
																				"%",	sep	=	""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$scores[,1:2])	+	0.02*rango*c(-1,1),	
							ylim	=	range(pca.results[[i]]$scores[,1:2])	+	0.02*rango*c(-1,1))	
			
		points(pca.results[[i]]$scores[,1],	pca.results[[i]]$scores[,2],	
									pch	=	mypch_l[[i]],	col	=	mycol,	cex	=	1.5)			
		legend("topright",	c("END",	"CYP",	"VH"),	col	=	col.pest,	pch	=	19,	bty	=	"o",	ncol	=	2,	box.col	=	
"black")	
		legend("right",	c("M",	"F"),	pch	=	c(0,	15),	bty	=	"o",	ncol	=	2)	
		if	(i	==	1	|	i==	2	|	i	==	5	|	i	==	6)	{	
				legend("bottomright",	c("II",	"I",	"III"),	pch	=	c(0,	2,	1),	bty	=	"o",	ncol	=	2)						
		}	else	{	
				legend("bottomright",	c("I",	"II",	"III"),	pch	=	c(0,	2,	1),	bty	=	"o",	ncol	=	2)	
		}	
}	
dev.off()	
	
pdf("PCAscores13_mother_arsynseq_norm_log.pdf",	width	=	3.5*4,	height	=	3.5*2)	
par(mfcol	=	c(2,4))	
for	(i	in	1:length(pca.results))	{	
		rango2	=	diff(range(pca.results[[i]]$scores[,c(1,3)]))	
		plot(pca.results[[i]]$scores[,c(1,3)],	col	=	"white",	
							xlab	=	paste("PC	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	
																				"%",	sep	=	""),	
							ylab	=	paste("PC	3	",	round(pca.results[[i]]$var.exp[3,1]*100,0),	
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																				"%",	sep	=	""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$scores[,c(1,3)])	+	0.02*rango2*c(-1,1),	
							ylim	=	range(pca.results[[i]]$scores[,c(1,3)])	+	0.02*rango2*c(-1,1))	
			
		points(pca.results[[i]]$scores[,1],	pca.results[[i]]$scores[,3],	
									pch	=	mypch_l[[i]],	col	=	mycol,	cex	=	1.5)	
		legend("topright",	c("END",	"CYP",	"VH"),	col	=	col.pest,	pch	=	19,	bty	=	"o",	ncol	=	2,	box.col	=	
"black")	
		legend("right",	c("M",	"F"),	pch	=	c(0,	15),	bty	=	"o",	ncol	=	2)	
		if	(i	==	1	|	i==	2	|	i	==	5	|	i	==	6)	{	
				legend("bottomright",	c("II",	"I",	"III"),	pch	=	c(0,	2,	1),	bty	=	"o",	ncol	=	2)						
		}	else	{	
				legend("bottomright",	c("I",	"II",	"III"),	pch	=	c(0,	2,	1),	bty	=	"o",	ncol	=	2)	
		}	
}	
dev.off()	
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7.1.3.  Attachment I I I :  Dif ferential  expression analysis  for  Set  01 scr ipt  
 
#	Differential	expression	analysis	for	metabolomics	and	proteomics	data	of	DENAMIC	Set	01.	
#	Analysis	by	tissues.	
#	Only	VH	and	END	data	will	be	considered,	to	compare	with	transcriptomics	data.		
	
library(plyr)	
	
dir_analisis	<-	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01"	
dir_data	<-	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/data"	
dir_output	<-	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_DE/"	
	
#	Data	import	-------------------------------------------------------------	
	
#Import	data	as	rows	for	prots/metabolites	and	columns	for	samples	
setwd(dir_data)	
met_CB	=	read.delim("CB_met_NoNoiseData_norm.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	
check.names	=	FALSE)	
met_HP	=	read.delim("HP_met_NoNoiseData_norm.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	
check.names	=	FALSE)	
prot_CB	=	read.delim("CB_prot_NoNoiseData.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	check.names	
=	FALSE)	
prot_HP	=	read.delim("HP_prot_NoNoiseData.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	check.names	
=	FALSE)	
	
met	=	list("CB"	=	met_CB,	"HP"	=	met_HP)	
prot	=	list("CB"	=	prot_CB,	"HP"	=	prot_HP)	
	
#	Leave	only	END	and	VH	---------------------------------------------------	
	
met	=	lapply(met,	function(x)	x[,-grep("CYP",	colnames(x))])	
prot	=	lapply(prot,	function(x)	x[,-grep("CYP",	colnames(x))])	
	
#	Model	design	------------------------------------------------------------	
	
charac	=	read.delim("characteristics01.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	check.names	=	
FALSE)	
charac[,"Number"]	=	sapply(charac[,"Number"],	function	(x)	substr(x,	start	=	1,	stop	=	nchar(x)-1))	
	
sex_m_l	=	list()	
pest_m_l	=	list()	
mother_m_l	=	list()	
sex_p_l	=	list()	
pest_p_l	=	list()	
mother_p_l	=	list()	
for	(i	in	1:2)	{	
		sex_m_l[[i]]	=	factor(charac[colnames(met[[i]]),	"Sex"])	
		pest_m_l[[i]]	=	factor(charac[colnames(met[[i]]),	"Treatment"],	levels	=	c("VH","END"))	
		mother_m_l[[i]]	=	factor(charac[colnames(met[[i]]),	"Number"])	
		sex_p_l[[i]]	=	factor(charac[colnames(prot[[i]]),	"Sex"])	
		pest_p_l[[i]]	=	factor(charac[colnames(prot[[i]]),	"Treatment"],	levels	=	c("VH","END"))	
		mother_p_l[[i]]	=	factor(charac[colnames(prot[[i]]),	"Number"])	
}	
	
met_matrix	=	list()	
prot_matrix	=	list()	
for	(i	in	1:2)	{	
		met_matrix[[i]]	=	model.matrix(~	sex_m_l[[i]]	+	pest_m_l[[i]]	+	sex_m_l[[i]]	*	pest_m_l[[i]])	
		prot_matrix[[i]]	=	model.matrix(~	sex_p_l[[i]]	+	pest_p_l[[i]]	+	sex_p_l[[i]]	*	pest_p_l[[i]])	
}	
names(met_matrix)	=	c("CB",	"HP")	
names(prot_matrix)	=	c("CB",	"HP")	
	
#	Voom	transformation	-----------------------------------------------------	
m_trans_l	=	list()	
p_trans_l	=	prot	
for	(i	in	1:2)	{	
		m_trans_l[[i]]	<-	voom(met[[i]],	met_matrix[[i]],plot=TRUE)	
}	
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#	Limma	pipeline	----------------------------------------------------------	
fit_m	=	list()	
fit_p	=	list()	
for	(i	in	1:2)	{	
		fit_m[[i]]	=	lmFit(m_trans_l[[i]],	met_matrix[[i]])	
		fit_m[[i]]	=	eBayes(fit_m[[i]])	
		fit_p[[i]]	=	lmFit(p_trans_l[[i]],	prot_matrix[[i]])	
		fit_p[[i]]	=	eBayes(fit_p[[i]])	
}	
	
#	Venn	diagrams	-----------------------------------------------------------	
	
###Adjusted	p-value	
setwd(dir_output)	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
	
for	(i	in	1:2)	{	
		results_m	=	decideTests(fit_m[[i]])[,c(3,4)]	
		results_p	=	decideTests(fit_p[[i]])[,c(3,4)]	
			
		pdf(paste(names(met_matrix)[i],	"metab_Venn_adj.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_m,	names	=	c("Intercept",	"Sex",	"Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
			
		pdf(paste(names(met_matrix)[i],	"proteom_Venn_adj.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_p,	names	=	c("Intercept",	"Sex",	"Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
}	
	
###P-value	without	adjusting	
for	(i	in	1:2)	{	
		results_m	=	decideTests(fit_m[[i]],	adjust.method	=	"none",	p.value=0.05)[,c(3,4)]	
		results_p	=	decideTests(fit_p[[i]],	adjust.method	=	"none",	p.value=0.05)[,c(3,4)]	
			
		pdf(paste(names(met_matrix)[i],	"metab_Venn.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_m,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
			
		pdf(paste(names(met_matrix)[i],	"proteom_Venn.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_p,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
}	
	
###	PDFs	with	everything	
pdf("all_Venn_0.05.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2))	
for	(i	in	1:2)	{	
		results_m	=	decideTests(fit_m[[i]],	adjust.method	=	"none",	p.value=0.05)[,c(3,4)]	
		results_p	=	decideTests(fit_p[[i]],	adjust.method	=	"none",	p.value=0.05)[,c(3,4)]	
			
		vennDiagram(results_m,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(met_matrix)[i],	"(Metabolomics)",	sep	=	"	"),	outer	=	FALSE)	
			
		vennDiagram(results_p,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(met_matrix)[i],	"(Proteomics)",	sep	=	"	"),	outer	=	FALSE)	
}	
dev.off()	
	
pdf("all_Venn_adj.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2))	
for	(i	in	1:2)	{	
		results_m	=	decideTests(fit_m[[i]])[,c(3,4)]	
		results_p	=	decideTests(fit_p[[i]])[,c(3,4)]	
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		vennDiagram(results_m,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(met_matrix)[i],	"(Metabolomics)",	sep	=	"	"),	outer	=	FALSE)	
			
		vennDiagram(results_p,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(met_matrix)[i],	"(Proteomics)",	sep	=	"	"),	outer	=	FALSE)	
}	
dev.off()	
	
#	Create	tables	for	future	use	--------------------------------------------	
	
met_p_CB	=	list()	
met_p_HP	=	list()	
prot_p_CB	=	list()	
prot_p_HP	=	list()	
	
for	(j	in	1:4)	{	
				met_p_CB[[j]]	=	topTable(fit_m[[1]],	coef	=	j,	number	=	nrow(fit_m[[1]]))[,c("P.Value",	
"adj.P.Val")]	
				met_p_HP[[j]]	=	topTable(fit_m[[2]],	coef	=	j,	number	=	nrow(fit_m[[2]]))[,c("P.Value",	
"adj.P.Val")]	
				prot_p_CB[[j]]	=	topTable(fit_p[[1]],	coef	=	j,	number	=	nrow(fit_p[[1]]))[,c("P.Value",	
"adj.P.Val")]	
				prot_p_HP[[j]]	=	topTable(fit_p[[2]],	coef	=	j,	number	=	nrow(fit_p[[2]]))[,c("P.Value",	
"adj.P.Val")]	
}	
	
names(met_p_CB)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
names(met_p_HP)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
names(prot_p_CB)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
names(prot_p_HP)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
	
	
setwd(dir_output)	
for	(i	in	1:4)	{	
		write.table(met_p_CB[[i]],	paste(names(met_p_CB)[i],	"met_CB.txt",	sep	="_"),	sep	=	"\t",	quote	=	
FALSE)	
		write.table(met_p_HP[[i]],	paste(names(met_p_HP)[i],	"met_HP.txt",	sep	="_"),	sep	=	"\t",	quote	=	
FALSE)	
		write.table(prot_p_CB[[i]],	paste(names(prot_p_CB)[i],	"prot_CB.txt",	sep	="_"),	sep	=	"\t",	quote	=	
FALSE)	
		write.table(prot_p_HP[[i]],	paste(names(prot_p_HP)[i],	"prot_HP.txt",	sep	="_"),	sep	=	"\t",	quote	=	
FALSE)	
}	
	
#	Creation	of	average	tables	----------------------------------------------	
	
met_averages	=	list()	
prot_averages	=	list()	
	
for	(i	in	1:2)	{	#1	is	CB,	2	is	HP	
		VH_F_m	=	rowMeans(met[[i]][,grep("VH	F	",	colnames(met[[i]]))])	
		END_F_m	=	rowMeans(met[[i]][,grep("END	F	",	colnames(met[[i]]))])	
		VH_M_m	=	rowMeans(met[[i]][,grep("VH	M	",	colnames(met[[i]]))])	
		END_M_m	=	rowMeans(met[[i]][,grep("END	M	",	colnames(met[[i]]))])	
		met_averages[[i]]	=	data.frame(VH_F_m,	END_F_m,	VH_M_m,	END_M_m)	
			
		VH_F_p	=	rowMeans(prot[[i]][,grep("VH	F	",	colnames(prot[[i]]))])	
		END_F_p	=	rowMeans(prot[[i]][,grep("END	F	",	colnames(prot[[i]]))])	
		VH_M_p	=	rowMeans(prot[[i]][,grep("VH	M	",	colnames(prot[[i]]))])	
		END_M_p	=	rowMeans(prot[[i]][,grep("END	M	",	colnames(prot[[i]]))])	
		prot_averages[[i]]	=	data.frame(VH_F_p,	END_F_p,	VH_M_p,	END_M_p)		
}	
	
colnames(met_averages[[1]])	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M")	
colnames(met_averages[[2]])	=	c("HP_VH_F",	"HP_END_F",	"HP_VH_M",	"HP_END_M")	
colnames(prot_averages[[1]])	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M")	
colnames(prot_averages[[2]])	=	c("HP_VH_F",	"HP_END_F",	"HP_VH_M",	"HP_END_M")	
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#Export	mean	tables	(individual	tissues)	
setwd(dir_output)	
write.table(met_averages[[1]],	"metabolomics_averages_CB.txt",	sep	=	"\t")	
write.table(met_averages[[2]],	"metabolomics_averages_HP.txt",	sep	=	"\t")	
write.table(prot_averages[[1]],	"proteomics_averages_CB.txt",	sep	=	"\t")	
write.table(prot_averages[[2]],	"proteomics_averages_HP.txt",	sep	=	"\t")	
	
met_means	=	t(rbind.fill(as.data.frame(t(met_averages[[1]])),	as.data.frame(t(met_averages[[2]]))))	
prot_means	=	t(rbind.fill(as.data.frame(t(prot_averages[[1]])),	as.data.frame(t(prot_averages[[2]]))))	
colnames(met_means)	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M",	"HP_VH_F",	"HP_END_F",	"HP_VH_M",	
"HP_END_M")	
colnames(prot_means)	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M",	"HP_VH_F",	"HP_END_F",	
"HP_VH_M",	"HP_END_M")	
	
#Export	mean	tables	(both	tissues)	
write.table(met_means,	"metabolomics_averages.txt",	sep	=	"\t",	quote	=	FALSE)	
write.table(prot_means,	"proteomics_averages.txt",	sep	=	"\t",	quote	=	FALSE)	
	
#	Log2Ratio	tables	--------------------------------------------------------	
	
	
CB_met	=	transform(met_averages[[1]],	log2_CB_F	=	log2(met_averages[[1]][,2]/met_averages[[1]][,1]),	
																			log2_CB_M	=	log2(met_averages[[1]][,4]/met_averages[[1]][,3]))[,c(5,6)]	
HP_met	=	transform(met_averages[[2]],	log2_CB_F	=	log2(met_averages[[2]][,2]/met_averages[[2]][,1]),	
																			log2_CB_M	=	log2(met_averages[[2]][,4]/met_averages[[2]][,3]))[,c(5,6)]	
	
CB_prot	=	transform(prot_averages[[1]],	log2_CB_F	=	prot_averages[[1]][,2]-prot_averages[[1]][,1],	
																			log2_CB_M	=	prot_averages[[1]][,4]-prot_averages[[1]][,3])[,c(5,6)]	
HP_prot	=	transform(prot_averages[[2]],	log2_CB_F	=	prot_averages[[2]][,2]-prot_averages[[2]][,1],	
																			log2_CB_M	=	prot_averages[[2]][,4]-prot_averages[[2]][,3])[,c(5,6)]	
	
#Export	for	each	individual	tissue	
write.table(CB_met,	"metabolomics_log2_CB.txt",	sep	=	"\t",	quote	=	FALSE)	
write.table(HP_met,	"metabolomics_log2_HP.txt",	sep	=	"\t",	quote	=	FALSE)	
write.table(CB_prot,	"proteomics_log2_CB.txt",	sep	=	"\t",	quote	=	FALSE)	
write.table(HP_prot,	"proteomics_log2_HP.txt",	sep	=	"\t",	quote	=	FALSE)	
	
met_log2	=	t(rbind.fill(as.data.frame(t(CB_met)),	as.data.frame(t(HP_met))))	
prot_log2	=	t(rbind.fill(as.data.frame(t(CB_prot)),	as.data.frame(t(HP_prot))))	
colnames(met_log2)	=	c("log2_CB_F",	"log2_CB_M",	"log2_HP_F",	"log2_HP_M")	
colnames(prot_log2)	=	c("log2_CB_F",	"log2_CB_M",	"log2_HP_F",	"log2_HP_M")	
	
write.table(met_log2,	"metabolomics_log2.txt",	sep	=	"\t",	quote	=	FALSE)	
write.table(prot_log2,	"proteomics_log2.txt",	sep	=	"\t",	quote	=	FALSE)	
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7.1.4.  Attachment IV:  Init ial  formatting for  transcriptomics  scr ipt  
	
dir_trans	=	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Transcriptomics"	
dir_data	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data"	
dir_output	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_exp"	
	
library(NOISeq)	
	
#	RNA-seq:	genes?	isoforms?	---------------------------------------------------------------	
setwd(dir_trans)	
rnaseqGenes	=	read.delim("Cuffdiff_RNA-seq/genes.read_group_tracking",	header	=	TRUE,	as.is	=	TRUE)		#	
654408	rows	
head(rnaseqGenes)	
length(unique(rnaseqGenes$tracking_id))		#	18178	
	
rnaseqIsoforms	=	read.delim("Cuffdiff_RNA-seq/isoforms.read_group_tracking",	header	=	TRUE,	as.is	=	
TRUE)		#	670572	rows	
head(rnaseqIsoforms)	
length(unique(rnaseqIsoforms$tracking_id))		#	18627	
	
length(intersect(rnaseqGenes$tracking_id,	rnaseqIsoforms$tracking_id))	#	18172	
	
setdiff(rnaseqGenes$tracking_id,	rnaseqIsoforms$tracking_id)	
	
tail(setdiff(rnaseqIsoforms$tracking_id,	rnaseqGenes$tracking_id),	50)	
	
unique(rnaseqIsoforms$tracking_id[grep("NM_173300",	rnaseqIsoforms$tracking_id)])	
unique(rnaseqGenes$tracking_id[grep("NM_173300",	rnaseqGenes$tracking_id)])	
unique(rnaseqGenes$tracking_id[grep("_dup",	rnaseqGenes$tracking_id)])	
	
	
mirnaGenes	=	read.delim("Cuffdiff_miRNA/genes.read_group_tracking",	header	=	TRUE,	as.is	=	TRUE)	
head(mirnaGenes)	
length(unique(mirnaGenes$tracking_id))	
	
mirnaIsoforms	=	read.delim("Cuffdiff_miRNA/isoforms.read_group_tracking",	header	=	TRUE,	as.is	=	TRUE)	
head(mirnaIsoforms)	
length(unique(mirnaIsoforms$tracking_id))	
length(intersect(mirnaGenes$tracking_id,	mirnaIsoforms$tracking_id))		#	0	
	
#	Long	format	-->	Wide	format	---------------------------------------------	
	
#######	RNA-Seq	Genes	
rnaseqGenes2	=	rnaseqGenes[,c(1:3,7)]	
pesti	=	sapply(rnaseqGenes2$condition,	function	(x)	substr(x,	start	=	1,	stop	=	nchar(x)-3))	
sexo	=	sapply(rnaseqGenes2$condition,	function	(x)	substr(x,	start	=	nchar(x)-1,	stop	=	nchar(x)-1))	
tejido	=	sapply(rnaseqGenes2$condition,	function	(x)	substr(x,	start	=	nchar(x),	stop	=	nchar(x)))	
rnaseqGenes2	=	data.frame(rnaseqGenes2,	"pesti"	=	pesti,	"sex"	=	sexo,	"tissue"	=	tejido)	
idSample	=	apply(rnaseqGenes2[,c("pesti",	"sex",	"tissue",	"replicate")],	1,	paste,	collapse	=	"_")	
rnaseqGenes2	=	data.frame(rnaseqGenes2,"id"	=	idSample)	
rnaseqGenes4reshape	=	rnaseqGenes2[,c("tracking_id",	"id",	"FPKM")]	
	
#Genes	en	filas	y	FPKMs	correspondientes	a	cada	muestra	en	columnas	
rnaseqGenesWide	=	reshape(data	=	rnaseqGenes4reshape,	direction	=	"wide",	timevar	=	c("id"),	
																										idvar	=	c("tracking_id"))	
rownames(rnaseqGenesWide)	=	rnaseqGenesWide[,"tracking_id"]	
rnaseqGenesWide	=	rnaseqGenesWide[,2:length(colnames(rnaseqGenesWide))]	
	
	
#######	miRNA-Seq	Genes	
mirnaGenes2	=	mirnaGenes[,c(1:3,7)]	
pesti	=	sapply(mirnaGenes2$condition,	function	(x)	substr(x,	start	=	1,	stop	=	nchar(x)-3))	
sexo	=	sapply(mirnaGenes2$condition,	function	(x)	substr(x,	start	=	nchar(x)-1,	stop	=	nchar(x)-1))	
tejido	=	sapply(mirnaGenes2$condition,	function	(x)	substr(x,	start	=	nchar(x),	stop	=	nchar(x)))	
mirnaGenes2	=	data.frame(mirnaGenes2,	"pesti"	=	pesti,	"sex"	=	sexo,	"tissue"	=	tejido)	
idSample	=	apply(mirnaGenes2[,c("pesti",	"sex",	"tissue",	"replicate")],	1,	paste,	collapse	=	"_")	
mirnaGenes2	=	data.frame(mirnaGenes2,"id"	=	idSample)	
mirnaGenes4reshape	=	mirnaGenes2[,c("tracking_id",	"id",	"FPKM")]	
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#Genes	en	filas	y	FPKMs	correspondientes	a	cada	muestra	en	columnas	
mirnaGenesWide	=	reshape(data	=	mirnaGenes4reshape,	direction	=	"wide",	timevar	=	c("id"),	idvar	=	
c("tracking_id"))	
rownames(mirnaGenesWide)	=	mirnaGenesWide[,"tracking_id"]	
mirnaGenesWide	=	mirnaGenesWide[,2:length(colnames(mirnaGenesWide))]	
	
#	Export	wide	format	------------------------------------------------------	
setwd(dir_output)	
write.table(rnaseqGenesWide,	"rnaseqGenesWide.txt",	sep="\t")	
write.table(mirnaGenesWide,	"mirnaseqGenesWide.txt",	sep	=	"\t")	
	
#	Imegen	equivalents	and	sample	characteristics	---------------------------	
	
setwd(dir_trans)	
rna_eq	=	read.delim("Cuffdiff_RNA-seq/read_groups.info",	header	=	TRUE,	as.is	=	TRUE)	
mirna_eq	=	read.delim("Cuffdiff_miRNA/read_groups.info",	header	=	TRUE,	as.is	=	TRUE)	
	
#RNA-Seq	(que	tambien	vale	para	miRNA-Seq)	
rna_s	=	sapply(rna_eq$file,	function	(x)	strsplit(x,	split	=	"/"))	
rna_samp	=	sapply(rna_s,	function(x)	x[8])	
rownames(rna_eq)	=	rna_samp	
rna_eq	=	rna_eq[,	2:3]	
	
pesti	=	sapply(rna_eq$condition,	function	(x)	substr(x,	start	=	1,	stop	=	nchar(x)-3))	
sexo	=	sapply(rna_eq$condition,	function	(x)	substr(x,	start	=	nchar(x)-1,	stop	=	nchar(x)-1))	
tejido	=	sapply(rna_eq$condition,	function	(x)	substr(x,	start	=	nchar(x),	stop	=	nchar(x)))	
	
rna_eq	=	data.frame(rna_eq,	"tissue"	=	tejido,	"pesti"	=	pesti,	"sex"	=	sexo)	
id_rna	=	apply(rna_eq[,c("pesti",	"sex",	"tissue",	"replicate_num")],	1,	paste,	collapse	=	"_")	
rna_eq	=	data.frame(rna_eq,	"id"	=	id_rna)	
	
setwd(dir_output)	
write.table(rna_eq,	"imegen_equivalencies.txt",	sep	=	"\t")	
	
#	Data	preparation	--------------------------------------------------------	
	
library(NOISeq)	
mirnaseq_all	=	as.data.frame(t(mirnaGenesWide))	
mirna_all_names	=	sapply(rownames(mirnaseq_all),	function	(x)	strsplit(x,	split	=	"\\."))	
mirna_all_names	=	sapply(mirna_all_names,	function(x)	x[2])	
rownames(mirnaseq_all)	=	mirna_all_names	
	
rnaseq_all	=	as.data.frame(t(rnaseqGenesWide))	
rna_all_names	=	sapply(rownames(rnaseq_all),	function	(x)	strsplit(x,	split	=	"\\."))	
rna_all_names	=	sapply(rna_all_names,	function(x)	x[2])	
rownames(rnaseq_all)	=	rna_all_names	
	
rnaseqTissue	=	lapply(c("_H",	"_C"),	function	(x)	rnaseq_all[grep(x,	rownames(rnaseq_all)),])	
names(rnaseqTissue)	=	c("Hippocampus",	"Cerebellum")	
	
mirnaseqTissue	=	lapply(c("_H",	"_C"),	function	(x)	mirnaseq_all[grep(x,	rownames(mirnaseq_all)),])	
names(mirnaseqTissue)	=	c("Hippocampus",	"Cerebellum")	
	
#Export	data	with	no	filter	or	arsynseq	or	norm	
setwd(dir_data)	
write.table(t(mirnaseq_all),	"mirna_NonProcessed.txt",	sep	=	"\t")	
write.table(t(rnaseq_all),	"rna_NonProcessed.txt",	sep	=	"\t")	
for	(i	in	1:2)	{	
		write.table(t(mirnaseqTissue[[i]]),	paste(names(mirnaseqTissue)[i],	"_mirna_NonProcessed.txt",	sep	=	
""),	sep	=	"\t")	
		write.table(t(rnaseqTissue[[i]]),	paste(names(mirnaseqTissue)[i],	"_rna_NonProcessed.txt",	sep	=	""),	
sep	=	"\t")	
}
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7.1.5.  Attachment V:  Transcriptomics  init ial  formatting scr ipt  
	
	
dir_trans	=	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Transcriptomics"	
dir_data	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data"	
dir_miRNA	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/miRNA/"	
dir_output	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data"	
	
library(NOISeq)	
library(plyr)	
	
	
#	Import	data	to	format	-------------------------------------------------------------	
	
setwd(dir_data)	
	
rnaseq_all	=	read.delim("rna_NonProcessed.txt",	header	=	TRUE,	as.is	=	TRUE)	
	
rnaseqTissue	=	list("Hippocampus"	=	read.delim("Hippocampus_rna_NonProcessed.txt",	header	=	TRUE,	as.is	
=	TRUE),	
																				"Cerebellum"	=	read.delim("Cerebellum_rna_NonProcessed.txt",	header	=	TRUE,	as.is	=	
TRUE))	
	
	
#	Import	biomart	----------------------------------------------------------	
	
biomart	=	read.delim("mart_export.txt")	
colnames(biomart)	=	c("ENSEMBLEGeneID",	"ENSEMBLTranscriptID",	"RefSeqmRNAID",	
																						"RefSeqPredictedmRNAID",	"miRDBAccesionID")	
	
	
#	Import	miRNA	predictions	------------------------------------------------	
	
setwd(dir_miRNA)	
mirna_predictions	=	read.delim("rat_predictions_80.txt")	
mirna_predictions	=	mirna_predictions[which(mirna_predictions[,"score"]	>	85),]	
	
	
#	Import	miRBase	----------------------------------------------------------	
	
setwd(dir_miRNA)	
miRBase	=	read.delim("rno.gff3")	
miRBase	=	miRBase[,9]	
miRBase	=	sapply(as.character(miRBase),	function	(x)	strsplit(as.character(x),	split=	"[;=]"))	
miRBase	=	sapply(miRBase,	function	(x)	x[c(4,6)])	
miRBase	=	data.frame(t(miRBase))	
colnames(miRBase)	=	c("Alias",	"Name")	
rownames(miRBase)	=	c()	
	
	
#	Change	prediction	table	-------------------------------------------------	
	
#	First,	the	miRNAs	using	miRBase	
	
mirna_predictions	=	mirna_predictions[which(mirna_predictions[,"miRNA"]	%in%	miRBase[,"Name"]),]	
mirna_predictions	=	data.frame("ID"	=	miRBase[mirna_predictions[,"miRNA"],	"Alias"],	mirna_predictions)	
#	68952	
	
#	Second,	the	targets	using	Biomart	
	
mirna_predictions3	=	mirna_predictions[which(as.character(mirna_predictions[,"target"])	%in%	
biomart[,3]),]	
mirna_predictions4	=	mirna_predictions[which(as.character(mirna_predictions[,"target"])	%in%	
biomart[,4]),]	
	
mirna_predictions3	=	data.frame("Gene"	=	biomart[mirna_predictions3[,"target"],	1],	mirna_predictions3)	
mirna_predictions4	=	data.frame("Gene"	=	biomart[mirna_predictions4[,"target"],	1],	mirna_predictions4)	
	
mirna_predictions	=	rbind.fill(mirna_predictions3,	mirna_predictions4)	#	41363	
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#	Change	RNA-seq	IDs	------------------------------------------------------	
	
#	Using	biomart	
	
rnaseq_all	=	rnaseq_all[which(rownames(rnaseq_all)	%in%	biomart[,3]),]	#Vamos	de	18178	genes	a	16619	
biomart2	=	biomart[which(biomart[,3]	%in%	rownames(rnaseq_all)),]	
biomart2	=	biomart2[!duplicated(biomart2[,3]),]	
biomart2	=	biomart2[order(biomart2[,3]),]	
rnaseq_all	=	rnaseq_all[order(rownames(rnaseq_all)),]	
rnaseq_all	=	data.frame("ENSEMBL"	=	as.character(biomart2[,1]),	rnaseq_all)	
	
	
#	How	many	ENSEMBL	IDs	are	unique?	
ensembl	=	table(table(rnaseq_all[,"ENSEMBL"]))	#Hay	repeticiones,	por	tanto	para	ello	sacamos	mediana	
rnaseq_all	=	aggregate(rnaseq_all[,2:ncol(rnaseq_all)],	by	=	list("ENSEMBL"	=	
as.character(rnaseq_all[,"ENSEMBL"])),	median)	
rownames(rnaseq_all)	=	rnaseq_all[,"ENSEMBL"]	
rnaseq_all	=	rnaseq_all[,-c(1)]	
	
	
#	Export	same	elements	that	were	imported	with	the	same	name	--------------	
	
rnaseqTissue	=	lapply(c("_H",	"_C"),	function	(x)	rnaseq_all[,grep(x,	colnames(rnaseq_all))])	
names(rnaseqTissue)	=	c("Hippocampus",	"Cerebellum")	
	
setwd(dir_output)	
write.table(rnaseq_all,	"rna_NonProcessed.txt",	sep	=	"\t")	
for	(i	in	1:2)	{	
		write.table(rnaseqTissue[[i]],	paste(names(rnaseqTissue)[i],	"_rna_NonProcessed.txt",	sep	=	""),	sep	
=	"\t")	
}	
	
#	Export	re-formatted	miRNA	predictions	for	later	use	-----------------------------------	
setwd(dir_output)	
write.table(mirna_predictions,	"mirna_predictions.txt",	sep	=	"\t")	
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7.1.6.  Attachment VI:  Pre-processing and exploration of  t ranscriptomics  
scr ipt  
	
dir_trans	=	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Transcriptomics"	
dir_data	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data"	
dir_output	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_exp"	
	
library(NOISeq)	
	
#	Import	data	
setwd(dir_data)	
	
mirnaseq_all	=	read.delim("mirna_NonProcessed.txt",	header	=	TRUE,	as.is	=	TRUE)	
rnaseq_all	=	read.delim("rna_NonProcessed.txt",	header	=	TRUE,	as.is	=	TRUE)	
mirnaseqTissue	=	list("Hippocampus"	=	read.delim("Hippocampus_mirna_NonProcessed.txt",	header	=	TRUE,	
as.is	=	TRUE),	
																						"Cerebellum"	=	read.delim("Cerebellum_mirna_NonProcessed.txt",	header	=	TRUE,	
as.is	=	TRUE))	
rnaseqTissue	=	list("Hippocampus"	=	read.delim("Hippocampus_rna_NonProcessed.txt",	header	=	TRUE,	as.is	
=	TRUE),	
																				"Cerebellum"	=	read.delim("Cerebellum_rna_NonProcessed.txt",	header	=	TRUE,	as.is	=	
TRUE))	
	
rna_eq	=	read.delim("characteristics_transcriptomics.txt",	header	=	TRUE,	as.is	=	TRUE)	
	
	
#	First	look	at	data	--------------------------------------------------------	
	
zero_mirna	=	apply(mirnaseq_all,	1,	function(x)	all(x	==	0))	
number_zero_mirna	=	sum(zero_mirna)	#210	de	1133	
	
zero_rna	=	apply(rnaseq_all,	1,	function(x)	all(x	==	0))	
number_zero_rna	=	sum(zero_rna)	#	1657	de	15717	
	
	
##	Per	tissue	
zero_mirnaTissue	=	lapply(mirnaseqTissue,	function	(y)	apply(y,	1,	function(x)	all(x==0)))	
zero_rnaTissue	=	lapply(rnaseqTissue,	function	(y)	apply(y,	1,	function(x)	all(x==0)))	
	
names(zero_mirnaTissue)	=	c("Hippocampus",	"Cerebellum")		
names(zero_rnaTissue)	=	c("Hippocampus",	"Cerebellum")	
	
number_zero_mirnaTissue	=	lapply(zero_mirnaTissue,	sum)		
#	HP:	240	de	1133	
#	CB:	241	de	1133	
number_zero_rnaTissue	=	lapply(zero_rnaTissue,	sum)	
#	HP:	1875	de	15717	
#	CB:	1931	de	15717	
	
#	Graphical	representations	(before	arsynseq	and	filter	and	normalization)	----------------	
	
setwd(dir_output)	
	
#	Demasiados	datos	para	heatmap	
	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
pdf(file	=	"boxplots_noarsynseq_nofilter_nonorm.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2),	mar	=	c(10,5,5,5))	
for	(i	in	1:length(rnaseqTissue))	{	
		sorted_mirna	=	mirnaseqTissue[[i]][,order(colnames(mirnaseqTissue[[i]]))]	
		sorted_rna	=	rnaseqTissue[[i]][,order(colnames(rnaseqTissue[[i]]))]	
		if	(i	==	1)	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7)])		
		}	else	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
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												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	7,	7,	7)])		
		}	
		boxplot(sorted_rna	+	1,	main	=	paste("RNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	log	=	
"y",	
										col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7,	7)])	
}	
dev.off()	
	
#	Filtros	-----------------------------------------------------------------	
	
#Quitamos	todos	los	genes	que	tienen	todo	0s	y	otras	cosas	con	filtered.data	de	NOISeq	
	
for	(i	in	1:2)	{	
		factor_rna	=	as.vector(sapply(colnames(rnaseqTissue[[i]]),	function(x)	substr(x,	start	=	1,	stop	=	
3)))	
		rnaseqTissue[[i]]	=	filtered.data(rnaseqTissue[[i]],	factor_rna,	norm	=	TRUE,	method	=	1,	cv.cutoff	=	
500,	cpm	=	1)	
		factor_mirna	=	as.vector(sapply(colnames(mirnaseqTissue[[i]]),	function(x)	substr(x,	start	=	1,	stop	
=	3)))	
		mirnaseqTissue[[i]]	=	filtered.data(mirnaseqTissue[[i]],	factor_mirna,	norm	=	TRUE,	method	=	1,	
cv.cutoff	=	500,	cpm	=	1)	
}	
	
	
setwd(dir_data)	
for	(i	in	1:2)	{	
		write.table(mirnaseqTissue[[i]],	paste(names(mirnaseqTissue)[i],	"_mirna_Filtered.txt",	sep	=	""),	
sep	=	"\t")	
		write.table(rnaseqTissue[[i]],	paste(names(mirnaseqTissue)[i],	"_rna_Filtered.txt",	sep	=	""),	sep	=	
"\t")	
}	
	
#	Graphical	representations	(before	arsynseq,	with	filter,	no	norm)	-----------------------	
	
setwd(dir_output)	
	
#	Demasiados	datos	para	heatmap	
	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
pdf(file	=	"boxplots_noarsynseq_filter_nonorm.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2),	mar	=	c(10,5,5,5))	
for	(i	in	1:length(rnaseqTissue))	{	
		sorted_mirna	=	mirnaseqTissue[[i]][,order(colnames(mirnaseqTissue[[i]]))]	
		sorted_rna	=	rnaseqTissue[[i]][,order(colnames(rnaseqTissue[[i]]))]	
		if	(i	==	1)	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7)])		
		}	else	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	7,	7,	7)])		
		}	
		boxplot(sorted_rna	+	1,	main	=	paste("RNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	log	=	
"y",	
										col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7,	7)])	
}	
dev.off()	
	
#	Apply	norm	---------------------------------------------------------------	
	
library(limma)	
for	(i	in	1:2)	{	
		mirnaseqTissue[[i]]	=	normalizeBetweenArrays(as.matrix(mirnaseqTissue[[i]]),	method="quantile")	
		rnaseqTissue[[i]]	=	normalizeBetweenArrays(as.matrix(rnaseqTissue[[i]]),	method="quantile")	
}	
	
	
#	Graphical	representation	(with	filter	and	norm,	no	Arsynseq)	-------------	
	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
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pdf(file	=	"boxplots_noarsynseq_filter_norm.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2),	mar	=	c(10,5,5,5))	
for	(i	in	1:length(rnaseqTissue))	{	
		sorted_mirna	=	mirnaseqTissue[[i]][,order(colnames(mirnaseqTissue[[i]]))]	
		sorted_rna	=	rnaseqTissue[[i]][,order(colnames(rnaseqTissue[[i]]))]	
		if	(i	==	1)	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7)])		
		}	else	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	7,	7,	7)])		
		}	
		boxplot(sorted_rna	+	1,	main	=	paste("RNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	log	=	
"y",	
										col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7,	7)])	
}	
dev.off()	
	
#	Arsynseq	----------------------------------------------------------------	
	
rna_eq_a	=	data.frame(rna_eq[,c("tissue",	"pesti",	"sex")])	
rna_eq[,"id"]	=	sapply(rna_eq[,"id"],	as.character)	
rownames(rna_eq_a)	=	rna_eq[,"id"]	
rna_eq_a[,"TPS"]	=	sapply(rna_eq[,"id"],	function	(x)	substr(x,	start	=	1,	stop	=	nchar(x)-2))	
mirna_eq	=	rna_eq_a[-c(nrow(rna_eq_a),	nrow(rna_eq_a)-3),]	
	
	
mirna_eq_Tissue	=	lapply(c("_H",	"_C"),	function	(x)	mirna_eq[grep(x,	rownames(mirna_eq)),])	
rna_eq_Tissue	=	lapply(c("_H",	"_C"),	function	(x)	rna_eq_a[grep(x,	rownames(rna_eq_a)),])	
names(rna_eq_Tissue)	=	c("H",	"C")	
names(mirna_eq_Tissue)	=	c("H",	"C")	
	
	
mirnaseqTissueNOISeq	=	list()	
for	(i	in	1:length(mirnaseqTissue))	{	
		mirnaseqTissueNOISeq[[i]]	=	readData(mirnaseqTissue[[i]],	mirna_eq_Tissue[[i]])	
}	
mirnaseqTissueNoNoise	=	lapply(mirnaseqTissueNOISeq,	function	(x)	ARSyNseq(x,	factor	=	"TPS",	norm	=	
"n",	logtransf	=	FALSE))	
names(mirnaseqTissueNoNoise)	=	names(mirnaseqTissue)	
mirnaseqTissueNoNoise	=	lapply(mirnaseqTissueNoNoise,	function(x)	x@assayData$exprs)	
	
	
rnaseqTissueNOISeq	=	list()	
for	(i	in	1:length(rnaseqTissue))	{	
		rnaseqTissueNOISeq[[i]]	=	readData(rnaseqTissue[[i]],	rna_eq_Tissue[[i]])	
}	
rnaseqTissueNoNoise	=	lapply(rnaseqTissueNOISeq,	function	(x)	ARSyNseq(x,	factor	=	"TPS",	norm	=	"n",	
logtransf	=	FALSE))	
names(rnaseqTissueNoNoise)	=	names(rnaseqTissue)	
rnaseqTissueNoNoise	=	lapply(rnaseqTissueNoNoise,	function(x)	x@assayData$exprs)	
	
	
setwd(dir_data)	
for	(i	in	1:2)	{	
		write.table(mirnaseqTissue[[i]],	paste(names(mirnaseqTissue)[i],	"_mirna_NoNoiseData.txt",	sep	=	""),	
sep	=	"\t")	
		write.table(rnaseqTissue[[i]],	paste(names(mirnaseqTissue)[i],	"_rna_NoNoiseData.txt",	sep	=	""),	sep	
=	"\t")	
}	
	
#	Graphical	representations	(after	arsynseq)	----------------------------------------------	
	
setwd(dir_output)	
	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
pdf(file	=	"boxplots_arsynseq_filter_norm.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2),	mar	=	c(10,5,5,5))	
for	(i	in	1:length(rnaseqTissueNoNoise))	{	
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		sorted_mirna	=	mirnaseqTissueNoNoise[[i]][,order(colnames(mirnaseqTissueNoNoise[[i]]))]	
		sorted_rna	=	rnaseqTissueNoNoise[[i]][,order(colnames(rnaseqTissueNoNoise[[i]]))]	
		if	(i	==	1)	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7)])		
		}	else	{	
				boxplot(sorted_mirna	+	1,	main	=	paste("miRNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	
log	=	"y",	
												col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	7,	7,	7)])		
		}	
		boxplot(sorted_rna	+	1,	main	=	paste("RNA	(",	names(mirnaseqTissue)[i],	")",	sep	=""),	las	=	2,	log	=	
"y",	
										col	=	miscolores[c(10,	10,	10,	1,	1,	1,	11,	11,	11,	2,	2,	2,	9,	9,	9,	7,	7,	7)])	
}	
dev.off()	
	
	
#	PCA	---------------------------------------------------------------------	
	
data2pca	=	list("miRNAseq	(Hippocampus)"	=	log(t(mirnaseqTissueNoNoise[[1]])),	
																"RNAseq	(Hippocampus)"	=	log(t(rnaseqTissueNoNoise[[1]])),	
																"miRNAseq	(Cerebellum)"	=	log(t(mirnaseqTissueNoNoise[[2]])),	
																"RNAseq	(Cerebellum)"	=	log(t(rnaseqTissueNoNoise[[2]])))	
	
pca.results	=	lapply(data2pca,	PCA.GENES)	
	
	
setwd(dir_output)	
###	Explained	variance	###	
samp	<-	c()	
for	(i	in	1:length(data2pca))	{	
		samp	<-	c(samp,	length(rownames(data2pca[[i]])))	
}	
pdf(file	=	"explainedvariance_arsynseq.pdf",	width	=	3.5*2,	height	=	3.5*2)	
par(mfcol	=	c(2,2))	
for	(i	in	1:length(pca.results))	{	
		barplot(pca.results[[i]]$var.exp[,1],	names	=	1:samp[i],	
										xlab	=	"PC",	ylab	=	"explained	variance",	ylim	=	c(0,0.7),	
										main	=	names(pca.results)[i])	
}	
dev.off()	
	
####	COLORS	AND	SHAPES	###	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
#Pesticides	as	colors	
col.pest	<-	miscolores[1:3]	
pesticides	<-	rna_eq[,"pesti"]	
names(pesticides)	<-	rna_eq[,"id"]	
names(col.pest)	<-	unique(pesticides)	
mycol	=	col.pest[pesticides]	
	
#Sex	as	shapes	and	tissues	as	filled-in	shapes	or	empty	shapes	
myshapes	=	c(0,	15,	2,	17,	1,	16,	5,	18)	
group_l	<-	list()	
for	(j	in	1:length(data2pca))	{	
		group	<-	c()	
		for	(i	in	1:length(rownames(data2pca[[j]])))	{	
				group	<-	c(group,	paste(rna_eq[i,"sex"],	rna_eq[i,	"tissue"],	sep	=	"-"))	
		}	
		group_l[[j]]	<-	group	
}	
mypch_l	=	list()	
for	(j	in	1:length(data2pca))	{	
		pch.group	=	myshapes[1:length(unique(group_l[[j]]))]	
		names(pch.group)	=	unique(group_l[[j]])		
		mypch	=	pch.group[group_l[[j]]]	
		mypch_l[[j]]	=	mypch	
}	
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###	LOADINGS	PLOT	###	
pdf(file	=	"PCAloadings12_arsynseq.pdf",	width	=	3.5*3,	height	=	3.5*3)	
par(mfcol	=	c(2,2))	
for	(i	in	1:length(pca.results))	{	
		plot(pca.results[[i]]$loadings[,1:2],	col="white",	cex	=	0.5,	
							xlab	=	paste("PCA	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	"%",	sep=""),	
							ylab	=	paste("PCA	2	",	round(pca.results[[i]]$var.exp[2,1]*100,0),	"%",	sep=""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$loadings[,1:2])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1),	
							ylim	=	range(pca.results[[i]]$loadings[,1:2])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1))	
			
		points(pca.results[[i]]$loadings[,1],	pca.results[[i]]$loadings[,2],	pch	=	0)	
}	
dev.off()	
	
pdf(file	=	"PCAloadings13_arsynseq.pdf",	width	=	3.5*3,	height	=	3.5*3)	
par(mfcol	=	c(2,2))	
for	(i	in	1:length(pca.results))	{	
		plot(pca.results[[i]]$loadings[,1:3],	col="white",	cex	=	0.5,	
							xlab	=	paste("PCA	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	"%",	sep=""),	
							ylab	=	paste("PCA	3	",	round(pca.results[[i]]$var.exp[2,1]*100,0),	"%",	sep=""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$loadings[,1:3])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1),	
							ylim	=	range(pca.results[[i]]$loadings[,1:3])	+	
0.02*diff(range(pca.results[[i]]$loadings[,1:2]))*c(-1,1))	
		points(pca.results[[i]]$loadings[,1],	pca.results[[i]]$loadings[,2],	pch	=	0)		
}	
dev.off()	
	
	
###	PCA	SCORES	PLOT	(WITH	COLORS	AND	SHAPES)	###	
	
pdf("PCAscores12_arsynseq.pdf",	width	=	3.5*3,	height	=	3.5*3)	
par(mfcol	=	c(2,2))	
for	(i	in	1:length(pca.results))	{	
		rango	=	diff(range(pca.results[[i]]$scores[,1:2]))	
			
		plot(pca.results[[i]]$scores[,1:2],	col	=	"white",	
							xlab	=	paste("PC	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	
																				"%",	sep	=	""),	
							ylab	=	paste("PC	2	",	round(pca.results[[i]]$var.exp[2,1]*100,0),	
																				"%",	sep	=	""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$scores[,1:2])	+	0.02*rango*c(-1,1),	
							ylim	=	range(pca.results[[i]]$scores[,1:2])	+	0.02*rango*c(-1,1))	
			
		points(pca.results[[i]]$scores[,1],	pca.results[[i]]$scores[,2],	
									pch	=	mypch_l[[i]],	col	=	mycol,	cex	=	1.5)	
		legend("topright",	c("Endosulfan",	"CYP+END",	"Control"),	col	=	col.pest,	pch	=	19,	bty	=	"o",	ncol	=	
2,	box.col	=	"black")	
		legend("right",	c("M",	"F"),	pch	=	c(0,	15),	bty	=	"o",	ncol	=	2)		
}	
dev.off()	
	
	
pdf("PCAscores13_arsynseq.pdf",	width	=	3.5*3,	height	=	3.5*3)	
par(mfcol	=	c(2,2))	
for	(i	in	1:length(pca.results))	{	
		rango2	=	diff(range(pca.results[[i]]$scores[,c(1,3)]))	
		plot(pca.results[[i]]$scores[,c(1,3)],	col	=	"white",	
							xlab	=	paste("PC	1	",	round(pca.results[[i]]$var.exp[1,1]*100,0),	
																				"%",	sep	=	""),	
							ylab	=	paste("PC	3	",	round(pca.results[[i]]$var.exp[3,1]*100,0),	
																				"%",	sep	=	""),	
							main	=	names(data2pca)[i],	
							xlim	=	range(pca.results[[i]]$scores[,c(1,3)])	+	0.02*rango2*c(-1,1),	
							ylim	=	range(pca.results[[i]]$scores[,c(1,3)])	+	0.02*rango2*c(-1,1))	
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		points(pca.results[[i]]$scores[,1],	pca.results[[i]]$scores[,3],	
									pch	=	mypch_l[[i]],	col	=	mycol,	cex	=	1.5)	
		legend("topright",	c("Endosulfan",	"CYP+END",	"Control"),	col	=	col.pest,	pch	=	19,	bty	=	"o",	ncol	=	
2,	box.col	=	"black")	
		legend("right",	c("M",	"F"),	pch	=	c(0,	15),	bty	=	"o",	ncol	=	2)		
}	
dev.off()	
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7.1.7.  Attachment VII:  miRDB bibliography check scr ipt  
 
#	Manual	bibliography	check	-----------------------------------------------	
	
#miRNA	Bibliography	check	
	
setwd("~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/miRNA/")	
predictions	=	read.delim("miRDB_v5.0_prediction_result.txt")	
	
BACE1	=	predictions[grep("NM_001207049",	predictions[,"target"]),]	
t_BACE1	=	BACE1[grep("miR-339",	BACE1[,"miRNA"]),]	
	
NLRP3	=	predictions[grep("NM_001243133",	predictions[,"target"]),]	
t_NLRP3	=	NLRP3[grep("miR-223",	NLRP3[,"miRNA"]),]	
	
GRM4	=	predictions[grep("NM_00125681",	predictions[,"target"]),]	
t_GRM4	=	GRM4[grep("miR-1202",	GRM4[,"miRNA"]),]	#No	matches	for	any	splice	variant	
	
BDNF	=	predictions[grep("NM_001285422",	predictions[,"target"]),]	
t_BDNF	=	BDNF[grep("miR-1",	BDNF[,"miRNA"]),]	
	
RHOC	=	predictions[grep("NM_001106461",	predictions[,"target"]),]	
t_RHOC	=	RHOC[grep("miR-509",	RHOC[,"miRNA"]),]	
	
ACHE	=	predictions[grep("NM_001302621",	predictions[,"target"]),]	
t_ACHE	=	ACHE[grep("miR-608",	RHOC[,"miRNA"]),]	#No	matches	
	
mTOR	=	predictions[grep("NM_004958",	predictions[,"target"]),]	
t_mTOR	=	mTOR[grep("miR-199",	mTOR[,"miRNA"]),]	
	
APAF1	=	predictions[grep("NM_013229",	predictions[,"target"]),]	
t_APAF1	=	APAF1[grep("miR-23",	APAF1[,"miRNA"]),]	
	
#	mirTarBase	comparison	---------------------------------------------------	
	
mirdb_rat	=	read.delim("mirna_predictions_80.txt")	
mirtarbase	=	read.delim("mirTarBase_rat.txt")[,c(1:6)]	#miRNA	targets	experimentally	proven	
biomart	=	read.delim("mart_export.txt")	
	
#First	of	all,	we	add	RefSeq	IDs	to	the	mirtarbase	frame	
names	=	sapply(mirtarbase[,5],	function(x)	as.character(biomart[grep(x,	biomart[,4]),3]))	
mirtarbase[,"RefSeq"]	=	sapply(names,	function(x)	max(x))	
mirtarbase[,"ID"]	=	apply(mirtarbase[,c("miRNA","RefSeq")],	1,	paste,	collapse	=	"_")	
	
	
#After	that,	we	can	compare	it	with	the	rat	predictions	and	check	scores	
mirdb_rat[,"ID"]	=	apply(mirdb_rat[,c("miRNA","target")],	1,	paste,	collapse	=	"_")	
	
rat_predictions	=	mirdb_rat[which(mirdb_rat[,"ID"]	%in%	mirtarbase[,"ID"]),]	
	
write.table(rat_predictions,	"mirna_mirtarbase_check.txt",	sep	=	"\t",	dec	=	",")	
	
#	Analysis	of	miRDB	-------------------------------------------------------	
	
#Histograms	
pdf("miRNAhistograms.pdf",	width	=	3.5*4,	height	=	3.5*2)	
par(mfcol	=	c(1,2))	
hist(table(mirdb_rat[,"miRNA"]),	plot	=	TRUE,	
					main	=	"Genes	per	miRNA",	
					xlab	=	"Genes	per	miRNA",	
					col	=	colors()[111],	
					xlim	=	c(0,1700))	
hist_gene	=	hist(table(mirdb_rat[,"target"]),	plot	=	TRUE,	
																	main	=	"miRNAs	per	gene",	
																	xlab	=	"miRNAs	per	gene",	
																	col	=	colors()[111],	
																	xlim	=	c(0,150))	
dev.off()	
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#Density	plots	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
	
predictions_80	=	mirdb_rat[which(mirdb_rat[,"score"]	>	80),]	
predictions_85	=	mirdb_rat[which(mirdb_rat[,"score"]	>	85),]	
predictions_90	=	mirdb_rat[which(mirdb_rat[,"score"]	>	90),]	
predictions_95	=	mirdb_rat[which(mirdb_rat[,"score"]	>	95),]	
	
TT80_m	=	table(as.character(predictions_80[,"miRNA"]))	
TT85_m	=	table(as.character(predictions_85[,"miRNA"]))	
TT90_m	=	table(as.character(predictions_90[,"miRNA"]))	
TT95_m	=	table(as.character(predictions_95[,"miRNA"]))	
	
TT80_t	=	table(as.character(predictions_80[,"target"]))	
TT85_t	=	table(as.character(predictions_85[,"target"]))	
TT90_t	=	table(as.character(predictions_90[,"target"]))	
TT95_t	=	table(as.character(predictions_95[,"target"]))	
	
pdf("density_plots.pdf",	width	=	3.5*3,	height	=	3.5*1.5)	
par(mfcol	=	c(1,2))	
plot(density(TT80_m),	lwd	=	2,	col	=	miscolores[1],	main	=	"Density	Plot",	xlab	=	"Genes	per	miRNA",	
					ylim	=	c(0,	0.03),	xlim	=	c(0,600))	
lines(density(TT85_m),	lwd	=	2,	col	=	miscolores[2])	
lines(density(TT90_m),	lwd	=	2,	col	=	miscolores[3])	
lines(density(TT95_m),	lwd	=	2,	col	=	miscolores[4])	
	
plot(density(TT80_t),	lwd	=	2,	col	=	miscolores[1],	main	=	"Density	Plot",	xlab	=	"miRNAs	per	gene",	
					xlim	=	c(0,20),	ylim	=	c(0,3))	
lines(density(TT85_t),	lwd	=	2,	col	=	miscolores[2])	
lines(density(TT90_t),	lwd	=	2,	col	=	miscolores[3])	
lines(density(TT95_t),	lwd	=	2,	col	=	miscolores[4])	
	
legend("topright",	c("80",	"85",	"90",	"95"),	col	=	miscolores[1:4],	pch	=	19,	
							bty	=	"o",	ncol	=	2,	box.col	=	"black")	
dev.off()	
	
#	Median	plot	
x	=	c(80,	85,	90,	95)	
y	=	c(median(predictions_80[,"score"]),	median(predictions_85[,"score"]),	
						median(predictions_90[,"score"]),	median(predictions_95[,"score"]))	
pdf("medians_score.pdf",	width	=	3.5*1.5,	height	=	3.5*1.5)	
plot(x,y,	pch	=	19,	main	=	"Median	evolution	with	score	cut-off")	
dev.off()	
	
#	Summary	table	
breaks	=	c(80,	85,	90,	95)	
medians_m	=	c(median(TT80_m),	median(TT85_m),	median(TT90_m),	median(TT95_m))	
medians_t	=	c(median(TT80_t),	median(TT85_t),	median(TT90_t),	median(TT95_t))	
miRNAs	=	c(length(unique(predictions_80[,"miRNA"])),	length(unique(predictions_85[,"miRNA"])),	
											length(unique(predictions_90[,"miRNA"])),	length(unique(predictions_95[,"miRNA"])))	
genes	=	c(length(unique(predictions_80[,"target"])),	length(unique(predictions_85[,"target"])),	
										length(unique(predictions_90[,"target"])),	length(unique(predictions_95[,"target"])))	
	
#	We	want	to	compare	with	our	data,	so	we	import	it		
setwd("~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data")	
mirna_CB	=	read.delim("Cerebellum_mirna_NoNoiseData.txt")	
rna_CB	=	read.delim("Cerebellum_rna_NoNoiseData.txt")	
mirna_HP	=	read.delim("Hippocampus_mirna_NoNoiseData.txt")	
rna_HP	=	read.delim("Hippocampus_rna_NoNoiseData.txt")	
	
	
###	POR	AQUI	VOY!	
	
intersections_RNA_CB	=	c(nrow(predictions_80[which(unique(predictions_80[,"Gene"])	%in%	
rownames(rna_CB)),]),	
																									nrow(predictions_85[which(unique(predictions_85[,"Gene"])	%in%	
rownames(rna_CB)),]),	
																									nrow(predictions_90[which(unique(predictions_90[,"Gene"])	%in%	
rownames(rna_CB)),]),	
																									nrow(predictions_95[which(unique(predictions_95[,"Gene"])	%in%	
rownames(rna_CB)),]))	
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intersections_RNA_HP	=	c(nrow(predictions_80[which(unique(predictions_80[,"Gene"])	%in%	
rownames(rna_HP)),]),	
																									nrow(predictions_85[which(unique(predictions_85[,"Gene"])	%in%	
rownames(rna_HP)),]),	
																									nrow(predictions_90[which(unique(predictions_90[,"Gene"])	%in%	
rownames(rna_HP)),]),	
																									nrow(predictions_95[which(unique(predictions_95[,"Gene"])	%in%	
rownames(rna_HP)),]))	
	
#	We	need	to	change	miRNA	names	to	MI	format	
setwd("~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/miRNA")	
miRBase_rat	=	read.delim("miRDB_rat.txt")	
	
miRBase_rat2	=	read.delim("rno.gff3")	
miRBase_rat2	=	miRBase_rat2[,9]	
miRBase_rat2	=	sapply(as.character(miRBase_rat2),	function	(x)	strsplit(as.character(x),	split=	
"[;=]"))	
miRBase_rat2	=	sapply(miRBase_rat2,	function	(x)	x[c(4,6)])	
miRBase_rat2_data	=	data.frame(t(miRBase_rat2))	
colnames(miRBase_rat2_data)	=	c("Alias",	"Name")	
	
nice_names2	=	miRBase_rat2_data[which(miRBase_rat2_data[,"Name"]	%in%	mirdb_rat[,"miRNA"]),]	
nice_names2	=	nice_names2[order(nice_names2[,2]),]	
nice_names2	=	nice_names2[!duplicated(nice_names2[,2]),]	#752	
	
mirna2	=	mirdb_rat	
mirna2	=	mirna2[order(mirna2[,"miRNA"]),]	
mirna2	=	mirna2[which(mirna2[,"miRNA"]	%in%	nice_names2[,2]),]	
mirna2	=	mirna2[!duplicated(mirna2[,"miRNA"]),]	#752	unique	miRNAs	
	
#Cambiamos	nombres	de	mirna2	con	equivalentes	de	nice_names2	
rownames(mirna2)	=	nice_names2[,"Alias"]	
	
#Hacemos	nuevas	tablas	de	predictions	con	mirna2	
predictions_80_2	=	mirna2[which(mirna2[,"score"]	>	80),]	
predictions_85_2	=	mirna2[which(mirna2[,"score"]	>	85),]	
predictions_90_2	=	mirna2[which(mirna2[,"score"]	>	90),]	
predictions_95_2	=	mirna2[which(mirna2[,"score"]	>	95),]	
	
intersections_miRNA_CB	=	c(nrow(predictions_80[which(unique(predictions_80[,"ID"])	%in%	
rownames(mirna_CB)),]),	
																											nrow(predictions_85[which(unique(predictions_85[,"ID"])	%in%	
rownames(mirna_CB)),]),	
																											nrow(predictions_90[which(unique(predictions_90[,"ID"])	%in%	
rownames(mirna_CB)),]),	
																											nrow(predictions_95[which(unique(predictions_95[,"ID"])	%in%	
rownames(mirna_CB)),]))	
intersections_miRNA_HP	=	c(nrow(predictions_80[which(unique(predictions_80[,"ID"])	%in%	
rownames(mirna_HP)),]),	
																											nrow(predictions_85[which(unique(predictions_85[,"ID"])	%in%	
rownames(mirna_HP)),]),	
																											nrow(predictions_90[which(unique(predictions_90[,"ID"])	%in%	
rownames(mirna_HP)),]),	
																											nrow(predictions_95[which(unique(predictions_95[,"ID"])	%in%	
rownames(mirna_HP)),]))	
			
#Bringing	it	all	together	and	creating	the	table	
the_table	=	data.frame("Medians	(genes	per	miRNA)"	=	medians_m,	
																							"Medians	(miRNAs	per	gene)"	=	medians_t,	
																							"Num.	miRNAs"	=	miRNAs,	
																							"Num.	genes"	=	genes,	
																							"Intersect.	miRNAs	CB"	=	intersections_miRNA_CB,	
																							"Intersect.	miRNAs	HP"	=	intersections_miRNA_HP,	
																							"Intersect.	Genes	CB"	=	intersections_RNA_CB,	
																							"Intersect.	Genes	HP"	=	intersections_RNA_HP)	
rownames(the_table)	=	breaks	
colnames(the_table)	=	c("Medians	(genes	per	miRNA)",	"Medians	(miRNAs	per	gene)",	
																								"Num.	miRNAs",	"Num.	genes",	"Intersect	miRNAs	CB",	
																								"Intersect	miRNAs	HP",	"Intersect	Genes	CB",	"Intersect	Genes	HP")	
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7.1.8.  Attachment VII I :  Dif ferential  expression analysis  for  
transcriptomics  scr ipt  
	
dir_trans	=	"/Users/Elena/Dropbox/Felipo_OmicsDENAMICdata/Transcriptomics"	
dir_data	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data"	
dir_output	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE"	
	
library(plyr)	
	
#	Data	import	-------------------------------------------------------------	
	
#Import	data	as	rows	for	prots/metabolites	and	columns	for	samples	
setwd(dir_data)	
rna_HP	=	read.delim("Hippocampus_rna_NoNoiseData.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	
check.names	=	FALSE)	
mirna_HP	=	read.delim("Hippocampus_mirna_NoNoiseData.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	
check.names	=	FALSE)	
rna_CB	=	read.delim("Cerebellum_rna_NoNoiseData.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	
check.names	=	FALSE)	
mirna_CB	=	read.delim("Cerebellum_mirna_NoNoiseData.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	
check.names	=	FALSE)	
	
	
miRNA	=	list("CB"	=	mirna_CB,	"HP"	=	mirna_HP)	
RNA	=	list("CB"	=	rna_CB,	"HP"	=	rna_HP)	
	
	
#	Only	keep	END	and	VH	----------------------------------------------------	
	
miRNA	=	lapply(miRNA,	function(x)	x[,-grep("CYP_END",	colnames(x))])	
RNA	=	lapply(RNA,	function(x)	x[,-grep("CYP_END",	colnames(x))])	
	
	
#	Model	design	------------------------------------------------------------	
	
charac	=	read.delim("characteristics_transcriptomics.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	1,	
check.names	=	FALSE)	
rna_eq	=	data.frame(charac,	row.names	=	charac[,"id"])	
mirna_eq	=	rna_eq[-c(3),]	
	
	
sex_mirna_l	=	list()	
pest_mirna_l	=	list()	
sex_rna_l	=	list()	
pest_rna_l	=	list()	
	
for	(i	in	1:2)	{	
		sex_mirna_l[[i]]	=	factor(mirna_eq[colnames(miRNA[[i]]),	"sex"])	
		pest_mirna_l[[i]]	=	factor(mirna_eq[colnames(miRNA[[i]]),	"pesti"],	levels	=	
c("Control","Endosulfan"))	
		sex_rna_l[[i]]	=	factor(rna_eq[colnames(RNA[[i]]),	"sex"])	
		pest_rna_l[[i]]	=	factor(rna_eq[colnames(RNA[[i]]),	"pesti"],	levels	=	c("Control","Endosulfan"))	
}	
	
mirna_matrix	=	list()	
rna_matrix	=	list()	
for	(i	in	1:2)	{	
		mirna_matrix[[i]]	=	model.matrix(~	sex_mirna_l[[i]]	+	pest_mirna_l[[i]]	+	sex_mirna_l[[i]]	*	
pest_mirna_l[[i]])	
		rna_matrix[[i]]	=	model.matrix(~	sex_rna_l[[i]]	+	pest_rna_l[[i]]	+	sex_rna_l[[i]]	*	pest_rna_l[[i]])	
}	
names(mirna_matrix)	=	c("CB",	"HP")	
names(rna_matrix)	=	c("CB",	"HP")	
	
#	Voom	transformation	-----------------------------------------------------	
mirna_trans_l	=	list()	
rna_trans_l	=	list()	
for	(i	in	1:2)	{	
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		mirna_trans_l[[i]]	<-	voom(miRNA[[i]],	mirna_matrix[[i]],plot=TRUE)	
		rna_trans_l[[i]]	<-	voom(RNA[[i]],	rna_matrix[[i]],plot=TRUE)	
}	
	
#	Limma	pipeline	----------------------------------------------------------	
fit_mirna	=	list()	
fit_rna	=	list()	
for	(i	in	1:2)	{	
		fit_mirna[[i]]	=	lmFit(mirna_trans_l[[i]],	mirna_matrix[[i]])	
		fit_mirna[[i]]	=	eBayes(fit_mirna[[i]])	
		fit_rna[[i]]	=	lmFit(rna_trans_l[[i]],	rna_matrix[[i]])	
		fit_rna[[i]]	=	eBayes(fit_rna[[i]])	
}	
	
#	Venn	diagrams	-----------------------------------------------------------	
	
setwd(dir_output)	
miscolores	<-	colors()[c(554,	89,	111,	512,	17,	586,	132,	428,	601,	568,	86,	390)]	
	
###Adjusted	p-values	(BH)	
for	(i	in	1:2)	{	
		results_mirna	=	decideTests(fit_mirna[[i]])[,c(3,4)]	
		results_rna	=	decideTests(fit_rna[[i]])[,c(3,4)]	
	
		pdf(paste(names(mirna_matrix)[i],	"miRNA_Venn_adj.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_mirna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
			
		pdf(paste(names(mirna_matrix)[i],	"RNA_Venn_adj.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_rna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
}	
	
###P-values	without	adjusting	
for	(i	in	1:2)	{	
		results_mirna	=	decideTests(fit_mirna[[i]],	adjust.method	=	"none",	p.value=0.01)[,c(3,4)]	
		results_rna	=	decideTests(fit_rna[[i]],	adjust.method	=	"none",	p.value=0.01)[,c(3,4)]	
			
		pdf(paste(names(mirna_matrix)[i],	"miRNA_Venn.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_mirna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
			
		pdf(paste(names(mirna_matrix)[i],	"RNA_Venn.pdf",	sep	=	"_"),	width	=	3.5*3,	height	=	3.5*3)	
		vennDiagram(results_rna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)])	
		dev.off()	
}	
	
pdf("all_Venn_0.05.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2))	
for	(i	in	1:2)	{	
		results_mirna	=	decideTests(fit_mirna[[i]],	adjust.method	=	"none",	p.value=0.05)[,c(3,4)]	
		results_rna	=	decideTests(fit_rna[[i]],	adjust.method	=	"none",	p.value=0.05)[,c(3,4)]	
			
		vennDiagram(results_mirna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(mirna_matrix)[i],	"(miRNA)",	sep	=	"	"),	outer	=	FALSE)	
			
		vennDiagram(results_rna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(mirna_matrix)[i],	"(RNA)",	sep	=	"	"),	outer	=	FALSE)	
}	
dev.off()	
	
pdf("all_Venn_adj.pdf",	width	=	3.5*4,	height	=	3.5*4)	
par(mfcol	=	c(2,2))	
for	(i	in	1:2)	{	
		results_mirna	=	decideTests(fit_mirna[[i]])[,c(3,4)]	
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		results_rna	=	decideTests(fit_rna[[i]])[,c(3,4)]	
			
		vennDiagram(results_mirna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(mirna_matrix)[i],	"(miRNA)",	sep	=	"	"),	outer	=	FALSE)	
			
		vennDiagram(results_rna,	names	=	c("Pesticide",	"Sex∑Pesticide"),	
														circle.col	=	miscolores[c(1,5,9,3)],	mar	=	rep(0,4))	
		title(main	=	paste(names(mirna_matrix)[i],	"(RNA)",	sep	=	"	"),	outer	=	FALSE)	
}	
dev.off()	
	
#	Create	tables	for	future	use	--------------------------------------------	
	
	
mirna_p_CB	=	list()	
mirna_p_HP	=	list()	
rna_p_CB	=	list()	
rna_p_HP	=	list()	
	
for	(j	in	1:4)	{	
		mirna_p_CB[[j]]	=	topTable(fit_mirna[[1]],	coef	=	j,	number	=	nrow(fit_mirna[[1]]))[,c("P.Value",	
"adj.P.Val")]	
		mirna_p_HP[[j]]	=	topTable(fit_mirna[[2]],	coef	=	j,	number	=	nrow(fit_mirna[[2]]))[,c("P.Value",	
"adj.P.Val")]	
		rna_p_CB[[j]]	=	topTable(fit_rna[[1]],	coef	=	j,	number	=	nrow(fit_rna[[1]]))[,c("P.Value",	
"adj.P.Val")]	
		rna_p_HP[[j]]	=	topTable(fit_rna[[2]],	coef	=	j,	number	=	nrow(fit_rna[[2]]))[,c("P.Value",	
"adj.P.Val")]	
}	
	
names(mirna_p_CB)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
names(mirna_p_HP)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
names(rna_p_CB)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
names(rna_p_HP)	=	c("Intercept",	"Sex",	"Pesti",	"Pesti∑Sex")	
	
	
setwd(dir_output)	
for	(i	in	1:4)	{	
		write.table(mirna_p_CB[[i]],	paste(names(mirna_p_CB)[i],	"mirna_CB.txt",	sep	="_"),	sep	=	"\t")	
		write.table(mirna_p_HP[[i]],	paste(names(mirna_p_HP)[i],	"mirna_HP.txt",	sep	="_"),	sep	=	"\t")	
		write.table(rna_p_CB[[i]],	paste(names(rna_p_CB)[i],	"rna_CB.txt",	sep	="_"),	sep	=	"\t")	
		write.table(rna_p_HP[[i]],	paste(names(rna_p_HP)[i],	"rna_HP.txt",	sep	="_"),	sep	=	"\t")	
}	
	
#	Creation	of	average	tables	----------------------------------------------	
	
mirna_averages	=	list()	
rna_averages	=	list()	
	
for	(i	in	1:2)	{	#1	is	CB,	2	is	HP	
		VH_F_m	=	rowMeans(miRNA[[i]][,grep("Control_F",	colnames(miRNA[[i]]))])	
		END_F_m	=	rowMeans(miRNA[[i]][,grep("Endosulfan_F",	colnames(miRNA[[i]]))])	
		VH_M_m	=	rowMeans(miRNA[[i]][,grep("Control_M",	colnames(miRNA[[i]]))])	
		END_M_m	=	rowMeans(miRNA[[i]][,grep("Endosulfan_M",	colnames(miRNA[[i]]))])	
		mirna_averages[[i]]	=	data.frame(VH_F_m,	END_F_m,	VH_M_m,	END_M_m)	
			
		VH_F_r	=	rowMeans(RNA[[i]][,grep("Control_F",	colnames(RNA[[i]]))])	
		END_F_r	=	rowMeans(RNA[[i]][,grep("Endosulfan_F",	colnames(RNA[[i]]))])	
		VH_M_r	=	rowMeans(RNA[[i]][,grep("Control_M",	colnames(RNA[[i]]))])	
		END_M_r	=	rowMeans(RNA[[i]][,grep("Endosulfan_M",	colnames(RNA[[i]]))])	
		rna_averages[[i]]	=	data.frame(VH_F_r,	END_F_r,	VH_M_r,	END_M_r)		
}	
	
colnames(mirna_averages[[1]])	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M")	
colnames(mirna_averages[[2]])	=	c("HP_VH_F",	"HP_END_F",	"HP_VH_M",	"HP_END_M")	
colnames(rna_averages[[1]])	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M")	
colnames(rna_averages[[2]])	=	c("HP_VH_F",	"HP_END_F",	"HP_VH_M",	"HP_END_M")	
	
	
#Export	mean	tables	(individual	tissues)	
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setwd(dir_output)	
write.table(mirna_averages[[1]],	"transcriptomics_mirna_averages_CB.txt",	sep	=	"\t")	
write.table(mirna_averages[[2]],	"transcriptomics_mirna_averages_HP.txt",	sep	=	"\t")	
write.table(rna_averages[[1]],	"transcriptomics_rna_averages_CB.txt",	sep	=	"\t")	
write.table(rna_averages[[2]],	"transcriptomics_rna_averages_HP.txt",	sep	=	"\t")	
	
mirna_means	=	t(rbind.fill(as.data.frame(t(mirna_averages[[1]])),	
as.data.frame(t(mirna_averages[[2]]))))	
rna_means	=	t(rbind.fill(as.data.frame(t(rna_averages[[1]])),	as.data.frame(t(rna_averages[[2]]))))	
colnames(mirna_means)	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M",	"HP_VH_F",	"HP_END_F",	
"HP_VH_M",	"HP_END_M")	
colnames(rna_means)	=	c("CB_VH_F",	"CB_END_F",	"CB_VH_M",	"CB_END_M",	"HP_VH_F",	"HP_END_F",	"HP_VH_M",	
"HP_END_M")	
	
#Export	mean	tables	(both	tissues)	
write.table(mirna_means,	"transcriptomics_mirna_averages.txt",	sep	=	"\t")	
write.table(rna_means,	"transcriptomics_rna_averages.txt",	sep	=	"\t")	
	
	
#	Log2Ratio	tables	--------------------------------------------------------	
	
CB_mirna	=	transform(mirna_averages[[1]],	log2_CB_F	=	
log2((mirna_averages[[1]][,2]+1)/(mirna_averages[[1]][,1]+1)),	
																			log2_CB_M	=	log2((mirna_averages[[1]][,4]+1)/(mirna_averages[[1]][,3]+1)))[,c(5,6)]	
HP_mirna	=	transform(mirna_averages[[2]],	log2_CB_F	=	
log2((mirna_averages[[2]][,2]+1)/(mirna_averages[[2]][,1]+1)),	
																			log2_CB_M	=	log2((mirna_averages[[2]][,4]+1)/(mirna_averages[[2]][,3]+1)))[,c(5,6)]	
	
CB_rna	=	transform(rna_averages[[1]],	log2_CB_F	=	log2(rna_averages[[1]][,2]/rna_averages[[1]][,1]),	
																					log2_CB_M	=	log2(rna_averages[[1]][,4]/rna_averages[[1]][,3]))[,c(5,6)]	
HP_rna	=	transform(rna_averages[[2]],	log2_CB_F	=	log2(rna_averages[[2]][,2]/rna_averages[[2]][,1]),	
																					log2_CB_M	=	log2(rna_averages[[2]][,4]/rna_averages[[2]][,3]))[,c(5,6)]	
	
	
#Export	for	each	individual	tissue	
write.table(CB_mirna,	"transcriptomics_mirna_log2_CB.txt",	sep	=	"\t")	
write.table(HP_mirna,	"transcriptomics_mirna_log2_HP.txt",	sep	=	"\t")	
write.table(CB_rna,	"transcriptomics_rna_log2_CB.txt",	sep	=	"\t")	
write.table(HP_rna,	"transcriptomics_rna_log2_HP.txt",	sep	=	"\t")	
	
mirna_log2	=	t(rbind.fill(as.data.frame(t(CB_mirna)),	as.data.frame(t(HP_mirna))))	
rna_log2	=	t(rbind.fill(as.data.frame(t(CB_rna)),	as.data.frame(t(HP_rna))))	
colnames(mirna_log2)	=	c("log2_CB_F",	"log2_CB_M",	"log2_HP_F",	"log2_HP_M")	
colnames(rna_log2)	=	c("log2_CB_F",	"log2_CB_M",	"log2_HP_F",	"log2_HP_M")	
	
write.table(mirna_log2,	"transcriptomics_mirna_log2.txt",	sep	=	"\t")	
write.table(rna_log2,	"transcriptomics_rna_log2.txt",	sep	=	"\t")	
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7.1.9.  Attachment IX:  Cl inical  variable analysis  scr ipt  
	
	
dir_data	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/data/"	
dir_output	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_clinical"	
dir_data_met	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_DE/average_tables/"	
dir_data_trans	=	
"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE/average_tables/"	
dir_sig	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/paintomics/output"	
dir_pval_trans	=	
"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE/pvalue_tables/"	
	
library(corrplot)	
	
#	Import	data	-------------------------------------------------------------	
	
setwd(dir_data)	
data	=	read.delim("clinical01.txt",	header	=	TRUE,	check.names	=	FALSE,	row.names	=	1,	dec	=	",")	
data	=	data[grep("	ST",	rownames(data)),]	#	Solo	nos	interesa	un	tejido	(las	ratas	son	las	mismas)	
	
data_END	=	data[grep("END",	rownames(data)),]	
data_VH	=	data[grep("VH",	rownames(data)),]	
data_END_M	=	data_END[grep("M",	rownames(data_END)),]	
data_END_F	=	data_END[grep("F",	rownames(data_END)),]	
data_VH_M	=	data_VH[grep("M",	rownames(data_VH)),]	
data_VH_F	=	data_VH[grep("F",	rownames(data_VH)),]	
	
#	Wilcoxon	----------------------------------------------------------------	
	
MWM_ENDvsVH	=	wilcox.test(data_END[,1],	data_VH[,1])	
MWM_ENDvsVH_M	=	wilcox.test(data_END_M[,1],	data_VH_M[,1])	
MWM_ENDvsVH_F	=	wilcox.test(data_END_F[,1],	data_VH_F[,1])	
	
Rotarod_ENDvsVH	=	wilcox.test(data_END[,2],	data_VH[,2])	
Rotarod_ENDvsVH_M	=	wilcox.test(data_END_M[,2],	data_VH_M[,2])	
Rotarod_ENDvsVH_F	=	wilcox.test(data_END_F[,2],	data_VH_F[,2])	
	
Beam_ENDvsVH	=	wilcox.test(data_END[,3],	data_VH[,3])	
Beam_ENDvsVH_M	=	wilcox.test(data_END_M[,3],	data_VH_M[,3])	
Beam_ENDvsVH_F	=	wilcox.test(data_END_F[,3],	data_VH_F[,3])	
	
RM_ENDvsVH	=	wilcox.test(data_END[,4],	data_VH[,4])	
RM_ENDvsVH_M	=	wilcox.test(data_END_M[,4],	data_VH_M[,4])	
RM_ENDvsVH_F	=	wilcox.test(data_END_F[,4],	data_VH_F[,4])	
	
RMT_ENDvsVH	=	wilcox.test(data_END[,5],	data_VH[,5])	
RMT_ENDvsVH_M	=	wilcox.test(data_END_M[,5],	data_VH_M[,5])	
RMT_ENDvsVH_F	=	wilcox.test(data_END_F[,5],	data_VH_F[,5])	
	
#	Correlations	------------------------------------------------------------	
	
mean_END_F	=	apply(data_END_F,	2,	mean,	na.rm	=	TRUE)	
mean_END_M	=	apply(data_END_M,	2,	mean,	na.rm	=	TRUE)	
mean_VH_F	=	apply(data_VH_F,	2,	mean,	na.rm	=	TRUE)	
mean_VH_M	=	apply(data_VH_M,	2,	mean,	na.rm	=	TRUE)	
mean_CV	=	data.frame("VH_F"	=	mean_VH_F,	"END_F"	=	mean_END_F,	"VH_M"	=	mean_VH_M,	"END_M"	=	
mean_END_M)	
	
setwd(dir_data_met)	
met_av_CB	=	read.delim("metabolomics_averages_CB.txt")	
met_av_HP	=	read.delim("metabolomics_averages_HP.txt")	
prot_av_CB	=	read.delim("proteomics_averages_CB.txt")	
prot_av_HP	=	read.delim("proteomics_averages_HP.txt")	
	
setwd(dir_data_trans)	
rna_av_CB	=	read.delim("transcriptomics_rna_averages_CB.txt")	
rna_av_HP	=	read.delim("transcriptomics_rna_averages_HP.txt")	
mirna_av_CB	=	read.delim("transcriptomics_mirna_averages_CB.txt")	
mirna_av_HP	=	read.delim("transcriptomics_mirna_averages_HP.txt")	
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setwd(dir_sig)	
sig_rna_HP	=	as.vector(read.delim("significant_features_rna_HP.txt")[,1])	
sig_rna_CB	=	as.vector(read.delim("significant_features_rna_CB.txt")[,1])	
sig_metab_HP	=	as.vector(read.delim("significant_features_metab_HP.txt")[,1])	
sig_metab_CB	=	as.vector(read.delim("significant_features_metab_CB.txt")[,1])	
sig_proteom_CB	=	as.vector(read.delim("significant_features_prot_CB.txt")[,1])	
sig_proteom_HP	=	as.vector(read.delim("significant_features_prot_HP.txt")[,1])	
	
setwd(dir_pval_trans)	
p_val_mirna_pesti	=	read.delim("Pesti_mirna.txt")	
P_val_mirna_sp	=	read.delim("Pesti∑Sex_mirna.txt")	
test1	=	rownames(p_val_mirna_pesti[which(p_val_mirna_pesti[,1]	<	0.05),])	
test2	=	rownames(p_val_mirna_pesti[which(p_val_mirna_pesti[,3]	<	0.05),])	
	
setwd(dir_output)	
pdf("correlation_plots_num.pdf",	width	=	3.5*8,	height	=	3.5*2)	
cor_m_CB	=	t(cor(t(met_av_CB[sig_metab_CB,]),	t(mean_CV)))	
cor_m_HP	=	t(cor(t(na.omit(met_av_HP[sig_metab_HP,])),	t(mean_CV)))	
cor_p_CB	=	t(cor(t(prot_av_CB[sig_proteom_CB,]),	t(mean_CV)))	
cor_p_HP	=	t(cor(t(na.omit(prot_av_HP[sig_proteom_HP,])),	t(mean_CV)))	
cor_r_CB	=	t(cor(t(rna_av_CB[sig_rna_CB,]),	t(mean_CV)))	
cor_r_HP	=	t(cor(t(na.omit(rna_av_HP[sig_rna_HP,])),	t(mean_CV)))	
cor_mir_CB	=	t(cor(t(mirna_av_CB[test1,]),	t(mean_CV)))	
cor_mir_HP	=	t(cor(t(mirna_av_CB[test2,]),	t(mean_CV)))	
	
corrplot(cor_m_CB,	method="number")	
corrplot(cor_m_HP,	method="number")	
corrplot(cor_p_CB,	method="number")	
corrplot(cor_p_HP,	method="number")	
corrplot(cor_r_CB,	method="number")	
corrplot(cor_r_HP,	method="number")	
corrplot(cor_mir_CB,	method="number")	
corrplot(cor_mir_HP,	method="number")	
dev.off()	
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7.1.10.  Attachment X:  Data formatting for  Paintomics  scr ipt  
 
#	Script	to	prepare	data	for	Paintomics.	
#	Metabolites	are	detected	just	with	their	name.	No	need	to	change	IDs.	
#	Proteins	must	have	Uniprot	ID.	They	already	have	them,	so	again,	no	need	for	change.	
#	Transcriptomics	must	have	ENSEMBL	Gene	ID.	They	come	with	RefSeq	IDs.		
	
dir_data_log2_trans	=	
"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE/log2_tables/"	
dir_data_log2_set01	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_DE/log2_tables/"	
dir_data_p_trans	=	
"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE/pvalue_tables/"	
dir_data_p_set01	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_DE/pvalue_tables/"	
dir_data_set01	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/data/"	
dir_data_trans	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data"	
dir_miRNA	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/miRNA/"	
dir_output	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/paintomics/output"	
	
library(plyr)	
	
#	Import	miRNA	targets	----------------------------------------------------	
	
setwd(dir_miRNA)	
mirna_predictions	=	read.delim("mirna_predictions.txt")	
	
#	Import	all	data	we	want	to	re-format	------------------------------------	
	
#	Log2	tables	
setwd(dir_data_log2_trans)	
mirna_log2	=	read.delim("transcriptomics_mirna_log2.txt")	
rna_log2	=	read.delim("transcriptomics_rna_log2.txt")	
	
setwd(dir_data_log2_set01)	
metab_log2	=	read.delim("metabolomics_log2.txt")	
proteom_log2	=	read.delim("proteomics_log2.txt")	
	
#	P-value	tables	
setwd(dir_data_p_trans)	
mirna_p_pesti_CB	=	read.delim("Pesti_mirna_CB.txt")	
mirna_p_pesti_HP	=	read.delim("Pesti_mirna_HP.txt")	
rna_p_pesti_CB	=	read.delim("Pesti_rna_CB.txt")	
rna_p_pesti_HP	=	read.delim("Pesti_rna_HP.txt")	
mirna_p_sp_CB	=	read.delim("Pesti∑Sex_mirna_CB.txt")	
mirna_p_sp_HP	=	read.delim("Pesti∑Sex_mirna_HP.txt")	
rna_p_sp_CB	=	read.delim("Pesti∑Sex_rna_CB.txt")	
rna_p_sp_HP	=	read.delim("Pesti∑Sex_rna_HP.txt")	
	
setwd(dir_data_p_set01)	
metab_p_pesti_CB	=	read.delim("Pesti_met_CB.txt")	
metab_p_pesti_HP	=	read.delim("Pesti_met_HP.txt")	
proteom_p_pesti_CB	=	read.delim("Pesti_prot_CB.txt")	
proteom_p_pesti_HP	=	read.delim("Pesti_prot_HP.txt")	
metab_p_sp_CB	=	read.delim("Pesti∑Sex_met_CB.txt")	
metab_p_sp_HP	=	read.delim("Pesti∑Sex_met_HP.txt")	
proteom_p_sp_CB	=	read.delim("Pesti∑Sex_prot_CB.txt")	
proteom_p_sp_HP	=	read.delim("Pesti∑Sex_prot_HP.txt")	
	
#	Bind	p-values	for	CB	and	HP	
mirna_p_pesti	=	as.data.frame(t(rbind.fill(as.data.frame(t(mirna_p_pesti_CB)),	
as.data.frame(t(mirna_p_pesti_HP)))))	
colnames(mirna_p_pesti)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
rna_p_pesti	=	as.data.frame(t(rbind.fill(as.data.frame(t(rna_p_pesti_CB)),	
as.data.frame(t(rna_p_pesti_HP)))))	
colnames(rna_p_pesti)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
	
mirna_p_sp	=	as.data.frame(t(rbind.fill(as.data.frame(t(mirna_p_sp_CB)),	
as.data.frame(t(mirna_p_sp_HP)))))	
colnames(mirna_p_sp)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
rna_p_sp	=	as.data.frame(t(rbind.fill(as.data.frame(t(rna_p_sp_CB)),	as.data.frame(t(rna_p_sp_HP)))))	
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colnames(rna_p_sp)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
	
metab_p_pesti	=	as.data.frame(t(rbind.fill(as.data.frame(t(metab_p_pesti_CB)),	
as.data.frame(t(metab_p_pesti_HP)))))	
colnames(metab_p_pesti)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
proteom_p_pesti	=	as.data.frame(t(rbind.fill(as.data.frame(t(proteom_p_pesti_CB)),	
as.data.frame(t(proteom_p_pesti_HP)))))	
colnames(proteom_p_pesti)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
	
metab_p_sp	=	as.data.frame(t(rbind.fill(as.data.frame(t(metab_p_sp_CB)),	
as.data.frame(t(metab_p_sp_HP)))))	
colnames(metab_p_sp)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
proteom_p_sp	=	as.data.frame(t(rbind.fill(as.data.frame(t(proteom_p_sp_CB)),	
as.data.frame(t(proteom_p_sp_HP)))))	
colnames(metab_p_sp)	=	c("P.val_CB",	"Adj.P.val_CB",	"P.val_HP",	"Adj.P.val_HP")	
	
#	Export	for	future	use	
setwd(dir_data_p_set01)	
write.table(metab_p_pesti,	"Pesti_met.txt",	sep	=	"\t")	
write.table(proteom_p_pesti,	"Pesti_prot.txt",	sep	=	"\t")	
write.table(metab_p_sp,	"Pesti∑Sex_met.txt",	sep	=	"\t")	
write.table(proteom_p_sp,	"Pesti∑Sex_prot.txt",	sep	=	"\t")	
	
setwd(dir_data_p_trans)	
write.table(mirna_p_pesti,	"Pesti_mirna.txt",	sep	=	"\t")	
write.table(rna_p_pesti,	"Pesti_rna.txt",	sep	=	"\t")	
write.table(mirna_p_sp,	"Pesti∑Sex_mirna.txt",	sep	=	"\t")	
write.table(rna_p_sp,	"Pesti∑Sex_rna.txt",	sep	=	"\t")	
	
	
#	Import	non-processed	data	-----------------------------------------------	
	
setwd(dir_data_trans)	
rna_nonp	=	read.delim("rna_NonProcessed.txt")	
mirna_nonp	=	read.delim("mirna_NonProcessed.txt")	
	
setwd(dir_data_set01)	
metab_nonp	=	as.data.frame(t(read.delim("metabolomics01.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	
1,	
													check.names	=	FALSE,	dec	=	",")))	
proteom_nonp	=	as.data.frame(t(read.delim("proteomics01.txt",	header	=	TRUE,	as.is	=	TRUE,	row.names	=	
1,	
															check.names	=	FALSE,	dec	=	",")))	
	
	
#	Prepare	log2	RNA-seq/metab/proteom	table	------------------------------------------------	
	
#	Replace	NAs	with	zeroes	
rna_log2[is.na(rna_log2)]	=	0	
metab_log2[is.na(metab_log2)]	=	0	
proteom_log2[is.na(proteom_log2)]	=	0	
	
#	We	import	original	data	and	add	those	filtered	genes/metabolites/prots	to	tables	
elim_rna	=	setdiff(rownames(rna_nonp),	rownames(rna_log2))	
rna	=	data.frame(rna_log2)	
rna[elim_rna,]	=	rep(0,	4)	
	
elim_metab	=	setdiff(rownames(metab_nonp),	rownames(metab_log2))	
metab	=	data.frame(metab_log2)	
metab[elim_metab,]	=	rep(0,	4)	
	
elim_proteom	=	setdiff(rownames(proteom_nonp),	rownames(proteom_log2))	
proteom	=	data.frame(proteom_log2)	
proteom[elim_proteom,]	=	rep(0,	4)	
	
setwd(dir_output)	
write.table(rna,	"rnaseqlog2.txt",	sep	=	"\t",	quote	=	FALSE)	
write.table(metab,	"metabolomicslog2.txt",	sep	=	"\t",	quote	=	FALSE)	
write.table(proteom,	"proteomicslog2.txt",	sep	=	"\t",	quote	=	FALSE)	
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#	Prepare	log2	miRNA-seq	table	---------------------------------------------------	
	
list_target_frames	=	list()	
for	(i	in	1:nrow(mirna_log2))	{	
		Genes	=	as.character(mirna_predictions[which(mirna_predictions["ID"]	==	rownames(mirna_log2)[i]),	
"Gene"])	
		log2_CB_F	=	rep(mirna_log2[i,	1],	length(Genes))	
		log2_CB_M	=	rep(mirna_log2[i,	2],	length(Genes))	
		log2_HP_F	=	rep(mirna_log2[i,	3],	length(Genes))	
		log2_HP_M	=	rep(mirna_log2[i,	4],	length(Genes))	
		list_target_frames[[i]]	=	data.frame("log2_CB_F"	=	log2_CB_F,	
																																		"log2_CB_M"	=	log2_CB_M,	
																																		"log2_HP_F"	=	log2_HP_F,	
																																		"log2_HP_M"	=	log2_HP_M)	
		list_target_frames[[i]]	=	data.frame("Genes"	=	Genes	,	list_target_frames[[i]])	
}	
names(list_target_frames)	=	rownames(mirna_log2)	
target_log2	=	rbind.fill(list_target_frames)	
target_log2	=	aggregate(target_log2[,c(2:5)],	by	=	list("Genes"	=	target_log2[,"Genes"]),	sum)	
rownames(target_log2)	=	target_log2[,1]	
target_log2	=	target_log2[,-c(1)]	
	
#	Now	we	add	0s	where	there's	NAs	
	
target_log2[is.na(target_log2)]	=	0	
	
#	Export	
	
setwd(dir_output)	
write.table(target_log2,	"mirnaseq_targets_log2.txt",	sep	=	"\t",	quote	=	FALSE)	
	
	
#	Prepare	significant	features	from	p-value	tables	for	RNAseq/metab/prot	and	for	each	tissue	----------	
	
rna_sig_CB_pesti	=	rna_p_pesti[which(rna_p_pesti[,1]	<	0.05),]	
rna_sig_HP_pesti	=	rna_p_pesti[which(rna_p_pesti[,3]	<	0.05),]	
rna_sig_CB_sp	=	rna_p_sp[which(rna_p_pesti[,1]	<	0.05),]	
rna_sig_HP_sp	=	rna_p_sp[which(rna_p_pesti[,3]	<	0.05),]	
	
rna_sig_CB	=	unique(c(rownames(rna_sig_CB_pesti),	rownames(rna_sig_CB_sp)))	
rna_sig_HP	=	unique(c(rownames(rna_sig_HP_pesti),	rownames(rna_sig_HP_sp)))	
	
metab_sig_CB_pesti	=	metab_p_pesti[which(metab_p_pesti[,1]	<	0.05),]	
metab_sig_HP_pesti	=	metab_p_pesti[which(metab_p_pesti[,3]	<	0.05),]	
metab_sig_CB_sp	=	metab_p_sp[which(metab_p_pesti[,1]	<	0.05),]	
metab_sig_HP_sp	=	metab_p_sp[which(metab_p_pesti[,3]	<	0.05),]	
	
metab_sig_CB	=	unique(c(rownames(metab_sig_CB_pesti),	rownames(metab_sig_CB_sp)))	
metab_sig_HP	=	unique(c(rownames(metab_sig_HP_pesti),	rownames(metab_sig_HP_sp)))	
	
proteom_sig_CB_pesti	=	proteom_p_pesti[which(proteom_p_pesti[,1]	<	0.05),]	
proteom_sig_HP_pesti	=	proteom_p_pesti[which(proteom_p_pesti[,3]	<	0.05),]	
proteom_sig_CB_sp	=	proteom_p_sp[which(proteom_p_pesti[,1]	<	0.05),]	
proteom_sig_HP_sp	=	proteom_p_sp[which(proteom_p_pesti[,3]	<	0.05),]	
	
proteom_sig_CB	=	unique(c(rownames(proteom_sig_CB_pesti),	rownames(proteom_sig_CB_sp)))	
proteom_sig_HP	=	unique(c(rownames(proteom_sig_HP_pesti),	rownames(proteom_sig_HP_sp)))	
	
setwd(dir_output)	
write.table(rna_sig_CB,	"significant_features_rna_CB.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)		
write.table(rna_sig_HP,	"significant_features_rna_HP.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)	
write.table(metab_sig_CB,	"significant_features_metab_CB.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)	
write.table(metab_sig_HP,	"significant_features_metab_HP.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)	
write.table(proteom_sig_CB,	"significant_features_prot_CB.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)		
write.table(proteom_sig_HP,	"significant_features_prot_HP.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)		
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#	Significant	features	for	miRNAseq	---------------------------------------	
	
#	Pesticide	
list_target_frames_pesti	=	list()	
for	(i	in	1:nrow(mirna_p_pesti))	{	
		Genes	=	as.character(mirna_predictions[which(mirna_predictions["ID"]	==	rownames(mirna_p_pesti)[i]),	
"Gene"])	
		Pval_CB	=	rep(mirna_p_pesti[i,	1],	length(Genes))	
		Pval_HP	=	rep(mirna_p_pesti[i,	3],	length(Genes))	
		list_target_frames_pesti[[i]]	=	data.frame("Pval_CB"	=	Pval_CB,	"Pval_HP"	=	Pval_HP)	
		list_target_frames_pesti[[i]]	=	data.frame("Genes"	=	Genes	,	list_target_frames_pesti[[i]])	
}	
names(list_target_frames_pesti)	=	rownames(mirna_p_pesti)	
target_p	=	rbind.fill(list_target_frames_pesti)	
target_p[is.na(target_p)]	=	0	
target_p	=	aggregate(target_p[,c(2:3)],	by	=	list("Genes"	=	target_p[,"Genes"]),	sum)	
rownames(target_p)	=	target_p[,1]	
target_p	=	target_p[,-c(1)]	
	
mirna_sig_CB_Pesti	=	target_p[which(target_p[,1]	<	0.05),]	
mirna_sig_HP_Pesti	=	target_p[which(target_p[,2]	<	0.05),]	
	
#	Pesticide	∑	Sex	
list_target_frames_sp	=	list()	
for	(i	in	1:nrow(mirna_p_sp))	{	
		Genes	=	as.character(mirna_predictions[which(mirna_predictions["ID"]	==	rownames(mirna_p_sp)[i]),	
"Gene"])	
		Pval_CB	=	rep(mirna_p_sp[i,	1],	length(Genes))	
		Pval_HP	=	rep(mirna_p_sp[i,	3],	length(Genes))	
		list_target_frames_sp[[i]]	=	data.frame("Pval_CB"	=	Pval_CB,	"Pval_HP"	=	Pval_HP)	
		list_target_frames_sp[[i]]	=	data.frame("Genes"	=	Genes	,	list_target_frames_sp[[i]])	
}	
names(list_target_frames_sp)	=	rownames(mirna_p_sp)	
target_sp	=	rbind.fill(list_target_frames_sp)	
target_sp[is.na(target_sp)]	=	0	
target_sp	=	aggregate(target_sp[,c(2:3)],	by	=	list("Genes"	=	target_sp[,"Genes"]),	sum)	
rownames(target_sp)	=	target_sp[,1]	
target_sp	=	target_sp[,-c(1)]	
	
mirna_sig_CB_sp	=	target_sp[which(target_sp[,1]	<	0.05),]	
mirna_sig_HP_sp	=	target_sp[which(target_sp[,2]	<	0.05),]	
	
mirna_sig_CB	=	unique(c(rownames(mirna_sig_CB_Pesti),	rownames(mirna_sig_CB_sp)))	
mirna_sig_HP	=	unique(c(rownames(mirna_sig_HP_Pesti),	rownames(mirna_sig_HP_sp)))	
	
	
setwd(dir_output)	
write.table(mirna_sig_CB,	"significant_features_mirna_CB.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)		
write.table(mirna_sig_HP,	"significant_features_mirna_HP.txt",	sep	=	"\n",	quote	=	FALSE,	row.names	=	
FALSE,	col.names	=	FALSE)	
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7.1.11.  Attachment XI:  Expression profi le  scr ipt  
	
dir_sig	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/paintomics/output"	
dir_averages_01	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_DE/average_tables/"	
dir_averages_trans	=	
"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE/average_tables/"	
dir_output_01	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/set01/output_DE/expression_profiles/"	
dir_output_trans	=	
"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE/expression_profiles/"	
dir_pval_trans	=	
"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/output_DE/pvalue_tables/"	
dir_data_trans	=	"~/Dropbox/Felipo_OmicsDENAMICdata/Integration/trancriptomics/data/"	
	
#	Import	data	-------------------------------------------------------------	
	
setwd(dir_sig)	
sig_rna_HP	=	as.vector(read.delim("significant_features_rna_HP.txt")[,1])	
sig_rna_CB	=	as.vector(read.delim("significant_features_rna_CB.txt")[,1])	
sig_metab_HP	=	as.vector(read.delim("significant_features_metab_HP.txt")[,1])	
sig_metab_CB	=	as.vector(read.delim("significant_features_metab_CB.txt")[,1])	
sig_proteom_CB	=	as.vector(read.delim("significant_features_prot_CB.txt")[,1])	
sig_proteom_HP	=	as.vector(read.delim("significant_features_prot_HP.txt")[,1])	
	
setwd(dir_pval_trans)	
p_val_mirna_pesti	=	read.delim("Pesti_mirna.txt")	
P_val_mirna_sp	=	read.delim("Pesti∑Sex_mirna.txt")	
	
setwd(dir_averages_01)	
metab_av	=	read.delim("metabolomics_averages.txt")	
proteom_av	=	read.delim("proteomics_averages.txt")	
	
setwd(dir_averages_trans)	
rna_av	=	read.delim("transcriptomics_rna_averages.txt")	
mirna_av	=	read.delim("transcriptomics_mirna_averages.txt")	
	
#	Create	expression	profiles		----------------------------------------------	
	
expression_profile	<-	function(gene,	matrix,	type)	{	
		ylabs	=	c("Gene	expression",	"miRNA	expression",	"Metabolite	amount",	"Protein	amount")	
		plot(x	=	c(1,2,4,7),	rnorm(4),	col	=	"white",	xlab	=	"Female	|	Male",	ylab	=	ylabs[type],	
							main	=	gene,	xaxt	=	"n",	ylim	=	c(min(matrix[gene,]),max(matrix[gene,])))	
		axis(side	=	1,	at	=	c(2,3,5,6),	labels	=	rep(c("VH",	"END"),2))	
		abline(v	=	4,	col	=	"grey",	lty	=	2)	
		#	lines(c(1,2),	c(media	vehiculo,	media	endosulfan))	
		lines(c(2:3),	c(matrix[gene,1],	matrix[gene,2]),	type	=	"b",	lwd	=	2,	col	=	"coral1",	pch	=	19)	#CB	F	
		lines(c(5:6),	c(matrix[gene,3],	matrix[gene,4]),	type	=	"b",	lwd	=	2,	col	=	"coral1",	pch	=	19)	#CB	M	
		lines(c(2:3),	c(matrix[gene,5],	matrix[gene,6]),	type	=	"b",	lwd	=	2,	col	=	"darkcyan")	#HP	F	
		lines(c(5:6),	c(matrix[gene,7],	matrix[gene,8]),	type	=	"b",	lwd	=	2,	col	=	"darkcyan")	#HP	M	
}	
	
#	RNA	
setwd(dir_output_trans)	
rna_matrix	=	na.omit(rna_av[unique(c(sig_rna_CB,	sig_rna_HP)),])		
rna_type	=	1	
pdf("RNA_expression_profile.pdf",	width	=	3.5*4,	height	=	3.5*5)	
par(mfcol	=	c(5,	4))	
for	(i	in	1:nrow(rna_matrix))	{	
		gene	=	rownames(rna_matrix)[i]	
		expression_profile(gene,	rna_matrix,	rna_type)	
}	
dev.off()	
	
	
#	Metab	
setwd(dir_output_01)	
metab_matrix	=	na.omit(metab_av[unique(c(sig_metab_CB,	sig_metab_HP)),])	
metab_type	=	3	
pdf("metab_expression_profile.pdf",	width	=	3.5*4,	height	=	3.5*5)	
par(mfcol	=	c(5,	4))	
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for	(i	in	1:nrow(metab_matrix))	{	
		metab	=	rownames(metab_matrix)[i]	
		expression_profile(metab,	metab_matrix,	metab_type)	
}	
dev.off()	
	
#	Proteom	
setwd(dir_output_01)	
proteom_matrix	=	na.omit(proteom_av[unique(c(sig_proteom_CB,	sig_proteom_HP)),])	
proteom_type	=	4	
pdf("proteom_expression_profile.pdf",	width	=	3.5*4,	height	=	3.5*5)	
par(mfcol	=	c(5,	4))	
for	(i	in	1:nrow(proteom_matrix))	{	
		prot	=	rownames(proteom_matrix)[i]	
		expression_profile(prot,	proteom_matrix,	proteom_type)	
}	
dev.off()	
	
#	miRNA	
setwd(dir_output_trans)	
test1	=	rownames(p_val_mirna_pesti[which(p_val_mirna_pesti[,1]	<	0.05),])	
test2	=	rownames(p_val_mirna_pesti[which(p_val_mirna_pesti[,3]	<	0.05),])	
sig_mirna	=	unique(c(test1,	test2))	
mirna_matrix	=	na.omit(mirna_av[sig_mirna,])	
mirna_type	=	2	
pdf("mirna_expression_profile.pdf",	width	=	3.5*4,	height	=	3.5*5)	
par(mfcol	=	c(5,	4))	
for	(i	in	1:nrow(mirna_matrix))	{	
		mirna	=	rownames(mirna_matrix)[i]	
		expression_profile(mirna,	mirna_matrix,	mirna_type)	
}	
dev.off()	
	
	
#	Heatmaps	for	trans	----------------------------------------------------------------	
	
setwd(dir_data_trans)	
rna_data_CB	=	read.delim("Cerebellum_rna_NoNoiseData.txt")	
rna_data_HP	=	read.delim("Hippocampus_rna_NoNoiseData.txt")	
rna_DE_data_CB	=	rna_data_CB[sig_rna_CB,]	
rna_DE_data_HP	=	na.omit(rna_data_HP[sig_rna_HP,])	
	
mirna_data_CB	=	read.delim("Cerebellum_mirna_NoNoiseData.txt")	
mirna_data_HP	=	read.delim("Hippocampus_mirna_NoNoiseData.txt")	
mirna_DE_data_CB	=	mirna_data_CB[test1,]	
mirna_DE_data_HP	=	mirna_data_HP[test2,]	
	
setwd(dir_output_trans)	
pdf("heatmaps_DE.pdf",	width	=	3.5*3,	height	=	3.5*2)	
heatmap(as.matrix(rna_DE_data_CB),	main	=	"Differentially	expressed	RNAseq	CB",	margins	=	c(10,5))	
heatmap(as.matrix(rna_DE_data_HP),	main	=	"Differentially	expressed	RNAseq	HP",	margins	=	c(10,5))	
heatmap(as.matrix(mirna_DE_data_CB),	main	=	"Differentially	expressed	miRNAseq	CB",	margins	=	c(10,5))	
heatmap(as.matrix(mirna_DE_data_HP),	main	=	"Differentially	expressed	miRNAseq	HP",	margins	=	c(10,5))	
dev.off()	
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7.2.  Other supplementary material  

7.2.1.  Attachment XII:  Set  03 and Set  10 detai ls  
 

 
Set 03 

 
 

Set 10 
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7.2.2.  Attachment XII I :  Set  01 Boxplots  
 

	
Before any transformation: 

 
After normalization of metabolomics data: 

 
After normalization and arsynseq on metabolomics data and arsynseq on proteomics:
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7.2.3.  Attachment XIV:  Set  01 Heatmaps  
 
Before pre-processing: 
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Before pre-processing: 
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After normalization of metabolomics data: 
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After normalization and arsynseq on of metabolomics data and arsynseq on proteomics: 
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After normalization and arsynseq on of metabolomics data and arsynseq on proteomics: 
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7.2.4.  Attachment XV:  PCA Set  01  
	

Before pre-processing: 
PCA 1 & 2 

 

 
 

 
PCA 1 & 3 
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After pre-processing: 

PCA 1 & 2 
 

 
 
 

PCA 1 & 3 
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7.2.5.  Attachment XVI:  Transcriptomics  boxplots  
 
Before pre-processing: 

 
After filter: 
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After normalization: 

 
After arsynseq and normalization: 
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7.2.6.  Attachment XVII:  PCA transcriptomics  
 
Before pre-processing: 

PCA 1 & 2 

 
PCA 1 & 3 
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After pre-processing: 

PCA 1 & 2 

 
 

PCA 1 & 3 
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7.2.7.  Attachment XVII I :  Expression profi les  
 
Metabolomics 
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Metabolomics 
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Proteomics 
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Proteomics 
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Proteomics 
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Proteomics 
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Proteomics 
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miRNA-seq
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miRNA-seq 
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RNA-seq 
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RNA-seq 
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RNA-seq 
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RNA-seq 

 



Part VII: Attachments 

Integration of multi-omics data to discover link between developmental exposure to pesticides and 
impaired neurodevelopment 

104 

 

RNA-seq 
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RNA-seq 
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RNA-seq 
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RNA-seq 
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RNA-seq 
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RNA-seq 
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RNA-seq 
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RNA-seq 
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7.2.8.  Attachment XIX:  Correlat ion plots  
 
Metabolomics 

Cerebellum 

 
 

Hippocampus 
 

 
 
 
Proteomics 

Cerebellum 

 
 

Hippocampus 
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RNA-seq 

Cerebellum 
 

 
 
 

Hippocampus 
 

 
 
 
 
miRNA-seq 

Cerebellum 

 
 

Hippocampus 
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7.2.9.  Attachment XX:  Heatmaps DE transcriptomics  
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7.2.10.  Attachment XXI:  miRDB density  plots  
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7.2.11.  Attachment XXII:  cGMP-PKC signaling pathway  
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7.2.12.  Attachment XXII I :  Parkinson’s  disease pathway  
	
	

	


