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Introduction

The aim of this work is to review the main results about power bounded and (uniformly)
mean ergodic operators on Banach spaces, including the theorems of Yosida and of Lin.
These theorems are applied to the study of multiplication operators on weighted Banach
spaces of analytic functions on the unit disc and on weighted Banach spaces of continuous
functions. We conclude with an investigation of the mean ergodicity of the Cesàro operator
on classical Banach sequence spaces.

In Chapter 1 relations between power boundedness, mean ergodicity and uniform mean
ergodicity of operators de�ned in Banach spaces are shown. Some of them are presented as
examples. Also, adding some conditions to the operators, one can ensure and characterize
mean ergodicity (Yosida's Theorems 1.2.4 and 1.2.5) and uniform mean ergodicity (Lin's
Theorem 1.3.2).

In Chapter 2 the space in which the operators are de�ned is not just Banach, but also
a Grothendieck space with the Dunford-Pettis property. The objective of the Chapter is
to prove Lotz's Theorem 2.2.2, which ultimately tells that mean ergodicity and uniform
mean ergodicity for power bounded operators are equivalent in this kind of spaces.

Chapter 3 deals with the multiplication operator on weighted spaces of holomorphic
functions de�ned on the unit disc of the complex plane. In the space of weighted vanishing
functions it is shown that mean ergodicity of the multiplication operator is equivalent
to power boundedness. In the space of weighted bounded functions it is shown that
mean ergodicity of the operator implies power boundedness and that mean ergodicity is
equivalent to uniform mean ergodicity.

In Chapter 4 the topic is also the multiplication operator but in this case it is de�ned
on the space of continuous functions de�ned on a Hausdor�, locally compact, σ-compact,
connected topological space. The main result is that mean ergodicity and uniform mean
ergodicity are equivalent.

Lastly, in Chapter 5 the Cesàro operator is de�ned for the set of complex sequences.
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6 Mean ergodic operators on Banach spaces

Then it is shown that most of the usual sequence spaces are invariant by the Cesàro op-
erator (so ergodicity can be studied for them). After some discussion about the spectrum
of the operator in these spaces, it is shown that the operator is not mean ergodic for any
of the spaces, but it is power bounded for some of them.



Preliminaries

If X is a Banach space, its topological dual is denoted by X ′. If x ∈ X and x′ ∈ X ′ the
notations x′(x) and < x, x′ > mean the same and are used indi�erently.

The notation for the weak topology in X is σ(X,X ′). A sequence (xn) ⊂ X converges
to x ∈ X for σ(X,X ′) when limn→∞ |x′(xn) − x′(x)| = 0 for each x′ ∈ X ′. Similarly the
notations σ(X ′, X) and σ(X ′, X ′′) are de�ned.

If X, Y are both Banach spaces, L(X, Y ) denotes the linear and continuous operators
from X onto Y . In particular, L(X) = L(X,X). If T ∈ L(X, Y ), the adjoint operator is
denoted T t, i.e. < x, T ty′ >=< Tx, y′ >. If T ∈ L(X), then T n denotes that the operator
is iterated n times, i.e. T n = T◦ n· · · ◦T .

We refer the reader to [9, Ch.7] for the spectral theory of operators on Banach spaces.
σ(T ) denotes the spectrum of an operator T ,

σ(T ) = {λ ∈ C|T − λI is not invertible},

and r(T ) is its spectral radius,
r(T ) = sup

λ∈σ(T )
|λ|,

which, satis�es (see [9, Th. 7.5-5])

r(T ) = lim
n→∞

‖T n‖
1
n .

Some spaces used in this work are the following:

l∞ = {(xn) ∈ CN : ‖(xn)‖∞ = sup
n∈N
|xn| <∞},

c = {(xn) ∈ CN : lim
n→∞

xn exists },

c0 = {(xn) ∈ CN : lim
n→∞

xn = 0},

lp = {(xn) ∈ CN : ‖(xn)‖p =

(∑
n∈N

|xn|p
) 1

p

<∞}, 1 ≤ p <∞.
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8 Mean ergodic operators on Banach spaces

Recall that l∞, c and c0 are all Banach spaces when endowed with the norm ‖ · ‖∞
and lp is a Banach space with the norm ‖ · ‖p for each 1 ≤ p <∞.

All unexplained notation is as in [7], [9], [14], [16], [17].



Chapter 1

Ergodicity of operators in Banach

spaces

1.1 De�nitions and general results

Let (X, ‖ · ‖) be a Banach space. Let T ∈ L(X). We denote the n-th ergodic mean Tn as

Tn :=
1

n

n∑
m=1

Tm.

De�nition 1.1.1. We say that an operator T ∈ L(X) is power bounded if

sup
n∈N
‖T n‖ <∞.

We say it is Cesàro bounded if

sup
n∈N
‖Tn‖ <∞.

De�nition 1.1.2. We say that T ∈ L(X) is mean ergodic if there exists P ∈ L(X)

such that

lim
n→∞

‖Tnx− Px‖ = 0,

for each x ∈ X (pointwise convergence).

We say it is uniformly ergodic if there exists P ∈ L(X) such that

lim
n→∞

‖Tn − P‖ = 0.

9
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Proposition 1.1.3. Let X be a Banach space and let T ∈ L(X). Then:

1. If r(T ) < 1, then T is power bounded.

2. If T is power bounded, r(T ) ≤ 1.

Proof. 1.: If r(T ) < 1, then there exists α > 0, with r(T ) < α < 1 therefore, there
exists N ∈ N such that for every n ≥ N , ‖T n‖ ≤ αn < 1. Thus {T n}n is bounded and T
is power bounded.

2.: If there exists M > 0 such that ‖T n‖ ≤M for each n ∈ N, then

lim
n→∞

‖T n‖
1
n ≤ lim

n→∞
M

1
n = 1,

and thus r(T ) ≤ 1. �

Example 1.1.4. We denote R2 as the Banach space (R2, ‖ · ‖), in which we use the
euclidean norm. Let T : R2 −→ R2 be linear with matrix(

1
2

1

0 1
2

)
,

then r(T ) < 1. As seen before, T is power bounded, but ‖T‖ > 1, due to ‖T (0, 1)‖ =

‖(1, 1/2)‖ =
√

5/4 > 1. �

Lemma 1.1.5. Let T ∈ L(X), then

1

n
T n = Tn −

n− 1

n
Tn−1.

Corollary 1.1.6. Let T ∈ L(X).

1. If T is mean ergodic, then

lim
n→∞

1

n
T nx = 0,

for each x ∈ X.

2. If T is uniformly ergodic, then

lim
n→∞

1

n
‖T n‖ = 0.

Proposition 1.1.7. Every power bounded operator is Cesàro bounded.

Proposition 1.1.8. Every mean ergodic operator is Cesàro bounded.
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Proof. If T ∈ L(X) is mean ergodic, then the sequence (Tnx) is bounded for each x ∈ X.
By the theorem of Banach-Steinhaus, the sequence of its norms (‖Tn‖) is bounded, and
thus T is Cesàro bounded. �

Example 1.1.9. In this example we show that r(T ) = 1 does not necessarily imply power
boundedness (see Proposition 1.1.3). Let T : R2 −→ R2 be linear with matrix(

1 2

0 1

)
.

Clearly r(T ) = 1. We have that the matrix of T n is:(
1 2n

0 1

)
,

and the matrix of Tn is: (
1 n+ 1

0 1

)
.

Then, Tn((0, 1)) = (n + 1, 1), whose norm is not bounded and hence T is not Cesàro
bounded. Using Proposition 1.1.7, we have that T is not power bounded. �

Example 1.1.10. The following example shows that the converse in Propositions 1.1.7
and 1.1.8 is not true.

Let T : R2 −→ R2 be linear with

T  

(
−1 2

0 −1

)
,

where the notation T  A indicates that A is the matrix of the linear map T in the
canonical basis. By induction we �nd

T n  

(
(−1)n (−1)n+12n

0 (−1)n

)
,

for each n ∈ N, and we see that T is not power bounded. Also, 1
n
T n(0, 1) =

(
(−1)n+12, (−1)

n

n

)
,

which does not converge to 0 as n→∞. Thus T is not mean ergodic. However

nTn = T + T 2 + · · ·+ T n  

(
0 −n
0 0

)
, for n even

and

nTn = T + T 2 + · · ·+ T n  

(
−1 n+ 1

0 −1

)
, for n odd,
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then

Tn  

(
0 −1
0 0

)
, for n even, Tn  

(
−1/n 1 + 1/n

0 −1/n

)
, for n odd,

and it is plain to see that T is Cesàro bounded. �

Example 1.1.11. The following example shows that neither power boundedness, mean
ergodicity nor both together imply uniform ergodicity.

Let λi = 1− 1
i+1

= i
i+1
, i ∈ N. Let 1 < p <∞, de�ne T : lp −→ lp by T ((xi)) = (λixi)

for any (xi) ∈ lp. Then we have T n((xi)) = (λni xi) for every n ∈ N. Now, using that
λi < 1,

‖T n((xi))‖p = ‖(λni xi)‖p ≤ ‖(xi)‖p
and thus, ‖T n‖ ≤ 1 and T is power bounded.

We can see now that T is mean ergodic. Let x ∈ lp,

‖Tnx‖pp =
1

np

∞∑
i=1

∣∣∣∣∣
n∑
j=1

λjixi

∣∣∣∣∣
p

=
1

np

∞∑
i=1

∣∣(λi + λ2i + · · ·+ λni )xi
∣∣p ≤ i+ 1

np
‖x‖pp,

since λi + λ2i + · · · + λni ≤ 1
1−λi = i + 1. This gives us that limn Tnx = 0, for each

x ∈ lp and T is mean ergodic. However, T is not uniformly ergodic. Indeed, take en =

(0, 0, . . . , 0, 1, 0, . . .) with 1 at the n-th position. Then,

‖Tnen‖p =
1

n
(λn + λ2n + · · ·+ λnn) =

1

n

λn − λn+1
n

1− λn
=
λn(1− λnn)

n
n+1

= 1−
(

n

n+ 1

)n
= 1− (1− 1

n+ 1
)n,

which converges to 1 − 1
e
. Since ‖en‖p = 1, Tn does not converge to 0 uniformly on the

closed unit ball of lp. �

Lemma 1.1.12. Let T ∈ L(X) be mean ergodic (resp. uniformly mean ergodic) and let

Y ⊂ X be a closed subspace, which is T -invariant (i.e. T (Y ) ⊂ Y ). Then also S := T|Y

is mean ergodic (resp. uniformly mean ergodic).

Proof. Since Y is T -invariant, it is also T n-invariant, and thus it is also invariant by
Sn = (Tn)|Y . Using that Y is closed, we get that both kind of limits (if they exist) are
inside of Y , and thus S is mean ergodic (resp. uniformly mean ergodic). �

Lemma 1.1.13 (Sine). Let T ∈ L(X). Assume there exists a functional u ∈ X ′, u 6= 0

such that T tu = u (i.e. it is invariant by the adjoint operator of T ). If T is mean ergodic,

then ker(I − T ) 6= {0}.
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Proof. Suppose ker(I − T ) = {0}. Take x ∈ X such that u(x) = 1, then, using that T
is mean ergodic, there exists x0 ∈ X such that

x0 = lim
n→∞

Tnx = lim
n→∞

n∑
m=1

Tmx.

We have

Tx0 = lim
n→∞

1

n

n∑
m=1

Tm+1x = lim
n→∞

[
1

n

n∑
m=1

Tmx− 1

n
Tx+

1

n
T n+1x

]
= x0.

Thus, x0 ∈ ker(I − T ) and x0 = 0. Then we have

0 = lim
n→∞

1

n

n∑
m=1

Tmx,

and, using that u(Tmx) = [(Tm)tu]x = u(x) for each m ∈ N , we get

0 = u(0) = lim
n→∞

1

n

n∑
m=1

u(Tmx) = u(x) = 1.

This contradiction implies ker(T − I) 6= {0}. �

Example 1.1.14. Let T : c0 −→ c0, de�ned by T (x1, x2, . . .) = (x1, x1, x2, . . .). We show
that T is not mean ergodic but it is power bounded.

Firstly, we have that

T (a) = a ⇐⇒ a = const ⇐⇒ a = 0,

then we get ker(I − T ) = {0}.

Now, we use e1 = (1, 0, 0, . . .) ∈ l1 = c′0. We have

(T te1)(x) =< e1, Tx >=< e1, (x1, x1, x2, . . .) >= x1 =< e1, x >,

and thus, T te1 = e1. By the previous lemma, T is not mean ergodic. However, we have
that

‖T nx‖ = ‖x‖

and, thus, T is power bounded. �

Example 1.1.15. Let X = C(D) the space of continuous functions in the closed unit
disc in C, endowed with the supremum norm. Let T : X −→ X be a linear map de�ned
by (Tf)z = zf(z) for each f ∈ X.
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We have
T nf(z) = znf(z) ∀f ∈ X ∀z ∈ D ∀n ∈ N,

therefore, ‖T nf‖ ≤ ‖f‖ for each n ∈ N and for each f ∈ X, and thus T is power bounded.
Now, we prove that T is not mean ergodic.

Let f ∈ X such that Tf = f . Then, we get

zf(z) = f(z) ∀z ∈ D⇒ (z − 1)f(z) = 0 ∀z ∈ D⇒ f(z) = 0 ∀z ∈ D \ {1},

and, then f ≡ 0 by continuity and ker(T − I) = {0}.

Now, let δ1 : X −→ C de�ned by δ1(f) = f(1). Clearly, δ1 ∈ (C(D))′. We have

[T t(δ1)](f) =< δ1, T f >= δ1(Tf) = 1f(1) = f(1) = δ1(f)

and as δ1 6= 0 and by the previous lemma, T is not mean ergodic. �

1.2 Yosida's mean ergodic theorem

Lemma 1.2.1. Let T : X −→ Y a linear map between normed spaces with open unit

balls BX and BY respectively. Then the following conditions are equivalent:

1. T is open from X onto Y .

2. There exists δ > 0 such that δBY ⊆ T (BX).

3. There exists K > 0 such that for any y ∈ Y , there exists x ∈ X with Tx = y and

‖x‖ ≤ K‖y‖.

Proof. 1.⇒ 2. Since T (BX) is open and 0 ∈ T (BX), there exists δ > 0 such that
δBX = B(0, δ) ⊂ T (BX).

2.⇒ 3. Fix y ∈ Y , y 6= 0 and de�ne y′ = δy
2‖y‖ . Then, y

′ ∈ δBY ⊂ T (BX), thus there

exists x′ ∈ BX such that Tx′ = y′. Set x = 2‖y‖
δ
x′. Clearly Tx = y and ‖x‖ ≤ 2

δ
‖y‖. 3.

holds with K = 2
δ
.

3.⇒ 1. Fix U ⊆ X open and x ∈ U . There exists ε > 0 such that x + B(0, ε) =

B(x, ε) ⊂ U . To show that T (U) is open, we prove that
(
Tx+B(0, ε

K
)
)
= B(Tx, ε

K
) ⊂

T (U).

Take y ∈ Y with ‖y‖ < ε
K
, then by 3., there exists z ∈ X with Tz = y and ‖z‖ <

K ε
K

= ε. Thus, x + z ∈ U and Tx + y = Tx + Tz = T (x + z) ∈ T (U). Then T (U) is
open. �



Alberto Rodríguez Arenas 15

Theorem 1.2.2. Let T ∈ L(X) with ‖T‖ < 1, then (I − T )−1 exists.

Proof. Using that ‖T j‖ ≤ ‖T‖j, we �nd

∞∑
j=0

‖T j‖ ≤
∞∑
j=0

‖T‖j

and the second sum is convergent because ‖T‖ < 1, which gives us that

S =
∞∑
j=0

T j

is absolutely convergent. Since X is complete, also L(X) is complete, thus the previous
sum es convergent. Now we shall show that S = (I − T )−1:

(I − T )(I + T + T 2 + . . .+ T n) = (I + T + T 2 + . . .+ T n)(I − T ) = I − T n+1

and taking the limit over n and using that ‖T‖ < 1, we get

(I − T )S = S(I − T ) = I,

which �nishes the proof. �

Lemma 1.2.3. Let T ∈ L(X) with limn
1
n
T nx = 0, for each x ∈ X. Then

(I − T )kX ∩ ker(I − T ) = {0},

for each k ∈ N.

Proof. Recall that Tn(I − T ) = 1
n
(T − T n+1). Let y ∈ (I − T )X. Then, there exists

x ∈ X with y = (I − T )x and we have

Tny = Tn(I − T )x =
1

n
(Tx− T n+1x) =

1

n
Tx− 1

n
T n+1x,

which converges to 0 as n→∞ by assumption.

Now let y ∈ (I − T )X ∩ ker(I − T ), then y = Ty and, clearly, y = Tmy, for each
m ∈ N. Thus,

Tny =
1

n

n∑
m=1

Tmy = y

and, as seen before, Tny →∞ and then, y = 0. This way, we have seen that (I − T )X ∩
ker(I − T ) = {0}. Also for each k ∈ N, we have 0 ∈ (I − T )kX ⊆ (I − T )X and this
implies the assertion. �
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Theorem 1.2.4 (Yosida). Let T ∈ L(X) and assume:

a) limn
1
n
T nx = 0, for each x ∈ X, and

b) T is Cesàro bounded (supn‖Tn‖ <∞).

Then,

(I − T )X = {x ∈ X : Tnx→ 0 as n→∞},

and

(I − T )X ∩ ker(I − T ) = {0}.

Proof. Let Z = {x ∈ X : Tnx → 0 as n → ∞}. If y ∈ (I − T )X, using the �rst part
of the proof of the Lemma 1.2.3, we conclude that y ∈ Z. Now let z ∈ (I − T )X. By b),
there exists C > 0 such that ‖Tny‖ ≤ C‖y‖ for all y ∈ X and for all n ∈ N. Fix ε > 0,
then there exists w ∈ (I − T )X ⊂ Z with ‖z − w‖ < ε

C
. We get

‖Tnz‖ ≤ ‖Tnw‖+ ‖Tn(z − w)‖ ≤ ‖Tnw‖+ C‖z − w‖ < ‖Tnw‖+ ε.

As w ∈ Z, for a big enough n, we have ‖Tnz‖ < 2ε and thus limn ‖Tnz‖ = 0. This way we
have proven that (I − T )X ⊆ Z. To show the other inclusion, let x ∈ Z and �x n ∈ N.
Then,

x− Tnx = x− 1

n

n∑
m=1

Tmx =
1

n

n∑
m=1

(I − Tm)x =
1

n

n∑
m=1

(I − T )[(I + T + · · ·+ Tm−1)x]

and thus x− Tnx ∈ (I − T )X. As x ∈ Z, taking limit as n→∞, we get x ∈ (I − T )X.
The proof of (I − T )X ∩ ker(I − T ) = {0} is similar to the proof of Lemma 1.2.3. �

We recall that a topological spaceX is called sequentially compact if every sequence
in X has a convergent subsequence.

Theorem 1.2.5 (Mean ergodic theorem). Let T ∈ L(X) and assume:

a) limn
1
n
T nx = 0, for each x ∈ X, and

b) for each x ∈ X the set {Tnx : n ∈ N} is relatively σ(X,X ′)−sequentially compact.

Then, the following assertions are satis�ed:

1. The limit Px := limn Tnx exists for all x ∈ X (i.e. T is mean ergodic), and

2. Px ∈ ker(I − T ) for all x ∈ X.
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Remark 1.2.6. Assumption b) can be changed to the set {Tnx : n ∈ N} being relatively
σ(X,X ′)−compact, due to the theorem of Eberlein-�mulian [7, Ch.24].

Proof (of the Theorem 1.2.5). Firstly we note that assertion b) implies that (Tnx)
is bounded in X for each x ∈ X, and by the theorem of Banach-Steinhaus, T is Cesàro
bounded, and thus we can use the Theorem 1.2.4 during the proof.

Let x ∈ X, then there exists an increasing subsequence (nk)k ⊆ N and x0 ∈ X such
that limk Tnk

x = x0 for the weak topology σ(X,X ′). We want to show that x0 = Px.
Now, we have, using the Theorem 1.2.4,

lim
n→∞

Tn(I − T )x = 0.

This implies that, for all f ∈ X ′,

lim
k→∞

< TTnk
x, f >= lim

k→∞
< Tnk

, f >=< x0, f > .

Thus, for all f ∈ X ′,

< x0, f >= lim
k→∞

< Tnk
x, T tf >=< x0, T

tf >=< Tx0, f >

and, then, Tx0 = x0. We shall use this in the rest of the proof. Moreover, when we prove
1., assertion 2. will be satis�ed. Now, for m ∈ N,

Tmx = Tmx0 + Tm(x− x0) = x0 + Tm(x− x0),

and then, for every n ∈ N,

Tnx =
1

n

n∑
m=1

Tmx = x0 + Tn(x− x0).

We also have
x− x0 = x− σ − lim

k→∞
Tnk

x = σ − lim
k→∞

(x− Tnk
x),

where σ−lim indicates the limit for the weak topology σ(X,X ′). But x−Tnk
x ∈ (I−T )X,

as we saw in the proof of the Theorem 1.2.4, and then x − x0 ∈ (I − T )X (because the
clausure for the norm topology of X coincides with the clausure for the weak topology
σ(X,X ′) for convex sets). By the Theorem 1.2.4, we have that limn Tn(x− x0) = 0, and
thus,

Px = lim
n→∞

Tnx = x0.

In particular, TPx = Tx0 = x0 = Px. �
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Corollary 1.2.7. Let X be a re�exive Banach space and T ∈ L(X) and assume:

a) limn
1
n
T nx = 0, for each x ∈ X, and

b) T is Cesàro bounded (supn‖Tn‖ <∞).

Then, T is mean ergodic.

Proof. As X is re�exive, every bounded set in X is relatively weakly sequentially com-
pact, and we can use Theorem 1.2.5. Fix x ∈ X. By b), the sequence (Tnx) is bounded,
and thus it is relatively weakly sequentially compact, hence there exists an increasing
subsequence (nk)k ⊆ N and x0 ∈ X such that x0 = σ(X,X ′) − limn Tnk

x. Then by the
Theorem 1.2.5, the limit Px = limn Tnx exists, and P is well-de�ned. By its de�nition it
is clear that P is linear. Using b) we know that P is also continuous. �

Theorem 1.2.8. Let T ∈ L(X) be mean ergodic and denote Px = limn→∞ Tnx for each

x ∈ X. Then, P : X −→ X satis�es:

1. P = P 2 = TP = PT . In particular P is a projection.

2. P (X) = ker(I − T ),

3. kerP = (I − T )X = (I − P )X.

Moreover, X = (I − T )X ⊕ ker(I − T ).

Proof. We prove 1. Let x ∈ X, then,

(I − T )(Px) = (I − T ) lim
n→∞

Tnx = lim
n→∞

1

n
(T − T n+1)x = 0,

then Px = TPx and P = TP . This gives us that T nP = P for all n ∈ N, and TnP = P ,
for all n ∈ N, and we get

P 2x = lim
n→∞

TnPx = lim
n→∞

Px = Px,

which implies P 2 = P . Lastly,

P (I − T )x = lim
n→∞

1

n
(T − T n+1)x = 0

and thus, P = PT .

For the proof of 2., let x ∈ ker(I − T ), then x = Tx, and T nx = x and Tnx = x. Thus
Px = limn Tnx = x, which gives us x ∈ P (X).
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Now let x ∈ P (X). Then there exists z ∈ X such that x = Pz = P 2z = P (Pz) = Px.
We get

Tx = T (Px) = Px = x,

which tells us that x ∈ ker(I − T ).

Now we prove 3. Let x ∈ kerP , then Px = 0. Thus (I −P )x = x−Px = x, therefore
x ∈ (I − P )X.

Now let x ∈ (I − P )X, then, x = (I − P )z for some z ∈ X. One gets

Px = Pz − P 2z = Pz − Pz = 0

and thus x ∈ kerP . We have proven that kerP = (I − P )X. Now we prove that both
are equal to (I − T )X. Let x ∈ (I − P )X, then x = (I − P )z for some z ∈ X. We have

(I − Tn)z = (I − T )

[
1

n

n−1∑
r=0

r∑
j=0

T jz

]
,

and then (I − Tn)z ∈ (I − T )X. Now,

x = (I − P )z = z − lim
n→∞

Tnz = lim
n→∞

(I − Tn)z ∈ (I − T )X.

Let x ∈ (I−T )X, then x = (I−T )z for some z ∈ X. Thus, Px = Pz−TPz = Pz−Pz = 0

and z ∈ kerP . Let w ∈ (I − T )X, then there exists a sequence (xn) ⊆ (I − T )X such
that limxn = w. We conclude,

Pw = P ( lim
n→∞

xn) = lim
n→∞

Pxn = lim
n→∞

0 = 0,

where we have used the continuity of P . We have obtained w ∈ kerP and thus, assertion
3.. �

Theorem 1.2.9 (Strong ergodic theorem). Let T ∈ L(X), then there exists P ∈
L(X) such that limn Tnx = Px for all x ∈ X, if and only if the the following assertions

are satis�ed:

a) limn
1
n
T nx = 0 for all x ∈ X, and

b) for each x ∈ X the set {Tnx : n ∈ N} is relatively σ(X,X ′)−sequentially compact.

Proof. Firstly, we suppose that there exists P ∈ L(X) such that for all x ∈ X,
limn Tnx = Px. Then,

1

n
T n = Tn −

n− 1

n
Tn−1,
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which converges to 0, and thus a) is satis�ed. We also have Tnx → Px for all x ∈ X,
and this implies that (Tnx) is relatively sequentially compact in X and then, (Tnx) is
relatively sequentially σ(X,X ′)−compact, satisfying b).

For the converse, we apply Theorem 1.2.5. �

1.3 Lin's theorem

Lemma 1.3.1. Let T ∈ L(X) with ker(I − T ) = {0} and with

lim
n→∞

∥∥∥∥ 1nT n
∥∥∥∥ = 0,

then, the following assertions are equivalent:

1. I − Tn is surjective for some n ∈ N.

2. I − T is surjective.

3. limn→∞ ‖Tn‖ = 0 (T is uniformly mean ergodic).

Proof. 3.⇒ 1. Because of the limit being 0, there exists an n ∈ N such that ‖Tn‖ < 1.
This implies that I − Tn is an isomorphism by Theorem 1.2.2 and, in particular, it is
surjective.

1.⇒ 2. Let y ∈ X, by 1. there exist x ∈ X such that (I − Tn)x = y. Thus,

y = (I − Tn)x = (I − T )

[
1

n

n−1∑
r=0

r∑
j=0

T jx

]
.

and (I − T ) is surjective.

2.⇒ 3. We have that I − T : X −→ X is injective by hypothesis and it is onto by
2., also it is continuous. By the open mapping theorem its inverse (I − T )−1 : X −→ X

is continuous. If B is the closed unit ball of X, then C = (I − T )−1B is bounded. Let
M = supx∈C ‖x‖. We have

‖Tn‖ = sup
z∈B
‖Tnz‖ = sup

x∈C
‖(I − T )Tnx‖ = sup

x∈C

∥∥∥∥ 1n(T − T n+1)x

∥∥∥∥
≤ 1

n
sup
x∈C
‖Tx‖+ n+ 1

n
sup
x∈C

∥∥∥∥ 1

n+ 1
T n+1x

∥∥∥∥ ≤ M

n
‖T‖+ 2M

‖T n+1‖
n+ 1

and, thus limn ‖Tn‖ = 0. �
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Theorem 1.3.2 (Lin). Let T ∈ L(X) satisfy

lim
n→∞

‖T n‖
n

= 0.

The following assertions are equivalent:

1. T is uniformly mean ergodic.

2. (I − T )X is closed and X = ker(I − T )⊕ (I − T )X.

3. (I − T )2X is closed.

4. (I − T )X is closed.

5. (I − T )kX is closed for every k ∈ N.

6. (I − T )kX is closed for some k > 2.

Proof. In the proof we use the following notations: Y = (I − T )X and S = T|Y .

1.⇒ 2. There exist P ∈ L(X) such that

lim
n→∞

‖Tn − P‖ = 0.

By the Theorem 1.2.4, we have X = ker(I−T )⊕Y . We want to show that T (Y ) ⊆ Y ,
so we can iterate S. To do so we shall prove �rst that T (I−T )X ⊆ (I−T )X. Let x ∈ X,
then

T (I − T )x = (I − T )(Tx) ∈ (I − T )X.

Using this, we have

T (Y ) = T ((I − T )X) ⊆ T (I − T )X ⊆ (I − T )X = Y = Y,

as we wanted. By the Theorem 1.2.4 we have Y = kerP . Due to limn ‖Tn − P‖ = 0, we
conclude that limn ‖Sn‖ = 0. Now, S satis�es the assumptions and hence the conclusion
3. of the Lemma 1.3.1, so (I − S)Y = Y . Finally,

Y = (I − S)Y = (I − T )Y ⊆ (I − T )X ⊆ Y

gives us that Y = (I − T )X and (I − T )X is closed.

2.⇒ 3. We have Y = (I−T )X, we want to show that (I−T )2X = Y . The inclusion
(I − T )2X = (I − T )[(I − T )X] ⊆ Y is direct. To show the other inclusion, let y ∈ Y .
Then y = (I − T )x for some x ∈ X. By 2. we can write x as

x = x0 + x1, with Tx0 = x0 and x1 ∈ Y



22 Mean ergodic operators on Banach spaces

and we get y = (I−T )x = (I−T )x1 ∈ (I−T )Y = (I−T )2X and Y = (I−T )2X, which
is closed.

3.⇒ 4. Recall that Y = (I − T )X. We want to show that (I − T )X = Y . Firstly
we check that (I − T )Y = (I − T )2X. The �rst inclusion is:

(I − T )2X = (I − T )(I − T )X ⊆ (I − T )(I − T )X = (I − T )Y.

On the other hand, we can apply 3. to get

(I − T )Y = (I − T )(I − T )X ⊆ (I − T )2X = (I − T )2X.

This also tells us that (I − T )Y = (I − T )Y because (I − T )2X is closed.

Since T (Y ) ⊆ Y , S : Y −→ Y is well de�ned. Every y ∈ (I − T )X satis�es that
limn Sny = 0 as we saw in the proof of Yosida's Theorem 1.2.4.

Now we show that (I − T )X ⊆ (I − S)Y . Let y ∈ Y with limn Sny = 0. Then

y − Sny = (I − S)[ 1
n

n∑
m=1

(I + S + · · ·+ Sm−1)y] ∈ (I − S)Y,

for each n ∈ N then we have y = limn(y − Sny) ∈ (I − S)Y . And, �nally, (I − T )X ⊆
(I − S)Y = (I−S)Y = (I−T )2X. We also know that (I−T )2X ⊆ (I−T )X, then both
are equal and (I − T )X is closed.

4.⇒ 1. In this case we have Y = (I − T )X, and it is a Banach space. The operator
I − T : X −→ Y is surjective and continuous, then, by the open mapping theorem,
(I − T ) : X −→ Y is open. If we apply the Lemma 1.2.1, we �nd that there exists K > 0

such that for each y ∈ Y , there exists z ∈ X such that

(I − T )z = y and ‖z‖ ≤ K‖y‖.

Now, let y ∈ Y and select z ∈ X as above, then we have

‖Tny‖ = ‖Tn(I − T )z‖ ≤
1

n
‖T − T n+1‖‖z‖ ≤ K

n
(‖T‖+ ‖T n+1‖)‖y‖.

Recall that S = T|Y : Y −→ Y is well-de�ned and continuous. By the previous inequali-
ties, taking supremum over ‖y‖ ≤ 1, one �nds that limn ‖Sn‖ = 0.

Applying the Lemma 1.2.3, we �nd

(I − T )X ∩ ker(I − T ) = Y ∩ ker(I − T ) = {0}

and therefore ker(I − S) = {0}. Now, applying Lemma 1.3.1 to S ∈ L(Y ), we conclude
that I − S : Y −→ Y is surjective. Thus, I − S is an isomorphism. Also, (I − T )X =
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Y = (I − S)Y = (I − T )2X. Therefore, for each x ∈ X there exists y ∈ Y such that
(I − T )x = (I − T )y and thus y = (I − S)−1[(I − T )x]. Since (I − S)−1 : Y −→ Y is
continuous,

‖y‖ ≤ ‖(I − S)−1‖‖(I − T )x‖.

We also have that (I − T )(x− y) = 0, and thus T (x− y) = x− y and Tm(x− y) = x− y,
for each m ∈ N, which gives us Tm(x− y) = x− y, for all m ∈ N.

We de�ne the map P : X −→ X by Px = x−y, where y is the unique element de�ned
as y = (I −S)−1[(I −T )x]. This map is a well-de�ned and continuous operator. Our aim
now is to show that

lim
n→∞

‖Tn − P‖ = 0.

To do so, let x ∈ X and use y selected by P ,

‖(Tn − P )x‖ = ‖Tnx− Px‖ = ‖Tnx− (x− y)‖ = ‖Tnx− Tn(x− y)‖ = ‖Tny‖
= ‖Tn(I − S)−1(I − T )x‖ ≤ ‖(I − S)−1‖‖Tn(I − T )x‖

≤ K

n
‖(I − S)−1‖(‖T‖+ ‖T n+1‖)‖x‖.

If we now take supremum over ‖x‖ ≤ 1 for x ∈ X, we get

‖(Tn − P )‖ ≤
K

n
‖(I − S)−1‖(‖T‖+ ‖T n+1‖)

and this converges to 0 as n→∞ and thus Tn converges to P and Tn is uniformly mean
ergodic.

2.⇒ 5. Let k ∈ N with k ≥ 2. We want to show that (I−T )kX = (I−T )k−1X. It is
clear that (I − T )kX ⊆ (I − T )k−1X. Now let z ∈ (I − T )k−1X, then, there exists x ∈ X
such that z = (I − T )k−1x and by 2. x = x0 + x1 with x0 = Tx0 and x1 ∈ (I − T )X.
Then, we have

z = (I − T )k−1x = (I − T )k−2(I − T )x = (I − T )k−1x1 ∈ (I − T )k−1(I − T )X.

This way we have shown that (I−T )k−1X = (I−T )kX. Iterating this process, we �nally
have

(I − T )kX = (I − T )k−1X = · · · = (I − T )2X = (I − T )X

and (I − T )kX is closed for every k ∈ N.

6.⇒ 4. Our aim is to show that (I − T )k−1X is closed. First we shall see that
(I−T )k−1X+ker(I−T ) is closed. Indeed, let yn = (I−T )k−1xn+zn with limn yn = y, and
(xn)n ⊆ X and zn = Tzn for each n ∈ N. Then (I−T )yn = (I−T )kxn converges to (I−T )y
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as n→∞. But ((I − T )kxn) ⊆ (I − T )kX, which is closed, then (I − T )y ∈ (I − T )kX.
Then there exists w ∈ X with (I−T )y = (I−T )kw and thus y−(I−T )k−1w ∈ ker(I−T )
and we have

y = (I − T )k−1w + (y − (I − T )k−1w) ∈ (I − T )k−1X + ker(I − T ),

which shows that (I − T )k−1X + ker(I − T ) is closed.

Now, using that (I − T )k−1X + ker(I − T ) is closed, ker(I − T ) is closed and (I −
T )k−1X ∩ ker(I − T ) = {0}, we get, using [16, Theorem 5.8.], that (I − T )k−1X is closed.
Iterating this argument, we �nd that (I − T )X is closed.

5.⇒ 6. Trivial. �



Chapter 2

Ergodicity of operators in

Banach-Grothendieck spaces with the

Dunford-Pettis property

2.1 De�nitions and general results

The main objective of this chapter is to �nd some results analogous to Yosida's Theo-
rem 1.2.4, but for uniform mean ergodicity instead of just mean ergodicity. To do so we
restrict the space in which we work. We are still in Banach spaces, but we ask them to
be Grothendieck spaces with the Dunford-Pettis property. Even if the results given are
stated for Banach spaces X, they actually work for Fréchet spaces, with similar proofs.
The results in the chapter are mainly taken from Heinrich P. Lotz's article [11]. In this
section Tj will not necessarily mean the j-th ergodic mean of T ∈ L(X), unless it is
otherwise stated.

We start with some de�nitions.

De�nition 2.1.1. A Banach space X is a Grothendieck space if any sequence (x′j) ⊂
X ′ which is convergent to 0 for the weak topology σ(X ′, X) is also convergent to 0 for
the weak topology σ(X ′, X ′′).

De�nition 2.1.2. A Banach space X has the Dunford-Pettis property if for any
sequence (xj) ⊂ X which is convergent to 0 for the weak topology σ(X,X ′) and any
sequence (x′j) ⊂ X ′ which is convergent to 0 for the weak topology σ(X ′, X ′′) one gets

lim
j→∞

< xj, x
′
j >= 0.

25
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Firsly we prove some lemmata, which are true for sequences having some properties,
which actually the sequence of ergodic means satis�es.

Lemma 2.1.3. Let X be a Banach space, which is a Grothendieck space and let (Tj) ⊂
L(X) be a sequence with limj→∞ Tjx = 0 for all x ∈ X. Then for each bounded sequence

(x′j) ⊂ X ′, we have limj→∞ T
t
jx
′
j = 0 for the weak topology σ(X ′, X ′′).

Proof. Let (x′k) ⊂ X ′ be bounded. There isM > 0 such that ‖x′k‖ ≤M for each k ∈ N.
Given j ∈ N and x ∈ X, we have | < Tjx, x

′
k > | ≤ M‖Tjx‖ for each k ∈ N. Thus

supk | < Tjx, x
′
k > | ≤M‖Tjx‖. As Tjx→ 0 for each x ∈ X, we have

lim
j→∞

sup
k∈N
| < Tjx, x

′
k > | = 0

for each x ∈ X. Thus, for each x ∈ X, | < Tjx, x
′
j > | → 0, and then T tjx

′
j → 0 for

σ(X ′, X). But X is a Grothendieck space, thus, T tjx
′
j → 0 for σ(X ′, X ′′). �

Lemma 2.1.4. Let X be a Banach space, which is a Grothendieck space and let (Tj) ⊂
L(X) be a sequence with:

1. TjTk = TkTj,

2. limj→∞ Tjx = 0 for all x ∈ X, and

3. limj→∞ ‖(I − Tm)Tj‖ = 0 for all m ∈ N.

Then, the dual space of X veri�es that

X ′ = {u ∈ X ′ : lim
j→∞
‖T tju‖ = 0}.

Proof. We denote Sj := I − Tj. Then Stj : X ′ −→ X ′ is continuous (with the norm
topology in both sides). Also denote

H = {u ∈ X ′ : lim
j→∞
‖Stju− u‖ = 0} = {u ∈ X ′ : lim

j→∞
‖T tju‖ = 0}.

Our aim is to show that H is both dense in X ′ and closed for the norm topology, and
thus, H = X ′.

We begin showing that H is closed. Let (x′k) ⊂ H be a sequence such that

lim
k→∞
‖x′k − x′0‖ = 0,

for an x′0 ∈ X ′.
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Fix ε > 0, let B be the closed unit ball of X, and let

C = B ∪
∞⋃
j=1

Sj(B).

Since {Sj} is norm bounded due 2., and B is bounded, C is bounded. Using this and the
convergence to x′0, there exists k0 ∈ N such that for all k ≥ k0 and for all c ∈ C,

| < x′k − x′0, c > | ≤
ε

3
.

Also, as x′k0 ∈ H, there exists j0 ∈ N such that for all j ≥ j0,

sup
b∈B
|x′k0(b)− S

t
jx
′
k0
(b)| ≤ ε

3
.

Finally we show that x′0 ∈ H. We have for j ≥ j0 and b ∈ B,

|x′0(b)− Stjx′0(b)| ≤ |x′0(b)− x′k0(b)|+ |x
′
k0
(b)− Stjxk0(b)|+ |Stjx′k0(b)− S

t
jx
′
0(b)|

<
ε

3
+
ε

3
+ |(x′k0 − x

′
0)(Sjb)| <

2ε

3
+
ε

3
= ε.

Thus H is closed for the norm topology. Now we show that H is dense. Firstly we see
that

∞⋃
k=1

StkX
′ ⊂ H.

Fix k ∈ N. By 1. and 3., we know that

lim
j→∞
‖TjSk‖ = lim

j→∞
‖SkTj‖ = 0.

Thus, for all u ∈ X ′,
lim
j→∞
‖(StkT tj )u‖ = lim

j→∞
‖u(TjSk)‖ = 0.

Then, for each x′ ∈ X ′

lim
j→∞
‖Stj(Stkx′)− Stkx′‖ = lim

j→∞
‖Stk(I − T tj )x′ − Stkx′‖ = lim

j→∞
‖StkT tjx′‖ = 0,

which implies that Stkx
′ ∈ H. Thus, StkX

′ ⊆ H for any k ∈ N.

By Lemma 2.1.3, for each u ∈ X ′, Stku converges to u for the weak topology σ(X ′, X ′′).
Then, for any element of X ′, there exists a sequence in H which converges weakly to the
element, and therefore, H is weakly dense in X ′. As H is a subspace, we conclude that
H is also dense in X ′ for the norm topology.

As H is closed and dense in X ′ for the norm topology, we have that H = X ′ and we
�nish. �
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Lemma 2.1.5. Let X be a Banach space, which is a Grothendieck space and let (Tj) ⊂
L(X) be a sequence satisfying:

1. TjTk = TkTj,

2. limj→∞ Tjx = 0 for all x ∈ X, and

3. limj→∞ ‖(I − Tm)Tj‖ = 0 for all m ∈ N.

Then for each bounded sequence (xj)j ⊂ X, we have limj→∞ Tjxj = 0 for the weak topology

σ(X,X ′).

Proof. Fix (xk)k ⊂ X bounded. Take x′ ∈ X ′. By the Lemma 2.1.4 we know that
T tj → 0 for the norm topology. Thus, we have

lim
j→∞

sup
k∈N
|T tj (x′)xk| = 0.

Finally,
lim
j→∞
| < Tjxj, x

′ > | = lim
j→∞
| < xj, T

t
jx
′ > | = lim

j→∞
|T tjx′(xj)| = 0.

�

2.2 Lotz's theorem

In this section Tn does mean the n-th ergodic mean of the operator T .

Lemma 2.2.1. Let X be a Banach space. Let T ∈ L(X) and let

Tn =
1

n

n∑
m=1

Tm.

Assume limn

∥∥Tn

n

∥∥ = 0. Then, for each m ∈ N,

lim
n→∞

‖(I − Tm)Tn‖ = 0.

Proof. Fix n,m ∈ N. Then,

I − Tm =
1

m
(mI − T − T 2 − · · · − Tm) = 1

m
((I − T ) + (I − T 2) + · · ·+ (I − Tm))

=
1

m

[
(I − T ) + (I + T )(I − T ) + · · ·+ (I + T + · · ·+ Tm−1)(I − T )

]
=

1

m

[
I + (I + T ) + · · ·+ (I + T + · · ·+ Tm−1)

]
(I − T ) = gm(T )(I − T ).
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Now, (I − Tm)Tn = gm(T )(I − T )Tn = gm(T )
1
n
(T − T n+1). Using that limn

∥∥Tn

n

∥∥ = 0, we
get

lim
n→∞

‖(I − Tm)Tn‖ = 0. �

The following theorem is the main result of this chapter and the Dunford-Pettis prop-
erty is used in its proof.

Theorem 2.2.2 (Lotz). Let X be a Banach space, which is a Grothendieck space with

the Dunford-Pettis property. Let T ∈ L(X) and let

Tn =
1

n

n∑
m=1

Tm.

Assume:

1. limn

∥∥Tn

n

∥∥ = 0.

2. For each x ∈ X the set {Tnx : n ∈ N} is relatively σ(X,X ′)−compact.

Then, there exists a projection P ∈ L(X) such that

lim
n→∞

‖Tn − P‖ = 0,

and T is uniformly mean ergodic.

Proof. By Yosida's Theorem (Theorems 1.2.4 and 1.2.8), there exists a projection P ∈
L(X) such that for all x ∈ X, limn Tnx = Px and also P = P 2 = TP = PT , F :=

P (X) = ker(I − T ), H := kerP = (I − T )X and X = F ⊕H.

To prove the theorem we prove �rstly that limn ‖T 2
n − P‖ = 0. To do so we see that

(Tn)|F = I|F and that limn ‖(T 2
n)|H‖ = 0.

Let x ∈ F , then x = Px = limn Tnx. Thus, using Lemma 2.2.1, (I − Tk)x = limn(I −
Tk)Tnx = 0. Therefore (I − Tk)x = 0 and (Tn)|F = I|F .

Now we move to the second part. Note that by Yosida's Theorem 1.2.4, H = {x ∈
X : Tnx→ 0}. Set

A =
∞⋃
k=1

(I − Tk)X

and denote by A its closure for the weak topology σ(X,X ′). We want to see that H = A.

Let k ∈ N and x ∈ X, then (I − Tk)x ∈ A and by Lemma 2.2.1, (I − Tk)x ∈ H. But
H is closed for the weak topology, thus A ⊆ H.
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Now let x ∈ H, then x − Tkx ∈ A for every k ∈ N, but as x ∈ H, x = limk x − Tkx,
and thus x ∈ A. Then H ⊆ A ⊂ A. Thus H = A.

Suppose that ((T 2
n)|F ) does not converge to 0 for the topology of the norm. Then there

exists ε > 0 such that ‖(T 2
n)|H‖ > ε. We can choose a sequence (xs) ⊂ H with ‖xs‖ ≤ 1

and a sequence j1 < j2 < · · · so that ‖T 2
jsxs‖ > ε. Then by Hahn Banach Theorem, there

exists another sequence (x′s) ⊂ X ′ with ‖x′s‖ ≤ 1 such that | < T 2
jsxs, x

′
s > | > ε. Thus

for each s ∈ N,
| < Tjsxs, T

t
jsx
′
s > | > ε.

Now we note that H is a complemented subspace of a Grothendieck space with the
Dunford-Pettis property, and thus H itself is a Grothendieck space with the Dunford-
Pettis property. Therefore, T and H verify the conditions of Lemmata 2.1.3 and 2.1.5,
due to the de�nition of H and Lemma 2.2.1, and we can apply them.

Since (xs) is bounded, Tjsxs converges to 0 for the weak topology σ(X,X ′) by Lemma 2.1.5.
Also (x′s) is bounded and thus T tjsx

′
s converges to 0 for the weak topology σ(X ′, X ′′) by

Lemma 2.1.3. Since H has the Dunford-Pettis property,

lim
s→∞
| < Tjsxs, T

t
jsx
′
s > | = 0,

which is a contradiction. Therefore, ((T 2
n)|H) must converge to 0 for the topology of the

norm.

Now adding the results for F and H, we get that T 2
n converges to P for the topology

of the norm, as we wanted to check.

Now we complete the proof of the Theorem. As P|F = IF , we only have to show that
limj ‖(Tj)|H‖ = 0. As limj ‖(T 2

j )|H‖ = 0, there exists m ∈ N such that ‖T 2
m‖ < 1 and thus

I − T 2
m is invertible in L(H), by Theorem 1.2.2. We have

(I − Tm)(I + Tm)(I − T 2
m) = I,

and thus, I − Tm is invertible in L(H). Using Lemma 2.2.1,

lim
n→∞

‖(Tn)|H‖ = lim
n→∞

‖((I − Tm)−1(I − Tm)Tn)|H‖

≤ lim
n→∞

‖(I − Tm)−1|H ‖ lim
n→∞

‖((I − Tm)Tn)|H‖ = 0,

and thus Tn converges to P for the topology of the norm. �

Corollary 2.2.3. Let X be a Banach space, which is a Grothendieck space with the

Dunford-Pettis property. Let T ∈ L(X) be a power bounded operator. Then T is mean

ergodic if and only if T is uniformly mean ergodic.



Chapter 3

Multiplication operators on spaces of

holomorphic functions

3.1 De�nitions and general results

The objective of this chapter is to investigate the (uniform) mean ergodicity of multipli-
cation operators in some weighted Banach spaces of holomorphic functions. This chapter
mainly follows the article [5].

We work with some spaces of holomorphic functions de�ned on the complex unit disc
D = {z ∈ C : |z| < 1}. The notation for the space of holomorphic functions is H(D)
and ‖ · ‖∞ denotes the supremum norm. We denote the bounded holomorphic functions
by H∞(D) = {f ∈ H(D) : ‖f‖∞ < ∞}. We say that a function v : D −→ (0,∞) is
a weight function if it is continuous, radial (v(z) = v(|z|) for all z ∈ D) and satis�es
limr→1− v(r) = 0.

The spaces in which we are interested are the following weighted Banach spaces:

H∞v = {f ∈ H(D) : ‖f‖v := sup
z∈D

v(z)|f(z)| <∞}

and
H0
v = {f ∈ H(D) : lim

|z|→1−
v(z)|f(z)| = 0}.

Some facts of these spaces that are used are the following (see e.g. [4]):

• They are both Banach spaces when endowed with the norm ‖ · ‖v.

• H0
v is a closed subspace of H∞v .
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• The set of polynomials is dense in H0
v .

From now on, we �x a weight function v : D −→ (0,∞) .

If we choose a function ϕ ∈ H(D), we can de�ne the multiplication operators Tϕ :

H∞v −→ H∞v and Sϕ : H0
v −→ H0

v de�ned by Tϕ(f) = ϕf and Sϕ(f) = ϕf . In
Lemma 3.1.3 we check Tϕ ∈ L(H∞v ) and Sϕ ∈ L(H0

v ) if ϕ ∈ H∞. Our aim in this chapter
is �nding when these operators are mean ergodic, uniformly ergodic, power bounded and
Cesàro bounded.

Lemma 3.1.1. Given z ∈ D, the evaluation functional δz : H
∞
v −→ C de�ned by

< f, δz >= f(z)

is linear and continuous (δz ∈ (H∞v )′). Moreover,

| < f, δz > | ≤
‖f‖v
v(z)

.

Also, δz ∈ (H0
v )
′.

Lemma 3.1.2. Given ϕ ∈ H(D), if Tϕ ∈ L(H∞v ), then ϕ ∈ H∞(D). The same holds if

Sϕ ∈ L(H0
v ).

Proof. We use the adjoint operator, �x z ∈ D, then for all f ∈ H∞v ,

< T tϕ(δz), f >=< δz, ϕf >= ϕ(z)f(z) = (ϕ(z)δz)(f)

and we get T tϕ(δz) = ϕ(z)δz. As Tϕ is continuous, also T tϕ is continuous. We have

|ϕ(z)|‖δz‖ = ‖ϕ(z)δz‖ = ‖T tϕ(δz)‖ ≤ ‖T tϕ‖‖δz‖,

which tells us that |ϕ(z)| ≤ ‖T tϕ‖ for all z ∈ D, and thus ϕ is bounded and ϕ ∈ H∞.

The proof for Sϕ is the same one. �

Lemma 3.1.3. If ϕ ∈ H∞(D), then Tϕ ∈ L(H∞v ) and Sϕ ∈ L(H0
v ) with

‖Tϕ‖ = ‖ϕ‖∞ = ‖Sϕ‖.

Proof. We prove ‖Sϕ‖ ≤ ‖Tϕ‖ ≤ ‖ϕ‖∞ ≤ ‖Sϕ‖. The �rst one is direct:

‖Sϕ‖ = sup
f∈H0

v

‖Tϕ‖v
‖f‖v

≤ sup
f∈H∞v

‖Tϕ‖v
‖f‖v

= ‖Tϕ‖.
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We have seen that ‖Sϕ‖ ≤ ‖Tϕ‖. Now we check the second inequality.

‖Tϕ‖ = sup
‖f‖v=1

‖Tϕf‖v = sup
‖f‖v=1

‖ϕf‖v = sup
‖f‖v=1

sup
z∈D

v(z)|ϕ(z)f(z)|

≤ sup
z∈D
|ϕ(z)| sup

‖f‖v=1

sup
z∈D

v(z)|f(z)| = sup
z∈D
|ϕ(z)| sup

‖f‖v=1

‖f‖v = ‖ϕ‖∞.

Then we get ‖Tϕ‖ ≤ ‖ϕ‖∞ and thus, the continuity of the operators. We �nally check
‖Sϕ‖ ≥ ‖ϕ‖∞. We use the adjoint operator Stϕ of Sϕ. Fix z ∈ D.

‖Sϕ‖ = ‖Stϕ‖ = sup
P∈(H0

v )
′

‖StϕP‖(H0
v )
′

‖P‖(H0
v )
′
≥
‖Stϕδz‖(H0

v )
′

‖δz‖(H0
v )
′

=
1

‖δz‖(H0
v )
′

sup
f∈H0

v ,‖f‖v≤1
| < f, Stϕδz > |

=
1

‖δz‖(H0
v )
′

sup
f∈H0

v ,‖f‖v≤1
| < Sϕf, δz > | =

1

‖δz‖(H0
v )
′

sup
f∈H0

v ,‖f‖v≤1
| < ϕf, δz > |

=
|ϕ(z)|
‖δz‖(H0

v )
′

sup
f∈H0

v ,‖f‖v≤1
| < f, δz > | = |ϕ(z)|.

Thus, ‖Sϕ‖ ≥ |ϕ(z)| for each z ∈ D, and then ‖Sϕ‖ ≥ ‖ϕ‖∞, which concludes the proof.�

Lemma 3.1.4. Tϕ is an isomorphism if and only if 1/ϕ ∈ H∞. Equivalently for Sϕ.

Proof. If 1/ϕ ∈ H∞, then T1/ϕ is continuous and satis�es

TϕT1/ϕ = T1/ϕTϕ = I,

thus Tϕ is an isomorphism.

Suppose that Tϕ is an isomorphism, then there existsM ∈ L(H∞v ) such that TϕM = I.
If we evaluate this equality at the constant function 1 and a point z ∈ D, we get

ϕ(z)(M1)(z) = 1, (M1)(z) =
1

ϕ(z)

and as M1 ∈ H(D), also 1/ϕ ∈ H(D). If we now evaluate at any function f ∈ H∞v and
any point z ∈ D, we get

(Mf)(z) =
1

ϕ(z)
f(z)

and thus M = T1/ϕ. By Lemma 3.1.2, 1/ϕ ∈ H∞.

The proof for Sϕ is the same. �

3.2 Mean ergodicity and power boundedness

Our main interest is knowing properties of the iterated operators. Information about that
is seen next.
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Remark 3.2.1. Clearly the identities T nϕ = Tϕn and Snϕ = Sϕn hold for each n ∈ N.
Using them and the Lemma 3.1.3, we �nd that for each n ∈ N

‖T nϕ‖ = ‖ϕn‖∞ = ‖ϕ‖n∞ = ‖Snϕ‖.

Proposition 3.2.2. For each ϕ ∈ H∞(D), the following assertions are equivalent:

1. ‖ϕ‖∞ ≤ 1,

2. Tϕ ∈ L(H∞v ) is power bounded,

3. Sϕ ∈ L(H0
v ) is power bounded.

Proof. Remark 3.2.1 yields 1.⇒ 2. and 1.⇒ 3.

For the proof of 2.⇒ 1., �x n ∈ N. We have, using the Remark 3.2.1,

‖ϕ‖n∞ = ‖T nϕ‖ ≤ sup
m∈N
‖Tmϕ ‖ =: C.

As Tϕ is power bounded, C <∞ and thus ‖ϕ‖∞ < C1/n. This holds for each n ∈ N, then
‖ϕ‖∞ ≤ 1.

The proof of 3.⇒ 1. mimics the previous one. �

Remark 3.2.3. Let ϕ ∈ H∞(D). Then for each f ∈ H∞v and n ∈ N,

((Tϕ)nf)(z) =
f(z)

n

n∑
m=1

(ϕ(z))m, for each z ∈ D.

But in the case when ϕ(z) 6= 1, we get

((Tϕ)nf)(z) =
ϕ(z)f(z)

n

1− (ϕ(z))n

1− ϕ(z)
, for each z ∈ D \ ker(1− ϕ).

If we take f ∈ H0
v , these formulae also hold with Sϕ instead of Tϕ.

As we saw in Propositions 1.1.7 and 1.1.8 and the Example following them, mean
ergodicity does not imply power boundedness in general. However it does in our current
case.

Proposition 3.2.4. Let ϕ ∈ H∞(D). If Tϕ ∈ L(H∞v ) (resp. Sϕ ∈ L(H0
v )) is mean

ergodic, then Tϕ (resp. Sϕ) is power bounded.

Proof. By mean ergodicity of Tϕ and Lemma 1.1.5, we have the pointwise limit

lim
n→∞

1

n
T nϕ = 0.
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In particular, if we evaluate in the constant function 1 we �nd

lim
n→∞

∥∥∥∥ 1nϕn
∥∥∥∥
v

= 0.

For a �xed z ∈ D, the inequality∥∥∥∥ 1nϕn
∥∥∥∥
v

≥ v(z)

∣∣∣∣(ϕ(z))nn

∣∣∣∣
leads us to

lim
n→∞

(ϕ(z))n

n
= 0

in C. Clearly we have |ϕ(z)| ≤ 1 and thus ‖ϕ‖∞ ≤ 1. By Proposition 3.2.2, Tϕ is power
bounded.

Considering that the constant function 1 belongs also to H0
v , the proof for Sϕ follows

the same ideas. �

Lemma 3.2.5. The compact-open topology and the weak topology σ(H∞v , H
0
v ) coincide on

the bounded sets of H∞v .

Proof. Proof in [3, Lemma 13]. �

For the case of the operators Sϕ, we can extend Proposition 3.2.4, proving the converse.

Proposition 3.2.6. Let ϕ ∈ H∞(D). Then Sϕ ∈ L(H0
v ) is mean ergodic, if and only if

Sϕ is power bounded, if and only if ‖ϕ‖∞ ≤ 1.

Proof. Using Propositions 3.2.2 and 3.2.4 we prove most of the Proposition. It only
remains to show that ‖ϕ‖∞ ≤ 1 implies mean ergodicity of Sϕ. We work in two di�erent
cases.

Firstly suppose that there exists z0 ∈ D with |ϕ(z0)| = 1. Applying the Maximum
Principle, there exists w ∈ C with |w| = 1 and ϕ(z) = w for all z ∈ D. Clearly, Sϕ = wI.
If w = 1, then (Sϕ)n = I for each n ∈ N and

lim
n→∞

‖(Sϕ)n − I‖ = lim
n→∞

0 = 0.

If w 6= 1, we use Remark 3.2.3, and we get

(Sϕ)n =
w(1− wn)
n(1− w)

I,

for each n ∈ N, and clearly
lim
n→∞

‖(Sϕ)n‖ = 0.
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In both cases we �nd Sϕ is (uniformly) mean ergodic.

The other case is that |ϕ(z)| < 1 for all z ∈ D. We would like to apply the Mean Er-
godic Theorem 1.2.5. The �rst assumption is satis�ed by using that Sϕ is power bounded.
The second one is satis�ed if we can show that for each f ∈ H0

v

lim
n→∞

(Sϕ)nf = 0

for the weak topology σ(H0
v , (H

0
v )
′). Indeed, �x f ∈ H0

v and z ∈ D. Using Remark 3.2.3
and ‖ϕ‖∞ ≤ 1, for each n ∈ N,

|((Sϕ)nf)(z)| ≤ |f(z)|.

Thus, ‖(Sϕ)nf‖v ≤ ‖f‖v for each n ∈ N and {(Sϕ)nf, n ∈ N} is bounded. Now using
that |ϕ(z)| < 1 for all z ∈ D and Remark 3.2.3, we �nd

lim
n→∞

((Sϕ)nf)(z) = 0,

for each z ∈ D. We can even see that the convergence holds for the compact open topology.
Indeed, given 0 < r < 1, and m = max|z|≤r |ϕ(z)| < 1, we have for |z| < r

|((Sϕ)nf)(z)| ≤
|ϕ(z)f(z)|

n

|1− (ϕ(z))n|
|1− ϕ(z)|

≤ 2

n(1−m)
sup
|z|≤r
|f(z)|,

which converges to 0 for the compact open topology. If we now apply Lemma 3.2.5, we
�nd that

lim
n→∞

(Sϕ)nf = 0

for the weak topology σ(H0
v , (H

0
v )
′).

We are now able to use the Theorem 1.2.5 and we �nd that (Sϕ)n → 0 pointwise and
thus Sϕ is mean ergodic. �

Remark 3.2.7. Proposition 3.2.6 not only tells us that Sϕ is mean ergodic, it also tells us
the value of the limit projection of the ergodic means. This value is exactly the operator
0 for every case but one. This one case is ϕ = 1, which gives us the identity operator I
for the mean.

3.3 Uniform mean ergodicity

Proposition 3.3.1. Let ϕ ∈ H∞(D). Then Sϕ ∈ L(H0
v ) is uniformly mean ergodic if

and only if ‖ϕ‖∞ ≤ 1 and either
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1. there is w ∈ C with |w| = 1 such that ϕ(z) = w for all z ∈ D, or

2. 1
1−ϕ ∈ H

∞(D).

Proof. It was shown in the proof of the Proposition 3.2.6 that if ϕ satis�es 1. and
‖ϕ‖∞ ≤ 1, then Sϕ is uniformly ergodic.

Now suppose that ‖ϕ‖∞ ≤ 1 and ϕ satis�es 2. Then there exists ε > 0 such that
|1− ϕ(z)| ≥ ε for all z ∈ D, then ϕ(z) 6= 1 for each z ∈ D. Thus, applying Remark 3.2.3,
for each f ∈ H0

v , each z ∈ D and each n ∈ N, we get

|((Sϕ)nf)(z)| ≤
2

nε
‖ϕ‖∞|f(z)|.

Then, taking suprema over f ∈ H0
v and z ∈ D

‖(Sϕ)n‖ ≤
2

nε
‖ϕ‖∞

and hence
lim
n→∞

‖(Sϕ)n‖ = 0,

which tells us that Sϕ is uniformly mean ergodic.

For the converse, suppose that Sϕ is uniformly mean ergodic. Then, by Proposi-
tion 3.2.6, ‖ϕ‖∞ ≤ 1. Suppose 1. does not hold, then by the Maximum Principle,
|ϕ(z)| < 1 for all z ∈ D. By Proposition 3.2.6 and Remark 3.2.7, we have the point-
wise limit

lim
n→∞

(Sϕ)n = 0.

Our aim is to use Lemma 1.3.1. Firstly ker(I − Sϕ) = ker(S1−ϕ) = {0}. By Proposi-
tion 3.2.2, Sϕ is power bounded, and thus

lim
n→∞

∥∥∥∥ 1nSnϕ
∥∥∥∥ = 0.

By Lemma 1.3.1, Sϕ is uniformly mean ergodic if and only if I − Sϕ = S1−ϕ is an
isomorphism. Now by Lemma 3.1.4, 1

1−ϕ ∈ H
∞. �

Until now, most of the results were the same for Tϕ and Sϕ. However the last result
showed some di�erences, which are con�rmed in the next proposition.

Proposition 3.3.2. Let ϕ ∈ H∞(D) with ‖ϕ‖ ≤ 1. Then, the following assertions are

equivalent:

a) Tϕ is mean ergodic.
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b) Tϕ is uniformly mean ergodic.

c) Either

1. there is w ∈ C with |w| = 1 such that ϕ(z) = w for all z ∈ D, or

2. 1
1−ϕ ∈ H

∞(D).

Proof. b)⇔ c) is proved the same way we proved Proposition 3.3.1.

b)⇒ a) is direct by the de�nitions.

a)⇒ b): By Proposition 3.2.4, Tϕ is power bounded and thus

lim
n→∞

∥∥∥∥ 1nT nϕ
∥∥∥∥ = 0.

By Lusky [13] H∞v is isomorphic to either l∞ or H∞(D), which are Grothendieck spaces
with the Dunford-Pettis property [12]. It follows from Corollary 2.2.3 that Tϕ is uniformly
mean ergodic, since Tϕ is mean ergodic and power bounded. �



Chapter 4

Multiplication operators on spaces of

continuous functions

4.1 De�nitions and general results

The objective of this chapter is to show some results about the ergodicity of the multipli-
cation operator on spaces of continuous functions of a topological space. The results are
analogous to those in Chapter 3, and some proofs coincide.

Let X be a topological space that is Hausdor�, locally compact, σ-compact and con-
nected. We denote the set of continuous functions from X to C as C(X).

A function f ∈ C(X) vanishes at in�nity if for each ε > 0, there exists K ⊂ X

compact such that |f(x)| < ε, for each x ∈ X \K.

We say that v : X −→ (0,∞) is a weight function if it is continuous and vanishes
at in�nity. This de�nition coincides with the one given for holomorphic functions in
Chapter 3, in the case that X = D, if we add the condition of v being radial.

If we �x a weight function v, we can de�ne the following spaces, analogous to the ones
for holomorphic functions:

Cv = {f ∈ C(X) : ‖f‖v = sup
x∈X

v(x)|f(x)| <∞}

and

C0
v = {f ∈ C(X) : v|f | vanishes at in�nity}.

These are Banach spaces when endowed with the norm ‖ · ‖v. Observe that for v ≡
1, Cv is the Banach space CB(X) of bounded continuous functions endowed with the

39
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supremum norm, and C0
v is the space C0(X) of continuous functions vanishing at in�nity,

also endowed with the supremum norm.

If a function ϕ ∈ C(X) is �xed, we can also de�ne the multiplication operator on
these spaces as Tϕ : Cv −→ C(X) and Sϕ : C0

v −→ C(X) de�ned by Tϕ(f) = fϕ and
Sϕ(f) = fϕ.

Most of the properties of these operators are the same that the ones for the operators
de�ned for holomorphic functions. For that reason, most of the proofs of the results are
not given, as they mimic the other ones.

Lemma 4.1.1. The operator Tϕ is continuous if and only if the operator Sϕ is continuous

if and only if ϕ is bounded. Moreover,

‖Tϕ‖ = ‖Sϕ‖ = ‖ϕ‖.

Lemma 4.1.2. The operator Tϕ is power bounded if and only if the operator Sϕ is power

bounded if and only if ‖ϕ‖∞ ≤ 1.

Proposition 4.1.3. If the operator Tϕ (resp. Sϕ) is mean ergodic, then ‖ϕ‖∞ ≤ 1, and

thus Tϕ (resp. Sϕ) is power bounded.

4.2 Ergodic results

The following theorems show the di�erence between the results for holomorphic functions
and those for continuous functions, or at least the di�erence between their proofs. Firstly
we have a characterization for mean ergodicity of Sϕ and later another for uniform mean
ergodicity of Sϕ.

Remark 4.2.1. Let ϕ ∈ C(X). Then for each f ∈ Cv and n ∈ N,

((Tϕ)nf)(x) =
f(x)

n

n∑
m=1

(ϕ(x))m, ∀x ∈ X.

In the case when ϕ(x) 6= 1, we get

((Tϕ)nf)(x) =
ϕ(x)f(x)

n

1− (ϕ(x))n

1− ϕ(x)
, ∀x ∈ X \ ker(1− ϕ).

If we take f ∈ C0
v , these formulae also hold with Sϕ instead of Tϕ.

Proposition 4.2.2. Assume that ϕ is not identically 1 and that ‖ϕ‖∞ ≤ 1. Then Sϕ is

mean ergodic if and only if ϕ(x) 6= 1 for each x ∈ X.
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Proof. Firstly suppose that ϕ(x) 6= 1 for each x ∈ X. Fix f ∈ C0
v and �x a compact

set K ⊂ X. Then, there exists 0 < ε < 1 such that |1−ϕ(x)| > ε for every x ∈ K. Then
for any x ∈ K, we have

|((Sϕ)nf)(x)| =
|ϕ(x)f(x)|

n

|1− (ϕ(x))n|
|1− ϕ(x)|

≤ 2

nε
sup
y∈K
|f(y)|,

which converges to 0 as n → ∞. Thus (Sϕ)nf converges to 0 for the compact open
topology, and thus (Sϕ)nf converges to 0 for the weak topology σ(C0

v , (C
0
v )
′) (which can

be proven using Riesz's representation theorem). By the mean ergodic Theorem 1.2.4, Sϕ
is mean ergodic.

Assume now that Sϕ is mean ergodic, and let A = {x ∈ X : ϕ(x) = 1}. As Sϕ
is mean ergodic, there exists h ∈ C(X) such that limn→∞((Sϕ)n1)(x) = h(x) for each
x ∈ X, where 1 denotes the constant function 1. As we saw before, h(x) = 0 if x 6∈ A,
and h(x) = 1 if x ∈ A. But h is continuous and X is connected. Therefore, A = X or
A = ∅, the �rst one is not possible because it would mean that ϕ is identically 1, thus the
second one holds and ϕ(x) 6= 1 for each x ∈ X. �

Proposition 4.2.3. Assume that ϕ is not identically 1 and that ‖ϕ‖∞ ≤ 1. Then Sϕ is

uniformly mean ergodic if and only if infx∈X |ϕ(x)− 1| > 0 (i.e. 1
1−ϕ is bounded).

Proof. Suppose that ε = infx∈X |ϕ(x)− 1| > 0, then,

v(z)|(Sϕ)nf)(x)| =
v(x)|f(x)||ϕ(x)|

n

|1− (ϕ(x))n|
|1− ϕ(x)|

≤ ‖f‖v
n

2

ε
.

Thus, ‖(Sϕ)n‖ converges to 0 as n→∞, and Sϕ is uniformly mean ergodic.

Assume now that Sϕ is uniformly mean ergodic, then by Lin's Theorem 1.3.2, (I −
Sϕ)C

0
v is closed. Let f ∈ C0

v , with (I − Sϕ)f = 0, then (1− ϕ)f = 0. As Sϕ is uniformly
mean ergodic, it is mean ergodic, and by Proposition 4.2.2, f must be identically 0, hence
ker(I − Sϕ) = {0} and I − Sϕ is injective. We can use the decomposition

C0
v = ker(I − Sϕ)⊕ (I − Sϕ)C0

v = (I − Sϕ)C0
v = (I − Sϕ)C0

v

to �nd that I − Sϕ is surjective, and thus it is bijective.

As I − Sϕ = S1−ϕ, using a result analogous to Lemma 3.1.4, S1−ϕ is bijective if and
only if 1

1−ϕ is bounded. �

Now we focus our interest in Tϕ, with similar results of those for Sϕ.

Proposition 4.2.4. Assume that ϕ is not identically 1 and that ‖ϕ‖∞ ≤ 1. If Tϕ is

mean ergodic then ϕ(x) 6= 1 for each x ∈ X.
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Proof. Just follow one direction of the proof of Proposition 4.2.2. �

Remark 4.2.5. We cannot use the same argument used in Proposition 4.2.2 to prove
the converse of Proposition 4.2.4, because convergence of a sequence for the compact
open topology in Cv does not necessarily imply convergence of the sequence for the weak
topology σ(Cv, C ′v).

Proposition 4.2.6. Assume that ϕ is not identically 1 and that ‖ϕ‖∞ ≤ 1. Then Tϕ is

uniformly mean ergodic if and only if infx∈X |ϕ(x)− 1| > 0 (i.e. 1
1−ϕ is bounded).

Proof. Just follow the proof of Proposition 4.2.3. �

Proposition 4.2.7. Assume that ϕ is not identically 1. If Tϕ is mean ergodic, then

infx∈X |1− ϕ(x)| > 0.

Proof. We already know that |ϕ(x)| ≤ 1 for all x ∈ X and that ϕ(x) 6= 1 for all x ∈ X.
Just proceed as we did for Sϕ.

If Tϕ : Cv(X)→ Cv(X) is mean ergodic, then for each f ∈ Cv(X) there is h ∈ Cv(X)

such that limn→∞(Tϕ)nf = h in Cv(X). Since, for each x ∈ X, the sequence

(Tϕ)nf(x) =
ϕ(x)f(x)

n

1− ϕ(x)n

1− ϕ(x)
converges to 0 as n goes to ∞ (even uniformly on compact subsets of X), it follows that
h = 0. That means that for each f ∈ Cv(X), (Tϕ)nf converges to 0 for the norm topology
in Cv.

In particular, this must hold for f := 1/v ∈ Cv(X). Therefore the sequence

sup
x∈X

v(x)|(Tϕ)n(1/v)(x)| = sup
x∈X

|ϕ(x)|
n

|1− ϕ(x)n|
|1− ϕ(x)|

tends to 0 as n goes to ∞.

Now we proceed by contradiction and assume that the conclusion does not hold. Then,
for each n ∈ N, n > 2, there is xn ∈ X such that |1− ϕ(xn)| < 1/n. Using several times
that 1− |a| ≤ |1− a|, we get |ϕ(xn)| > 1− (1/n), and

|1− ϕ(xn)n| ≥ 1− |ϕ(xn)|n > 1− (1− (1/n))n.

Hence
|ϕ(xn)|
n

|1− ϕ(xn)n|
|1− ϕ(xn)|

>
1

2
(1− (1− (1/n))n),

which tends to 1
2
(1− 1

e
) as n goes to ∞, and thus the sequence

sup
x∈X

|ϕ(x)|
n

|1− ϕ(x)n|
|1− ϕ(x)|
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does not tend to 0 as n goes to ∞.

This implies that infx∈X |1− ϕ(x)| > 0 and we conlude. �

Remark 4.2.8. The proof of Proposition 4.2.7 cannot be used for Sϕ since 1/v 6∈ C0
v .

Neither can it be used for holomorphic functions since 1/v is continuous but not holo-
morphic.

Corollary 4.2.9. The operator Tϕ : Cv(X)→ Cv(X) is mean ergodic if and only if it is

uniformly mean ergodic.
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Chapter 5

The Cesàro operator

5.1 De�nitions

This chapter presents some results about the Cesàro operator, which is studied in di�erent
sequence spaces. We check if it is well-de�ned, if it is continuous and its ergodic properties
(power boundedness, mean ergodicity and uniform mean ergodicity).

Let ω = CN. The Cesàro operator is de�ned from ω to itself and it sends each
sequence to a sequence such that the n-th term is the mean of the n �rst terms of the
original sequence, i.e. the Cesàro operator C : ω −→ ω is de�ned as

C((xi)i) = (x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . .).

The Cesàro operator is actually a bijection, with inverse de�ned as

C−1((yi)i) = (jyj − (j − 1)yj−1)j, y0 = 0.

We can endow ω with the topology given by the seminorms qk de�ned for each k ∈ N as

qk((xi)i) = max
1≤i≤k

|xi|.

With this topology one can prove that C is continuous and power bounded, as well as
other interesting results [2], but those are not in this work as we are focusing only in
Banach spaces.

5.2 Continuity and self-mapping

Our �rst objective is to check whether C(X) ⊂ X if X is l∞, c, c0 or lp, with 1 ≤ p <∞.
In case this holds, we also calculate the norm of C|X . Our aim is to study the ergodic

45
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properties of C : X −→ X.

Lemma 5.2.1. The Cesàro operator veri�es C(l∞) ⊂ l∞. The operator C(∞) : l∞ −→
l∞, de�ned as C(∞)(x) = C(x), is continuous and ‖C(∞)‖ = 1.

Proof. Let x = (xn) ∈ l∞ and denote y = (yi)i = C(x). We know that the average
of any amount of positive numbers is always lesser or equal than the largest of those
numbers, and thus |yi| ≤ max{|x1|, . . . , |xi|}. Taking suprema we �nd ‖y‖∞ ≤ ‖x‖∞ and
therefore, y ∈ l∞ and C(l∞) ⊂ l∞. Also, C(∞) is continuous by the closed graph theorem.

The vector e1 = (1, 0, 0, . . .) belongs to l∞ and C(∞)(e1) = (1, 1/2, 1/3, . . .), thus
‖C(∞)‖ = 1. �

Lemma 5.2.2. The Cesàro operator veri�es C(c) ⊂ c. The operator C(c) : c −→ c,

de�ned as C(c)(x) = C(x), is continuous and ‖C(c)‖ = 1. Furthermore,

limCx = limx,

for each x ∈ c.

Proof. It su�ces to show the property of the limit, since it also proves the �rst prop-
erty. For the continuity and the value of the norm, apply the proof of the Lemma 5.2.1
(considering that e1 ∈ c).

Let x = (xi)i ∈ c and L = limi→∞ xi. Fix ε > 0. Choose j0 ∈ N such that for each
j ≥ j0, |xj − L| < ε

2
. Also choose j1 > j0 such that for each j ≥ j1,

j0∑
i=1

|xi − L| < j
ε

2
.

Then, for each j ≥ j1 > j0,∣∣∣∣∣1j
j∑
i=1

xi − L

∣∣∣∣∣ ≤
j0∑
i=1

|xi − L|
j

+

j∑
i=j0+1

|xi − L|
j

<
ε

2
+
j − j0
j

ε

2
< ε.

Therefore, limCx = limx and we conclude. �

Lemma 5.2.3. The Cesàro operator veri�es C(c0) ⊂ c0. The operator C(0) : c0 −→ c0,

de�ned as C(0)(x) = C(x), is continuous and ‖C(0)‖ = 1.

Proof. Use Lemmata 5.2.1 and 5.2.2 considering that e1 ∈ c0. �

Remark 5.2.4. The Cesàro operator C fails to send l1 to itself since C(e1) = (1, 1/2, 1/3, . . .) 6∈
l1.
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To show the case of lp with 1 < p <∞, we need the following lemma.

Theorem 5.2.5 (Hardy). If 1 < p < ∞ and 1/p + 1/q = 1, then C(lp) ⊂ lp. The

operator C(p) : lp −→ lp is continuous with ‖Cx‖p ≤ q‖x‖p for each x ∈ lp. Furthermore,

‖C(p)‖ = q.

Proof. Use Young and Hölder's inequalities to prove the inequality. To show ‖C(p)‖ = q

use the sequence (aN)N ⊂ lp de�ned as

aN = (1,
1

21/p
,

1

31/p
, . . . ,

1

N1/p
, 0, . . .). �

5.3 Spectral properties

To study ergodic properties of the Cesàro operator in these spaces, we must determine
the spectrum.

Lemma 5.3.1 (Leibowitz). The spectrum of the Cèsaro operator C veri�es the follow-

ing:

• σ(C, l∞) = σ(C, c0) = {λ ∈ C :
∣∣λ− 1

2

∣∣ ≤ 1
2
},

• σ(C, lp) = {λ ∈ C :
∣∣λ− q

2

∣∣ ≤ q
2
}, where 1 < p <∞ and 1/p+ 1/q = 1.

Lemma 5.3.2. The operator C : ω −→ ω veri�es the following:

1. ker(I − C) = span{1}, where 1 = (1, 1, . . .),

2. (I − C)(ω) = {x ∈ ω : x1 = 0},

3. the eigenvalues of C are the elements of the set {1/k : k ∈ N}, and

4. the eigenvectors of λ = 1/m are of the form

x = α(0, . . . , 0, 1,m,
m(m+ 1)

2!
,
m(m+ 1)(m+ 2)

3!
, . . .),

where the �rst 1 is at the m-th position and α ∈ C.

Proof. To show 1. let 0 6= x ∈ ω with Cx = x, then (x1+x2)/2 = x2 and thus, x1 = x2.
Suppose that x1 = · · · = xn, then (nx1 + xn+1)/(n + 1) = xn+1. Thus, we have seen by
induction that x1 = x2 = · · · = xn = · · · . Since x 6= 0, x = x1(1, 1, . . . , 1, . . .) = x11. As
1 ∈ ker(I − C), the equality ker(I − C) = span{1} holds.
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Now we check 2.. It is direct that the �rst coordinate of x − Cx is 0, for any x ∈ ω.
So,

(I − C)(ω) ⊂ {y ∈ ω : y1 = 0}.

For the other inclusion let y = (yn) with y1 = 0. We want to �nd an x = (xn) such
that (I − C)x = y. Clearly x1 = 0. Also, x2 − (x1 + x2)/2 = y2, and thus, x2 = 2y2.
Inductively, xn − (x1 + · · ·+ xn)/n = yn. Doing this we get

xn =
n

n− 1
yn +

1

n− 2
yn−1 + · · ·+

1

3
y4 +

1

2
y3 + y2

and x− Cx = y. Therefore

(I − C)(ω) = {y ∈ ω : y1 = 0}.

For 3. and 4. take λ ∈ C \ {0, 1} and 0 6= x = (xn) ∈ ω such that (λI − C)x = 0.
Then, λx1 = x1, (2λ− 1)x2 = x1 and (nλ− 1)xn = λ(n− 1)xn−1 if n ≥ 3.

Now, take m = min{i ∈ N : xi 6= 0}, which exists since x 6= 0. Then λ = 1/m must
hold. Also

xn =
n− 1

n−m
xn−1,

for each n > m. We get the result of 4. choosing α = xm. �

Lemma 5.3.3 (Reade). If λ 6∈ {1/k : k ∈ N}, then (C − λI)−1 : ω −→ ω exists.

Furthermore, if (aij)ij denotes the matrix of (C − λI)−1, then,

aij = −
1

iλ2
∏i

k=j(1−
1
kλ
)
=

−λi−j−1

i
∏i

k=j(λ−
1
k
)
, if 1 ≤ j < i,

aij =
1

1
i
− λ

, if i = j

and aij = 0 otherwise.

Proof. Check [15]. �

5.4 Ergodic results

Proposition 5.4.1. The operator C(0) : c0 −→ c0 is power bounded but not mean ergodic.

Moreover,

ker(I − C(0)) = {0}.

Also, (I − C(0))(c0) is not closed, with

(I − C(0))(c0) = span{er}r≥2 = {x ∈ c0 : x1 = 0}.
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Proof. C(0) is power bounded, since, by Lemma 5.2.3, ‖C(0)‖ = 1.

By Lemma 5.3.2,
ker(I − C(0)) ⊂ span{1},

however, none of the elements of span{1} is in c0, besides 0. Thus, we have the assertion.

To show that

(I − C(0))(c0) = span{er}r≥2 = {x ∈ c0 : x1 = 0},

use the argument given to prove 2. in Lemma 5.3.2 and check that the results stay in c0.

If we assume that C(0) is mean ergodic, we can apply Theorem 1.2.8 to have the
decomposition

c0 = ker(I − C(0))⊕ (I − C(0))(c0) = {0} ⊕ span{er}r≥2.

But that is not true, therefore, C(0) cannot be mean ergodic.

Finally, (I − C(0))(c0) cannot be closed. If it were, together with the fact that
‖(C(0))n‖/n → 0 (because it is power bounded), using Theorem 1.3.2, we would have
that C(0) is uniformly mean ergodic, and thus it would be mean ergodic, which we proved
false. �

Proposition 5.4.2. The operator C(∞) : l∞ −→ l∞ is power bounded but not mean

ergodic. Moreover,

ker(I − C(∞)) = span{1}.

Proof. C(∞) is power bounded, since, by Lemma 5.2.1, ‖C(∞)‖ = 1.

Using Lemma 5.3.2, and considering that span{1} ⊂ l∞, we get

ker(I − C(∞)) = span{1}.

If C(∞) were mean ergodic, then the restriction of C(∞) to any closed C(∞)-invariant
subspace of l∞ would be also mean ergodic. However C(0) is not mean ergodic by Propo-
sition 5.4.1, and c0 is a closed C(∞)-invariant subspace of l∞. This is a contradiction,
hence, C(∞) cannot be mean ergodic. �

Proposition 5.4.3. The operator C(c) : c −→ c is power bounded but not mean ergodic.

Moreover,

ker(I − C(c)) = span{1}.

Proof. Follow the proof of Proposition 5.4.2, using that span{1} ⊂ c and that c0 is a
closed subspace of c. �
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Proposition 5.4.4. If 1 < p <∞, the operator C(p) : lp −→ lp is neither power bounded

nor mean ergodic. Moreover,

ker(I − C(p)) = {0}.

Also,

(I − C(p))(lp) = span{er}r≥2 = {x ∈ lp : x1 = 0}.

Proof. Let 1/p + 1/q = 1. By the spectral mapping theorem, qn ∈ σ((C(p))n), since
q ∈ σ(C(p)). Thus, by [9, Th. 7.3-4], qn ≤ r((C(p))n) ≤ ‖(C(p))‖, and

sup
n∈N

‖(C(p))n‖
n

≥ sup
n∈N

qn

n
=∞.

Therefore, C(p) is not power bounded.

Considering that 1 6∈ lp and that (I − C(p))(lp) is closed [6], apply the proofs of
Propositions 5.4.1 and 5.4.2 to conclude. �
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