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Abstract

This work is the result of interest in neural networks and classical music,
knowledge that I wanted to combine after finishing the studies of the IAR-
FID master and professional music degree. I wanted to contribute to an
engineering task from the musicological point of view, so, after working on
PAN 2015 author profiling task and learning about sentiment analysis, I
concluded that I could use similar techniques in MIREX classical composer
identification task.

MIREX is the Music Information Retrieval Evaluation eXchange organ-
ized by the University of Illinois at Urbana-Champaign (UIUC) in which
every year they prepare several Music Information Retrieval tasks held as
part of the International Conference on Music Information Retrieval (IS-
MIR), which this year is celebrated in Malaga. In this exchange exist the
audio classification (train/test) tasks, and more specifically the audio clas-
sical composer identification, which is perfect for investigating the use of
machine learning and music analysis on classical music.

Machine learning is a field of the artificial intelligence which evolves from
the study of pattern recognition and include the study of algorithms that
can learn and make decisions over data. Specifically, a neural network is a
machine learning algorithm that is inspired by the biological neural networks.

Musical analysis is the process whereby a music piece is decomposed and
understood as we analyze a text. There is no exact method for these analysis
and differs from analyst to analyst. The lowest level of this musical analysis
is the harmonic and functional analysis and a higher one is the structure of
the segmentation.

This investigation includes the development of the idea and the software
that implements the preprocessing and the classification of samples using
different software technology layers, as Sonic Annotator, MATLAB and Bash
scripts.
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Chapter 1

Introduction

In the last years, Music Information Retrieval fields have been improving step
by step and the majority of these fields are still using timbral and chroma
features of the audio signal, that is, features based on the timbre of the
acoustic wave. On the other hand, in computational linguistics authorship
attribution is usual to use features from the text representation as character
measures, lexical measures and syntactic features. In fact, one of the features
that the winner of PAN 2014 (Evaluation lab on uncovering Plagiarism, Au-
thorship, and Social Software Misuse) in the authorship task[4] and most of
author profiling task submissions in 2013[5] use is the part of speech (POS
or grammatical) tagging of the text.

So, in this project I approximate the idea of musical structure analysis of
classical audio files to identificate composers. This whole concept could be
compared to apply POS tagging and segmentation to a speech recording.

Then, in this thesis we will focus on techniques of musical analysis, com-
position and machine learning instead of signal processing because none of
the previous works in the author identification submissions of MIREX used
this kind of high level features.

This thesis is distributed in four sections:

• Introduction, in which we establish the state of the art from the MIREX
contest and some theoretical concepts about the elements that are in-
volved on the idea of the thesis, as artificial neural networks and musical
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CHAPTER 1. INTRODUCTION 2

analysis.

• Implementation, where I explain the used technologies and the different
features that I look for in a sample to identify the composer explaining
why I chose them and how they work.

• Experiments, which explains and shows the tests with their results
under a homemade audio dataset.

• Conclusions, summarizing and expanding the main idea for improve-
ments and useful inferences of the process and results.

1.1 MIREX

The Music Information Retrieval Evaluation eXchange (MIREX) edition of
2015 is organized by The International Music Information Retrieval Systems
Evaluation Laboratory (IMIRSEL) at the Graduate School of Library and
Information Science (GSLIS), University of Illinois at Urbana-Champaign
(UIUC). It’s hold as part of the 16th International Conference on Music
Information Retrieval, ISMIR 2015, which will be held in Malaga, Spain,
October 26th-30th, 2015.

This exchange has several kind of tasks related to Music Information
Retrieval:

• Grand Challenge on User Experience

• Audio Classification (Train/Test) Tasks, incorporating:

– Audio US Pop Genre Classification

– Audio Latin Genre Classification

– Audio Music Mood Classification

– Audio Classical Composer Identification

– Audio K-POP Mood Classification

– Audio K-POP Genre Classification

• Audio Cover Song Identification
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• Audio Tag Classification

• Audio Music Similarity and Retrieval

• Symbolic Melodic Similarity

• Audio Onset Detection

• Audio Key Detection

• Real-time Audio to Score Alignment (a.k.a Score Following)

• Query by Singing/Humming

• Audio Melody Extraction

• Multiple Fundamental Frequency Estimation & Tracking

• Audio Chord Estimation

• Query by Tapping

• Audio Beat Tracking

• Structural Segmentation

• Audio Tempo Estimation

• Discovery of Repeated Themes & Sections

• Audio Downbeat Estimation

• Audio Fingerprinting

• Singing Voice Separation

This work is oriented to the Audio Classification (Train/Test) Task of
Audio Classical Composer Identification, which submissions must be

[...] algorithms to classify music audio according to the composer
of the track (drawn from a collection of performances of a variety
of classical music genres).[...]

The authors to classify are:



CHAPTER 1. INTRODUCTION 4

• Bach

• Beethoven

• Brahms

• Chopin

• Dvorak

• Handel

• Haydn

• Mendelssohn

• Mozart

• Schubert

• Vivaldi

1.2 State of the Art

Since this work is focused on MIREX exchange, the state of the art is easily
obtainable because all the papers and submissions from previous years are
stored and classified in the MIREX Wiki[6] and also lots of materials of the
ISMIR proceedings[7].

For the specific task of Classical Composer Identification in MIREX 2014
the machine learning algorithms used were Convolutional Neural Networks
(CNN)[8] and multiclass Support Vector Machines (SVM)[9][10][11][12], also
using PCA[10] and a SVM ranker[9] as a dimensional reduction algorithm.
Previous years there were used Restricted Boltzmann Machines (RBM)[13],
Gaussian Mixture Models (GMM)[14], k-Nearest Neighbours classifier (kNN)
and Multi Layer Perceptron (MLP)[15]. In general, SVM is the most used
technique for this task.

From the features point of view, the most used features are timbral fea-
tures as mel-frequency cepstral coefficients (MFCC)[9][12][14], decorrelated
filter banks (DFB)[9][12] and octave-based spectral contrast (OSC)[9][12],



CHAPTER 1. INTRODUCTION 5

Algorithm Normalised Classification Accuracy
BK1 0.6876
SS6 0.6732
SSKS1 0.6728
WJ2 0.6089
QK2 0.5685
BK2 0.5213
BK3 0.4015
BK4 0.3947
XG3 0.3312
XG2 0.3312

Table 1.1: Normalised Classification Accuracies of MIREX 2014.[3]

visual features as spectograms[9], spectral patterns (SP)[16], Delta spectral
patterns (DSP)[16] and Short Time Fourier Transform (STFT)[8][10], and
also rhythmic patterns as Logarithmic Fluctuation Patterns (LFP)[16] and
Correlation Patterns (CP)[16]. After the extraction of these features, some-
times are preprocessed before using them in the machine learning system
with some statistical features as mean and variance of the timbral features[9]
or with Gabor filters[17], as it is usually done in Biometrics and Computer
Vision preprocessing stage.

Note that most of the submissions for composer classification task were
also submitted for all audio classification tasks, so they are relatively generic
audio classifiers algorithms for music genres, moods and composers.

Also note that none of the submissions is based on any elements of musical
analysis.

1.3 Neural Networks

One of the most famous techniques of machine learning nowadays is the
neural network topology.

The basic definition of a machine learning algorithm like the artificial
neural network is a process which an object is represented using acquired
proprieties from sensors and later is recognized, classified or affects a predic-



CHAPTER 1. INTRODUCTION 6

Figure 1.1: Machine learning generic scheme of perception[1]

tion.

An artificial neural network is a class of classification algorithm that be-
longs to the connectionist models and it is trained to solve problems by
learning the features of the problem through a set of already classified data,
or labeled training set (supervised learning). This specific kind of software
is designed based on the study of how biologic brain works and it has lots
of applications in computer vision, speech recognition, natural language pro-
cessing, bioinformatics and many other science sectors.

The word network in the term ’artificial neural network’ refers
to the inter-connections between the neurons in the different lay-
ers of each system. An example system has three layers. The
first layer has input neurons which send data via synapses to the
second layer of neurons, and then via more synapses to the third
layer of output neurons. More complex systems will have more
layers of neurons, some having increased layers of input neur-
ons and output neurons. The synapses store parameters called
"weights" that manipulate the data in the calculations. 1.2

An ANN is typically defined by three types of parameters:

• The interconnection pattern between the different layers of
neurons

• The learning process for updating the weights of the inter-
connections

• The activation function that converts a neuron’s weighted
input to its output activation. [18]

Also, this kind of topology is easily parallelizable and it has been imple-
mented in so many frameworks that use several CPU and GPU cores (CUDA
or OpenCL, for example).
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Figure 1.2: General structure of a multilayer perceptron[1]
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The origin of the artificial neural networks can be stablished at the first
models defined with mathematical notation by McCullock and Pitt in 1943,
but the first successful results are obtained in 1959 when the perceptron is
created by Rosenblat, which later in 1975 is improved by Paul Werbos adding
the backpropagation algorithm.

Some years later the use decreased by the efficiency of Support Vector
Machines and some unsupervised learning algorithms due to the difficulty of
obtain labeled data.

In the last years, the use of ANN learning algorithms has increased com-
pared to the popular Radial Basis Functions or the Support Vector Machines
algorithms, caused by the "boom" of the Deep Learning and the Convolu-
tional Networks.

Nowadays, the most used artificial neural networks are the Restricted
Boltzmann Machines, the Convolutional Neural Networks and the Deep Be-
lief Networks.

1.3.1 Unsupervised Learning

As Bishop states in his book "Pattern Recognition and Machine Learning":

In other pattern recognition problems, the training data consists
of a set of input vectors x without any corresponding target val-
ues. The goal in such unsupervised learning problems may be to
discover groups of similar examples within the data, where it is
called clustering, or to determine the distribution of data within
the input space, known as density estimation, or to project the
data from a high-dimensional space down to two or three dimen-
sions for the purpose of visualization.[19]

In short, unsupervised learning is a type of learning technique focused on
finding hidden structure or drawing inferences from unlabeled input data, as
k-Nearest-Neighbours, Gaussian mixture models or Hidden Markov models
do. The Restricted Boltzmann machine is a new Deep Learning technique
which belongs to the unsupervised learning algorithms and is the main com-
ponent of Deep Belief Networks.
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Figure 1.3: RBM used to classify films based on two natural groups: SF-
fantasy and Oscar winners[2]

1.3.2 Restricted Boltzmann Machines

The Restricted Boltzmann Machines are a type of stochastic artificial forward-
backward neural network with sigmoid activation functions. They also are
a particular form of log-linear Markov Random Field based on the Energy
function.

This neural network is composed by a layer of visible units, a layer of
hidden units (the latent factors we try to learn) and a bias unit.

An example of use of a Restricted Boltzmann Machine can be seen in 1.3

1.3.3 Deep Belief Network

The Deep Belief Network is a type of Deep Learning algorithms, which is
based on a set of stacked Restricted Boltzmann Machines undirectly connec-
ted and trained with unsupervised learning, usually the Contrastive Diver-
gence algorithm. These RBMs try to reconstruct the data layer by layer.
1.4 The resultant DBN can be unfolded into a Multi Layer Perceptron (feed
forward network) with initialized values and after it can be "fine-tuned" with
labeled data using backpropagation.

In the Deep Belief Network



CHAPTER 1. INTRODUCTION 10

Figure 1.4: Deep Belief Network training example[1]

[...] the top two layers have misdirected, symmetric connections
between them and form an associative memory. The lower layers
receive top-down, directed connections from the layer above. The
states of the units in the lowest layer represent a data vector.

The two most significant properties of deep belief nets are:

• There is an efficient, layer-by-layer procedure for learning
the top-down, generative weights that determine how the vari-
ables in one layer depend on the variables in the layer above.

• After learning, the values of the latent variables in every
layer can be inferred by a single, bottom-up pass that starts
with an observed data vector in the bottom layer and uses
the generative weights in the reverse direction.[20]

Since the final result can be unfolded into a MLP, the main practical
difference of using DBN is that this resulting MLP is initialized with the
reconstructed data of the DBN instead of a random initialization, which
usually obtains better results and can be trained with more unlabeled data
that the used for MLP.
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1.3.4 Musical analysis

The process and the academic discipline which studies the musical works
from the pattern aspect, the internal structure, composition techniques and
interpretative aspects is the musical analysis.

The basic objectives of the musical analysis are the recognition of different
elements of the work:

• Structure

• Melody

• Texture

• Harmony

• Tone

• Dynamic

Also, the existent relationships inside the previous elements and between
them are objective of study to finally obtain conclusions about the relation-
ships, the composer ideas and why the composer structured the elements in
that way.

Usually, the musical analysis is performed over a score because is easier
to identify these mentioned elements, but also listening to some parts of the
work is complementary.

The musical analysis includes different subanalysis or techniques that are
used to describe the musical work:

• Discretization: breaking the piece down into smaller parts and examine
the way these parts are connected. In fact, Fred Lerdahl[21] argues that
discretization is indispensable for a musical analysis.

• Harmonic analysis: indicate the harmonic functions on the same score
including figured bass and modulations if harmony is tonal.
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Figure 1.5: Figured bass in different scales of C

Although the discretization is more intuitive to perform, the harmonic
analysis implies the knowledge of the harmonies in different scales 1.5. Also,
the knowledge of the most famous cadences is very important. These are
some of them:

• Perfect Authentic Cadence (PAC): V to I (chords in root position)

• Imperfect Authentic Cadence (IAC): V to I (with modified notes)

• Half Cadence (HC): V of V, ii, vi, IV, or I to V

• Plagal Cadence (PC): IV to I

• Interrupted Cadence: V to vi

And there are more cadences and larger common progressions, like "I IV
I IV" or "I IV V7 I" that are interesting to obtain from the analyzed work
[22].

As an illustrative example of a music analysis, looking at this Beethoven
Minuet 1.6 we can see the letters above the staff that denotes the different
sections of the score. We obtained "a", "b", "c" and again "b". Also, we
made the harmonic analysis ("I", "V", "IV" and the other variants, inversions
and elements below the staff) focusing on cadences like Half Cadence (HC),
Perfect Authentic Cadence (PAC) or Imperfect Authentic Cadence (IAC).
There are more elements like passing tones (PT) and subjective descriptions
at the margins.
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Figure 1.6: Analysis of a Beethoven Minuet No. 3. of 4 in E-flat

But the interesting idea here is that the previous features, like in the
texts, help to discriminate the authors.

This field of the music theory covers music from medieval era to the
contemporary music, but in this thesis we are focused on classical music
analysis and the application of the techniques that we showed in the example.





Chapter 2

Implementation

In this section I explain each part of the proposed system 2.5 from the tech-
nologies I chose and the features that I extracted to identify the composers.

2.1 Technologies

These are the technologies used in all the stages of the system.

2.1.1 Sonic Annotator and Visualizer

Sonic Annotator[23] is a batch tool for feature extraction and annotation
of audio files using Vamp plugins (binary modules that extract descriptive
information from audio data). It was originally developed in 2009 at Queen
Mary, University of London as part of the OMRAS2 project, to facilitate
feature data publication on the Semantic Web. It has been used in audio
annotation projects and it’s used to power online audio feature retrieval APIs.
It’s published under GNU General Public License v2.

Sonic Visualizer[24] is a graphical application that plots the content of
the extracted data from Sonic Annotator. It’s also developed by the Centre
for Digital Music at Queen Mary, University of London and published under

15



CHAPTER 2. IMPLEMENTATION 16

Figure 2.1: Workflow diagram of Sonic Annotator and Visualizer

GPLv2.

Both tools are powerful because they allow you to use the QM Vamp
Plugins that were presented to MIREX in previous years[25] and they have
an approximate accuracy of 80% in Chord Detection and Key Estimation
[26].

2.1.2 Python

High level programming language designed to be easy to read, understand
and implement. It supports multiple programming paradigms including
object-oriented, imperative, functional and procedural. It’s published un-
der PSFL licence (open source).

I chose this programming language because it makes easy to work with
CSV files and dictionaries (the C++ or Java "hashmaps") for counting the
feature values of the audio samples.
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Figure 2.2: Fragment of Bach’s Prelude no. 568 with Key Strength Plot in
Sonic Visualizer

2.1.3 Bash

Bash is a Unix shell and a command language written by Brian Fox for the
GNU Project as a free replacement of the Bourne shell. Bash Shell is included
in most of GNU/Linux and OS X releases.

The most famous features of Bash (and all Unix shells) are filename glob-
bing (wildcard matching), piping, command substitution, variables and con-
trol structures for condition-testing and iteration.

With this features, this tool is perfect to simplify the way of working
with thousand of files that need to be passed to other languages scripts or
programs, like Python or Sonic Annotator. Also, the example of submis-
sion calling formats showed ".sh" scripts for feature extraction, training and
classifying samples, so I followed it.
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2.1.4 MATLAB and Octave

MATLAB is a multi-paradigm numerical computing environment and a pro-
prietary programming language developed by MathWorks. This environment
is focused on matrix manipulations and functions and data plotting. For this
reasons, this environment (along with Python) is the most used in Mathem-
atics and Statistical fields.

Octave is quite similar to MATLAB and most programs are compatible
with both, but Octave is developed as open source and part of GNU Project.

2.1.5 Deep Learn Toolbox

The Deep Learning Toolbox of Rasmus Berg is a Matlab/Octave toolbox for
Deep Learning. Includes Deep Belief Nets, Stacked Autoencoders, Convolu-
tional Neural Nets, Convolutional Autoencoders and vanilla Neural Nets. It’s
very easy to use, documented and gives working examples in actual problems
giving state of the art results.[27]

Also, given the practice I got in IARFID master using this toolbox in
several subjects and the good results and performance it showed, I wanted
to save some time from learning more tools using it again.

2.2 Feature extraction

In this chapter I explain the features I extracted from audio samples in the
training process (at the beginning) to train the neural network and at the
end, at the moment to classify new samples.

2.2.1 Key Mode

The Vamp Plugin "Key Mode" calculates the major or minor mode of the
estimated key in windows of 10 chroma frames. After calculate them, I use
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Figure 2.3: Fragment of Bach’s Prelude no. 568 with Segmentation plot in
Sonic Visualizer

the count of the changes between minor and major as a feature. Major is
written as 0 and minor as 1.

2.2.2 Segmentation

This is also feature from a Vamp Plugin from Queen Mary which divides the
channel into 10 structural segments based on chroma and MFCC. Also, it
labels similar segments, which gives us a structural analysis of the sample
based on tonality. As key mode, I also use the count of the segments that
appear at the segment.2.3

2.2.3 Tonality

The main work has been done in these following high level features based on
the key of the sample and the detected chords. First of all, I obtain through
the key strength Vamp plugin 2.2 the value between -1 and 1 of every key
(from C, C#, and so on, to B minor and major) of every window of 1 chroma
frame. Then, I select the most strong key of every window (in the figure, the
most red value of a column) obtaining a vector of keys.
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Tone(Keys, pond) = argmaxk∈Keys

nwin∑
w10=1

wk

nwin∑
w1=2

wk ∗ ((1−w)(k+7)%12)∗pond

Figure 2.4: Formula to obtain a ponderated key using perfect cadences and
key strength

From this keys vector, I created a script in Python 2.4 that obtains the
key of the sample using a weighted sum of the number of perfect cadences
found at the key strength using 1 chroma and the values of key strength
plugin using 10 chroma. In the mathematical notation, keys are sorted by 12
Major tones and then 12 minor tones, the ponderation in the implementation
is 12 after some tests and the w is the 1 and 10 chroma window through the
algorithm iterates. This obtained key is used as a feature.

2.2.4 Harmonic analysis

The previous key vector, then, need to be transposed to convert this incon-
textual chords into a functional chords to get a functional harmonic analysis
of the sample. To transpose, I use the previous obtained key of the sample.

From the previous feature we can obtain the number of functional units
in the sample (tonic, dominant, subdominant, etc.), the number of most used
cadences (perfect authentic cadence, plagal cadence, half-cadence, etc.) and
even a set of most used progressions of three chords (like IV-V-I) 1.3.4. As a
parallelism of the POS tagging in text, is interesting to analyze the impact
of this features because it’s known that discriminate the composers [28].

2.2.5 MFCC means

At last, I included the means of the MFCC (Vamp Plugin) from the sample,
using 20 coefficients and including C0, also to compare this timbral feature
with the structural ones.
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2.3 Classification

In the proposed systems, I used a Multi Layer Perceptron (Feedforward Back-
propagation Neural Network or simply NN) in one system and a Deep Belief
Network (DBN) in another one as a classifiers. The features are normalized
with z-score to remove outlayers and after that I normalized between 0 and
1 before using the neural network because of artificial neural network input
restriction by design. The networks are configured with 44 neurons at the
hidden layer, 300 epochs, a batch size based on a divisor of the number of
dataset samples, sigmoid activation function and softmax function at the
output layer. I tested the system with a homemade database of FLAC files,
extracted from my own CD’s of the authors of the task.
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Figure 2.5: Workflow of the proposed system





Chapter 3

Experiments

For the experiments, I used a database created by myself. The reason for
this decision is that music databases are not easy to distribute because of
copyright issues and this task requires a very specific audio samples.

The database I created is structured exactly the same way that the
MIREX task specifies:

• 2772 30-second 22.05 kHz mono wav clips
• 11 "classical" composers (252 clips per composer), including:

– Bach
– Beethoven
– Brahms
– Chopin
– Dvorak
– Handel
– Haydn
– Mendelssohn
– Mozart
– Schubert
– Vivaldi

The disks I used are (respectively to each composer):

24
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• Bach - The Baroque Music Library (http://www.baroquemusiclibrary.
com/)

• The Very Best of Beethoven (ASIN: B000B6N64A)

• The Best of Brahms (ASIN: B0000014HA)

• Chopin - Complete Edition (Deutsche Grammophon) (ASIN: B00001X58Z)

• The Very Best of Dvorak (ASIN: B000S5C8O8)

• Handel - The Baroque Music Library (http://www.baroquemusiclibrary.
com/)

• Haydn - The Baroque Music Library (http://www.baroquemusiclibrary.
com/)

• Mendelssohn - The complete symphonies (ASIN: B003Y3MYWC)

• Mozart - Complete Works (ASIN: B000BLI3K2)

• Franz Schubert - Masterworks (ASIN: B00062FLJC)

• The Very Best of Vivaldi (ASIN: B000B6N63Q)

After downloading (most of them in MP3) and dumping the audios into
WAV files using Asunder app, I created a "quick" bash command to convert
all .mp3 files into WAV:
find * -type f -name "*.mp3" -exec avconv -i ’{}’ ’{}.wav ’

And also another one to cut all files into 30 seconds fragments and clas-
sified in folders by composer:
for FOLDER in ‘ls ‘; do cd $FOLDER; rename ’s/^(.{30}) .*(\..*)$/$1$2/’ * &&

find | rename ’s/[\ \-() ,;]//g’ && COUNTER =1; for FILE in ‘ls ‘; do
LENGTH=‘nohup sox $FILE -n stat | grep "Length␣(seconds):" | sed ’s/\ //
g’ | cut -f 2 -d ’:’ | cut -f 1 -d ’.’‘; LENGTH=$(( LENGTH - 30 ));
LENGTH=${LENGTH/# -/}; for i in 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
18 19 20; do STARTVALUE=‘echo $RANDOM % $LENGTH + 1 | bc ‘; COMMAND ="sox
"$FILE" "${COUNTER}_$FILE" trim $STARTVALUE 30"; COUNTER=$(( COUNTER +1))

; echo $COMMAND; eval $COMMAND; done ; rm $FILE; done; cd ..; done

Also, to test the workflow of the MIREX task, I created the list of files
for feature extraction, training and classification with another simple Bash
script:

http://www.baroquemusiclibrary.com/
http://www.baroquemusiclibrary.com/
http://www.baroquemusiclibrary.com/
http://www.baroquemusiclibrary.com/
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Features # of features DBN NN
Means MFCC 20 33.5 37.1
Means MFCC + Segmentation + Major/Minor 32 27.8 25.9
Harmonic Analysis + Means MFCC 68 28.0 35.3
Harmonic Analysis 48 12.1 10.5
Unigrams+Bigrams + Means MFCC 45 32.3 33.6
Unigrams+Bigrams 25 10.1 9.4
Unigrams + Means MFCC 32 27.8 38.0
Unigrams 12 8.9 9.5
Segmentation 10 8.4 8.7
Harmonic Analysis + Segmentation + Major/Minor 60 11.3 11.1
All 80 18.1 29.7

Table 3.1: Average three-fold cross-validation accuracies, in percent. Mold-
face: best performance for a given setting (row).

find /home/leopoldo/tfm/audio/ -type f > featureExtractionFiles.txt
cat featureExtractionFiles.txt | cut -f 6 -d ’/’ > tmp
paste featureExtractionFiles.txt tmp > trainingFiles.txt
find /home/leopoldo/tfm/audio -testing/ -type f > classifyFiles.txt
cat classifyFiles.txt | cut -f 6 -d ’/’ > tmp
paste classifyFiles.txt tmp > expectedResult.txt
rm tmp

This created an amount of 2420 files (6.4GB), but due to the length gap
between authors after some tests, I decided to delete some audio fragments
from some composers and created a final corpus of 1100 files (100 files per
composer).

So, I experimented with my dataset focusing on the harmonic analysis
because that features were implemented by myself. I experimented with dif-
ferent Neural Network configurations, with DBN and NN, and using different
groups of features to compare the impact of each of them using a three-fold
cross validation process.

I named "unigrams" and "bigrams" the figured bass and the cadences
given the simile with text n-grams.

NOTE: The results of the MIREX Train/Test tasks are not available at
the submission deadline of this report.





Chapter 4

Conclusions

In this work we explained a different approach of a music audio classification
problem from the music theory point of view using a structural analysis of
the musical work. After the results, we can conclude that the propagated
error of the feature extraction is crucial for this theory to work. This can be
seen at the penultimate test, which uses all the features I implemented and
the accuracy is the more or less the same as a "random" classifier, and the
MFCC means based classifier gets more than almost all the other results. But
we can see little improvements if we compute the classification with figured
bass (unigrams).

Also, if we compare with the overall results of MIREX 2014 1.1, the best
result is comparable to BK4, which used MFCC, DFB, OSC, Gabor filters,
temporal and visual features in a SVM machine[9].

4.1 Future work lines

Given this initial idea of working with audio from the harmony and structure
of the music, this idea can be improved looking for more plausible patterns
to identify:

• Melody or bass patterns (using implementations from the state of the
art of MIREX which are close to 90% of accuracy)
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• Improve the segmentation feature using history ("n-gram segmenta-
tion")

• Other timbral features to compare with (like DFB or OSC)

• More accurate tonality detection to improve the harmony analysis

• Or use different machine learning algorithms like Convolutional Neural
Nets

And finally, as this work resulted as a parallelism with PAN contest, this
thesis idea can be suggested to be used to investigate the viability of profiling
the composer of the classical works to obtain the age of the composer (when
the work was composed) or even nationalities due to the different schools of
European composers, that can be settle a new interesting task in the MIREX
exchange.
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Appendix A

Donwload links

• Download this document: https://github.com/Lesbinary/TFM/raw/
master/doc/report.pdf

• Source code download (documentation and implementation): https:
//github.com/Lesbinary/tfm/archive/master.zip

• Github Repository: https://github.com/Lesbinary/tfm

• GPLv3 License: https://github.com/Lesbinary/tfm/blob/master/
LICENSE
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Appendix B

Environment configuration

This project has been developed under clean install of Ubuntu 15.04 but
it also works on Ubuntu 14.04 LTS. The only needed software that is not
installed by default is MATLAB and I used version 2014a.

First of all, you need to download my repository (see appendix A) into
the folder you want. After that, you need to copy the "vamp" folder of
the root of the repository into your home folder ($HOME/vamp) or into
/usr/local/lib/vamp because Sonic Annotator searches for plugins in that
paths.

Then you are ready to use the script based on the standard of MIREX sub-
missions (http://www.music-ir.org/mirex/wiki/2015:Audio_Classification_
%28Train/Test%29_Tasks#Example_submission_calling_formats), for ex-
ample:

tfmFeatureExtractor.sh -numThreads 8 ~/tfm/scratch/ ~/tfm/trunk/
featureExtractionFiles.txt

tfmTrainer.sh -numThreads 8 ~/tfm/scratch/ ~/tfm/trunk/trainingFiles
.txt

tfmClassifier.sh -numThreads 8 ~/tfm/scratch/ ~/tfm/trunk/
classifyFiles.txt ~/tfm/trunk/finalResult

And that’s it. Also keep in mind that you will need a system with at
least 80MB. It’s recommended 100-150MB for using a corpus like the one in
MIREX. Also keep in mind that there is an option of multithreading which
can improve the speed of the run. The default threads value is 4 and can be
set with the parameter "-numThreads" (see previous example).
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