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Abstract 

Reciprocal frames and reciprocal structures have already been considered of great interest 

in the past, as witnessed by the work of Leonardo da Vinci and of other important scientists 

and architects. Recent researches show that both the shape and the mechanical behaviour of 

such structures are really complexes, due to the concept of reciprocity. The position of each 

structural element in the space, indeed, as well as the way they transfer loads, depends on 

the position and on the role of adjacent elements, so that the structure must be studied as a 

whole and it can hardly be decomposed in simpler substructures. In this paper we focus on 

the statical and mechanical determinacy of a specific subset of this kind of structures, i.e. 

the multiple plane reciprocal frames. In this structures the shape can be easily defined in 

plane coordinates, so that only the mechanical behaviour needs to be studied. The presence 

of mechanisms or the possibility of self-stress states is largely related to the kind of internal 

constraints joining each bar to the others. The study is developed starting from the basic 

works on pinned bars assemblies [5], [8], in which the statical and kinematical determinacy 

are discussed by means of a matrix formulation of the equilibrium and compatibility 

equations. The extension of such formulation from pinned bars assemblies to plane 

reciprocal frames is the main goal of the research. 
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1. Introduction 

Reciprocal frames (RF) and multiple reciprocal frames (MRF) are structures composed by 

mutually supported elements, arranged to form, respectively, one or more closed circuits, 

(Di Carlo [3]). They differ from better known truss assemblies because bars, in RF and 

MRF, join to each other not only at the ends but even at intermediate points. There are 

many examples of structures conceived following the reciprocity principle, starting from 

the technique adopted in Japan by the monk Chogen (1121-1206), for the construction of 

temples. In Europe, during Middle Age, a plane reciprocal frame (PRF) have been proposed 
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for building the floor of big rooms using short beams, as described by the medieval 

architect Villard de Honnecourt (1225-1250). The wider and most interesting studies were 

made by Leonardo da Vinci in the “Codex Atlanticus”: he explored various patterns of 

beams grillages, and studied three dimensional arch structures for domes and bridges, in 

which short elements are supported by each others. Starting from Honnencourt's work, 

Sebastiano Serlio in 1537 first introduced a multiple plane reciprocal frame (MPRF) as a 

general solution for the construction of large floor by means of short elements simply 

supported to each other. A complete historical overview on ancient and contemporary 

realisations can be found in Rizzuto et al. [7]. 

Many different configurations are possible for MPRF and they can be classified on the 

basis of their geometrical properties, as proposed by Popovic [6]. In the present work we 

will focus mainly on the distinction between regular frames (Figure 1.a), obtained by means 

of the repetition of unit cells with the same shape and dimensions, and non-regular frames. 

Furthermore, non-regular frames can have regular topology (Figure 1.b), when only the 

length of bars and the position of joints change, while the topological scheme is the same, 

or they can be totally non-regular (Figure 1.c).  

 

Figure 1 

 

In contemporary architecture, as it has already been underlined by Popovic [6], regular 

configurations are more frequent than non-regular: many interesting realisations reflect this 

trend, as the Japanese architectures designed by Ishii, Kijima and Kan. Nevertheless it is 

clear that, besides structures composed by regular patterns, many other shapes are possible, 

even completely non-regular. These structures could be of great interest for architects and 

designers, but the complexity of the geometry makes difficult the analysis of the 

mechanical behaviour. A general analytical approach become then necessary for the study 

of MRF and for the assessment of their applicability to architecture. 

2. Aim of the research 

In spatial MRF the position of each element can be defined only in relation with all the 

others, making the geometrical representation of the structure a very hard task. While very 

simple configurations, as the ones derived by regular polyhedrons, the geometrical 

description can be easily obtained, in case of more complex spatial configurations the final 

geometry can only be obtained by means of numerical tools, as the genetic algorithm 
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proposed by Baverel et al. [1]. MPRF, on the other hand, are plane configurations that can 

be easily defined 'a priori' through their plane coordinates, without the need of a numerical 

configuration processing, so that the attention can be focused mainly on the mechanical 

behaviour of the assembly. 

The present work then focuses on the kinematic analysis of MPRF. These structures show 

different mechanical behaviour when loaded by in-plane and out-of-plane forces and their 

global stability is largely influenced by the topology and the type, number and position of 

internal and external constraints. Starting from these considerations, the aim of the research 

is the study of the statical and mechanical determinacy of regular and non-regular plane 

reciprocal frames through a matrix kinematical description. The presence of finite or 

infinitesimal inextensional mechanisms (kinematic indeterminacy) or the possibility of self-

stress states (statical indeterminacy) is largely related to the kind of internal constraints 

joining each bar to the others. The study is developed starting from the basic works on 

pinned bars assemblies (Crapo [2], Guest and Hutchinson [4], Pellegrino and Calladine [5], 

Vassart et al. [8]), in which the static and kinematical determinacy are discussed by means 

of a matrix formulation of the equilibrium and compatibility equations. The extension of 

such formulation from pinned bars assemblies to MPRF is the main goal of the research. 

3. Kinematics and statics of MPRF 

When dealing with an assembly of bars, the concept of kinematic (compatibility) equations 

refers to the description of the mutual constraints between the assembly elements. On he 

other hand the static (equilibrium) equations express the fact that forces present inside the 

assembly elements must be equilibrated. These two sets of equations involve four groups of 

variables, accordingly with Pellegrino and Calladine [5]. In kinematic equations of truss 

assemblies the variables are the displacements of  nodes and the elongations of bars. If bars 

are rigid and subjected only to forces, elongations are null, so that bars can be regarded as 

constraints between the nodes.  Bars can be subjected to imposed elongations, as thermal 

strains, acting as a boundary condition in the kinematic problem. In equilibrium equations, 

on the other hand, variables are the internal stresses in bars and the external forces applied 

on the nodes. External forces are null when the structure is stress free or when it is 

subjected only to a self stresses state.  Following this approach, the compatibility equations 

are written for the elements of the structures, while equilibrium equations are written for the 

nodes. 

In an alternative approach, the displacements of bars and the 'dislocations' of joints can be 

assumed as the kinematic variables of the problem. As for the elongations, the joints 

'dislocations' are null if joints are rigid, and prescribed non null joints dislocations can be 

imposed as a kinematic boundary condition to the structure. The dual static variables are in 

this case the external forces applied to the assembly elements, assuming the same local 

origin adopted to evaluate the elements displacements, and the forces mutually transferred 

by joints. Even in this case a self stress state can be present in the assembly, without 

external forces applied. The compatibility is expressed for the mutual reciprocal constraints, 

while the equilibrium is written for each bar. 
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The presence of a infinitesimal mechanism corresponds then to the presence of  non trivial 

solutions of the homogeneous kinematic system, as well as the presence of a self stress state 

corresponds to a non trivial solution of the homogeneous static system. 

4. Geometry and topology of regular repetitive MPRF 

In order to introduce a general matrix formulation for regular repetitive MPRF we first 

analyse the planar configuration obtained by indefinitely repeating a three bars cell (or 'fan', 

following the denomination proposed by Baverel et. al. [1]), as shown in Figure 2. The unit 

cell is repeated in two directions, namely i direction and j direction, forming a hexagonal 

grid, so that each cell is connected to the six adjacent. In this way the relation between the 

nodes of the configuration, i.e. the points in which bars are joined to each other, and the 

bars can be written iteratively, starting from the description of the unit cell. In non-regular 

frames, on the other hand, the relation between nodes and bars can only be expressed 

through a topology matrix, or incidence matrix, that must be assigned when the 

configuration is defined. In the configuration of  Figure 2 each bar has three nodal points 

and in each nodal point three bars are joined. For sake of generality each nodal point is 

considered composed by two coincident nodes, and the corresponding displacements are 

considered separately. The kinematic matrix of the frame can then be defined in a repetitive 

way, independently from the number of cells composing the frame, through the assembling 

of the local kinematical equations of each unit cell. 
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i

i+1

i,j i,j+1

i+1,j+1

i,j-1

i+1,j-1 i+1,j
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Figure 2 
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5. Geometry of the unit cell 

In each cell the three bars are ordered counterclockwise starting from the top and labeled 

with capital letters. The three nodes of each bar are numbered from the inner to the outer, as 

shown in Figure 3 and their plane coordinates are defined as follows (1): 
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 (1) 

All the nine nodes of the unit cell, and the corresponding coordinates, are defined 

separately: the coincidence of the first node of one bar and the second node of the adjacent 

must be expressed explicitly by giving the same values to the corresponding coordinates. 

Such redundancy in the geometric input data will make possible to deal with irregular and 

more complex configurations. 
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Figure 3 
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6. Linear kinematics of bars 

Given a rigid body (bar) free to move on a plane, the displacement of the nodes can be 

defined through the three kinematic parameters, u, v, ϕϕϕϕ: representing the displacements of 

the reference point O, accordingly with Figure 4: 
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Figure 4 

 

The linear kinematic relations are expressed by the following six equations: 
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 (2) 

and in matrix form: 

 [ ] { } { }
3 22 3k kx

A D d=  (3) 

with k = 1 to 3 in the number of the joint in the bar. 

For sake of convenience in the application to the reciprocal frame the reference point for 

the each bar of the assembly is assumed to be coincident with the first node of the bar. 

7. Kinematics of the repetitive frame 

The kinematic equations of the indefinite assembly represent the internal and external 

constraint conditions due to the presence of joints. If the assembly is considered indefinte, 

of course, external constraints lose their significance, because the assembly does not have 

boundaries. The kinematic variables are the generalysed plane displacements of the bars, u, 
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v, ϕϕϕϕ, and the 'dislocations' of joints. If joints are rigid, the dislocations will be null. 

Accordingly with Pellegrino and Calladine [5], the corresponding dual static variables are 

the external forces H, V, M, applied to bars in the origin of the local axes systems, and the 

internal forces reciprocally traded in joints. It can be easily shown that these forces are 

univocally related to the internal state of stress of each bar. 

The indefinite frame is obtained by means of the repetition of a unit cell: hence the 

kinematic description of constraints can consider separately the joints belonging to only one 

unit cell from the joints that connect cells between each other. This distiction is useful for 

the construction of the global kinemati matrix. 

If we consider just one cell, its bars are mutually connected accordingly with this rule: 

provided that the bars are named counerclockwise as A, B, and C and the nodes are 

numbered as indicated in par. 4, then node 2 of each bar is linked with node 1 of the next 

bar. The kinematic equations of a single unit cell can then be written as follows, assembling 

the coefficients defined in par. 5: 
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 (4) 

In order to build the whole kinematic matrix of the indefinite frame we start from a finite 

rectangular m rows, n columns frame. The bar displacements vectors of cells must be 

ordered into a unique vector. Grouping the displacements of bars belonging to the same i, j 

cell: 
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 (5) 

the whole vector can be obtained ordering the vectors of unit cells by column first, then by 

rows, accordingly with the following scheme: 

 { } 1,1 1, 1, ,1 , , ,1 , ,

9 1

T
j n i i j i n m m j m n

nm x
D D D D D D D D D D =  L L LL L L LL L L  (6) 

Each unit cell is then connected to the six adjacent as shown in Figure 5. 
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Figure 5 

Reordering the unit cells into a one dimensional array, coherently with the vector of 

generalised displacements (17) the coefficients related to each unit cell can be reorganised 

in submatrices as shown in Figure 6. 

The submatrix contains, for the generic i, j unit cell, the coefficients that represent the 

constraints between the bars of the cell and between the cell and the six adjacent. In order 

to allow the final assembling of the kinematic matrix, the rows of submatrices can be 

grouped in two sets: 18 rows used to store the coefficients and a variable number of rows 

filled with zeros and used only as spacing. The number of rows h in submatrices depends 

on the number of cells in the frame. It can be calculated with this formula: 

 h = 8 + 12 m  (7) 

where m is again the number of rows of the rectangular assembly. 
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Figure 6 
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The submatrices can finally be assembled into the global matrix accordingly with the 

repetitive scheme shown in Figure 7. The horizontal position posH and vertical position 

posV of each submatrix into the global matrix depends on the values of i and j: 

 

 posH = 9m(i-1)+9(j-1)  (8) 

 posV = 6(n-i)+(h-4)(j-1)  (9) 

 

Figure 7 

For a finite rectangular m x n frame the kinematic equations take then the following form: 

 [ ] { } { }
12 9 9 12

0
mn x mn mn mn

A D =  (10) 

The corresponding dual equilibrium equations can be written by transposing the coefficient 

matrix: 

 [ ] { } { }
9 12 12 9

T

mn x mn mn mn
A Q F=  (11) 

As stated in par. 6, vector {F} represents the external forces applied to the bars, while 

vector {Q} is the vector of the internal forces mutually exchanged in joints. 

 

8. Concluding remarks 

In this paper a general procedure for the construction of the kinematic matrixes of repetitive 

reciprocal plane frames is presented. The procedure is based on the subdivision of the 

global configuration into unit cells, topologically homogeneous, and on a repetitive 

indexing of bar, nodes and DoF's. As it is well known the kinematic matrix is the transpose 
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of the static matrix and its properties are related to the kinematical and statical determinacy 

of the reciprocal assembly. Future developments of the research will focus on the properties 

of specific finite and infinite, regular and non-regular configurations, with particular 

attention to kinematically indefinite assemblies. The presence of inextensional mechanisms 

is in fact of large interest when these configurations are applied to engineering or 

architectural problems. The possibility to adapt the structural shape to the surrounding 

conditions, as well as the application in kinetic structures, can then be regarded as the most 

interesting features of reciprocal plane frames. 
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