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Mean ergodic operators on Banach spaces




Introduction

The aim of this work is to review the main results about power bounded and (uniformly)
mean ergodic operators on Banach spaces, including the theorems of Yosida and of Lin.
These theorems are applied to the study of multiplication operators on weighted Banach
spaces of analytic functions on the unit disc and on weighted Banach spaces of continuous
functions. We conclude with an investigation of the mean ergodicity of the Cesaro operator

on classical Banach sequence spaces.

In Chapter[T|relations between power boundedness, mean ergodicity and uniform mean
ergodicity of operators defined in Banach spaces are shown. Some of them are presented as

examples. Also, adding some conditions to the operators, one can ensure and characterize

mean ergodicity (Yosida’s Theorems |1.2.4] and [1.2.5]) and uniform mean ergodicity (Lin’s

Theorem [1.3.2)).

In Chapter 2| the space in which the operators are defined is not just Banach, but also

a Grothendieck space with the Dunford-Pettis property. The objective of the Chapter is
to prove Lotz’s Theorem [2.2.2] which ultimately tells that mean ergodicity and uniform

mean ergodicity for power bounded operators are equivalent in this kind of spaces.

Chapter 3| deals with the multiplication operator on weighted spaces of holomorphic
functions defined on the unit disc of the complex plane. In the space of weighted vanishing
functions it is shown that mean ergodicity of the multiplication operator is equivalent
to power boundedness. In the space of weighted bounded functions it is shown that
mean ergodicity of the operator implies power boundedness and that mean ergodicity is

equivalent to uniform mean ergodicity.

In Chapter |4 the topic is also the multiplication operator but in this case it is defined
on the space of continuous functions defined on a Hausdorff, locally compact, o-compact,
connected topological space. The main result is that mean ergodicity and uniform mean

ergodicity are equivalent.

Lastly, in Chapter [5| the Cesaro operator is defined for the set of complex sequences.
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Then it is shown that most of the usual sequence spaces are invariant by the Cesaro op-
erator (so ergodicity can be studied for them). After some discussion about the spectrum
of the operator in these spaces, it is shown that the operator is not mean ergodic for any

of the spaces, but it is power bounded for some of them.



Preliminaries

If X is a Banach space, its topological dual is denoted by X’. If z € X and 2/ € X’ the

notations x’(z) and < z, 2’ > mean the same and are used indifferently.

The notation for the weak topology in X is (X, X’). A sequence (z,,) C X converges
to x € X for o(X, X’) when lim,,_, |2'(z,) — 2'(2)| = 0 for each 2/ € X’. Similarly the
notations o(X’, X) and o(X’, X”) are defined.

If X,Y are both Banach spaces, L(X,Y’) denotes the linear and continuous operators
from X onto Y. In particular, L(X) = L(X, X). If T € L(X,Y), the adjoint operator is
denoted T% i.e. <z, T' >=<Tx,y >. If T € L(X), then T™ denotes that the operator
is iterated n times, i.e. T" =To ol

We refer the reader to [9, Ch.7]| for the spectral theory of operators on Banach spaces.

o(T) denotes the spectrum of an operator 7,
o(T) ={X € C|T — A is not invertible},

and r(7) is its spectral radius,

r(T) = sup [Al,
Xeo(T)

which, satisfies (see [9, Th. 7.5-5])
r(T) = lim || T
n—o0
Some spaces used in this work are the following:
1 ={(zn) € c [(zn)lloo = sup|z,| < oo},

neN

c={(z,) €C" : lim z, exists },

n—o0

co={(z,) €CY : lim 2, = 0},

n—o0

RS

= {(2a) € CV ¢ [|(2a)]], = (Z |xn|p> <o}, 1<p<oo

neN
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Recall that [*°, ¢ and ¢, are all Banach spaces when endowed with the norm || - ||«

and [ is a Banach space with the norm || - ||, for each 1 <p < oo.

All unexplained notation is as in [7], [9], [14], [16], [17].



Chapter 1

Ergodicity of operators in Banach

spaces

1.1 Definitions and general results

Let (X, |- ||) be a Banach space. Let T' € L(X). We denote the n-th ergodic mean T,, as
T n m=1 .

Definition 1.1.1. We say that an operator 7' € L(X) is power bounded if

sup ||[T"]| < oc.
neN

We say it is Cesaro bounded if

sup || T, || < oc.
neN

Definition 1.1.2. We say that 7' € L(X) is mean ergodic if there exists P € L(X)
such that

lim ||T,z — Px| =0,
n—oo
for each x € X (pointwise convergence).

We say it is uniformly ergodic if there exists P € L(X) such that
lim ||T,, — P|| = 0.
n—oo

9
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Proposition 1.1.3. Let X be a Banach space and let T € L(X). Then:

1. If r(T) < 1, then T is power bounded.
2. If T is power bounded, r(T) < 1.

PrROOF. 1.: If »(T') < 1, then there exists o > 0, with r(7") < o < 1 therefore, there
exists N € N such that for every n > N, ||T"]| < o™ < 1. Thus {T"},, is bounded and T

is power bounded.

2.: If there exists M > 0 such that ||7"] < M for each n € N, then

lim ||7%(|* < lim M» =1,
n—oo

n—o0

and thus r(T) < 1. O

Example 1.1.4. We denote R? as the Banach space (R?, | - ||), in which we use the
euclidean norm. Let T : R? — R? be linear with matrix

1

2

O Y
then r(7') < 1. As seen before, T" is power bounded, but ||T’|| > 1, due to ||7°(0,1)] =

I(1,1/2)] = v/5/4 > 1. u

Lemma 1.1.5. Let T' € L(X), then

—_

N

-1
T =T, - T,
n
Corollary 1.1.6. Let T € L(X).
1. If T is mean ergodic, then
lim —7T"x =0,
n—oo M
for each v € X.
2. If T is uniformly ergodic, then
1
lim —||7™|| = 0.

n—oo 1
Proposition 1.1.7. Every power bounded operator is Cesaro bounded.

Proposition 1.1.8. Every mean ergodic operator is Cesaro bounded.
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PROOF. If T € L(X) is mean ergodic, then the sequence (T,,x) is bounded for each = € X.
By the theorem of Banach-Steinhaus, the sequence of its norms (||7,]|) is bounded, and
thus 7' is Cesaro bounded. O

Example 1.1.9. In this example we show that r(7") = 1 does not necessarily imply power
boundedness (see Proposition [1.1.3)). Let T : R? — R? be linear with matrix

o)

Clearly 7(7') = 1. We have that the matrix of 7" is:

1 2n

0o 1/’
1 n+1
0 1 '

Then, 7,((0,1)) = (n + 1,1), whose norm is not bounded and hence T" is not Cesaro
bounded. Using Proposition we have that T is not power bounded. [ |

and the matrix of 7,, is:

Example 1.1.10. The following example shows that the converse in Propositions [1.1.7
and is not true.

Let T : R2 — R? be linear with

-1 2
T ~~ ,

where the notation T' ~» A indicates that A is the matrix of the linear map T in the

canonical basis. By induction we find

—_ ((—1)” <—1>”+12n> |
0 (=1)"

for each n € N, and we see that T"is not power bounded. Also, %T”(O, 1) = ((—1)”“2, ﬂ),

n
which does not converge to 0 as n — co. Thus 7" is not mean ergodic. However

0 —
nTn:T—i-TQ—i-"'JrTnW(O 0n>’ for n even
and
-1 1
nTn:T+T2+...+Tnfv~—><O n+1>’ for n odd,
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then
-1 -1 1+1
T, ~ ¥ , forneven, T, ~ /n 1+1/n , for n odd,
0 0 0 —1/n
and it is plain to see that T is Cesdaro bounded. |

Example 1.1.11. The following example shows that neither power boundedness, mean
ergodicity nor both together imply uniform ergodicity.

Let \j =1— 75 = 7, 1 € N. Let 1 < p < oo, define T': [, — I, by T((2;)) = (\izs)
for any (z;) € l,. Then we have T"((z;)) = (\!z;) for every n € N. Now, using that
A< 1,

1T (i)l = Aol < (i)l
and thus, [|7"] < 1 and T is power bounded.

We can see now that 7" is mean ergodic. Let x € [,

Tarlly = — 5 S N

i=1 | j=1

1+ 1
npkP

13,

p 00
:%Z\(&+A§+---+Ay)mi\p§
=1

since \; + A2 + -+ + A\ < 1_#/\1 = ¢+ 1. This gives us that lim, 7T,z = 0, for each
x € l, and T is mean ergodic. However, T" is not uniformly ergodic. Indeed, take e, =
(0,0,...,0,1,0,...) with 1 at the n-th position. Then,

LA, = A0 A0 =)

n 1-—2X\,

" 1
1 () =1-(- )
n+1 n+1

which converges to 1 — 2. Since ||e, ||, = 1, T}, does not converge to 0 uniformly on the
closed unit ball of 7,,. [

1
[Thenlly = =M + X2+ + A1) = ;
n el

Lemma 1.1.12. Let T € L(X) be mean ergodic (resp. uniformly mean ergodic) and let
Y C X be a closed subspace, which is T-invariant (i.e. T(Y) CY ). Then also S := Ty

is mean ergodic (resp. uniformly mean ergodic).

PROOF. Since Y is T-invariant, it is also T™-invariant, and thus it is also invariant by
Sn = (T5,))y- Using that Y is closed, we get that both kind of limits (if they exist) are

inside of Y, and thus S is mean ergodic (resp. uniformly mean ergodic). O

Lemma 1.1.13 (Sine). Let T' € L(X). Assume there exists a functional v € X', u # 0
such that T'u = u (i.e. it is invariant by the adjoint operator of T'). If T is mean ergodic,
then ker(I —T) # {0}.
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PROOF. Suppose ker(I —T) = {0}. Take z € X such that u(z) = 1, then, using that T

is mean ergodic, there exists xy € X such that

n—oo n—oo

To = lim T,z = lim Z T,
m=1

We have

n

1 1
. - m—+1 — i -
Txg = nlgilo - E Ty = lim

n—oo | n

= 1 1
Z Tz — —Tx+ =T x| = .
— n n

m=1

Thus, z € ker(I — T') and xy = 0. Then we have
= Jim L 32T

and, using that u(T™z) = [(T™)"u] x = u(z) for each m € N | we get

n

1

0=u(0) = 7}1_)1{)105 Z_IU(T x) =u(x) = 1.
This contradiction implies ker(7" — I) # {0}. O

Example 1.1.14. Let T : ¢g — cq, defined by T'(xy, za,...) = (21, 21, X2, ...). We show

that 7" is not mean ergodic but it is power bounded.

Firstly, we have that
T(a) =a <= a=const <= a =0,
then we get ker(I —T') = {0}.
Now, we use e; = (1,0,0,...) € I' = ¢). We have
(T'e1)(z) =< ey, Tx >=< ey, (T1,71,T2,...) >=1; =< €1,1 >,

and thus, T%e; = e;. By the previous lemma, T is not mean ergodic. However, we have
that
[Tz = |||

and, thus, T is power bounded. [ |

Example 1.1.15. Let X = C(D) the space of continuous functions in the closed unit
disc in C, endowed with the supremum norm. Let T": X — X be a linear map defined
by (T'f)z = zf(z) for each f € X.
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We have
T"f(z) =2"f(z) VfeX VzeD VneN,

therefore, ||T" f|| < || f]| for each n € N and for each f € X, and thus T is power bounded.

Now, we prove that 7" is not mean ergodic.

Let f € X such that Tf = f. Then, we get
2f(2) = f(2)Vz €D = (z—1)f(2) =0Vz €D = f(z) =0Vz €D\ {1},

and, then f = 0 by continuity and ker(T" — I) = {0}.
Now, let 6; : X — C defined by 6;(f) = f(1). Clearly, 6; € (C(D))’. We have

[T (60)I(f) =< 01, Tf >=0.(Tf) = 1f(1) = f(1) = é1(f)

and as 0; # 0 and by the previous lemma, T is not mean ergodic. [ |

1.2 Yosida’s mean ergodic theorem

Lemma 1.2.1. Let T : X — Y a linear map between normed spaces with open unit

balls Bx and By respectively. Then the following conditions are equivalent:

1. T is open from X onto Y.
2. There exists 6 > 0 such that 0By C T'(Bx).

3. There exists K > 0 such that for any y € Y, there exists v € X with Tx = y and
]l < Kllyl|.

PROOF. Since T'(Bx) is open and 0 € T(By), there exists § > 0 such that
5By = B(0,8) C T(By).

Fix y €Y, y # 0 and define ¢/ = %. Then, y' € By C T(Bx), thus there
exists 2’ € Bx such that T2’ = y'. Set x = Mz’. Clearly Tz = y and ||z|| < 2[y[. 3.
holds with K = %.

Fix U C X open and x € U. There exists ¢ > 0 such that z + B(0,¢) =
B(z,e) C U. To show that T(U) is open, we prove that (T'z + B(0,£)) = B(Tz,£) C
T(U).

Take y € Y with |ly|| < &, then by 3., there exists z € X with Tz = y and ||2| <
Kz =c Thus,v+zecUand Te+y=Tor+Tz=T(x+2) € T(U). Then T(U) is
open. U
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Theorem 1.2.2. Let T € L(X) with ||T|| < 1, then (I — T)~! emists.

PROOF. Using that ||| < ||T|)7, we find

DT <Y ITI
j=0 j=0

and the second sum is convergent because ||T'|| < 1, which gives us that
oo
S=> T
=0

is absolutely convergent. Since X is complete, also L(X) is complete, thus the previous

sum es convergent. Now we shall show that S = (I —T)~*:
I-TI+T+T*+..+TY)=I+T+T°+.. 4TI -T)=1-T""
and taking the limit over n and using that || 7| < 1, we get
(I-T)S=S(I-T)=1I,
which finishes the proof. O

Lemma 1.2.3. Let T € L(X) with lim, 17"z = 0, for each x € X. Then
(I —=T)*X nker(I — T) = {0},
for each k € N.

PROOF. Recall that T),(I —T) = (T — T"*). Let y € (I — T)X. Then, there exists
x € X with y = (I — Tz and we have

1 1 1
Twy=T,I-T)x=—(Te —T""'w)= Tz — ~T""z,
n n n
which converges to 0 as n — oo by assumption.
Now let y € (I —T)X Nker(I —T), then y = Ty and, clearly, y = T™y, for each

m € N. Thus,
1 n
Ty = YTy =y
m=1
and, as seen before, T,,y — oo and then, y = 0. This way, we have seen that (I —T7)X N

ker(I —T) = {0}. Also for each k € N, we have 0 € (I — T)*X C (I — T)X and this

implies the assertion. O
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Theorem 1.2.4 (Yosida). Let T' € L(X) and assume:
a) lim, %T”x =0, for each x € X, and
b) T is Cesaro bounded (sup,|T,| < co).
Then,
(I-T)X={xeX : T,x—0asn— oo},

and
(I —T)X Nker(I —T) = {0}.

PROOF. Let Z ={x € X : T,o - 0asn — oo}. If y € (I —T)X, using the first part
of the proof of the Lemma , we conclude that y € Z. Now let z € (I — T)X. By b),
there exists C' > 0 such that ||T,y|| < C|y|| for all y € X and for all n € N. Fix ¢ > 0,
then there exists w € (I —T)X C Z with [z —w[| < §. We get

IToz]l < [Towll + 1 T0(z — w)l| < 1 Thwl] + Cllz — w]| < | Thwl]] + .

As w € Z, for a big enough n, we have ||T,,z|| < 2¢ and thus lim,, ||7,,z|| = 0. This way we
have proven that (I —T7)X C Z. To show the other inclusion, let x € Z and fix n € N.
Then,

n n

1 . m 1 m 1 m—1
:c—Tna:::c—EmZ:lT x:ﬁmZﬂ(I—T )xzﬁg(I—T)[([+T+---+T )]

and thus z — T,z € (I —T)X. As x € Z, taking limit as n — oo, we get z € (I —T)X.
The proof of (I —T)X Nker( —T) = {0} is similar to the proof of Lemma m O

We recall that a topological space X is called sequentially compact if every sequence

in X has a convergent subsequence.

Theorem 1.2.5 (Mean ergodic theorem). Let T € L(X) and assume:

a) lim, 7"z = 0, for each x € X, and

b) for each x € X the set {T,x : n € N} is relatively o(X, X")—sequentially compact.
Then, the following assertions are satisfied:

1. The limit Px :=lim, T,z exists for all x € X (i.e. T is mean ergodic), and

2. Preker(I —=T) for allz € X.
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Remark 1.2.6. Assumption b) can be changed to the set {T,,z : n € N} being relatively
o(X, X")—compact, due to the theorem of Eberlein-Smulian [7, Ch.24].

PROOF (OF THE THEOREM [1.2.5]). Firstly we note that assertion b) implies that (7,,x)
is bounded in X for each x € X, and by the theorem of Banach-Steinhaus, T is Cesaro
bounded, and thus we can use the Theorem during the proof.

Let z € X, then there exists an increasing subsequence (ng), € N and xy € X such
that limy 7, x = ¢ for the weak topology o(X, X’). We want to show that zy = Puz.
Now, we have, using the Theorem [1.2.4]

lim 7,,(I — T)x = 0.

n—oo

This implies that, for all f € X',

lim <TT,, z, f >= klim <Ty,,[>=<uxy, f>.
—00

k—o0

Thus, for all f € X',
< 20, f >= klim <Tnx,T'f >=<z0, T"f >=< Ty, [ >
—00

and, then, T'ry = xg. We shall use this in the rest of the proof. Moreover, when we prove

1., assertion 2. will be satisfied. Now, for m € N,
T"x =T"xo+T"(x — x9) = 2o + T (x — 20),

and then, for every n € N,
T 1Zn:Tm +To( — o)
nt = — rT=zx n(r — ).
n 2 0 0

We also have

r—xy=x—0— lim T, z=0— lim(zx—T,, ),
k—o0 k—o0

where o —lim indicates the limit for the weak topology o (X, X’). But -7,z € (I-T)X,
as we saw in the proof of the Theorem , and then z — o € (I — T)X (because the
clausure for the norm topology of X coincides with the clausure for the weak topology
o(X, X’) for convex sets). By the Theorem [1.2.4] we have that lim, T),(z — zo) = 0, and
thus,

Px = lim T,z = x.
n—oo

In particular, TPx = Tx¢ = x¢ = Px. O
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Corollary 1.2.7. Let X be a reflexive Banach space and T € L(X) and assume:
a) lim, %T”x =0, for each x € X, and

b) T is Cesaro bounded (sup,||T,| < o0o).

Then, T 1s mean ergodic.

PROOF. As X is reflexive, every bounded set in X is relatively weakly sequentially com-
pact, and we can use Theorem [1.2.5] Fix 2 € X. By b), the sequence (T),x) is bounded,
and thus it is relatively weakly sequentially compact, hence there exists an increasing
subsequence (ng)r € N and 2y € X such that xy = o(X, X’) — lim,, 7},, . Then by the
Theorem [1.2.5] the limit Pz = lim,, T,z exists, and P is well-defined. By its definition it

is clear that P is linear. Using b) we know that P is also continuous. U

Theorem 1.2.8. Let T' € L(X) be mean ergodic and denote Px = lim,,_,o, T,,x for each
x € X. Then, P: X — X satisfies:

1. P=P?=TP = PT. In particular P is a projection.
2. P(X)=ker(I -T),
3. kerP=(I-T)X =(I - P)X.

Moreover, X = (I —T)X @ ker(I —T).

PROOF. We prove 1. Let x € X, then,

1
(I -T)(Px)=(I—-1T) lim Tp,r = lim —(T — T"*"z =0,

n—oo n—oo N

then Px = T'Px and P = TP. This gives us that T"P = P for alln € N, and T,,P = P,
for all n € N, and we get

P?z = lim T,Px = lim Pz = Px,

n—oo n—oo

which implies P2 = P. Lastly,

1
P(I—T)x = lim —(T —T"")z =0

n—oo N
and thus, P = PT.

For the proof of 2., let x € ker(I —T'), then = Tz, and 7"z = x and T,,x = x. Thus
Pz = lim,, T,,x = x, which gives us x € P(X).
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Now let x € P(X). Then there exists z € X such that x = Pz = P?2 = P(Pz) = Px.
We get
Tx =T(Pzr)=Px ==z,
which tells us that x € ker(I — 7).

Now we prove 3. Let = € ker P, then Px = 0. Thus (I — P)r = x — Px = z, therefore
re(l—-P)X.

Now let x € (I — P)X, then, x = (I — P)z for some z € X. One gets
Pr=Pz—P’2=Pz—Pz=0

and thus = € ker P. We have proven that ker P = (I — P)X. Now we prove that both
are equal to (I — T)X. Let x € (I — P)X, then x = (I — P)z for some z € X. We have

n—1 r

%sz

r=0 j=0

(I-T)z=(I-T)

Y

and then (I —T,)z € (I —T)X. Now,

r=I—-P)z=z—limT,z=1lim(I-T,)ze (I -T)X.

n—o0 n—o0
Letz € (I-T)X, then x = (I-T)zfor some z € X. Thus, Pv = Pz—TPz = Pz—Pz =0
and z € ker P. Let w € (I —T)X, then there exists a sequence (x,,) C (I —T)X such
that lim x,, = w. We conclude,

Pw = P(lim z,) = lim Pz, = lim 0 =0,

n—o0 n—o0 n—oo

where we have used the continuity of P. We have obtained w € ker P and thus, assertion
3.. O

Theorem 1.2.9 (Strong ergodic theorem). Let T € L(X), then there erxists P €
L(X) such that lim,, T,x = Px for all x € X, if and only if the the following assertions

are satisfied:
a) lim, 1Tz = 0 for all x € X, and
b) for each x € X the set {T,x : n € N} is relatively o(X, X')—sequentially compact.

PROOF. Firstly, we suppose that there exists P € L(X) such that for all x € X,

lim,, T,,x = Pz. Then,
lT” T n—1
n

Tnfla
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which converges to 0, and thus a) is satisfied. We also have T,,x — Pz for all x € X,
and this implies that (7,z) is relatively sequentially compact in X and then, (7,z) is
relatively sequentially (X, X’)—compact, satisfying b).

For the converse, we apply Theorem [1.2.5] O

1.3 Lin’s theorem

Lemma 1.3.1. Let T € L(X) with ker(I —T) = {0} and with

lim lT” =0,
n—oo || N
then, the following assertions are equivalent:
1. I =T, is surjective for some n € N,
2. 1 =T is surjective.
3. limy, o0 ||T0l| = 0 (T is uniformly mean ergodic).

PROOF. Because of the limit being 0, there exists an n € N such that ||7,,|| < 1.
This implies that I — T}, is an isomorphism by Theorem [[.2.2] and, in particular, it is

surjective.
Let y € X, by 1. there exist € X such that (I —T,,)z = y. Thus,

n—1 r

PN

r=0 5=0

y=(-T)r=(-T)

and (I —T) is surjective.

We have that [ — T : X — X is injective by hypothesis and it is onto by
2., also it is continuous. By the open mapping theorem its inverse (I —T)™' : X — X
is continuous. If B is the closed unit ball of X, then C' = (I — T)~'B is bounded. Let
M = sup,c¢ ||z||. We have

1
- T_Tn—I—l
T

| Tl = sup | T[] = sup [|( — T)Tz|| = sup
z€B zeC zeC

1

. [raaall
+1

n—+1

n—+1

1
< —sup |[|[Tz] + sup
n zec n  zec

M
' < ?HTH +2M

and, thus lim,, ||7,|| = 0. O
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Theorem 1.3.2 (Lin). Let T € L(X) satisfy

T’fl
T

n—oo n

0.

The following assertions are equivalent:

1. T is uniformly mean ergodic.

2. (I —=T)X is closed and X =ker(I —T)e& (I —T)X.
3. (I —T)*X is closed.

4. (I =T)X is closed.

5. (I —T)*X is closed for every k € N.

6. (I —T)X is closed for some k > 2.
PROOF. In the proof we use the following notations: ¥ = (I —T)X and S = Ty

There exist P € L(X) such that

lim || T}, — P|| = 0.
n—oo

By the Theorem[1.2.4] we have X = ker(I —T)®Y. We want to show that T(Y) C Y,
so we can iterate S. To do so we shall prove first that 7(/ —T)X C (I -T7)X. Let z € X,
then
TI-T)e=(I-T)(Tx)e (I-T)X.

Using this, we have

TWV)=T(I-T)X)CTI-TXC{I-TX=Y =Y,

as we wanted. By the Theorem we have Y = ker P. Due to lim, ||7,, — P|| = 0, we
conclude that lim, ||S,|| = 0. Now, S satisfies the assumptions and hence the conclusion
3. of the Lemma [1.3.1} so (I — S)Y =Y. Finally,

Y=I-8)Y=(I-TYYC(UI-T)XCY

gives us that Y = (I — T)X and (I —T)X is closed.

We have Y = (I —T)X, we want to show that (I —7)?X =Y. The inclusion
(I -T)Y?X = —-T)[(I -T)X] CY is direct. To show the other inclusion, let y € Y.
Then y = (I — T')x for some x € X. By 2. we can write x as

r=1x9+x1, withTerqg=2x9and z1 €Y
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andwegety=(I—-T)z=(I-T)r; € [-T)Y =(I-T)*X and Y = (I —T)?X, which

is closed.

Recall that Y = (I — T)X. We want to show that (I — T)X =Y. Firstly
we check that (I —T)Y = (I — T)*X. The first inclusion is:

I-TP’X=(I-TI-T)XCI-T)I-T)X = (I -T)Y.

On the other hand, we can apply 3. to get

I-T)Y=(I-T)I-T)X C(I-T)2X =(I-T)>X.

This also tells us that (I —T)Y = (I —T)Y because (I —T)?X is closed.

Since T(Y) C Y, S :Y — Y is well defined. Every y € (I — T)X satisfies that
lim,, S,y = 0 as we saw in the proof of Yosida’s Theorem [1.2.4]
Now we show that (I —T)X C (I — S)Y. Let y € Y with lim,, S,y = 0. Then

y—Sny:(I—S)[%Zn:(l+5+---+5m_l)y]E(I—S)Y,

for each n € N then we have y = lim,(y — Spy) € (I — S)Y. And, finally, (I —T)X C

(I-S)Y =({I-8)Y =(I—-T)*X. We also know that (I —T)?X C (I —T)X, then both
are equal and (I — T)X is closed.

In this case we have Y = (I — T') X, and it is a Banach space. The operator
I —T : X — Y is surjective and continuous, then, by the open mapping theorem,
(I-T): X — Y is open. If we apply the Lemma [1.2.1] we find that there exists K > 0
such that for each y € Y, there exists z € X such that

(I =T)z =y and ||z[| < K[y]|.
Now, let y € Y and select z € X as above, then we have
1 n+1 K n+1
ITayll = NTull = T)2ll < AT =T |llz]] < — AT+ 17" DIy

Recall that S =T}y : Y — Y is well-defined and continuous. By the previous inequali-

ties, taking supremum over |ly|| < 1, one finds that lim,, ||.S,| = 0.

Applying the Lemma we find
(I -T)XnNker(I —T)=Y Nker(I —T)={0}

and therefore ker(I — S) = {0}. Now, applying Lemma to S € L(Y), we conclude
that / — S : Y — Y is surjective. Thus, I — S is an isomorphism. Also, (I — T)X =



Alberto Rodriguez Arenas 23

Y = (I —S)Y = (I —T)*X. Therefore, for each x € X there exists y € Y such that
(I —T)x = (I —T)y and thus y = (I — S)"}[({ — T)z|. Since (I —S)™: Y — Y is
continuous,
Iyl < (1 = S) I = T)z]].
We also have that (I —T)(z —y) =0, and thus T'(z —y) =z —y and T™(z —y) = x — vy,
for each m € N, which gives us T,,,(x —y) = x — y, for all m € N.
We define the map P : X — X by Px = x —y, where y is the unique element defined

as y = (I —S)™'[(I — T)x]. This map is a well-defined and continuous operator. Our aim
now is to show that

lim ||T,, — P|| = 0.

n—oo

To do so, let x € X and use y selected by P,

I(Tn = Pzl = [|Thx = Pa|| = [Tz — (x = y)l| = [Tz — Tu(z — )| = [ Tayll
= 7.(I =)' (I = T)z|| < (1 = §) I Tu(I = T)a|

K — n
< — 1@ =) NATN+ 1T D]l
If we now take supremum over ||z| <1 for x € X, we get
K -1 nt1
(T = Pl < (I = S)= AT+ 171

and this converges to 0 as n — oo and thus 7}, converges to P and T, is uniformly mean
ergodic.

Let k € N with k > 2. We want to show that (I —T)"X = (I-T)*'X. It is
clear that (I — T)*X C (I —T)*'X. Now let z € (I — T)*' X, then, there exists z € X
such that z = (I — T)* 1z and by 2. x = 29 + z; with 2y = Tz and z; € (I —T)X.

Then, we have
p=(I-TVe=I-T)?*I-Tr=I-T) " sy e (I -T)""1I-T)X.

This way we have shown that (I —T)* !X = (I —T)*X. Iterating this process, we finally
have
I-TYrX=I-T""'X=..=I-TX=(I-T)X

and (I — T)*X is closed for every k € N.

Our aim is to show that (I — T)*1X is closed. First we shall see that
(I—=T)**X +ker(I—T) is closed. Indeed, let y,, = (I —T)* 'z, + 2, with lim,, 3, = y, and
(2n)n € X and 2, = Tz, for each n € N. Then (I-T)y,, = (I-T)*z,, converges to (I-T)y
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as n — oo. But ((I — T)*z,) C (I — T)kX, which is closed, then (I —T)y € (I — T)kX.
Then there exists w € X with (I —T)y = (I —T)*w and thus y — (I = T)*'w € ker(I - T)

and we have
y=I-T) " w+@y—IT-T)""w) eI -T)"'X +ker(I - T),

which shows that (I — T)*1X + ker(I — T) is closed.

Now, using that (I — T)*'X + ker(I — T) is closed, ker(I — T) is closed and (I —
T 1X Nker(I — T) = {0}, we get, using [16, Theorem 5.8.], that (I —T)*"1X is closed.
[terating this argument, we find that (I — 7)) X is closed.

5. = 6. Trivial. 4



Chapter 2

Ergodicity of operators in
Banach-Grothendieck spaces with the
Dunford-Pettis property

2.1 Definitions and general results

The main objective of this chapter is to find some results analogous to Yosida’s Theo-
rem but for uniform mean ergodicity instead of just mean ergodicity. To do so we
restrict the space in which we work. We are still in Banach spaces, but we ask them to
be Grothendieck spaces with the Dunford-Pettis property. Even if the results given are
stated for Banach spaces X, they actually work for Fréchet spaces, with similar proofs.
The results in the chapter are mainly taken from Heinrich P. Lotz’s article [I1]. In this
section 7; will not necessarily mean the j-th ergodic mean of 7" € L(X), unless it is

otherwise stated.
We start with some definitions.

Definition 2.1.1. A Banach space X is a Grothendieck space if any sequence () C
X’ which is convergent to 0 for the weak topology o(X’, X) is also convergent to 0 for
the weak topology o(X', X”).

Definition 2.1.2. A Banach space X has the Dunford-Pettis property if for any
sequence (x;) C X which is convergent to 0 for the weak topology o(X,X’) and any
sequence (7)) C X' which is convergent to 0 for the weak topology o(X’, X”) one gets

lim < z;,2; >=0.
J—00

25
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Firsly we prove some lemmata, which are true for sequences having some properties,

which actually the sequence of ergodic means satisfies.

Lemma 2.1.3. Let X be a Banach space, which is a Grothendieck space and let (T;) C
L(X) be a sequence with lim; o, Tjx = 0 for all x € X. Then for each bounded sequence
(25) C X', we have lim_,o, T}, = 0 for the weak topology (X', X").

PROOF. Let (z},) C X’ be bounded. There is M > 0 such that ||z} || < M for each k € N.
Given j € N and z € X, we have | < Tjz,z;, > | < M|T;z| for each k € N. Thus
supy, | < Tjz, ), > | < M||Tjz||. As Tjz — 0 for each z € X, we have

lim sup | < Tjz,x), > | =0
J—00 keN

for each x € X. Thus, for each v € X, | < Tjz, 2} > | — 0, and then Tjz}; — 0 for

o(X’, X). But X is a Grothendieck space, thus, Tjz}; — 0 for o(X’, X"). O

Lemma 2.1.4. Let X be a Banach space, which is a Grothendieck space and let (T;) C
L(X) be a sequence with:

1. T;T, = T, 1},
2. limj_,o Tjx = 0 for all x € X, and
3. im0 ||(I — T0,)T5]| = O for all m € N.
Then, the dual space of X wverifies that
_ T t | —
X' ={ue X" jlgglo | T5ul| = 0}.

PROOF. We denote S; := [ —Tj. Then S; : X’ — X' is continuous (with the norm
topology in both sides). Also denote

H={ueX: lim HSju —ul|=0}={ue X": lim ||TjtuH = 0}.
]*)OO ]4)00

Our aim is to show that H is both dense in X’ and closed for the norm topology, and
thus, H = X'.
We begin showing that H is closed. Let (z}) C H be a sequence such that

lim ||z}, — 2l =0,
k—oo

for an z(, € X'.
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Fix € > 0, let B be the closed unit ball of X, and let

j=1
Since {S;} is norm bounded due 2., and B is bounded, C is bounded. Using this and the
convergence to x, there exists ky € N such that for all £ > ky and for all c € C,

/ / €
\<xk—:co,c>|§§.
Also, as 3, € H, there exists jo € N such that for all j > jo,

sup |, (b) — S, (0)] <
beB

OJI(‘K)

Finally we show that x;, € H. We have for j > j, and b € B,
|75(b) — Sjao(0)] < |2g(b) — @, ()] + |7, (b) — S, (b)] + |Sjl, (b) — Sjag (D)

€ € 2e
<§+§+|($20—%)(5jb)|<§+§:5

Thus H is closed for the norm topology. Now we show that H is dense. Firstly we see
that

Usix' cH
k=1
Fix £ € N. By 1. and 3., we know that

tim (17,50 = i (15,7, = 0.
Thus, for all u € X',
lim [|(S, T} )ull = lim [|u(T}Sy)]| = 0.
‘]%OO j—}OO
Then, for each 2/ € X’
tin |(Sg') — St =l IS TH)a' — S = Tim 1S3/ =0,
J—00 J Jj—r00 J

which implies that Siax’ € H. Thus, SLX’ C H for any k € N.
By Lemma 2.1.3] for each u € X', Sju converges to u for the weak topology o (X', X").

Then, for any element of X', there exists a sequence in H which converges weakly to the
element, and therefore, H is weakly dense in X’. As H is a subspace, we conclude that

H is also dense in X' for the norm topology.

As H is closed and dense in X’ for the norm topology, we have that H = X’ and we
finish. O
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Lemma 2.1.5. Let X be a Banach space, which is a Grothendieck space and let (T;) C
L(X) be a sequence satisfying:

1. T;T, = T, T,
2. lim; oo Tjz =0 for all x € X, and

3. im0 ||(I — T0,)T5]| = O for all m € N.

Then for each bounded sequence (z;); C X, we have lim;_,o, Tjz; = 0 for the weak topology
(X, X').

PROOF. Fix (zx)r € X bounded. Take 2’ € X'. By the Lemma we know that
Tjt — 0 for the norm topology. Thus, we have

lim sup [T} (z")x| = 0.

J=00 keN
Finally,
1 . . / = 1 . t / — 1 t / - —
lim | < Tizj, 2’ > | = lim | <a;, T2’ > | = lim [Tya'(2;)] = 0. C
2.2 Lotz’s theorem
In this section T}, does mean the n-th ergodic mean of the operator 7'
Lemma 2.2.1. Let X be a Banach space. Let T € L(X) and let
n- Ly
m=1
Assume lim,, ||%H = 0. Then, for each m € N,
lim |[(I —T,,)T,| = 0.
n—oo
PrROOF. Fix n,m € N. Then,
1
I-Tp=—ml-T-T*— . —-T™"=—((I-T)+I~-T*+---+(I-T™))
m

(I-T)+(I+T)I-T)+-4+T+T+--+T" I -T)]

[+T+T)+ -+ +T+ - +T" NI -T)=gn(T)I -T).

SI=3=3=
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Now, (I = Tp) Ty = gn(T)(I = T)T,, = gu(T)2(T — T™*). Using that lim,, ||Z-|| = 0, we
get
lim ||(I — T},) Tl = 0.

n—o0 D

The following theorem is the main result of this chapter and the Dunford-Pettis prop-

erty is used in its proof.

Theorem 2.2.2 (Lotz). Let X be a Banach space, which is a Grothendieck space with
the Dunford-Pettis property. Let T € L(X) and let

1=
nzﬁzyh

Assume:
1. lim, || Z|| = 0.
2. For each x € X the set {T,x : n € N} is relatively o(X, X')—compact.
Then, there exists a projection P € L(X) such that
i 17, P| =0,

and T 1s uniformly mean ergodic.

PROOF. By Yosida’s Theorem (Theorems |1.2.4] and [1.2.8), there exists a projection P €
L(X) such that for all z € X, lim, T,x = Pz and also P = P> = TP = PT, F :=
P(X)=%ker(I-T),H:=kerP=([—-T)X and X = F ¢ H.

To prove the theorem we prove firstly that lim, |72 — P|| = 0. To do so we see that

Let © € F, then x = Px = lim,, T,,z. Thus, using Lemma (I — Ty)x = lim, (I —
Ty.)Tx = 0. Therefore (I —Ty)x =0 and (T,,)|r = Ijp.

Now we move to the second part. Note that by Yosida’s Theorem |1.2.4) H = {x €
X : T,z — 0}. Set

A:GU—HM

and denote by A its closure for the weak topology o(X, X’). We want to see that H = A

Let k € Nand z € X, then (I —T})z € A and by Lemma [2.2.1) (I —T})z € H. But
H is closed for the weak topology, thus A C H.
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Now let x € H, then x — Tz € A for every k € N, but as x € H, x = lim x — T},
and thus z € A. Then H C A Cc A. Thus H = A.

Suppose that ((777);r) does not converge to 0 for the topology of the norm. Then there
exists ¢ > 0 such that ||(77?)y|| > e. We can choose a sequence (z,) C H with |z, <1
and a sequence j; < jp < --- so that ||T7z|| > e. Then by Hahn Banach Theorem, there
exists another sequence () C X' with [|z}|| < 1 such that | < Tz, 2, > | > e. Thus
for each s € N,

| < Tz, T) 2y > | > e.

Now we note that H is a complemented subspace of a Grothendieck space with the
Dunford-Pettis property, and thus H itself is a Grothendieck space with the Dunford-
Pettis property. Therefore, T and H verify the conditions of Lemmata and [2.1.5
due to the definition of H and Lemma and we can apply them.

Since () is bounded, T}, x, converges to 0 for the weak topology o (X, X’) by Lemma[2.1.5
Also (27) is bounded and thus T} ) converges to 0 for the weak topology o (X', X") by
Lemma Since H has the Dunford-Pettis property,

sh_glo’ < Esmwﬁsxg > =0,
which is a contradiction. Therefore, ((T72);;) must converge to 0 for the topology of the
norm.

Now adding the results for F' and H, we get that T converges to P for the topology

of the norm, as we wanted to check.

Now we complete the proof of the Theorem. As Py = I, we only have to show that
lim; [|(75)ja ]l = 0. As limy ||(T7),z|| = 0, there exists 7 € N such that ||7;}]| < 1 and thus
I — T2 is invertible in L(H), by Theorem We have

(I =TI +T,)I~-T2) =1,
and thus, I — T, is invertible in L(H). Using Lemma [2.2.1]
Jim [[(T)yal] = T (7~ To) ™0 = To)To) ]
< T N 1 . B _
< lim ([(1 =T g || i [[((1 = Ton) T ) al| = 0,
and thus 7T, converges to P for the topology of the norm. (l

Corollary 2.2.3. Let X be a Banach space, which is a Grothendieck space with the
Dunford-Pettis property. Let T € L(X) be a power bounded operator. Then T is mean

ergodic if and only if T is uniformly mean ergodic.



Chapter 3

Multiplication operators on spaces of

holomorphic functions

3.1 Definitions and general results

The objective of this chapter is to investigate the (uniform) mean ergodicity of multipli-
cation operators in some weighted Banach spaces of holomorphic functions. This chapter

mainly follows the article [5].

We work with some spaces of holomorphic functions defined on the complex unit disc
D = {z € C : |z| < 1}. The notation for the space of holomorphic functions is H (D)
and | - [« denotes the supremum norm. We denote the bounded holomorphic functions
by H*(D) = {f € HD) : ||flleo < oo}. We say that a function v : D — (0,00) is
a weight function if it is continuous, radial (v(z) = v(]z]) for all z € D) and satisfies
lim, ;- v(r) = 0.

The spaces in which we are interested are the following weighted Banach spaces:

HE ={f € HD) : [|f[lo := supv(2)[f(2)] < o0}

zeD

and

Some facts of these spaces that are used are the following (see e.g. [4]):

e They are both Banach spaces when endowed with the norm || - ||,.

e H? is a closed subspace of H®.

31
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e The set of polynomials is dense in H.

From now on, we fix a weight function v : D — (0, 00) .

If we choose a function ¢ € H(D), we can define the multiplication operators T, :
H¥ — HX and S, : H) — HY defined by T,(f) = ¢f and S,(f) = ¢f. In
Lemma [3.1.3 we check T, € L(H°) and S, € L(HY) if o € H*. Our aim in this chapter
is finding when these operators are mean ergodic, uniformly ergodic, power bounded and

Cesaro bounded.

Lemma 3.1.1. Given z € D, the evaluation functional 6, : H* — C defined by

< f, 0, >= f(Z>
is linear and continuous (0, € (H)'). Moreover,

/1l
v(z)

| <f0.>1]<

Also, 6, € (H?)'.

Lemma 3.1.2. Given p € H(D), if T, € L(H°), then ¢ € H>*(D). The same holds if
S, € L(HY).

PROOF. We use the adjoint operator, fix z € D, then for all f € H°,
<T0.), f >=< s, 0f >= 0(2)f(2) = (p(2)8:)(f)
and we get T7(d.) = ¢(2)d.. As T, is continuous, also T}, is continuous. We have
(0= = lle(2)d: 1| = 1T, (01 < (T IH0- ],

which tells us that |o(z)|] < ||T}| for all z € D, and thus ¢ is bounded and ¢ € H*.

The proof for S, is the same one. O

Lemma 3.1.3. If o € H*(D), then T, € L(H°) and S, € L(HY) with
1Tl = llelloo = 1lSell-
PROOF. We prove ||S,|| < || T,] < ||l¢lleo < ||S,||. The first one is direct:

T, T
150 — sup 1Tl < o 1Tl
ey 1l = seite 171

= [T |-
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We have seen that [|.S,|| < ||7,||. Now we check the second inequality.

IToll = sup [[Tofllo = sup [ofllo = sup supv(z)|p(2)f(2)]

I £1l=1 I l=1 =1 z€D
< sup |p(2)| sup supv(2)|f(2)| = sup|p(2)] sup |[fllv = [l@lloo-
2D I £ll=1 zD zeD I £1l=1

Then we get ||7,] < ||¢|l~ and thus, the continuity of the operators. We finally check
[Sell > [l¢lloo- We use the adjoint operator S{, of S,. Fix z € D.

SEP|l oy 1A sy 1
ISl =18yl = sup Wellomy o 1860y ap | < £S5 |
pemoy  ||Plloy 10:Mcrroy M10:Mlcaoy pemoiplo<a
1
=7 sup | <S,f,0,>]|= sup | <ef, 6, > |
102l rrgy gemo,fi,<1 102\l a0y e,y <t
l(2)]

= S Sup | < f,0.> | =|p(2)]
10: 1m0y ems jp1,<1

Thus, ||S,|| > |¢(2)| for each z € D, and then ||S,|| > ||¢||s, Which concludes the proof.(]
Lemma 3.1.4. T,, is an isomorphism if and only if 1/p € H>®. Equivalently for S,.
Proor. If 1/p € H*, then Ty, is continuous and satisfies

1,1y = ThypTy, = 1,

thus 7T, is an isomorphism.
Suppose that T, is an isomorphism, then there exists M € L(H;°) such that T,M = I.
If we evaluate this equality at the constant function 1 and a point z € D, we get
1
p(2)(M1)(z) =1, (M1)(2) = 20
and as M1 € H(D), also 1/p € H(D). If we now evaluate at any function f € H>° and
any point z € D, we get

1
Mf)(z) = ——=f(z
MHE) = 556)
and thus M =Tj,,. By Lemma[3.1.2 1/¢ € H>.
The proof for S, is the same. O

3.2 Mean ergodicity and power boundedness

Our main interest is knowing properties of the iterated operators. Information about that

18 seen next.
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Remark 3.2.1. Clearly the identities T) = Tn and S} = S hold for each n € N.
Using them and the Lemma we find that for each n € N

1T = Nl loe = llll% = [1SG1I-
Proposition 3.2.2. For each ¢ € H>®(D), the following assertions are equivalent:
1 lellee <1,
2. T, € L(H°) is power bounded,
3. S, € L(HY) is power bounded.
PROOF. Remark [3.2.1] yields 1. = 2. and 1. = 3.
For the proof of 2. = 1., fix n € N. We have, using the Remark [3.2.1]

lolls = 12| < sup [T =: C.
meN

As T, is power bounded, C' < oo and thus [|¢||. < C¥™. This holds for each n € N, then
lelloe < 1.

The proof of 3. = 1. mimics the previous one. Il

Remark 3.2.3. Let ¢ € H*(D). Then for each f € H® and n € N,

(T,)nf)(z) = @ > (p(z))",  for each z € D.

But in the case when ¢(z) # 1, we get

p(2)f(2) 1 = (p(2)"
n 1—p(z)

If we take f € HY, these formulae also hold with S, instead of T,.

(Tp)nf)(2) = for each z € D\ ker(1 — ¢).

As we saw in Propositions and and the Example following them, mean
ergodicity does not imply power boundedness in general. However it does in our current

case.

Proposition 3.2.4. Let p € H®(D). If T, € L(H) (resp. S, € L(H?)) is mean
ergodic, then T, (resp. S,) is power bounded.

PROOF. By mean ergodicity of T, and Lemma we have the pointwise limit

1
lim =77 = 0.

n—oo 1, ®
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In particular, if we evaluate in the constant function 1 we find

1
lim |—¢"|| =0.
n—oo (| N v
For a fixed z € D, the inequality
1 n
Lol s o ‘ (¢(2))
n ; n
leads us to .
i P

n—00 n
in C. Clearly we have |¢(2)] <1 and thus [|¢||« < 1. By Proposition [3.2.2] T, is power
bounded.

Considering that the constant function 1 belongs also to HY, the proof for S, follows

the same ideas. O

Lemma 3.2.5. The compact-open topology and the weak topology o(H°, HY) coincide on
the bounded sets of H:°.

PROOF. Proof in 3, Lemma 13]. O

For the case of the operators S, we can extend Proposition [3.2.4] proving the converse.

Proposition 3.2.6. Let o € H*(D). Then S, € L(H?) is mean ergodic, if and only if
Sy, is power bounded, if and only if ||¢|l < 1.

PROOF. Using Propositions [3.2.2] and [3.2.4] we prove most of the Proposition. It only

remains to show that [|¢||s < 1 implies mean ergodicity of S,. We work in two different

cases.

Firstly suppose that there exists zp € D with |¢(z0)] = 1. Applying the Maximum
Principle, there exists w € C with |w| =1 and ¢(z) = w for all z € D. Clearly, S, = wl.
If w =1, then (S,), = I for each n € N and

lim [[(S,), — I|| = lim 0= 0.
n—o0

n—oo
If w # 1, we use Remark and we get
w(l —w")
So)n = I,

for each n € N, and clearly
lim {|(S)nl| = 0.



36 Mean ergodic operators on Banach spaces

In both cases we find S, is (uniformly) mean ergodic.

The other case is that |p(z)| < 1 for all z € D. We would like to apply the Mean Er-
godic Theorem [I.2.5] The first assumption is satisfied by using that S, is power bounded.

The second one is satisfied if we can show that for each f € H?

lim (S,),f =0

n—oo

for the weak topology o(H?, (H?)'). Indeed, fix f € H? and 2z € D. Using Remark
and [|¢||.o < 1, for each n € N,

[((Sp)nf) ()] < [£(2)].

Thus, |[(Sp)nflle < ||f]lo for each n € N and {(S,),f, n € N} is bounded. Now using
that |(z)| < 1 for all z € D and Remark [3.2.3] we find
lim ((S,)nf)(2) = 0,

n—oo

for each z € D. We can even see that the convergence holds for the compact open topology.

Indeed, given 0 < r < 1, and m = max|.<, |¢(z)| < 1, we have for |z| <r

(2)/(2)] 11 = (p(z)"]
(8,0, 1)) < L LIPS

<

sup [f(2)],

n(l—m) <,

which converges to 0 for the compact open topology. If we now apply Lemma we
find that
lim (S,),f =0

n—oo

for the weak topology o(H?, (H?)).

We are now able to use the Theorem and we find that (S,),, — 0 pointwise and
thus S, is mean ergodic. (I

Remark 3.2.7. Proposition [3.2.6not only tells us that S, is mean ergodic, it also tells us
the value of the limit projection of the ergodic means. This value is exactly the operator
0 for every case but one. This one case is ¢ = 1, which gives us the identity operator I
for the mean.

3.3 Uniform mean ergodicity

Proposition 3.3.1. Let ¢ € H>*(D). Then S, € L(HY) is uniformly mean ergodic if
and only if ||¢||coc < 1 and either
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1. there is w € C with |w| =1 such that ¢(z) = w for all z € D, or
2. 14 € H*(D).

PRrRoOOF. It was shown in the proof of the Proposition that if ¢ satisfies 1. and
l¢llo < 1, then S, is uniformly ergodic.

Now suppose that ||¢]lec < 1 and ¢ satisfies 2. Then there exists € > 0 such that
11— ¢(z)| > e for all z € D, then ¢(z) # 1 for each z € D. Thus, applying Remark [3.2.3]
for each f € H?, each z € D and each n € N, we get

(S DN < el )

Then, taking suprema over f € H? and z € D

2
< —
10S)all = ——llelloc

and hence
lim |(S,)nl =0,

n—oo

which tells us that S, is uniformly mean ergodic.

For the converse, suppose that S, is uniformly mean ergodic. Then, by Proposi-
tion 3.2.6] [|¢|loc < 1. Suppose 1. does not hold, then by the Maximum Principle,
lo(2)] < 1 for all z € D. By Proposition and Remark we have the point-
wise limit

lim (S,), = 0.

n—oo
Our aim is to use Lemma [1.3.1] Firstly ker(I — S,) = ker(S;_,) = {0}. By Proposi-
tion S, is power bounded, and thus

lim =0.
n—oo

1 n
pel

By Lemma S, is uniformly mean ergodic if and only if I — S, = S, is an
isomorphism. Now by Lemma m, ﬁ e H*™. O

Until now, most of the results were the same for T, and S,. However the last result

showed some differences, which are confirmed in the next proposition.

Proposition 3.3.2. Let ¢ € H*(D) with ||¢|| < 1. Then, the following assertions are

equivalent:

a) T, is mean ergodic.



38 Mean ergodic operators on Banach spaces

b) T, is uniformly mean ergodic.
¢) Either

1. there is w € C with |w| =1 such that ¢(2) = w for all z € D, or
2. 1 € H*(D).

PROOF. b) & ¢) is proved the same way we proved Proposition [3.3.1]
b) = a) is direct by the definitions.
a) = b): By Proposition 3.2.4) T, is power bounded and thus

1 mn
el

lim =0.
n—oo

By Lusky [13] Hg° is isomorphic to either > or H*(D), which are Grothendieck spaces
with the Dunford-Pettis property [12]. It follows from Corollary that T}, is uniformly
mean ergodic, since T, is mean ergodic and power bounded. U



Chapter 4

Multiplication operators on spaces of

continuous functions

4.1 Definitions and general results

The objective of this chapter is to show some results about the ergodicity of the multipli-
cation operator on spaces of continuous functions of a topological space. The results are

analogous to those in Chapter 3] and some proofs coincide.

Let X be a topological space that is Hausdorff, locally compact, o-compact and con-
nected. We denote the set of continuous functions from X to C as C'(X).

A function f € C(X) vanishes at infinity if for each ¢ > 0, there exists K C X
compact such that |f(z)| < e, for each z € X \ K.

We say that v : X — (0,00) is a weight function if it is continuous and vanishes
at infinity. This definition coincides with the one given for holomorphic functions in
Chapter [3] in the case that X = D, if we add the condition of v being radial.

If we fix a weight function v, we can define the following spaces, analogous to the ones

for holomorphic functions:
Co={f € C(X) : |Ifllo = supv(@)|f(2)] < oo}
[AS

and
C? = {f € C(X) : v|f| vanishes at infinity}.

These are Banach spaces when endowed with the norm || - ||,. Observe that for v =
1, C, is the Banach space C'B(X) of bounded continuous functions endowed with the
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supremum norm, and C? is the space Cy(X) of continuous functions vanishing at infinity,
also endowed with the supremum norm.

If a function ¢ € C(X) is fixed, we can also define the multiplication operator on
these spaces as T, : C,, — C(X) and S, : C) — C(X) defined by T,,(f) = f¢ and
Se(f) = fe-

Most of the properties of these operators are the same that the ones for the operators

defined for holomorphic functions. For that reason, most of the proofs of the results are

not given, as they mimic the other ones.

Lemma 4.1.1. The operator T, is continuous if and only if the operator S, is continuous

if and only if p is bounded. Moreover,

1Tl = 1561 = llll-

Lemma 4.1.2. The operator T, is power bounded if and only if the operator S, is power
bounded if and only if ||¢|l. < 1.

Proposition 4.1.3. If the operator T, (resp. S,) is mean ergodic, then |||l < 1, and
thus T, (resp. Sy) is power bounded.

4.2 Ergodic results

The following theorems show the difference between the results for holomorphic functions
and those for continuous functions, or at least the difference between their proofs. Firstly
we have a characterization for mean ergodicity of S, and later another for uniform mean
ergodicity of S,,.

Remark 4.2.1. Let ¢ € C(X). Then for each f € C, and n € N,

n

(@)@ = L2 S e, e e x.

m=1

In the case when ¢(x) # 1, we get

@@ 1= @@ e e
(Tp)af)la) = FEED 00, e e X \ker(1— )

If we take f € CY, these formulae also hold with S, instead of T.

Proposition 4.2.2. Assume that ¢ is not identically 1 and that ||¢||ec < 1. Then S, is
mean ergodic if and only if p(x) # 1 for each z € X.



Alberto Rodriguez Arenas 41

PROOF. Firstly suppose that o(x) # 1 for each z € X. Fix f € C? and fix a compact
set K C X. Then, there exists 0 < ¢ < 1 such that |1 — ¢(z)| > ¢ for every x € K. Then

for any =z € K, we have

!@(lef(xﬂ !1|1—_(g$(wx)))|”! < %22}? ),

((Sp)nf)()] =

which converges to 0 as n — oo. Thus (S,),f converges to 0 for the compact open
topology, and thus (S,), f converges to 0 for the weak topology o(C?, (C?)’) (which can
be proven using Riesz’s representation theorem). By the mean ergodic Theorem|[1.2.4] S,

is mean ergodic.

Assume now that S, is mean ergodic, and let A = {x € X : p(x) = 1}. As S,
is mean ergodic, there exists h € C(X) such that lim, ,((S,),1)(z) = h(x) for each
x € X, where 1 denotes the constant function 1. As we saw before, h(z) = 0 if = ¢ A,
and h(z) = 1if x € A. But h is continuous and X is connected. Therefore, A = X or
A = (), the first one is not possible because it would mean that ¢ is identically 1, thus the
second one holds and p(z) # 1 for each x € X. U

Proposition 4.2.3. Assume that ¢ is not identically 1 and that ||¢|lec < 1. Then S, is

uniformly mean ergodic if and only if inf,ex |p(z) — 1] > 0 (i.e. ﬁ is bounded).

PROOF. Suppose that ¢ = inf,cx [p(z) — 1| > 0, then,

_ v@)f@)lle(@)] L = (e(@)"] _ [I£]l.2
n 1—p@)] = n &

v(2)[(S)nf) (@)l

Thus, ||(Sy)n|| converges to 0 as n — oo, and S, is uniformly mean ergodic.

Assume now that S, is uniformly mean ergodic, then by Lin’s Theorem [1.3.2] (I —
S,)CY is closed. Let f € CY, with (I —S,)f =0, then (1 —¢)f =0. As S, is uniformly
mean ergodic, it is mean ergodic, and by Proposition f must be identically 0, hence
ker(I — S,) = {0} and I — S, is injective. We can use the decomposition

Cy =ker(I — S,) @ (I - S,)C0 = (I = S,)CY = (I = S,)C,

to find that I — S, is surjective, and thus it is bijective.

As I — S, = Si_,, using a result analogous to Lemma Si—, is bijective if and
only if ﬁ is bounded. ([l

Now we focus our interest in T;,, with similar results of those for S,.

Proposition 4.2.4. Assume that ¢ is not identically 1 and that ||p|lec < 1. If T, is
mean ergodic then o(x) # 1 for each x € X.
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PROOF. Just follow one direction of the proof of Proposition [4.2.2] O

Remark 4.2.5. We cannot use the same argument used in Proposition to prove
the converse of Proposition because convergence of a sequence for the compact
open topology in C, does not necessarily imply convergence of the sequence for the weak
topology o (C,, C1).

Proposition 4.2.6. Assume that ¢ is not identically 1 and that ||¢| < 1. Then T, is

uniformly mean ergodic if and only if inf,ex |p(z) — 1] > 0 (i.e. ﬁ is bounded).

PROOF. Just follow the proof of Proposition [4.2.3] O

Proposition 4.2.7. Assume that ¢ is not identically 1. If T, is mean ergodic, then
infaex |1 —¢(z)| > 0.
PROOF. We already know that |p(x)| <1 for all z € X and that p(z) # 1 for all z € X.
Just proceed as we did for S,.

If T, : Cy(X) = Cy(X) is mean ergodic, then for each f € C,(X) there is h € C,(X)
such that lim,, .« (7},),f = h in C,(X). Since, for each x € X, the sequence

p(x)f(r) 1 — o)
To)n =

converges to 0 as n goes to oo (even uniformly on compact subsets of X), it follows that

h = 0. That means that for each f € C,(X), (T,,),f converges to 0 for the norm topology
in C,,.

In particular, this must hold for f :=1/v € C,(X). Therefore the sequence

o lP@I 1= @)
Sup ()| (T, (1/0)(a)| = sup 2 PR =T

tends to 0 as n goes to oo.

Now we proceed by contradiction and assume that the conclusion does not hold. Then,
for each n € N, n > 2, there is z,, € X such that |1 — p(z,)| < 1/n. Using several times
that 1 — |a| < |1 — al, we get |p(z,)| > 1—(1/n), and

[1—o(@n)" 2 1= ()" > 1= (1= (1/n))".

Hence
@)l 1 =)l Ly gy
e > (= (= /m)),

which tends to %(1 — %) as n goes to 0o, and thus the sequence

()] |1 — ()
rex n |1— (@)
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does not tend to 0 as n goes to oo.
This implies that inf,cx |1 — ¢(z)| > 0 and we conlude. O
Remark 4.2.8. The proof of Proposition cannot be used for S, since 1/v ¢ CY.

Neither can it be used for holomorphic functions since 1/v is continuous but not holo-

morphic.

Corollary 4.2.9. The operator T, : C,(X) — C,(X) is mean ergodic if and only if it is
uniformly mean ergodic.
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Chapter 5

The Cesaro operator

5.1 Definitions

This chapter presents some results about the Cesaro operator, which is studied in different
sequence spaces. We check if it is well-defined, if it is continuous and its ergodic properties

(power boundedness, mean ergodicity and uniform mean ergodicity).

Let w = CN. The Cesaro operator is defined from w to itself and it sends each
sequence to a sequence such that the n-th term is the mean of the n first terms of the

original sequence, i.e. the Cesaro operator C' : w —» w is defined as
T1+ 2Ty T+ To+ T3

C((w:)i) = (21, 5 5 yenl)

The Cesaro operator is actually a bijection, with inverse defined as

C N (wa)i) = Gy — (G — Vyj—1)js %o =0.

We can endow w with the topology given by the seminorms ¢ defined for each k € N as

gi((:)i) = max |;].

With this topology one can prove that C' is continuous and power bounded, as well as
other interesting results [2], but those are not in this work as we are focusing only in

Banach spaces.

5.2 Continuity and self-mapping

Our first objective is to check whether C'(X) C X if X is [, ¢, ¢y or [P, with 1 < p < 0.

In case this holds, we also calculate the norm of C|x. Our aim is to study the ergodic
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properties of C': X — X.
Lemma 5.2.1. The Cesdro operator verifies C(1°) C 1°°. The operator C™) : [* —
1, defined as C™)(x) = C(z), is continuous and ||C>| = 1.

PROOF. Let © = (z,) € [* and denote y = (y;); = C(x). We know that the average
of any amount of positive numbers is always lesser or equal than the largest of those
numbers, and thus |y;| < max{|zi|,...,|z;|}. Taking suprema we find ||y||s < ||2||o and
therefore, y € [°° and C(I*®) C 1. Also, C*) is continuous by the closed graph theorem.

The vector e; = (1,0,0,...) belongs to I and C)(e;) = (1,1/2,1/3,...), thus
|C)|| = 1. O

Lemma 5.2.2. The Cesaro operator verifies C(c) C c. The operator C'© : ¢ — ¢,
defined as C'9)(z) = C(z), is continuous and ||C9|| = 1. Furthermore,

lim Cx = limz,

for each x € c.

PROOF. It suffices to show the property of the limit, since it also proves the first prop-
erty. For the continuity and the value of the norm, apply the proof of the Lemma [5.2.1
(considering that e; € ¢).

Let x = (x;); € cand L = lim; , x;. Fix € > 0. Choose jo € N such that for each
J = Jo, |v; — L| < 5. Also choose j; > jo such that for each j > ji,

Jo c
— Ll < g=.
;Ix | <J3

Then, for each 7 > 51 > 7o,

1 J
—le—[;

J =

J

<JZOM+ 3 i = Ll e J—dee _
= PR A S

Therefore, lim C'x = lim z and we conclude. O

Lemma 5.2.3. The Cesaro operator verifies C(co) C co. The operator C : cg — co,
defined as C0)(x) = O(x), is continuous and |CO|| = 1.

PROOF. Use Lemmata [5.2.1 and [5.2.2| considering that e; € cy. O

Remark 5.2.4. The Cesaro operator C fails to send ! to itself since C(e;) = (1,1/2,1/3,...) &
It
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To show the case of [? with 1 < p < oo, we need the following lemma.

Theorem 5.2.5 (Hardy). If 1 < p < oo and 1/p+1/q = 1, then C(I?) C IP. The
operator CP) . [P — [P is continuous with ||Cx||, < q||z||, for each x € IP. Furthermore,
IC®] =q.

PROOF. Use Young and Hélder’s inequalities to prove the inequality. To show ||C®)|| = ¢
use the sequence (a”)y C I[P defined as

1 1 1
L s g F O ) O

a = (

5.3 Spectral properties

To study ergodic properties of the Cesaro operator in these spaces, we must determine

the spectrum.

Lemma 5.3.1 (Leibowitz). The spectrum of the Césaro operator C' verifies the follow-

ing:
o 0(C,1®°)=0(Cieo) ={AeC : |A-1| <1}
e o(C,I)={AeC : |[A\—%| <%}, wherel <p<ooandl/p+1/qg=1.
Lemma 5.3.2. The operator C : w — w verifies the following:
1. ker({ — C) = span{1}, where 1 = (1,1,...),
2. (I -C)w)={rew : zy =0},
3. the eigenvalues of C' are the elements of the set {1/k : k € N}, and

4. the eigenvectors of X = 1/m are of the form

m(m+1) m(m+ 1)(m+ 2)
2 ’ 3! T

where the first 1 is at the m-th position and o € C.

),

x=a0,...,0,1,m,

PROOF. To show 1. let 0 # x € w with Cz = z, then (x1 + 23)/2 = x5 and thus, z; = z».
Suppose that z; = --- = x,, then (nzy + z,41)/(n + 1) = x,41. Thus, we have seen by
induction that ¥ =29 = --- =, =---. Since x # 0, v = z1(1,1,...,1,...) = 11. As
1 € ker(I — (), the equality ker(/ — C') = span{1} holds.
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So,

Now we check 2.. Tt is direct that the first coordinate of x — Cz is 0, for any = € w.

(I-O)w) C{yew: n=0}
For the other inclusion let y = (y,,) with y; = 0. We want to find an x = (x,) such

n

that (I — C)x = y. Clearly ;1 = 0. Also, x9 — (z1 + 72)/2 = ys, and thus, x5 = 2y,.
Inductively, =, — (z1 + -+ + ) /n = yn. Doing this we get

Ty —

n +
n—ly

1 1
n_2yn—1+"'+§y4+§y3+yz
and z — Cx = y. Therefore

(I-C)w)={yew : yp =0}

For 3. and 4. take A € C\ {0,1} and 0 # = = (z,) € w such that (Al — C)z =0
Then, Az = z1, (2\ — 1)z = 21 and (nA — 1)z, = A(n — 1)z, if n > 3.

Now, take m = min{i € N : z; # 0}, which exists since # # 0. Then A = 1/m must
hold. Also

n—1
T, =

Tp-1,
n—m
for each n > m. We get the result of 4. choosing o = z,,.

Lemma 5.3.3 (Reade). If A & {1/k

U
: k€ N}, then (C—N)™!' 1 w — w exists.
Furthermore, if (a;j)i; denotes the matriz of (C — XI)™!, then,
1 — N\l
a'ij:_.Q i 1 Ep— 1N Zf1§]<27
iA Hk:j(l - H) L Hk:jO‘ - E)
1
aij:%_)\a ifi=j
and a;; = 0 otherwise.

PROOF. Check [15].

O
5.4 Ergodic results

Proposition 5.4.1. The operator C) : ¢y — ¢ is power bounded but not mean ergodic.
Moreover,

ker(I — C©) = {0}.
Also, (I —C©)(cy) is not closed, with

([ - C(O))(Co) = Spﬁ{er}rzg = {.T €EcCy 1= O}
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ProoF. C© is power bounded, since, by Lemma [5.2.3, [|C©|| = 1.
By Lemma [5.3.2]
ker(I — C©) c span{1},
however, none of the elements of span{1} is in ¢y, besides 0. Thus, we have the assertion.

To show that
(I — CO)(cp) =spanie, }r>o = {x € ¢y : 21 =0},

use the argument given to prove 2. in Lemma [5.3.2] and check that the results stay in .

If we assume that C(©) is mean ergodic, we can apply Theorem to have the

decomposition
co =ker(I — CO) @ (I — CO)(¢y) = {0} ® 5pan{e, },>o.

But that is not true, therefore, C(¥) cannot be mean ergodic.

Finally, (I — C©)(cy) cannot be closed. If it were, together with the fact that
[(COY[|/n — 0 (because it is power bounded), using Theorem [1.3.2, we would have
that C© is uniformly mean ergodic, and thus it would be mean ergodic, which we proved
false. O

Proposition 5.4.2. The operator O™ : [ — [® is power bounded but not mean

ergodic. Moreover,
ker(I — C™)) = span{1}.
PROOF. () is power bounded, since, by Lemma |C| = 1.
Using Lemma and considering that span{1} C [*°, we get

ker(I — C°)) = span{1}.

If C(>) were mean ergodic, then the restriction of C(* to any closed C'(*)-invariant
subspace of [° would be also mean ergodic. However C'“) is not mean ergodic by Propo-
sition , and ¢ is a closed C(®™)-invariant subspace of {*°. This is a contradiction,
hence, C(*) cannot be mean ergodic. U

Proposition 5.4.3. The operator C'© : ¢ — ¢ is power bounded but not mean ergodic.

Moreover,

ker(I — C'9) = span{1}.

PROOF. Follow the proof of Proposition using that span{1} C ¢ and that ¢ is a
closed subspace of c. O



50 Mean ergodic operators on Banach spaces

Proposition 5.4.4. If 1 < p < oo, the operator CP) : [P — [P is neither power bounded

nor mean ergodic. Moreover,

ker(I —C®) = {0}.

Also,
(I —CP)(1P) =spanfe, },52 = {z € 1" : 21 =0},

PRroOF. Let 1/p 4+ 1/q = 1. By the spectral mapping theorem, ¢" € o((C®)"), since
1 € o(C). Thus, by [0, Th. 7.3-4], ¢" < r((CP)") < [[(C®)]], and
[ q"

Ssup ————— > sup — = 0Q.
neN n neN T

Therefore, C®) is not power bounded.

Considering that 1 ¢ I? and that (I — C®)(I?) is closed [6], apply the proofs of
Propositions [5.4.1| and [5.4.2| to conclude. U
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