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Summary 

 

Synthetic Biology is an emerging interdisciplinary field that aims to apply the 
engineering principles of modularity, abstraction and standardization to genetic 
engineering. The nascent branch of Synthetic Biology devoted to plants, Plant Synthetic 
Biology (PSB), offers new breeding possibilities for crops, potentially leading to enhanced 
resistance, higher yield, or increased nutritional quality. To this end, the molecular tools 
in the PSB toolbox need to be adapted accordingly, to become modular, standardized 
and more precise. Thus, the overall objective of this Thesis was to adapt, expand and 
refine DNA assembly tools for PSB to enable the incorporation of functional specifications 
to the description of standard genetic elements (phytobricks) and to facilitate the 
construction of increasingly complex and precise multigenic devices, including genome 
editing tools. 

The starting point of this Thesis was the modular DNA assembly method known as 
GoldenBraid (GB), based on type IIS restriction enzymes. To further optimize the GB 
construct-making process and to better catalog the phytobricks collection, a database 
and a set of software-tools were developed as described in Chapter 1. The final web-
based software package, released as GB2.0, was made publicly available at 
www.gbcloning.upv.es. A detailed description of the functioning of GB2.0, exemplified 
with the building of a multigene construct for anthocyanin overproduction was also 
provided in Chapter 1. As the number and complexity of GB constructs increased, the 
next step forward consisted in the refinement of the standards with the incorporation of 
experimental information associated to each genetic element (described in Chapter 2). 
To this end, the GB package was reshaped into an improved version (GB3.0), which is a 
self-contained, fully traceable assembly system where the experimental data describing 
the functionality of each DNA element is displayed in the form of a standard datasheet. 
The utility of the technical specifications to anticipate the behavior of composite devices 
was exemplified with the combination of a chemical switch with a prototype of an 
anthocyanin overproduction module equivalent to the one described in Chapter 1, 
resulting in a dexamethasone-responsive anthocyanin device. Furthermore, Chapter 3 
describes the adaptation and functional characterization of CRISPR/Cas9 genome 
engineering tools to the GB technology. The performance of the adapted tools for gene 
editing, transcriptional activation and repression was successfully validated by transient 
expression in N. benthamiana. Finally, Chapter 4 presents a practical implementation of 
GB technology for precision plant breeding. An intragenic construct comprising an 
intragenic selectable marker and a master regulator of the flavonoid biosynthesis was 
stably transformed in tomato resulting in fruits enhanced in flavonol content.  

All together, this Thesis shows the implementation of increasingly complex and 
precise genetic designs in plants using standard elements and modular tools following 
the principles of Synthetic Biology. 

  



 

	

 

  



	 	 	
	

	 	
	

Resumen 

 

La Biología Sintética es un campo emergente de carácter interdisciplinar que se 
fundamenta en la aplicación de los principios ingenieriles de modularidad, abstracción y 
estandarización a la ingeniería genética. Una nueva vertiente de la Biología Sintética 
aplicada a las plantas, la Biología Sintética Vegetal (BSV), ofrece nuevas posibilidades de 
mejora de cultivos que podrían llevar a una mejora de la resistencia, a una mayor 
productividad, o a un aumento de la calidad nutricional. Sin embargo, para alcanzar este 
fin las herramientas moleculares disponibles en estos momentos para BSV deben ser 
adaptadas para convertirse en modulares, estándares y más precisas. Por ello se planteó 
como objetivo general de esta Tesis adaptar, expandir y refinar las herramientas de 
ensamblaje de DNA de la BSV para permitir la incorporación de especificaciones 
funcionales en la descripción de elementos genéticos estándar (fitobricks) y facilitar la 
construcción de estructuras multigénicas cada vez más complejas y precisas, incluyendo 
herramientas de editado genético. 

El punto de partida de esta Tesis fue el método de ensamblaje modular de ADN 
GoldenBraid (GB) basado en enzimas de restricción tipo IIS. Para optimizar el proceso de 
ensamblaje y catalogar la colección de fitobricks generados se desarrollaron una base de 
datos y un conjunto de herramientas software, tal y como se describe en el Capítulo 1. 
El paquete final de software se presentó en formato web como GB2.0, haciéndolo 
accesible al público a través de www.gbcloning.upv.es. El Capítulo 1 también 
proporciona una descripción detallada del funcionamiento de GB2.0 ejemplificando su 
uso con el ensamblaje de una construcción multigénica para la producción de 
antocianinas. Con el aumento en número y complejidad de las construcciones GB, el 
siguiente paso necesario fue el refinamiento de los estándar con la incorporación de la 
información experimental asociada a cada elemento genético (se describe en el Capítulo 
2). Para este fin, el paquete de software de GB se reformuló en una nueva versión 
(GB3.0), un sistema de ensamblaje auto-contenido y completamente trazable en el que 
los datos experimentales que describen la funcionalidad de cada elemento genético se 
muestran en forma de una hoja de datos estándar. La utilidad de las especificaciones 
técnicas para anticipar el comportamiento de dispositivos biológicos compuestos se 
ejemplificó con la combinación de un interruptor químico y un prototipo de un módulo de 
sobreproducción de antocianinas equivalente al descrito en el Capítulo 1, resultando en 
un dispositivo de producción de antocianinas con respuesta a dexametasona. Además, 
en el Capítulo 3 se describe la adaptación a la tecnología GB de las herramientas de 
ingeniería genética CRISPR/Cas9, así como su caracterización funcional. La funcionalidad 
de estas herramientas para editado génico y activación y represión transcripcional se 
validó con el sistema de expresión transitoria en N.benthamiana. Finalmente, el Capítulo 
4 presenta una implementación práctica del uso de la tecnología GB para hacer mejora 
vegetal de manera precisa. La transformación estable en tomate de una construcción 
intragénica que comprendía un marcador de selección intragénico y un regulador de la 
biosíntesis de flavonoides resultó en frutos con un mayor contenido de flavonoles. 

En conjunto, esta Tesis muestra la implementación de diseños genéticos cada vez 
más complejos y precisos en plantas utilizando elementos estándar y herramientas 
modulares siguiendo los principios de la Biología Sintética. 



 

	

  



	 	 	
	

	 	
	

Resum 
 

La Biologia Sintètica és un camp emergent de caràcter interdisciplinar que es 
fonamenta amb l’aplicació a la enginyeria genètica dels principis de modularitat, 
abstracció i estandarització. Una nova vessant de la Biologia Sintètica aplicada a les 
plantes, la Biologia Sintètica Vegetal (BSV), ofereix noves possibilitats de millora de 
cultius que podrien portar a una millora de la resistència, a una major productivitat, o a 
un augment de la qualitat nutricional. Tanmateix, per poder arribar a este fi les eines 
moleculars disponibles en estos moments per a la BSV han d’adaptar-se per convertir-se 
en modulars, estàndards i més precises. Per això es plantejà com objectiu general 
d’aquesta Tesi adaptar, expandir i refinar les eines d’ensamblatge d’ADN de la BSV per 
permetre la incorporació d’especificacions funcionals en la descripció d’elements genètics 
estàndards (fitobricks) i facilitar la construcció d’estructures multigèniques cada vegada 
més complexes i precises, incloent eines d’edidat genètic. 

El punt de partida d’aquesta Tesi fou el mètode d’ensamblatge d’ADN modular 
GoldenBraid (GB) basat en enzims de restricció tipo IIS. Per optimitzar el proces 
d’ensamblatge i catalogar la col.lecció de fitobricks generats es desenvolupà una base de 
dades i un conjunt d’eines software, tal i com es descriu al Capítol 1. El paquet final de 
software es presentà en format web com GB2.0, fent-se accessible al públic mitjançant 
la pàgina web www.gbcloning.upv.es. El Capítol 1 també proporciona una descripció 
detallada del funcionament de GB2.0, exemplificant el seu ús amb l’ensamblatge d’una 
construcció multigènica per a la producció d’antocians. Amb l’augment en nombre i 
complexitat de les construccions GB, el següent pas fou el refinament dels estàndards 
amb la incorporació de la informació experimental associada a cada element genètic (es 
descriu en el Capítol 2). Per a aquest fi, el paquet de software de GB es reformulà amb 
una nova versió anomenada GB3.0. Aquesta versió consisteix en un sistema 
d’ensamblatge auto-contingut i complemtament traçable on les dades experimentals que 
descriuen la funcionalitat de cada element genètic es mostren en forma de fulla de dades 
estàndard. La utilitat de les especificacions tècniques per anticipar el comportament de 
dispositius biològics compostos s’exemplificà amb la combinació de un interruptor químic 
i un prototip d’un mòdul de sobreproducció d’antocians equivalent al descrit al Capítol 1. 
Aquesta combinació va tindre com a resultat un dispositiu de producció d’antocians que 
respón a dexametasona. A més a més, al Capítol 3 es descriu l’adaptació a la tecnologia 
GB de les eines d’enginyeria genètica CRISPR/Cas9, així com la seua caracterització 
funcional. La funcionalitat d’aquestes eines per a l’editat gènic i activació i repressió  
transcripcional es validà amb el sistema d’expressió transitòria en N. benthamiana. 
Finalment, al Capítol 4 es presenta una implementació pràctica de l’ús de la tecnologia 
GB per fer millora vegetal de mode precís. La transformació estable en tomaca d’una 
construcció intragènica que comprén un marcador de selecció intragènic i un regulador 
de la biosíntesi de flavonoïdes resultà en plantes de tomaca amb un major contingut de 
flavonols en llur fruits. 

En conjunt, esta Tesi mostra la implementació de dissenys genètics cada vegada més 
complexos i precisos en plantes utilitzant elements estàndards i eines modulars seguint 
els principis de la Biologia Sintètica. 
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 Brief introduction to Synthetic Biology 1.

Synthetic Biology (SynBio) is an emerging interdisciplinary field that aims to apply the 

basic principles of engineering to molecular biology and genetic engineering (What's in a 

name?, 2009). The main objective of SynBio is not to depict the fundamental principles 

underlying biology but to make biology useful for the society by making it practical and 

predictable (Cook et al., 2014). To achieve this goal SynBio proposes to rewire biological 

systems by introducing new biological components or pathways created following the 

engineering principles of standardization, modularity and abstraction of function (Silver 

et al., 2014, Khalil & Collins, 2010). 

The idea of applying engineering principles to biology in order to facilitate and speed 

up the design and development of new biological devices is inspired in the development 

of the computing sciences (Gardner & Hawkins, 2013). The great progress of computing 

during the 20th century was based on the aforementioned engineering principles. After 

cracking how to write and how to read instructions, several standard electronic 

components were created and easily combined to build hardware components. In 

parallel, computer languages emerged to provide standard rules for the creation of 

machine-readable instructions, which can be referred as software. Software and 

hardware are complementary and none of them can be used without the other. 

With the milestone of computer science in mind, synthetic biology started to consider 

molecular biology and its rules as the software to write new instructions with DNA. The 

standardization and modularity of the composition rules in molecular biology are 

powering SynBio. Besides software, as in computer science, SynBio also needs 

hardware. A universal biological machine does not exist yet, although many chassis are 

being used and improved to come up to this objective (Leonard et al., 2008). Engineered 

bacteria and yeast are being employed for fermentation (Altaras & Cameron, 1999, 

Jarboe et al., 2007) and drug synthesis (Chang & Keasling, 2006) among other 

biotechnological applications (Andrianantoandro et al., 2006). Production of an 

antimalarial drug precursor in Saccharomyces cerevisiae following a SynBio approach 

that involved the engineering of the farnesyl pyrophosphate (FPP) pathway and the 

introduction of two enzymes catalyzing the conversion of FPP first to amorphadiene and 

next to artemisinic acid constitutes one of the SynBio hallmarks (Ro et al., 2006). 
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 SynBio meets Plant Biology 2.

SynBio founded its beginning in microbial systems, but most of the issues that this 

discipline aims to solve are beyond the ability of microbes to deal with them. That is the 

reason why SynBio has advanced to multicellular systems, notably to plants (Liu & 

Stewart, 2015). Plants are primary sources of biomass, an excellent source of valuable 

secondary metabolites and an advantageous platform for recombinant protein 

production. The nascent branch of SynBio devoted to plants (Plant Synthetic Biology, 

Plant SynBio) aims to accomplish new engineering goals, more complex and precise than 

current single-gene approaches, as building entire biosynthetic or signaling pathways 

within the plant ‘chassis’, reshufle endogenous (intragenic) genetic elements to produce 

new crop traits, or create new sources of genetic diversity through targeted gene editing 

at genome escale. Examples of challenging SynBio-inspired projects are the engineering 

of C4 metabolism in rice (Taniguchi et al., 2008), the engineering of the CAM machinery 

into bioenergy crops for biofuel production in marginal lands (DePaoli et al., 2014), or 

transforming plant leaves in oil-accumulating organs (Slocombe et al., 2009) to mention 

only some of the most relevant examples. 

The molecular tools required to apply SynBio to plants are insufficiently developed, 

dispersed, scattered and not yet standardized. Plant synthetic biologists are just starting 

to develop molecular biology tools adapted to plants particularities. Complex engineering 

in plants requires, in first place, to improve the ability to transfer large sets of 

transgenes to the plant genome. Remarkable examples of multigene engineering using 

biolistics (Agrawal et al., 2005) have been reported in the literature, including 

combinatorial approaches leading to nutritional enhancement (Naqvi et al., 2010). 

However, plant transformation is mainly performed using Agrobacterium tumefaciens as 

intermediate, which requires plasmids with specific features such as an Agrobacterium 

replication origin and conserved borders flanking the DNA that is being transferred to the 

plant (Patron, 2014). Since DNA integration into plant genomes is random, some tools 

for targeted integration based on synthetic nucleases are also being developed by the 

plant community (Puchta & Fauser, 2013). In addition to the development of new 

genetic tools, the Plant SynBio community is also joining forces to move towards 

common standards, to develop computer resources for data sharing and to search new 

funding opportunities. During its years of existence Plant SynBio has grown very quickly 

and the construction of SynBio-inspired biological devices has been reported using the 

plant cell as chassis. A pioneer example by June Medford group was the transfer to 

plants of a bacterial-based signal transduction pathway for TNT detection (Antunes et 

al., 2006, Antunes et al., 2011, Antunes et al., 2009). More recently, a red-light 
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controlled synthetic switch was built based on the red-light mediated reversible 

dimerization of the Arabidopsis thaliana phytochrome B and its interacting factor PIF6 

(Muller et al., 2014). Outside the purely academic world, a start-up company gave the 

first steps towards the creation of a ‘glowing plant’ emitting light showing promising 

results in a crowdfunding initiative (Callaway, 2013). Shared efforts are making Plant 

SynBio the heart of the second wave of SynBio, as it has the potential to face the world 

challenges of providing food, energy and other materials and compounds from limited 

resources. Plant SynBio can help towards these goals by facilitating the development of 

crops with enhanced resistance to biotic and abiotic stresses and with a higher yield. 

Plant SynBio also enables the production in plants of novel compounds for therapeutics 

and cosmetics. However, public concerns about the use of transgenesis are slowing its 

applications (Rastogi Verma, 2013). To ease public opposition to transgenesis, 

alternative technologies such as CRISPR/Cas9 are being used for genome editing. 

 Foundational Technologies and Tools for Plant 3.
Synthetic Biology 

Further advances in Plant SynBio require the parallel development of Tools and 

Technologies specially adapted to the plant chassis, most notably DNA assembly 

methods and associated computational tools. First, it is necessary to increase the 

capacity of ”writing” new genetic information in the form of DNA, primarily by de novo 

chemical synthesis of building blocks and later combining those building blocks into 

complex devices through increasingly efficient DNA assembly methods. Second, it is 

required to develop new software tools that complement DNA assembly with efficient 

data storage and computer-assisted design, thus enabling faster cycles of building and 

testing for the creation of new biological devices. This introduction will review the state 

of the art of DNA assembly methods and computational design tools for Plant SynBio. 

3.1. Assembly of Genetic Building Blocks 

The ability to write and transfer complex DNA instructions involving two or more 

genes is a key factor to implement the vision of Plant SynBio (Naqvi et al., 2010). Until 

very recently, the introduction of multiple genes into plants (gene stacking or multigene 

engineering) was mostly achieved in a sequential way by cross-breeding or by re-

transforming plants. The principal problem of these strategies is that transgenes are 

integrated randomly at different genomic positions, which can result in independent 

segregation in the progeny. An alternative for the introduction of multiple transgenes is 

the co-transformation of linked genes in a single DNA insert with the subsequent co-
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integration of the transgenes at the same chromosomal position, which allows for co-

segregation in subsequent generations. The co-transformation strategy requires the 

creation of large DNA constructs comprising multiple artificial genetic parts. Classical, 

non-standard restriction-ligation cloning methods using Type II restriction enzymes 

resulted inefficient to build multigenic constructs. In principle, precise multigenic 

constructs could be created by chemical DNA synthesis, which makes tailored DNA 

sequences without the need of a precursor DNA template. Making use of this technology, 

synthetic genes can be redesign for codon optimization and for minimizing secondary 

RNA structures (Villalobos et al., 2006). Although DNA synthesis is becoming 

increasingly affordable, and certainly has become more economical than classical cloning 

and mutagenesis procedures, it is still unaffordable for multigene-scale DNA synthesis. 

Moreover, tailored DNA synthesis lacks the advantages of modularity and standardization 

proposed by SynBio.  

The practical problems associated with the construction of large multigene cassettes 

for plant transformation are being addressed by the development of new DNA assembly 

strategies (Chao et al., 2014). Early from the foundation of the discipline, Synthetic 

Biologists introduced the concept of standard DNA building blocks or Biobricks (name 

adopted by the iGEM Foundation) (Lewens, 2013), to refer to genetic parts with a basic 

biological function (promoters, coding regions, terminators…) that can be assembled 

together to create modules with a defined function (Zhang & Jiang, 2010). These basic 

parts can be either synthesized or PCR amplified from a suitable template. Multigenic 

constructs can be subsequently created from those basic parts making use of DNA 

assembly methods. The standardization of the genetic elements results in modularization 

of the assembly strategies. Modular design speeds up engineering and decreases the 

effort required for the assembly of multigenic structures, easing the exchange and reuse 

of assembled parts and devices (Muller & Arndt, 2012). 

Here I present an overview of the main assembly strategies currently in use in Plant 

SynBio, which can be classified in two groups, those that use restriction enzymes (RE) in 

restriction-ligation cloning, and those using PCR-overlapping strategies.	

• Restriction-ligation based assembly strategies 

Restriction-ligation methods have in common that all use digestion with REs and 

subsequent ligation reactions to release and assemble genetic elements. RE-based 

methods are easy to understand and to adopt by users that are already using classical 

restriction-ligation in their cloning procedures. Their major drawback is the usual 

requirement of removing internal restriction sites for the REs used in each specific 

system. 
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The first standard cloning method proposed in SynBio was the BioBrick standard. The 

BioBrick standard proposes a sequential cloning scheme for the binary assembly of 

standard parts to create multigene assemblies. The standard makes use of four type II 

restriction enzymes: EcoRI, PstI, SpeI and XbaI (Lewens, 2013). Digestion of the 

destination vector and the donor insert with the appropriate enzymes generates 

complementary sticky ends that recreate the original sites at the beginning of the 

component and creates a six nucleotides scar at the junction (Figure 1a). Although 

BioBrick is widely used in bacterial SynBio, this assembly standard has some drawbacks 

that are especially disadvantageous for working with plants. It leaves scars between 

parts, which is not useful for applications such as protein engineering where scar benign 

joints are required. Moreover, the number of parts available on the BioBricks registry for 

plant biotechnology applications is limited and, in addition, the assembly of complex 

constructs requires the use of a sequential cloning schema, which is time consuming and 

generates many intermediate useless constructs. 

An alternative solution came with the Golden Gate cloning system (Engler et al., 

2009). Golden Gate overcomes BioBrick limitations making use of a Type IIS restriction 

enzyme (BsaI). Type IIS enzymes have separate cutting sites and recognition sites, 

therefore transferring the decision of specific sequence of sticky ends to the user, and 

allowing the combination of several parts, up to nine, in a single restriction-ligation 

reaction (Figure 1b). These characteristics enable scar-benign assemblies minimizing the 

time required to assemble new transcriptional units in comparison with BioBricks.  

In its initial description, Golden Gate was limited to a combination of no more than 

nine elements, and was not suitable for multigene engineering. It was efficient enough to 

assemble one or two transcriptional units (TUs), but not to combine several TUs in a 

single construct. Multigene assembly based in Golden Gate was made possible by 

introducing a second Type IIS enzyme in the cloning schema, which allowed performing 

sequential assembly levels by alternating the two enzymes. This general strategy, which 

was developed independently by two Plant groups, gave rise to two alternative cloning 

methods known as MoClo and GoldenBraid (GB) respectively. MoClo proposed a large 

collection of destination vectors that allow the one-step assembly of different numbers of 

transcriptional units (TUs) (Weber et al., 2011a). GoldenBraid was an alternative 

modular system that allowed the indefinite growth of the multigenic structures making 

use of just four destination vectors by proposing a binary and iterative loop strategy 

(Figure 1c) (Sarrion-Perdigones et al., 2011). Each cloning system has its pros and cons 

(Table 1). Whereas the time required for creating complex assemblies is larger with 

GoldenBraid than with MoClo, any intermediate element generated with GoldenBraid is 

reusable, favoring the exchange of parts and modules. An extra benefit of GoldenBraid is 
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that it incorporates an integrated web-platform offering software solution to the design 

and assembly of multigenic structures. This platform also includes a collection of genetic 

parts and modules to be used in Plant SynBio and Plant Metabolic Engineering boosting 

the users exchange of created modules. The so-called GoldenBraid 2.0 web platform was 

developed during this Thesis and it is described in Chapter 1 and in (Vazquez-Vilar et al., 

2015).  

Modular Cloning methods such as MoClo and GoldenBraid benefit from the assignment 

of arbitrary overhangs to defined positions within a prototypical Transcriptional Unit, 

therefore creating a positional notation also known as “Assembly Syntax”. Such 

categorization allows the exchange and reuse of genetic elements. Initially, MoClo and 

GB (version one) syntaxes had little in common, as they were developed independently 

(see Weber et al. (2011a) and Sarrion-Perdigones et al. (2011)). During this Thesis 

several confluency efforts were done to increase compatibility among the two main Plant 

modular cloning systems. The GB2.0 grammar described in Chapter 1 represents an 

initial effort towards this goal. Finally, a concerted effort to bring together a wider 

community consensus crystalized in a position paper describing the so-called Standard 

Plant Syntax (Patron et al., 2015). The final adaptation of the GoldenBraid system to this 

common Syntax is described in Chapter 2 as a part of the development of the third 

version of the GoldenBraid system (GB3.0). 
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Figure 1. Restriction-ligation DNA assembly systems.  

(a) Digestion of two BioBrick parts with pairs of enzymes leaves both plasmids with 4 base pair compatible 
overhangs. Upon ligation of compatible sites, a 6 base pair scar is generated between the original parts that 
form the new BioBrick. (b) Multiple DNA parts flanked by Type IIS restriction sites generating 4 base pair 
compatible overhangs are simultaneously assembled in a destination vector with the Type IIS sites in inverted 
orientation. (c) Vectors obtained from Golden Gate reactions can be assembled between them in GoldenBraid 
reactions where genetic elements assembled in compatible vectors (1 and 2) of the same level (α or Ω) can be 
combined between them in any destination vector of the opposite level.	
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• Overlap assembly methods 

Alternatively to restriction-ligation methods, several methods based on homologous 

recombination have been applied to create large multigenic constructs. They overcome 

the issue of removing internal restriction sites required on the restriction-ligation 

dependent strategies. However, these methods require amplification of fragments with 

primers specifically designed to each fragment, which is costly and time-consuming 

(Table 1). Parts and destination vector are amplified with flanking overlap regions that 

are typically 40 nucleotides in length and define their position in the final assembly. 

Parts and vector are mixed together and joined by enzymatic reactions in vitro or using 

recombination systems in vivo.  

The sequence ligase independent cloning (SLIC) method requires the treatment of the 

parts and vector to be assembled with the T4 polymerase that, in the absence of dNTPs, 

have a 3’-5’ exonuclease activity, leaving 5’ overhangs (Li & Elledge, 2012). Careful 

design of the intended overhangs, lacking cytosines, allows the T4 exonuclease activity 

be counterbalanced by the addition of dCTP. After letting the T4 act for a controlled time, 

all the PCR products and the destination vector having appropriately long 5’ overhangs 

are assembled together creating a stable circular molecule which does not require ligase 

activity to be efficiently transformed into E. coli cells.  

A very popular cloning alternative is the Gibson assembly, where all the parts and the 

linearized destination vector are treated with a three-enzymes cocktail comprising a T5 

exonuclease with 5’-3’ activity, a polymerase to fill the gaps after 3’ overhangs 

annealing, and a ligase for nicks reparation (Gibson et al., 2009). In CPEC, or circular 

polymerase extension cloning, all the parts and the vector prime each other in a low-

cycle PCR (Quan & Tian, 2009). SLICE is based on the same principles as CPEC but the 

enzyme mixture is replaced by cell extracts (Zhang et al., 2012). In general, although 

overlap-based methods are very efficient, they are not widespread among plant 

biotechnologists, which have mainly adopted Restriction-Ligation Methods for Plant 

SynBio approaches. 
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Assembly 

method 
Mechanism Scar 

Fragments 

assembled in 

parallel 

Idempotency of 

the generated 

construct 

Reference 

BioBricks Type II RE 6bp Two Yes (Lewens, 2013) 

Golden Gate Type IIS RE 
No (or 4bp with 

standard parts) 
Multiple No (Engler et al., 2009) 

Moclo Type IIS RE 4bp Multiple No (Weber et al., 2011a) 

GoldenBraid Type IIS RE 4bp Two Yes 
(Sarrion-Perdigones et al., 

2011) 

SLIC Overlap No Multiple Yes (Li & Elledge, 2012) 

Gibson Overlap No Multiple Yes (Gibson et al., 2009) 

CPEC Overlap No Multiple Yes (Quan & Tian, 2009) 

SLICE Overlap No Multiple Yes (Zhang et al., 2012) 

	

Table 1. Comparison of standardized DNA assembly methods. 

	

3.2. Software tools for assisted DNA assembly, 
modeling of synthetic gene circuits and data 
management 

The advantages of the standardization along with the growing ability of researchers to 

manipulate DNA are generating a large quantity of genetic parts and modules. Their 

utility relies on a robust characterization and on the ability to incorporate them in higher 

order devices with a predictable response. Standardization is enabling the definition of 

common rules for the composition and characterization of those genetic parts, facilitating 

the development of registries and associated software tools for in silico DNA assembly 

and modeling.  

3.2.1. Registries of plant specific genetic 
elements 

In recent years, many information-sharing platforms for data management emerged 

to handle synthetic biology knowledge and favor the communication among researchers. 

Databases are the way to keep the information generated in a SynBio laboratory 
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organized, favoring the exchange of standard genetic elements. The Registry of 

Standard Biological Parts is probably the best-known collection of genetic parts (Peccoud 

et al., 2008). It includes a catalog of more than 20.000 parts organized by part type, 

chassis and function. However, the set of parts specific for plants in this Registry is 

limited (Boyle et al., 2012). After the establishment of the Registry as a reference 

platform, other collections rose up. The International Open Facility Advancing 

Biotechnology (BioFAB) (Mutalik et al., 2013b) offers a characterized collection of 

bacterial promoters and termination regions and the Joint BioEnergy’s Inventory of 

Composable Elements (JBEI-ICE) (Ham et al., 2012) is a biological database to store 

strains and seeds, as well as DNA parts and devices. At the beginning of this thesis, 

there were, to our knowledge, no collections or registries of DNA elements devoted to 

Plant SynBio. Even today there are few examples, notably the UK-based OpenPlant 

Initiative (http://openplant.org/) and the GB2.0/GB3.0 public database 

(https://gbcloning.upv.es/search/) described in this Thesis (see Chapter 1, Chapter 2 

and Sarrion-Perdigones et al. (2013)), although only GB seems to have currently an 

online database in place.  

3.2.2. In silico DNA assembly 

Besides easing the laboratory procedures, it is important to automate all the assembly 

process so as to minimize the user’s input, avoiding human errors, and leading to the 

expected result. The coexistence of many assembly standards is a challenge for the 

computational community. To create specific software tools for each assembly standard 

could be the solution to manage the huge quantity of available information. Modular 

assembly methods facilitate the development of computational tools to design the 

assemblies, therefore facilitating automation (Hillson et al., 2012). Recently, many new 

computational tools for multigenic assemblies in SynBio have been created. ClothoCAD 

assembles gene circuits from parts with a formal grammar offering data retrieval from 

the Registry (Xia et al., 2011). j5 makes possible to perform in silico assemblies with any 

of the following cloning strategies: SLIC, CPEC, Gibson and Golden Gate (Hillson et al., 

2012). While all these strategies result in scar-benign assemblies, the solution provided 

by the j5 software is non-intuitive, requiring as input an user-created datasheet. Again, 

at the starting of this thesis there were no assembly software tools devoted to Plant 

SynBio. To fill this gap, we created the integrated gbcloning web-platform offering 

solution to data management, design and assembly of multigenic structures with the 

GoldenBraid strategy (see Chapter 1 and Sarrion-Perdigones et al. (2013)).  

As mentioned before, during the elaboration of this Thesis, Golden Gate and 

GoldenBraid developers agreed the use of a common syntax for Plant Biotechnology. 
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This Standard Plant Syntax establishes the physical composition rules that govern the 

way in which individual genetic components (hereafter referred to as phytobricks) are to 

be connected together to create higher order modules and devices. Consequently, the 

GB2.0 software tools were adjusted to the new standard syntax (see Chapter 2) and now 

also assist Golden Gate/MoClo multipartite assemblies.  

3.2.3. Functional data management and modeling 
of synthetic gene circuits 

SynBio ultimately aims to enable the implementation of Computer Assisted Design 

(CAD) in biological systems. To reach this goal, functional composition rules need to be 

established so that biological components can be reliably and predictably assembled into 

functional devices, a process that implies the hierarchical abstraction of biological 

functions. Standard parts and devices need an exhaustive characterization by measuring 

their outputs under diverse conditions to obtain reliable data for modeling and CAD 

(Pasotti & Zucca, 2014). Standard genetic elements conforming to a certain category 

should go through the same characterization procedure in order to establish reliable 

comparisons. Furthermore it is important to store all the quantitative data in the form of 

standard datasheets. The creation of datasheets associated to each genetic element 

makes the information accessible to researchers and computers, which can use it to 

predict the behavior of combinations of those standard elements. The quantitative 

characterization of a standard genetic element in bacteria and the display of the 

collected information together with a summary of the assembly characteristics on a 

datasheet have been reported (Arkin, 2008, Lee et al., 2011).  

As difficult this goal is for single-celled microbes, it is far more challenging for 

complex, multi-celled organisms as plants. Despite this, Plant Biotechnologists are in 

some way attempting to elaborate and implement functional compositional rules in a 

non-standard manner. For instance, every attempt to use a developmental-regulated 

promoter to drive the expression of a transcription factor is ultimately a non-systematic 

exercise of implementing a functional composition rule. Therefore, although probably not 

with the level of detail that could be implemented in microbial cells, it is important to 

make the effort for creating standardized descriptions of plant components which 

includes a quantitative description, as standard and as exhaustive as possible, of the 

behavior of the device, so we can learn from the premises of these descriptions which 

kind of predictive models can be build. Chapter 2 in this Thesis describes efforts towards 

developing standard datasheets in the GoldenBraid format. 
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 Plant chassis for Synthetic Biology 4.

The ability to read, write and understand DNA as a programming language is not 

enough to assemble a biological device. This process also requires an organism that 

provides the infrastructure and energy to execute the written code generating the 

desired function. Theoretically, an organism depleted from superfluous functions would 

be the perfect chassis into which Synthetic Biologists could incorporate genetic circuits 

(Unbottling the genes, 2009). In bacteria, some chassis have been developed as 

engineered E. coli (Posfai et al., 2006) or Pseudomonas (Nikel et al., 2014). However, 

plants have large genomes, complex signal-pathways, many organs and most of them 

are difficult to transform. For this reason, all the chassis proposed for plants still require 

to be studied and perhaps engineered to ensure a predictable behavior of the designed 

circuit. I discuss here some of the most used Plant chassis in the context of Plant SynBio.  

4.1. Plant Protoplasts 

Plant protoplasts offer a cell-based experimental system that maintains the tissue 

identity and have positive biochemical, genetic and physiological characteristics (Yoo et 

al., 2007). Protoplast isolation and transformation protocols are well-established for 

different plant species including A. thaliana and tobacco (Davey et al., 2005). They have 

been used to dissect several signaling pathways (Wang et al., 2005, Yanagisawa et al., 

2003, Hwang & Sheen, 2001) and for quickly testing genetic devices (Muller et al., 

2014). To overcome the experimental variability observed when testing parts in 

protoplasts, Schaumberg et al. (2015) created a mathematical model to normalize data 

enabling the extraction of quantitative parameters describing the behavior of the tested 

devices.  

4.2. Arabidopsis thaliana 

Arabidopsis is a model plant widely used in Plant Biology and Genetics. The 

advantageous characteristics that make it suitable as a model plant make it appropriate 

also for SynBio applications. An example of the use of this chassis in SynBio is the 

implementation of an entire synthetic pathway for TNT detection (Antunes et al., 2011). 

The “Glowing plant” project also makes use of Arabidopsis to obtain a bioluminescent 

plant (Callaway, 2013).  
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4.3. Marchantia polymorpha 

Marchantia is a primitive and easy-to-engineer liverwort with simple genomic 

structures that contain less genetic redundancy than the Arabidopsis genome. The 

simple development, the ease of cultivation in suspension, agar or on soil and the 

transformation facility place Marchantia as an ideal chassis (Cook et al., 2014, Sharma et 

al., 2014). It was recently proposed as a model plant for SynBio, although its use is not 

yet widely extended.  

4.4. Nicotiana benthamiana 

Nicotiana benthamiana is becoming the chassis of choice for many synthetic biology 

and molecular farming applications, especially those associated with Agrobacterium-

mediated transient expression, a method that facilitates the transfer and expression of 

multiple genes to the plant cells in a few days (Sainsbury & Lomonossoff, 2014). Briefly, 

this method, also known as “agroinfiltration”, consists in the use of a syringe or 

released-vacuum to infiltrate by overpressure a diluted Agrobacterium suspension into 

the intercellular space of leaves. In this form Agrobacterium reaches virtually all cells in 

the leaf, transiently transferring its T-DNA in a few hours and resulting in widespread 

expression of T-DNA-encoded genes during a few days. Despite the advantages of N. 

benthamiana as a chassis, there are many factors affecting the behavior of genetic 

devices during transient expression that need to be studied, one of the most important 

being the number of copies of T-DNA entering each cell. The method allows assaying 

gene expression in a fast and reliable manner, and it has been proposed as an 

experimental standard for the quantification of transcriptional activities in plants (see 

Chapter 2). An important advantage of agroinfiltration is that allows the transient 

modification of the chassis, allowing the adjustment of possible orthogonal effects as for 

instance its post-translational modifications. Some examples are the expression of 

proteases inhibitors (Goulet et al., 2012) or glycosil-transferases for human-like 

antibody glycosylation (Castilho et al., 2012). Ideally, however, these modifications 

should be stably incorporated into the N. benthamiana genome to be fully integrated in 

the chassis. Some efforts have already been made moving on this direction such as the 

engineering of N. benthamiana plants with humanized glycosilation patterns (Strasser et 

al., 2008).  
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4.5. Crop Plants 

Although the chassis described above are best suited for characterizing new genetic 

circuits, it is important to remember that the aim of SynBio is to deal with the problems 

affecting our society. With these objectives in mind, the most widely distributed and 

consumed crops, such as rice, wheat or tomato, are the ultimate chassis for engineering, 

not only aiming at traditional breeding traits such as yield improvement and biotic and 

abiotic stress resistance but also as platforms for biofortification and bioproduction of 

novel compounds.   

 Genome engineering in plants 5.

Precise manipulation of the chassis genome and its endogenous gene expression 

patterns is expected to play an important role in the advance of Plant SynBio. 

Transgenesis was developed around 30 years ago to insert genes into plants and, during 

this time, successful examples of plants with novel functions have been reported (Rao et 

al., 2009). However, with this technology, DNA is mainly randomly integrated into the 

host genome causing sometimes unwanted effects in an unpredictable way (Alonso et 

al., 2003). Recently, new synthetic nucleases have enabled tailored sequence 

modifications in plants, including gene targeted mutations, gene insertions and gene 

replacements. This unprecedented exhaustive control of the genetic material has a great 

potential for the creation of crop plants with improved tolerance to stress (Zurbriggen et 

al., 2008), rice with more efficient photosynthesis (von Caemmerer et al., 2012) or 

cereals with nitrogen-fixing ability (Oldroyd & Dixon, 2014). In addition to speed up the 

creation of improved crops, public perception of genome engineering is more favorable 

than with transgenesis. 

Synthetic endonucleases induce gene modification by causing double stranded DNA 

breaks in specific sites, which triggers DNA repair mechanisms, mainly non-homologous 

end joining (NHEJ) and at low frequencies homologous recombination (HR) (Gorbunova 

& Levy, 1999). With the supply of a donor DNA, HR mediates gene insertions and gene 

replacements in eukaryotic cells. Engineered nucleases include zinc-finger nucleases, TAL 

effectors or CRISPR/Cas9 technology (Gaj et al., 2013). In addition to site-directed 

genome modifications, engineered nucleases can also be used for gene regulation 

enabling the activation or repression of specific genes.  
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5.1. Zinc-Finger and TALE nucleases 

A first generation of synthetic tools for genome engineering involved zinc-finger and 

TALE engineered nucleases. Synthetic zinc-finger nucleases (ZFNs) are relatively small 

proteins that include an array of zinc-fingers each of which recognizes a triplet of 

nucleotides (Figure 2a). Conveniently fused to a nuclease domain, ZFNs could selectively 

produce double strand breaks in specific genomic targets. However, these proteins are 

not totally modular, being the triplet recognized by each zinc-finger influenced by the 

adjacent motifs (Fu et al., 2009). This issue was partially overcome by searching the 

zinc-finger arrays in public libraries, a strategy that led to higher targeted mutation rates 

in Arabidopsis (Zhang et al., 2010). Transcription activator-like effectors (TALEs) are 

effector proteins secreted by Xanthomonas during the infection of different plant species 

(Joung & Sander, 2013). As ZFNs, TALE nucleases (TALENs) also need to be redesigned 

to target each nucleotidic sequence. The major benefit is that their DNA binding domain, 

in contrast to ZFNs, is completely modular, with two aminoacidic residues required to 

recognize each targeted nucleotide (Figure 2b). Tailored-construction of custom TALENs 

was facilitated by Golden Gate cloning following the design of a library of TALE modules 

whose combinatorial arrangement allowed the assembly of any TALE DNA binding 

domain (Weber et al., 2011b). 

5.2. CRISPR/Cas9 

While ZFNs and TALENs require recoding a protein to each gene target, CRISPR/Cas9 

only involves the redesign of a 20 base pairs guide RNA that directs the Cas9 nuclease to 

its target site (Figure 2c) (Jinek et al., 2012). This great advantage makes CRISPR/Cas9 

probably the most powerful technology for genome engineering. CRISPR/Cas9 can be 

used for modulating gene expression by using a nuclease defective Cas9 (Bikard et al., 

2013).  Modulation of gene expression, especially repression, opens the possibility of 

creating new genetic circuits with great potential for Plant SynBio (Nielsen & Voigt, 2014, 

Brophy & Voigt, 2014, Liu et al., 2014). Since its use for gene editing at genomic level 

was proposed in 2012, the number of publications using this technology has been rising 

in an unprecedented way. Starting in mammal cell cultures, its use rapidly moved to 

model and crop plants demonstrating the possibility of easily inducing targeted 

mutations at high rates (Belhaj et al., 2013, Li et al., 2013, Nekrasov et al., 2013). It is 

expectable that the standardization of the CRISPR/Cas9 toolkit for plants by its 

integration in a Modular Cloning schema such as GoldenBraid, will increase the reliability 

of experimental results, will facilitate the exchange of new tools, and will contribute to 
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more efficient design and cloning of (multiplexing) constructs. The integration of 

CRISPR/Cas9 toolkit in the general GB schema is described in Chapter 3. 

	

 

Figure 2. Schematic representation of three genome engineering strategies.  

(a) Zinc finger nucleases (ZFNs) are fusions of three or four zinc-fingers (each binding three nucleotides) to the 
FokI catalytic domain. Two ZFNs are required as FokI is only active as a dimmer. (b) Transcription activator-
like effector nucleases (TALENs) are fusions of repeated TAL DNA-binding domains to the FokI catalytic 
domain. Two TALENs heterodimers separated by 15-20 nucleotides allow the dimerization of the FokI domains 
required for its activity. (c) Cas9 is a nuclease guided to a 20 nucleotides genome target by a single guide 
RNA. The Cas9 recognizes a specific protospacer associated motif (PAM) sequence on the DNA (NGG). 

 

 What could be expected from Plant Synthetic 6.
Biology in the future? 

To date, the number of published examples illustrating the use of SynBio in plants is 

still very low. Nevertheless, it is expected that enlarging the collection of genetic 

elements performing new functions will exponentially increase the possibilities of genetic 

combinations to be assayed. Moreover, the increase in the efficiency of DNA assembly 

will facilitate the construction of such combinations. 
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An immediate application arising from the availability of an enriched palette of genetic 

elements, which includes many plant endogenous elements, is the possibility of 

recreating previous transgenic designs, now using exclusively genetic elements derived 

from the chassis, a strategy known as intragenesis (Rommens et al., 2007). In the 

context of Plant SynBio, intragenesis can be defined as a crop breeding strategy that 

limits itself to the use of endogenous “phytobricks” for genetic engineering. Intragenesis 

is conceived as a strategy for easing the current negative perception of technology crops 

and evidencing the need for regulating final products rather than processes. Chapter 4 

illustrates the use of GoldenBraid to engineer intragenic tomatoes biofortified in 

flavonols.  

Another interesting field of application is the design of sensing devices that enable 

plants to detect and react to environmental signals in unprecedented ways.  Plant 

synthetic sensors can be designed to perceive an internal or external stimulus and they 

can be transcriptionally or post-transcriptionally controlled. Some examples of 

monitoring internal stimuli are detecting changes on the levels of auxins (Wend et al., 

2013) or cytokinins (Zurcher et al., 2013). Some synthetic circuits have also been 

developed for sensing an external stimulus such as TNT (Antunes et al., 2011) or a 

bacterial pathogen (Liu et al., 2011, Liu et al., 2013). The TNT biosensor is based on a 

bacterial signal transduction pathway that was transferred to plants (Antunes et al., 

2009) and connected to a de-greening circuit that provides a visual reporting signal 

when TNT is perceived (Antunes et al., 2006). The de-greening circuit has the re-set 

capacity when the levels of the stimulus are low, which is a desirable feature in any 

synthetic sensor.  

Plant Metabolic Engineering is among the applications more likely to benefit from 

incorporating engineering principles. Plants have a wide range of metabolites and taking 

advantage of them it is possible to produce valuable compounds that are difficult to 

obtain by chemical synthesis or classical biotechnology. In addition to the value of the 

compounds themselves, metabolic engineering of plants is also highly demanded for 

their use as improved green factories (Xu et al., 2012). The introduction of new 

branches on the existing pathways and the redirection of the metabolic flux to reach 

higher yields of the desired compound is a challenge that SynBio is overcoming thanks to 

several approaches such as the use of repressible and inducible promoters (Yang et al., 

2013) or the repression of non-desired branches of the pathway (Verpoorte & Memelink, 

2002). Design of new circuits making use of the TALE or the CRISPR/Cas9 technology for 

activation or repression is being explored. 

As described in this introduction chapter, there are many factors influencing the 

advancement of Plant SynBio that should be explored. We decided to investigate to what 
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extent was possible to catalog standard parts by developing a set of software-tools for 

multigene engineering and data collection adapted to the GoldenBraid standard (Chapter 

1). In a next natural step we extended the generated tools to include functional 

characterization of any genetic element (Chapter 2) and subsequently, each new 

generated device was tested following standard approaches (Chapters 2 and 3). 

Furthermore, we proved the feasibility of the generated set of tools with a Metabolic 

Engineering example (Chapter 4). Altogether, this Thesis represents a significant 

contribution to the standardization in Plant Synthetic Biology. 
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The driven hypothesis in this Thesis is that the introduction of the Synthetic Biology 

principles of Standardization, Modularity and Abstraction of Function in the field of Plant 

Biotechnology will facilitate the achievement of increasingly challenging biotechnology 

objectives.  

Accordingly, the General Objective of this Thesis was the design of key tools that 

enable the incorporation of those principles in Plant Genetic Engineering, testing their 

functionality and providing examples of their application in crop biotechnology. To fulfil 

this General Objective, the following specific objectives were set:  

1. To introduce modularity and standardization in the DNA assembly tools for Plant 

Biotechnology, developing new utilities in the frame of the GoldenBraid cloning 

system, in particular: 

a. To develop new software tools assisting the assembly of synthetic DNA 

parts (Chapter 1). 

b. To propose and refine experimental standards for the characterization of 

synthetic DNA parts (Chapter 2). 

c. To incorporate functional specifications describing synthetic DNA parts in 

the form of associated datasheets (Chapter 2). 

 

2. To use GoldenBraid capabilities to develop new biotech tools, in particular: 

a. To design small genetic circuits for Plant Genetic Engineering (Chapter 2). 

b. To develop CRISPR/Cas9 tools for Genome Engineering (Chapter 3). 

c. To generate intragenic tools for tomato transformation (Chapter 4).
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 Introduction 1.

Gene stacking is an important requirement in plant research, reaching its biggest 

applicability on Plant Metabolic Engineering and Plant SynBio. As custom DNA synthesis 

is still unaffordable for big constructs, a wide range of DNA assembly technologies 

appeared on recent years trying to offer alternatives for multigene engineering (Gibson 

et al., 2009, Geu-Flores et al., 2007, Hartley et al., 2000). The most interesting ones are 

the modular assembly strategies that approach genetic fragments as standard DNA 

building blocks that can be combined to create modules with a defined function (Zhang & 

Jiang, 2010). The standardization of genetic parts builds up on the idea of SynBio as a 

community effort, promoting exchange of genetic parts and speeding up engineering, 

since with standardization new composite parts will fit with the old ones (Muller & Arndt, 

2012). 

GoldenBraid is a modular DNA cloning system that relies on the use of Type IIS 

restriction enzymes (Sarrion-Perdigones et al., 2011, Sarrion-Perdigones et al., 2014). It 

makes use of previously-described Golden Gate multipartite assemblies of standard parts 

(Engler et al., 2009) to generate transcriptional units (TU). These TUs can be combined 

in a binary way following a double-loop iterative cloning strategy that allows the 

assembly of increasingly complex multigenic modules. A minimum set of only four 

destination vectors is required to complete the double-loop since TUs/modules 

assembled in two compatible vectors of the same level (α) can be combined together in 

any of the two destination vectors of the opposite level (Ω) and vice versa. 

Despite the simplicity of GB, the multigene engineering design process can be tedious 

and time-consuming, requiring from computational approaches to manage standard 

parts and to perform in silico assemblies. GoldenBraid 2.0 (Sarrion-Perdigones et al., 

2013) provides a set of online-tools that software-assists users during part 

standardization and multigene assembly with GB (www.gbcloning.upv.es).  

This Chapter describes the GBcloning assembly procedure for the stacking of three 

gene modules within the same T-DNA, a simplified example of a Plant Metabolic 

Engineering approach. The software-assisted design process and the wet-lab methods 

for GB multigene assemblies are explained in detail. This example covers the assembly 

of transcriptional units carrying the Solanum lycopersicum transcription factors SlANT1 

(Mathews et al., 2003), SlJAF13 (De Jong et al., 2004) and SlMYB12 (Adato et al., 2009) 

regulated by the constitutive 35s promoter. Transcription factors involved in the 

regulation of the flavonoids biosynthetic pathway, such as SlANT1 (MYB) and SlJAF13 

(bHLH), Solanum lycopersicum orthologous of the Antirrhinum majus Rosea1 and Delila 
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proteins, have been demonstrated to activate the expression of several anthocyanin 

biosynthetic genes (Shimada et al., 2007). SlMYB12 over-expression was shown to 

increase the levels of naringenin-chalcone among other flavonoids (Ballester et al., 

2010). To check the functionality of the assembled module, a transient expression assay 

in Nicotiana benthamiana leaves was performed. 

  Results 2.

2.1. GoldenBraid collection 

A new database was generated in the Django framework using Python as 

programming language to host the sequence information of all the parts, modules and 

vectors included in the increasingly populated GBcollection. All the building blocks in the 

GBcollection were generated using the GB assembly system and share the GB2.0 

standard. The GBelements can be classified in the following categories: 

- GBparts and GBsuperparts (also known as level 0 parts): fragments of DNA flanked 

by 4-nucleotides overhangs, which define their category within the TU, stored as inserts 

within a specially designed entry vector, the universal part domesticator (pUPD). There 

are eleven categories (in GB2.0 syntax), each of them with its pre-defined flanking sites 

(Figure 3a). Basic standard categories are named with numbers following a positional 

notation: positions 01, 02 and 03 comprise the bona fide promoter regions, excluding 5´ 

UTR. Next are positions 11 to 17, which cover the 5´UTR, the ORF and the 3´ UTR. 

Finally, position 21 is reserved to the 3´ non-transcribed elements. However, contiguous 

basic categories with a specific function can be grouped together defining a GBsuperpart, 

which is also a DNA fragment stored within the pUPD vector. Either a BsaI or a BtgZI 

digestion releases the GBpart from pUPD generating the same 4-nucleotides overhangs. 

This is possible since both, BsaI and BtgZI, are Type IIS restriction enzymes with 

different number of nucleotides between their recognition and cutting sites allowing the 

arrangement of their target sites to cut exactly at the same position.  

- GBdestination vectors (pDGBs): binary plasmids that receive the assembled TUs 

and/or modules in exchange for the LacZ cassette. The GBdatabase contains two sets of 

GBdestination vectors, the pGreen and the pCambia series, depending on their original 

backbone. The minimal number of GBdestination vectors for iterative cloning is 4, 

however 4 additional plasmids are required to enable binary assemblies in all possible 

orientations. GBdestination plasmids are classified in two levels according to the enzyme 

that releases the transcriptional unit/module and to their backbone resistance: α level 

plasmids have kanamycin resistance and release the insert upon BsmBI digestion; Ω 
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level plasmids contain spectinomycin resistance and BsaI sites. Furthermore, the 

plasmids of each level are named as 1 or 2 depending on the overhangs obtained after 

restriction. The compatible plasmids are α1-α2 and Ω1-Ω2. 

- GBtranscriptional units (TU) (also known as level 1 parts): any DNA structure 

cloned into any GB destination vector as a result of a multipartite assembly reaction. The 

simplest way to assemble a new TU is by performing a multipartite (tripartite) assembly 

reaction with the following elements: a (01-02-03-11-12) GBsuperpart, which comprises 

all five contiguous standard GBparts and includes the promoter and the 5’ untranslated 

region; a (13-14-15-16) GBsuperpart, which comprises the entire coding sequence and a 

(17-21) GBsuperpart comprising a 3’UTR and a transcriptional terminator element. 

- GBmodules: two or more transcriptional units assembled together in one of the 

GBdestination vectors as a result of a binary assembly reaction. 

-  GBpatches (also known as level -1 parts): non-standard DNA fragments obtained by 

PCR amplification and employed for the removal of internal restriction sites during the 

construction of standard GBparts and GBsuperparts (a process known as domestication). 

GBpatches, not being standard elements, are usually not stored in the GBdatabase. 
 

Besides the public GBdatabase hosting the GBcollection users can build their own 

private databases. In private databases users can store their own GBelements in order 

to combine them with those deposited in the public GBcollection. 

2.2. GoldenBraid Software Tools 

For software-assisted GoldenBraid cloning, a set of free-online software tools was 

created using Python as programming language. 

a) The GB Domesticator tool (www.gbcloning.upv.es/do/domestication) takes a 

fasta or a GenBank DNA sequence file as input and provides the best PCR strategy to 

remove internal restriction sites and to add flanking nucleotides to it according to the 

specified category. The GB Domesticator takes into consideration the maintenance of the 

open reading frame in the coding sequences and the prevention of reconstitution of a 

restriction site when the mutations are performed. 

b) The GB TU Assembler tool (www.gbcloning.upv.es/do/multipartite) assists in 

the in silico assembly of new transcriptional units by combination of standard parts or 

superparts. Only parts in the database with compatible flanking sites are displayed. The 

program output is a downloadable GenBank file containing the fully assembled DNA 

sequence (including the destination plasmid) together with a lab protocol describing the 

cloning procedure. 

c) The GB Binary Assembler tool (www.gbcloning.upv.es/do/bipartite) performs in 

silico binary assemblies between single TUs or composite modules stored in the 
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GBdatabase. Only composite parts in compatible GBdestination vectors are displayed. 

After selection of the first element (position 1), the software will display all the 

compatible TUs/modules stored in the database. Once the election of the element in 

position 2 is made, a destination vector can be selected to carry out the assembly. As in 

the previous tool, output files are a GenBank file with the assembled sequence and a 

protocol to perform the reaction in the lab. A schematic view of the track followed by a 

DNA sequence along the three software tools and its interaction with the GBdatabase is 

shown in Figure 3b. 
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Figure 3. The GoldenBraid cloning software-assisted assembly procedure. 

(a) Schematic overview of the GB2.0 syntax where the eleven basic standard categories are depicted: 01, 02 
and 03 comprise the 5’ nontranscribed region (5’NT); positions 11 to 17 comprise the transcribed region 
including the 5’UTR (position 11), a linker (12), four divisions of the translated region (13 to 16) and the 3’UTR 
(17); and position 21 is the 3’ nontranscribed region (3’NT). (b) The GB Domesticator adapts the input DNA 
sequence provided by the user to the GBstandard according to the selected category. The GB TU Assembler 
performs the in silico multipartite assembly with any compatible GBpart stored in the database (depicted in 
grey) to create a transcriptional unit (TU). Finally, GB Binary Assembler allows the binary assembly of 
preformed single TUs or combinations of TUs (named modules) over the GoldenBraid loop to produce 
multigenic structures.  

  

(b) 

(a) 
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2.3. Exemplified GoldenBraid assembly procedure 

2.3.1. GBparts domestication 

The first step in the GoldenBraid assembly strategy is the adaptation of the new 

genetic elements to the GoldenBraid standard and their cloning into the pUPD vector, a 

process known as domestication. This adaptation process implies (i) the addition of 

specific flanking overhangs to each GBpart/superpart according to its expected position 

within the transcriptional unit, and (ii) the removal of the internal BtgZI (optional), BsaI 

and BsmBI restriction sites. For this purpose the sequence is split in n+1 parts, known 

as GBpatches, where n is the number of internal restriction sites. For each GBpatch a 

pair of primers is designed. These primers incorporate the appropriate extensions for 

internal restriction sites mutation and grammar adaptation, as well as flanking BsmBI 

recognition sites for cloning into the pUPD vector. An overview of the domestication 

approach is represented on Figure 4a.  

As an example, the software-assisted domestication of the coding region of the 

SlJAF13 transcription factor is described below: 

1. Click the GB Domesticator link at www.gbcloning.upv.es/tools/domestication/. 

2. Upload the DNA sequence to domesticate as a GenBank or fasta file. Once the file 

is uploaded, select the intended category for this new element (see Note1). For 

domestication of a coding region, as for example SlJAF13, select the CDS (13-14-15-16) 

option. Click “submit”, download and open the resulting txt file in a text editor. 

3. Order the primers indicated in the text file (see Note 2). For the domestication of 

SlJAF13, two pairs of primers are required since the sequence has one internal BsaI 

restriction site (see Note3). As the selected category is a CDS, the primers were 

designed to produce a synonymous mutation that removes the internal restriction site 

while maintaining an intact open reading frame. Note that the same procedure can be 

followed for the domestication of the remaining transcription factors (ANT1 and MYB12) 

used in the multigenic construct described in this chapter. The primers employed for the 

domestication of all three genes are listed in Table 2.  
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Patch Forward primer Reverse primer 

SlANT1 patch1 GCGCCGTCTCGCTCGAATGAACAGTACA

TCTATGTCTTCATTG 

GCGCCGTCTCGCTCGAAGCTCAATCAAGTAG

ATTCCATAAGTC 

SlJAF13 patch1 GCGCCGTCTCGCTCGAATGGCTATGGGA

CACCAAGA 

GCGCCGTCTCGGCCTCCAAAGGCTATTCTTT

T 

SlJAF13 patch2 GCGCCGTCTCGAGGCCAGAAGTTGATGA

CATT 

GCGCCGTCTCGCTCGAAGCTCAAGATTTCCA

TACTACTCTCTG 

SlMYB12 patch1 GCGCCGTCTCGCTCGAATGGGAAGAACA

CCTTGTTGT 
GCGCCGTCTCGGCGACCATCTGTTACCCAAA 

SlMYB12 patch 2 GCGCCGTCTCGTCGCTTATAGCAGAACA

TTTATCA 
GCGCCGTCTCGCGTCGCTTGGTATCCTTAAG 

SlMYB12 patch 3 GCGCCGTCTCGGACGAGAAGTTACCTAA

AGCC 

GCGCCGTCTCGCTCGAAGCCTAAGACAAAAG

CCAAGATACAAT 

	

Table 2. Software-designed primers for SlANT1, SlJAF13 and SlMYB12 domestication as 
CDS (13-14-15-16). 

BsmBI recognition and cleavage sites are represented in bold and underlined, respectively. In 
italics, category specific flanking sites. 

 

4. Amplify the different GBpatches using the primers specified in the protocol and a 

suitable DNA template. For instance, Solanum lycopersicum mature fruit cDNA was used 

as template for SlJAF13 amplification. 

5. Check whether the PCR reactions resulted in the expected GBpatches loading 

one-tenth of the reaction volume in an agarose gel electrophoresis. The size of each 

GBpatch can be directly calculated from its sequence, which is also provided as result 

after step 2. Figure 4b shows an electrophoresis gel with all the GBpatches needed for 

SlANT1, SlJAF13 and SlMYB12 domestication.  

6. Purify the PCR fragments from remaining reaction volumes using the QIAquick 

PCR purification kit, as indicated by the manufacturer. 

7. Set up the GBdomestication reaction to get the GBpart cloned into the pUPD 

plasmid by mixing in the same tube 40 ng of each purified GBpatch, 75 ng of pUPD, 5 U 

of BsmBI, 3 U of T4 ligase and 1 µL of 10X ligase buffer in a 10 µL reaction, according to 

the instructions produced by the GB Domesticator software. 

8. Incubate the BsmBI restriction-ligation reaction in a thermocycler during 25 

cycles (2min x 37ºC, 5min x 16ºC) (see Note 4). 

9. Thaw 50 µL of E. coli electrocompetent cells on ice and mix with 1 µL of the 

reaction product. Pipet the mixture to a pre-chilled electroporation cuvette and carry out 

the electroporation immediately.  
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10.  Add 500 µL of room temperature SOC media to the cuvette, recover the cells and 

grow them on a shaker at 37ºC for 1 hour. 

11. Spread two different volumes (50 and 500 µL) of the cells onto 

LB/ampicillin/IPTG/X-Gal plates. Incubate the plates overnight at 37ºC. 

12.  Pick four white colonies (the blue ones carry the intact pUPD) and inoculate them 

in LB with ampicillin. Grow them overnight on a shaker at 37ºC. 

13.  Miniprep the cultures and check the correct domestication of each GBpart by 

restriction analysis. The restriction map can be obtained from the sequence of the 

domesticated GBsuperpart also provided as a result of step 2. Following the same 

procedure SlMYB12 and SlANT1 were also domesticated to GBsuperparts with a CDS B3-

B4-B5 category. Figure 4c shows the restriction analysis of correctly domesticated 

GBparts pAnt1, pJaf13 and pMyb12.  

14.  Check those clones from step 13 showing a correct restriction pattern by Sanger 

sequencing using the T7 and the SP6 universal sequencing primers. 

15.  If the resulting sequence is correct, upload the GenBank file obtained from step 2 

to the GBdatabase (see Note 5). 

16.  Store the GBpart as a DNA miniprep and the cells containing it in the form of a 

glycerol stock (15% glycerol). 

The 35S promoter (GB0030_p35s) and the nopaline synthase terminator 

(GB0037_pTnos) had been previously domesticated to PROM+UTR+ATG (01-02-03-11-

12) and to TER (17-21) standard categories respectively, and stored in the GBdatabase 

as fully reusable GBsuperparts. The reuse and exchange of previously adapted parts is 

one of the most important benefits of standardization. 
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Figure 4. General strategy for GBparts domestication. 

(a) Jaf13, having an internal BsaI recognition site (GAGACC), is domesticated by amplifying the target 
sequence in two separated PCR products. External GBadapted primers (Patch1 F and Patch2 R) are designed so 
they include a BsmBI recognition site, the cleavage site for cloning into pUPD, and the 4-nucleotide barcodes 
(AATG and GCTT) in addition to approximately 20 gene specific (GS) nucleotides. Internal GBadapted primers 
(Patch1 R and Patch2 F) have extensions that incorporate the BsmBI recognition sites and the single nucleotide 
change (A>G) to mutate the internal BsaI recognition site. After the amplification of both patches, a BsmBI 
restriction-ligation reaction will bring the domesticated sequence into the pUPD. The BsmBI recognition 
sequences are shown in orange, and their position is also indicated with orange arrows; BsaI and BtgZI are 
represented with red and blue triangles, respectively; the enzymes cleavage sites are boxed. Single nucleotide 
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mutations are marked in red in the DNA sequence (b) PCR amplification products of all the GBpatches required 
for part domestication of SlANT1 (one patch of 1048 base pairs in lane 1), SlJAF13 (two patches of 1309 and 
633 bp in lanes 2 and 3, respectively) and SlMYB12 (three patches of 298, 128 and 678 bp in lanes 4, 5 and 6, 
respectively). (c) Restriction analysis of correct clones of the GBparts pAnt1 with BsaI (1622-1433-1013 bp) 
and EcoRI (2997-1071 bp) in lanes 1 and 2 respectively; pJaf13 with BsaI (1882-1622-1433 bp) and EcoRI 
(2997-1025-915 bp) in lanes 3 and 4 respectively and pMyb12 with BsaI (1622-1433-1018 bp) and EcoRI 
(2997-1076 bp) in lanes 5 and 6 respectively. 

 

2.3.2. Multipartite assemblies in α-level 
destination vectors 

For the multipartite assembly of a new TU in an α-level destination plasmid, all the GB 

elements are incubated in a single-tube reaction in the presence of BsaI and T4 ligase.  

Individual GBparts are released from the pUPD by the BsaI activity. In parallel, the same 

enzyme opens the α-level destination plasmid releasing the LacZ-cassette. Next, the 

different GBparts are orderly assembled into the destination plasmid by the T4 ligase, 

creating a functional transcriptional unit. Only the correctly assembled structures will end 

up free of BsaI recognition sites, whereas wrong assemblies will remain susceptible to 

targeted digestion by the restriction enzyme during the entire reaction time. 

In the following example, two new TUs, named pEGB1α1_35s::Ant1::Tnos and 

pEGB1α2_35s::Jaf13::Tnos (Figure 5a), will be constructed in parallel in complementary 

α-level plasmids, following the procedure described below: 

1. Simulate the assembly of the TU on a computer with the GB TU Assembler tool. 

For basic protein expression in the nucleocytoplasm, select the ‘BASIC’ shortcut. 

2. Select the GBparts to build the desired TU. In this example: the p35S as 

promoter element, the recently included pJaf13 as coding sequence; and the pTnos 

element as terminator. Select any of the α-GB destination vectors displayed in the 

screen, pDGB1α2 in this example (see Note 6). Click “Submit” to download the 

assembled DNA file and the assembly protocol in txt format. 

3. Set the reaction by mixing 75 ng of each GBsuperpart (the ones selected on the 

previous step), 75 ng of the α-level destination vector, 5-10 U of BsaI, 3 U of T4 ligase 

and 1 µl of 10X ligase buffer in a 10 µl reaction, following the specifications of the GB TU 

Assembler protocol. 

4. Incubate the BsaI restriction/ligation reaction in a thermocycler for 25 cycles 

(37ºC x 2min, 16ºC x 5min) (see Note 4). 

5. Mix 1 µl of the reaction with 50 µl of electrocompetent cells previously thawed on 

ice. Transform them by electroshock in an electroporation cuvette, outgrow by adding 

500 µl of SOC and shake for 1 hour at 37ºC. Plate two volumes (50 and 500 µl) of cells 

in LB/kanamycin/IPTG/X-Gal petri dishes. Incubate the plates overnight at 37ºC. 
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6. Pick four white colonies and grow them overnight in LB/kanamycin (see Note 7). 

7. Miniprep the cultures for plasmid extraction and perform a restriction analysis. 

The choice of the restriction enzymes is based on the restriction map obtained from the 

sequence of the assembly retrieved as result of the online tool in step 2.  

Following the same procedure, the TU carrying Ant1 was assembled into the pDGB1α1 

vector. The restriction patterns of correct assemblies of the constructs 

pEGB1α1_35s::Ant1::Tnos and pEGB1α2_35s::Jaf13::Tnos are shown in Figure 5c 

(lanes 1 to 4). 

8. Once the assembly has been found correct by restriction analysis, upload the 

GenBank files obtained in step 2 to the GBdatabase. 

9. Store the GBtranscriptional unit as a DNA miniprep and the cells containing it in 

the form of a glycerol stock (15% glycerol). 

2.3.3. Binary assembly into Ω-level destination 
vectors 

Once the two TUs pEGB1α1_35s::Ant1::Tnos and pEGB1α2_35s::Jaf13::Tnos are 

assembled, the next step is to binarily combine them to create a module containing both 

genes. For this purpose, as they were assembled in compatible α GB destination vectors, 

they can be joined together with a single BsmBI reaction in any Ω-level GB destination 

vector with the steps described below. A representation of this assembly is shown at the 

top of the Figure 6a. 

1. Perform the in silico assembly reaction using the GB Binary Assembler webtool 

(https://gbcloning.upv.es/do/bipartite/). Select the previously uploaded TUs and any Ω-

level destination vector. In this example, the assembly is performed using the pDGB1Ω1 

vector. 

2. Set the reaction by mixing 75 ng of each TU (from step 7 of the previous section), 

75 ng of the pDGB1Ω1 destination vector, 5-10 U of BsmBI, 3 U of T4 ligase and 1 µl of 

10X ligase buffer in a 10 µl reaction. 

3. Incubate the reaction in a thermocycler for 25 cycles (37ºC x 2min, 16ºC x 

5min). 

4. Transform 50 µl of electrocompetent cells with 1 µl of the reaction. Outgrow the 

cells by adding 500 µl of SOC and incubate shaking for 1 hour at 37ºC. Plate two 

volumes (50 and 500 µl) in LB/spectinomycin/IPTG/X-Gal petri dishes. 

5. Pick four white colonies and grow them overnight in LB with spectinomycin (see 

Note7). 
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6. Miniprep the plasmids and check them by restriction analysis. The choice of 

restriction enzymes for the analysis is based on the restriction map that can be obtained 

directly from the sequence of the assembly retrieved in step 1. The restriction patterns 

of the correct pEGB1Ω1_35s::Ant1::Tnos-35s::Jaf13::Tnos assembly is depicted in 

Figure 6b (lanes 1 and 2). 
7. Upload the GenBank file containing the in silico assembled module to the 

GBdatabase. 

8. Store the GBmodule as a DNA miniprep and the cells containing it in the form of a 

glycerol stock (15% glycerol). 

At this point a combination of two transcription factors that activate key enzymes of 

the anthocyanin biosynthetic pathway (Butelli et al., 2008) was assembled. However, to 

increase the content of other flavonoids in the plant, MYB12, a third transcription factor 

will be included in the construct. 

2.3.4. Multipartite assemblies in Ω-level 
destination vectors 

For multipartite assemblies in Ω-level plasmids, a BtgZI/BsmBI restriction-ligation 

reaction is required. In this reaction, BtgZI releases the parts from the pUPD leaving the 

same overhangs as BsaI, and BsmBI opens the Ω-level plasmids allowing the entry of 

the GBparts in the right order. BtgZI/BsmBI reactions are less efficient than BsaI 

reactions, so BsaI reactions are preferred. However, in this example, the assembly of the 

third TU in a Ω-level destination vector complementary to the pDGB1Ω1, will save us an 

extra binary reaction. The following steps were followed to assemble the TU named 

pEGB1Ω2_35s::Myb12::Tnos as it is shown in Figure 5b: 

1. Perform the assembly of the TU in silico with the GB TU Assembler tool by clicking 

on the ‘BASIC’ shortcut. 

2. Select the GBparts to conform the TU, namely p35S as promoter, pMyb12 as 

CDS, and pTnos as terminator. As destination plasmid, the Ω-level destination plasmid 

pDGB1Ω2, complementary to the pDGB1Ω1 that hosted the binary assembly 

35s::Ant1::Tnos-35s::Jaf13::Tnos is selected. 

3. Set the reaction by mixing 75 ng of each GBpart, 75 ng of the pDGB1Ω2, 5-10 U 

of BsmBI, 5 U of BtgZI, 3 U of T4 ligase and 1 µl of 10X ligase buffer in a 10 µl reaction, 

following the protocol produced by the webtool. 

4. Incubate the reaction in a thermocycler for 25 cycles (37ºC x 2min, 16ºC x 

5min). 
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5. Mix 1 µl of the reaction with 50 µl of electrocompetent cells. Transform them by 

electroshock into a cuvette and outgrow by adding 500 µl of SOC and shaking during 1 

hour at 37ºC. Plate two volumes of cells (50 and 500 µl) in LB plates containing 

spectinomycin, IPTG and X-Gal. 

6. Pick four white colonies and grow them overnight in LB with spectinomycin (see 

Note 7). 

7. Miniprep the cultures for plasmid extraction and analyze them using restriction 

enzymes and gel electrophoresis. The choice of the restriction enzymes for the analysis 

is based on the restriction map obtained from the sequence of the assembly retrieved as 

result of the online tool in step 2. The restriction pattern of a correct colony of the 

pEGB1Ω2_35s::Myb12::Tnos assembly is shown in Figure 5c (lanes 5 and 6). 

8. Upload the GenBank file of the new TU to the GBdatabase. 

9. Store the GBtranscriptional unit as a DNA miniprep and the cells containing it in 

the form of a glycerol stock (15% glycerol). 
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Figure 5. Multipartite assemblies in α and Ω destination vectors. 

(a) Multipartite assembly of the GBparts GB0030_p35s, pJaf13 and GB0037_pTnos for the construction of the 
TU pEGB1α2_35s::Jaf13::Tnos in a α-level destination vector. (b) Multipartite combination of the GBparts 
GB0030_p35s, pMyb12 and GB0037_pTnos for the assembly of the TU pEGB1Ω2_35s::Myb12::Tnos in a Ω-
level destination vector. (c) Restriction pattern of correct assemblies of the plasmids 
pEGB1α1_35s::Ant1::Tnos (in Lane 1 EcoRV+PvuI restriction bands 2188-1750-1202; in Lane2 NcoI bands 
3404-1346-390), pEGB1α2_35s::Jaf13::Tnos (in Lane 3 BglII restriction bands 2489-2116-1405; Lane4: 
HindIII digestion bands 3437-2573) and pEGB1Ω2_35s::Myb12::Tnos (in Lane 5 BglII restriction bands 2818-
1621-1037; Lane 6: PvuI digestion bands  3701-1775). 
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2.3.5. Final binary assembly in α-level destination 
vectors 

The final assembly step is the binary combination between the Ant1/Jaf13 module 

(pEGB1Ω1_35s::Ant1::Tnos-35s::Jaf13::Tnos) and the Myb12 single transcriptional unit 

(pEGB1Ω2_35s::Myb12::Tnos) to reach a three-gene combination for polyphenol 

overproduction. This assembly implies a binary reaction with BsaI in any α-level 

destination plasmid, which is represented in Figure 6a (bottom). 

1. Perform the software-assisted assembly with the GB Binary Assembler tool. Select 

the previously uploaded module pEGB1Ω1_35s::Ant1::Tnos-35s::Jaf13::Tnos, the TU 

pEGB1Ω2_35s::Myb12::Tnos and any α-level destination vector. In this example, the 

assembly is performed in the pDGB1α1 vector. 

2. Set the reaction by mixing 75 ng of the module DNA, 75 ng of the TU DNA, 75 ng 

of the pDGB1α1 destination vector, 5-10 U of BsaI, 3 U of T4 ligase and 1 µl of 10X 

ligase buffer in a 10 µl reaction, according to the protocol obtained in step 1. 

3. Incubate the reaction in a thermocycler for 25 cycles (37ºC x 2 min, 16ºC x 5 

min). 

4. Transform 50 µl of electrocompetent cells with 1 µl of the reaction. Outgrow the 

cells by adding 500 µl of SOC and shaking during 1 hour at 37ºC. Plate two cell volumes 

(50 and 500 µl) in LB plates containing kanamycin, IPTG and X-Gal. 

5. Pick four white colonies and grow them overnight in LB with kanamycin (see Note 

7). 

6. Miniprep the plasmids and check them with a restriction analysis. The choice of 

restriction enzymes for the analysis is based on the restriction map that can be obtained 

from the sequence of the assembly retrieved as result of the online tool in step 1. The 

restriction patterns of a correct assembly pEGB1α1_35s::Ant1::Tnos-35s::Jaf13::Tnos-

35S::Myb12::Tnos are shown in Figure 6b (lanes 4 and 5). 

7. Upload the GenBank file containing the in silico assembled module to the 

database. 

8. Store the GBmodule as a DNA miniprep and the cells containing it in the form of a 

glycerol stock (15% glycerol). 
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2.3.6. Agrobacterium tumefaciens transformation 
and transient expression in N. benthamiana 
leaves. 

To verify the ability of the assembled construct to induce the polyphenol biosynthetic 

pathways, a transient expression experiment was performed in N. benthamiana leaves. 

In particular, the accumulation of anthocyanins is evidenced by an intense purple color 

observable with the naked eye (Bedoya et al., 2012). 

1. Transform 10 ng of the plasmid containing the final multigene module into 50 µL 

of A. tumefaciens home-made electrocompetent cells carrying the pSoup vector (see 

Note 8); collect the cells from the cuvette with 500 µL of LB and grow them on a shaker 

at 28ºC for 2 hours. 

2. Spread two cell volumes (20 and 100 µL) on LB/kanamycin/rifampicin/tetracycline 

plates (see Note 9). Incubate plates at 28ºC for two days. 

3. Pick four colonies and inoculate them in 5 ml liquid LB containing kanamycin, 

rifampicin and tetracycline. Grow them for two days on a shaker at 28ºC. 

4. Miniprep the cultures and check the colonies by restriction analysis.  

5. Subculture (1/100 dilution) into a new tube (5 mL final volume) and grow 

overnight at 28ºC. 

6. Pellet the cells by centrifugation (20 min, 2000 ×g). 

7. Re-suspend cells in agroinfiltration buffer (10mM MES, pH 5.6, 10mM MgCl2, and 

200µM acetosyringone) and incubate them for 2 hours at room temperature on a 

horizontal rolling mixer in the dark. 

8. Dilute the cell suspension with agroinfiltration buffer to a final optical density of 

0.2 at 600 nm. 

9. Infiltrate the cell suspension into the leaf intercellular spaces of 4-6 weeks 

old Nicotiana benthamiana plants using a needle-free syringe. 

10.  Ten days post-infiltration, anthocyanin over-production can be visualized in the 
infiltrated leaves. See Figure 6c. 
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Figure 6. Binary assemblies in α and Ω levels for polyphenols overproduction. 

(a) From α to Ω level: schema of a binary assembly between TUs pEGB1α1_35s::Ant1::Tnos and 
pEGB1α2_35s::Jaf13::Tnos in the Ω-level vector pDGB1Ω1 to create the module pEGB1Ω1_35s::Ant1:.Tnos-
35s:Jaf13::Tnos. From Ω to α level: schema of the binary assembly between the module 
pEGB1Ω1_35s::Ant1:.Tnos-35s:Jaf13::Tnos and the TU pEGB1Ω2_35s::Myb12::Tnos to create the three TUs 
assembly pEGB1α1_35s::Ant1:.Tnos-35s:Jaf13::Tnos-35s::Myb12::Tnos. (b) BglII (3949-2818-2121) (Lane 
1) and BamHI (5985-2903) (Lane 2) restriction patterns of a correct clone of the binary assembly 
pEGB1Ω1_35s::Ant1:.Tnos-35s:Jaf13::Tnos; BglII (3948-3633-2489-1040) (Lane 3) and EcoRI (4479-4057-
2574) (Lane 4) restriction patterns of the final multigenic assembly pEGB1α1_35s::Ant1:.Tnos-
35s:Jaf13::Tnos-35s::Myb12::Tnos. (c) Pictures of two N. benthamina leaves expressing the combination of 
the transcription factors, Ant1 and Jaf13 (left) and Ant1, Jaf13, Myb12 (right). 

	

 Discussion 3.

Standardization in biology simplifies the assembly of transcriptional units from genetic 

parts as well as the stacking of several genes in the same T-DNA. Although sequence 

manager tools can help during the design of multigenic assemblies, it is important to 
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automate this process minimizing the user input to achieve the expected result. 

However, the coexistence of many assembly standards is a challenge for the creation of 

shared repositories of genetic parts and software tools for multigenic assemblies. 

In recent years, many information-sharing platforms for data management have 

emerged to handle synthetic biology data and favor the communication among users 

(Ham et al., 2012, Mutalik et al., 2013b, Peccoud et al., 2008). These databases are the 

way to share and exchange, as well as keep organized all the data generated in a 

synthetic biology laboratory. However, most of them are poorly curated and the stored 

parts are not always well characterized and not suitable for plants (Peccoud et al., 

2008). The design and development of the GBdatabase opens a new way to exchange 

biological parts for Plant Synthetic Biology and Plant Metabolic Engineering. 

GoldenBraid offers, not only a repository of standard parts, but also an integrated 

framework for multigene engineering including software tools that facilitate the 

multigenic assemblies. Modular assembly methods allow the automation and make easy 

the development of computational tools to design the assemblies (Muller & Arndt, 2012). 

The set of software tools designed for GoldenBraid guides users from a raw DNA 

sequence to the assembly of a multigenic structure. One of the priorities during the 

development of these tools was to offer the user maximum simplicity. The assembly of a 

three-genes module described on this chapter shows that a minimal previous knowledge 

of the system is sufficient to start using these tools.  

The population of the GBdatabase with our in-house collection of GBparts, 

GBsuperparts, GB transcriptional units and GBmodules showed the functionality and 

potential of the different software tools. The integration of the GBdatabase together with 

the software tools in a website established a framework from which we expect the plant 

community can benefit.	

 Notes 4.

1. The GB category is given by the position of each part within the TU (see 

www.gbcloning.upv.es/do/multipartite). Decide the type of TU to assemble before 

starting part domestication. For in silico domestication of unprocessed coding 

sequences containing introns, use the free option of the GB Domesticator since 

the automatic one requires an uninterrupted open reading frame.  

2. GB-adapted primers consist of 20-40 nucleotides and standard desalt purification 

is sufficient.  
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3. When internal restriction sites are less than 70 nucleotides away from the 3’ or 5’ 

end of the sequence or when internal restriction sites are too close within the 

sequence, they are domesticated with long primers. A long GB-adapted primer 

includes as many single nucleotide mutations as restriction sites to be removed 

and has a minimum length equal to the farther mutation position plus seven. The 

GB Domesticator automatically designs long primers when this option is preferred 

4. Increasing the number of restriction/ligation cycles up to 50 can improve the 

efficiency of the reaction, especially in multipartite assemblies with more than 

three GBparts. 

5. To upload a new sequence use the tab ‘Add GB_element’ and fulfill the form with 

the right data. To facilitate the upload of new entries, each results page in the 

tools section provides a direct link that can be used to upload the new GBelement 

to the database, saving time and minimizing the chances of introducing wrongly 

assigned GBelements in the database.  

6. The choice of GBdestination vector depends on the number and order of TUs to 

be assembled. The in silico design of the final intended construct is highly 

recommended. Remember that vectors named as 1 and 2 of the same level (α1-

α2 and Ω1-Ω2) are always compatible regardless of their backbone (pGreen or 

pCambia) and the TU orientation (forward or reverse). 

7. Any E.coli cell transformed with an undigested GBpart will not grow due to 

antibiotic counterselection. Bacteria transformed with an intact α or Ω-level 

GBdestination plasmid will result in blue colonies, due to the presence of X-Gal 

and IPTG-LB in the plates. 

8. Since some of the GBdestination vectors are based on pGreenII, Agrobacterium 

cells require a co-resident plasmid, the pSoup, for pGreen replication (Hellens et 

al., 2000). If Agrobacterium cells with pSoup are not available, the final construct 

can be co-transformed with the pSoup vector. The set of GBdestination vectors 

based on pCambia does not require pSoup. 

9. Rifampicin is added to the media to reduce no A. tumefaciens bacteria 

contamination; tetracyclin is used for pSoup selection and kanamycin is used 

since the construct transformed in A. tumefaciens in this Chapter is assembled in 

an α-GBdestination vector. 
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 Introduction 1.

Synthetic Biology aims to applying the engineering principles of Standardization, 

Modularity and Abstraction of function to Biotechnology. It is expected that the adoption 

of these design principles will speed genetic engineering and will allow the 

accomplishment of increasingly complex goals. Synthetic Biology is influencing Plant 

Biotechnology primarily with the adoption of new cloning methods, now renamed as DNA 

assembly methods. A panoply of new assembly strategies have been developed for Plant 

Biotech, based either on site-specific recombination (Dalal et al., 2015), PCR-overlap 

(Cha-aim et al., 2009, Nour-Eldin et al., 2010) or Type IIS enzymes (Engler et al., 2008, 

Blake et al., 2010), which bring the efficiency required to facilitate complex multigene 

engineering. Type IIS systems based on the original Golden Gate strategy (Engler et al., 

2009) are particularly interesting in the context of Synthetic Biology, as they open the 

way for the definition of assembly standards that, if widely adopted, will facilitate the 

exchange of DNA parts. In this respect, a common syntax for Golden Gate-based 

methods as MoClo (Weber et al., 2011a) and GoldenBraid (Sarrion-Perdigones et al., 

2011) has been recently proposed and supported by developers and users of those 

technologies. This Standard Plant Syntax establishes the physical composition rules that 

govern the way in which individual DNA components (referred as phytobricks) are to be 

connected together to create higher order modules and devices, as for instance how to 

clone a promoter next to a CDS and a terminator to create a transcriptional unit. 

The definition and the adoption of standard rules for physical assembly of genetic 

elements in plants is a first step forward in Synthetic Biology. However, a far more 

challenging objective ahead is the definition of functional rules that allow standard 

biological components (i.e. parts, modules or other devices) to be reliably and 

predictably assembled into higher order functional devices (Wang et al., 2013b) in a 

systematic way. Following a flow chart borrowed from mechanical engineering, standard 

specifications describing basic parts could be employed to anticipate the behavior of a 

composite part, and conversely, new composite parts could be designed by selecting 

their basic components, based solely on their standard specifications.  

It can be anticipated that the complexity and the stochasticity at molecular level of 

biological networks will make the definition of even the simplest set of functional 

composition rules an extremely challenging task. However, it should be also noticed that 

rudimentary (intuitive) composition rules are underlying most of design decisions taken 

by today´s plant biotechnologists. For instance, the classical selection of a strong 

ethylene-regulated fruit-specific promoter to drive the expression of a transcriptional 
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factor upon fruit ripening (Butelli et al., 2008), is ultimately a non-systematic/non-

standard exercise of implementing a functional composition rule. 

A step further in Plant SynBio, beyond the adoption of common assembly standards, 

should be the establishment of comprehensive collections of parts covering a wide range 

of genetic activities and organized in databases where the experimental information 

required for functional description of each part is also integrated. The latter is a 

prerequisite for establishing any kind of functional composition rules. Although a few 

collections of standard parts for Plant Biotechnology have been recently created and 

deposited in repository databases (Engler et al., 2014), this effort is still very limited, 

and to date very little has been advanced in the integration of functional specifications in 

those databases. 

Integrating experimental data into genetic databases can be of very little use unless 

certain uniformity in the experimental conditions is established. A strategy to partially 

circumvent this problem is the definition of standard experimental conditions for the 

description of parts belonging to the same category (Schaumberg et al., 2015). 

Performing quantitative characterization of biological parts and then summarizing their 

properties in the form of standard datasheets has been previously proposed as a way to 

maximize the usability of this information (Canton et al., 2008). Datasheets physically 

and functionally describe each element in a collection. Ideally, standard descriptions 

contained in datasheets should facilitate the creation of new assemblies and the 

anticipation of their behavior under different circumstances. This is conceivable specially 

with those collections whose elements are modular and reusable in biological sense, 

meaning that once created can be reassembled or replicated without changes (e.g. 

without introducing assembly seams or PCR-born errors). 

In this Chapter we describe the development of GoldenBraid 3.0 (GB3.0), the first 

database of reusable genetic elements for Plant SynBio that incorporates functional 

descriptions of its synthetic parts. We have built GB3.0 database on top of the previously 

described GB2.0 assembly system. In its previous version, the GoldenBraid database 

stored only the sequence information of each DNA element. New genetic devices were 

assembled using software-assisted tools instructed with the so-called GB physical 

composition rules (Sarrion-Perdigones et al., 2013). The new GB3.0 assembly software 

adopts for the first time the new Plant Standard Syntax (PSS) (Patron et al., 2015) and 

registers the assembly history of each composite part, keeping record its genealogy. 

Most notably, GB3.0 enables the definition of standard experiments and the introduction 

of experimental results in the database. As a result, the new GB3.0 DNA elements are 

described by standard datasheets displaying their genealogy, their physical sequence 

information and their behavior under standard experimental conditions. Finally, to 
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illustrate the possibilities that GB3.0 offers for the design of novel genetic devices, we 

assembled a small genetic circuit where a chemically-inducible regulatory module was 

connected to a regulatory module controlling in series the activity of the dihydroflavonol 

4-reductase DFR promoter, resulting in unprecedented glucocorticoid-dependent 

modulation of the DFR promoter and showing that descriptions of individual modules can 

led to anticipate the behavior of the whole circuit. 

 Results 2.

2.1. Refinement of the GB assembly tools and rules: 
The GB3.0 software package. 

A renovated website at www.gbcloning.upv.es was created to host the new features of 

GB3.0. As displayed in its front-page, the new GB3.0 web comprises four major sections, 

namely Design, Collection, Experiment and Genome Engineering.  

The Design section contains improved software tools that facilitate in silico assembly 

of multigenic constructs. Briefly, the GB software, comprises three webtools, namely the 

domesticator, the multipartite assembler and binary assembler. The domesticator tool 

serves as entry point, converting raw DNA sequences in standard level 0 GBparts, 

typically promoters, coding regions, protein domains, terminators, etc. For 

domestication, raw DNA sequences are cloned into standard entry vectors while internal 

restriction sites are removed by PCR-mutagenesis. The multipartite assembler takes 

individual level 0 parts and clones them together to create level 1 elements, typically a 

full transcriptional unit. Later, level 1 elements can be assembled binarely (Binary 

assembler tool) in an iterative way to create level >1 elements, typically multigenic 

constructs. Although the basis for in silico assembly were developed in GB2.0 and 

described in Chapter 1, the new version incorporates a number of updates and 

improvements listed below (see Supplementary Figure 1): 

• Two new part domestication tools (the ‘Phylogeny Search’ and the ‘Synthetic 

Strategy’) were introduced. As the domestication of coding DNA parts is often 

hampered by the presence of internal restriction enzyme sites (RES), the first tool 

searches plant genome databases to find homologous sequences from related species 

that contain minimal internal restriction sites as potential substitutes. With gene 

synthesis becoming increasingly affordable, it is often convenient to chemically 

synthesize RES-free DNA fragments and clone them directly in the Universal entry 

vector instead of removing internal RES by mutagenesis. The Synthetic Strategy tool 

was introduced to enable this domestication option. 
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• Domestication tools allow the removal of additional RES (e.g. BpiI) to enhance 

compatibility with other plant assembly methods (e.g. MoClo). 

• In response to user´s requests, a domestication option for intron-containing coding 

regions was introduced, that avoids the disruption of the ORF. 

The Collection section serves as interface for the GBdatabase. The GB3.0 database 

has been reshaped to adapt to the new PSS. Accordingly, all GB parts allowed in the 

database conform to PSS. A SBOL-inspired symbol was assigned to each basic GBpart, 

and to each relevant combination of parts. An interactive page was designed to browse 

GBparts in the database using GB symbols (Figure 7). Furthermore, the database was 

updated with new structural elements adapted to PSS:  

• A new set of destination pCambia-based vectors (pDGB3 series) was introduced 

fixing bugs and increasing transformation efficiency.  

• The ampicillin resistant Universal Entry Vector of GB2.0 was substituted by a new 

chloramphenicol resistant pUPD2 as the standard vector where all GB3.0 parts are 

stored. Adoption of pUPD2-hosted GBparts enhances compatibility with MoClo and 

with iGEM collections. Accordingly, all new GB parts are domesticated using pUDP2. 

Parts in old pUPD version can be used in new assemblies, but the use of pUPD as 

entry vector is no longer supported by GB software tools. 

• Besides GBparts, the extended GB3.0 database harbors now experiments performed 

with standard GBparts. Experiments need to conform to one of the defined standard 

experimental types, and can be searched in the database attending to different 

strings (experiment type, parts involved, quantitative output range, etc.). 

Experimental data is used to feed quantitative descriptions of parts and modules 

displayed in standard datasheets (see below). 

The new Experiment section contains templates for the introduction of experimental 

data. In GB3.0 database the information available for each DNA part is enriched with the 

introduction of experimental results. This is achieved with the introduction of a new type 

of element in the GB schema, the GBexperiment. A GBexperiment is defined as a set of 

data produced as the result of the transformation of one or more GB elements in a plant 

chassis. The experimental data comprises both the experimental conditions in which the 

experiment has been performed, as well as any observation (results), quantitative or 

qualitative, obtained as a consequence of the presence of the GB element(s) within the 

plant chassis. New experiments are introduced in the database by filling a standard 

questionnaire, where either qualitative (images, text descriptions) or numeric results (in 

the form of a standard datasheet) can be uploaded. An important feature of the 

GBexperiment is that it is always associated to a GB element, which corresponds to the 

complete GB composite part that was employed to perform the test. As the GBdatabase 
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keeps record of all individual parts that were combined to build the GB element, every 

new experiment enriches the description not only of its main GB element, but also of all 

individual components that make it up. Tentatively, we have defined five standard 

experiment types (SE_001 to SE_005), plus one non-standard template (SE_000). 

SE_001 and SE_002 templates were designed to accommodate transcriptional activity 

data obtained with the normalized Luciferase/Renilla reporter pair in agroinfiltrated 

Nicotiana benthamiana leaves. SE_002 is reserved to experiments with intact leaves 

whereas SE_001 accepts leaf disks incubated with chemical inducers (described in more 

detail in subsequent sections). SE_003 template describes stable transformation 

efficiencies, SE_004 is used to collect standardized levels of recombinant protein 

production, and SE_005 was defined to collect mutagenesis efficiency in CRISPR/Cas 

experiments. Each experiment type, except NS_000, is defined by a number of 

compulsory experimental conditions, accepts additional (declared) specific conditions, 

and it is expected to produce a limited number of predefined quantitative outputs. 

SE_001 for instance has strict rules as for the plant chassis, growing condition, disks 

size, harvesting and incubation timing, enzyme reaction conditions, internal references, 

etc., but it is agnostic towards the use of chemical inducers, optogenetic signals, 

temperature, etc. Detailed experimental conditions for each experiment type are shown 

in https://gbcloning.upv.es/add/experiment/ or in the Supplementary Table 1. Examples 

of all experiments can be consulted in GBdatabase 

(https://gbcloning.upv.es/search/experiment/) or representative ones in the 

Supplementary Table 2. 

Finally, GB3.0 incorporates a new section devoted to genome engineering. This 

section integrates tools for construction of gRNA and CRISPR/Cas9 assemblies for 

multiplexing gene editing. The adaptation of CRISPR/Cas9 system to the GB3.0 standard 

is described in Chapter 3 and in Vazquez-Vilar et al. (2016). 
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Figure 7. Parts database browser page.  

Screenshot of the parts database browser search including SBOL-based images as shortlinks to the different 
part categories.  

 

2.2. The GB3.0 standard datasheet: integrating 
experimental data. 

A consequence of the introduction of GB experiments to the GB database is that the 

GB elements can now incorporate functional information to their descriptions. To handle 

this information we have designed a basic GB datasheet, a page that displays the most 

important information of each GB element. The basic datasheet information includes 

name, type of element (level 0, 1, >1; and the standard position in case of level 0), a 

short text description of the element, the GB plasmid where it is hosted, a graphical 

description adapted from the SBOL standard (Quinn et al., 2015) and, when available, 

the graphical output of a maximum of two representative experiments. The objective of 

the basic GBdatasheet is to bring maximum information about the GBelement in a single 

screenshot. In addition, more detailed information is linked to the basic page that 

comprises, among others, the nucleotide sequence in GenBank format, and a clickable 

list with all the experiments performed with that element.  



Refinement of the Phytobricks Standard for Plant SynBio 

 55 

An example of a GB3.0 datasheet is depicted in Figure 8a, and shows the standard 

specifications of the level 0 GB0030 phytobrick (see online entry at 

https://gbcloning.upv.es/feature/GB0030/). GB0030 was constructed based on the 

constitutive 35sCaMV promoter, as it is indicated in the Description section, and it is 

flanked by GGAG and AATG and therefore comprises basic parts A1-A2-A3-B1-B2 (see 

Figure 7). The datasheet includes, next a SBOL-like symbol representative of its 

standard position, sequence-related information as the plasmid where GB0030 is 

inserted, the presence of internal sites, selection marker, and a link to the complete DNA 

sequence in GenBank format. Level 0 phytobricks are introduced in the system directly 

via the Domesticator tool and therefore do not generate a genealogy section. Most 

remarkably, the datasheet contains the complete clickable list of experiments where 

GB0030 has taken part as a key element. Two representative experiments are depicted 

in the lower part of the datasheet, illustrating the behavior of GB0030 under standard 

conditions. In Figure 8a, GB0030 activity is reported next to the reporter system 

Luciferase/Renilla (as phytobrick GB0164 or GB1119), therefore conforming standard 

experiments SE_001 and SE_002.  

An example of a datasheet describing a composite phytobrick is depicted in Figure 8b. 

In this case, GB0157 entry corresponds to a Transcriptional Unit comprising four 

standard basic parts, GB0552 (the A1-A2-B1 CaMV35S promoter), GB0531 (a B2 NT 

encoding the rat glucocorticoid receptor domain), GB0465 (a B3-B4-B5 CDS encoding a 

chimeric transcriptional factor comprising the binding domain of LacI and the 

transcription activation domain of Gal4) and GB0037 (a B6-C1 phytobrick derived from 

the transcriptional terminator of the Nopaline Synthase). As shown in the Figure 8b, 

GB0157 datasheet contains a “Component Elements” section describing this genealogy, 

which is automatically generated during in silico assembly within the GB3.0 frame. All 

the genealogy elements are clickable and linked to the standard datasheets of the 

phytobricks of the previous assembly level. As in the previous example, GB0157 

datasheet contains a list of standard experiments performed with this composite part, 

and displays a representative chart showing the transcriptional activation that GB0157 

confers to a minimal promoter containing a LacI operator in presence of dexamethasone, 

as evaluated using the SE_001 standard (see https://gbcloning.upv.es/feature/GB0157/ 

for an online version of GB0157 datasheet).  
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Figure 8. Examples of two GB3.0 datasheets. 

(a) Datasheet of the level 0 phytobrick 35s (GB0030) including a SBOL-inspired symbol describing its category 
(top), assembly information such as part category, vector or information of compatibility with the MoClo 
standard (general information table) and experimental information with links to all experiments performed with 
devices including this phytobrick as key element (experiments table) and graphs of two experiments (bottom). 
(b) Datasheet of the composite phytobrick GB0157 including a compilation of the SBOL-inspired symbols 
describing each of its components (top) a list of these components with links to each of them facilitating the 
traceability of the assembly (component elements table), assembly information such as the vector and 
phytobrick category (general information table) and experimental information with links to all experiments 
performed with devices including this phytobrick as key element (experiments table) and the graphs of the last 
two experiments (bottom).	

	

2.3. Refinement of the standard measurements of 
transcriptional activity in plant cells 

Our group focuses in the design of transcriptionally-regulated genetic circuits in 

plants, and therefore we paid particular attention to the establishment of quantitative 

measurements for estimating transcriptional activity using phytobricks, as represented 

by the proposed standard SE_001. Relative Transcriptional Activities (RTAs) in SE_001 

are measured in the N. benthamiana leaves making use of Agrobacterium-mediated 

transient expression, using Luciferase/Renilla system as indirect measurement of the 

steady-state transcript levels. Furthermore, the relative luciferase measurements are 

a	 b	
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normalized with an internal reference (phytobrick GB0166, a fixed Luciferase/Renilla 

device where Luciferase is driven by the weak promoter of the Nopaline synthase), 

agroinfiltrated in a different plant during the same experiment, and its Luciferase/Renilla 

readings are arbitrarily set as one rpu (relative promoter unit). The GB0166 reference 

was found necessary to allow comparison among experiments. The remaining SE_001 

experimental conditions were carefully selected on the basis of detailed observations. An 

important parameter in transactivation experiments is the average number of active T-

DNA copies that enter a leaf cell upon agroinfiltration and its dependence with the 

concentration of the Agrobacterium cultures. To estimate this parameter, a strategy 

similar to that used to estimate the Multiplicity of Infection (MOI) in viral infections was 

employed, assuming that the rate of co-transformation of two independent phytobricks 

(GB1287 and GB1288, carrying T-DNAs expressing Yellow and Red fluorescent proteins 

respectively, Figure 9a) follows a Poison distribution. As can be observed in Figure 9b, 

the number of transcriptionally-active T-DNA copies (defined here as Multiplicity of 

Transformation, MOT) adjusts well to a logarithmic function of the optical density of the 

agro culture, with a MOT=1 obtained at OD=0.002. MOT dependence with OD decreases 

as OD increases. We therefore decided to set a standard OD= 0.1 (estimated MOT= 7.4) 

for SE_001 and SE_002, as it balances maximum MOT stability (low dependence to OD 

variations) with low Agrobacterium input and acceptable copy numbers for 

transactivation activities. 

The experimental data deposited in the GBdatabase was then used as an internal test 

of the reproducibility of the data obtained using SE_001 and SE_002. We took 

advantage of the repeated use GB0030 as internal control in several independent 

experiments to test the variability of the transcriptional activity of a CaMV35S 

constitutive promoter under standard conditions. The GB0030 datasheet was found to 

contain links to nine SE_001 and SE_002 experiments, and the relative transcriptional 

activity in each experiment was plotted and depicted in Figure 9c. As observed in the 

Figure 9c, average GB0030-confered transcriptional activity was maintained in a range 

between 9 and 13 relative units, this despite the use of two different backbones (either 

pGreen or pCambia) and that the depicted experimental conditions involved different 

plant batches, growth chambers, and individual researchers. 

The remaining standard experiments were defined to illustrate the generation of an 

increasingly informative GBdatabase. We assembled and experimentally tested a number 

of new GB devices using the five pre-stablished experiment types and uploaded them to 

the database. Supplementary Table 3 shows a non-exhaustive list of characterized 

devices comprising protein-protein interactors, constructs for metabolic engineering, 
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recombinant protein production, tomato stable transformation, CRISPR/Cas9-based 

mutagenesis and transcriptional regulation, among others.  

 

	

Figure 9. Relationship between the OD600 and the multiplicity of transformation in 
transient expression assays and behavior of the 35s promoter among experiments. 

(a) MOT follows a logarithmic distribution in relation to the OD600. Multiplicities of transformation were 
estimated based on the % of cotransformed protoplasts (see Materials and Methods for details). (b) Pictures of 
protoplasts cotransformed with GB1287 and GB1288 at OD600= 0.000617 (top) and OD600 = 0.05 (down). From 
left to right Red channel, GFP channel and overlay of the two previous pictures. White arrows point to 
cotransformed protoplasts, blue arrows to protoplasts showing only red fluorescences and yellow arrows to 
protoplasts showing only yellow fluorescence. (c) Relative transcriptional activity of the 35s promoter 
(GB0030) tested as part of devices GB0164 and GB1119 over different experiments. GB0164 has a pGreen 
backbone while GB1119 has a pCambia backbone. Black squares and circles correspond to measurements at 
4dpi while grey squares and circles are measurements determined at different time points. Error bars represent 
standard deviations of three different leaves expressing the same GBelement on the same experiment. 

 

2.4. Functional composition guidelines obtained 
from datasheets. 

To exemplify the use of GB3.0 in the construction of transcriptional gene circuits, we 

built and tested two independent transcriptional modules, and subsequently connected 

one to another, making the second one to take control on the first one.  
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The first transcriptional unit (DFRmodule, GB1160) was a simplified version of a plant 

endogenous module for the control of flavonoids biosynthesis in plants. This system 

comprised the DFR promoter (GB0606) and the transcriptional regulators Rosea1 

(GB0026) and Delila (GB0079). Rosea1 and Delila are known to bind a WD40 factor 

forming quaternary activation complexes with DNA at the promoter regions of several 

enzymes of the flavonoid pathway, including dihydrofavonol-4-reductase (DFR) gene. In 

the absence of additional transcriptional factors, GB0606 showed negligible 

transcriptional activity in SE_001 conditions (Figure 10a). When constitutively-expressed 

Del (GB0126) or Ros1 (GB0125) factors were added to the DFR construct, transcription 

activity raised to low (0.07 rpu) or moderate (2.3 rpu) levels respectively (Figure 10a). 

Expectedly, the simultaneous inclusion of (GB0126) and (GB0125) resulted in a device 

with high (7.2 rpu) transcriptional levels (see Figure 10a). As it can be deduced, DFR 

functions as an imperfect AND gate, with Ros1 and Del acting in series in the activation 

of DFR, but with Ros1 having a stronger influence in DFR expression. Partial AND gate 

activation illustrates the problem of non-orthogonal systems and probably reflects the 

ability of Ros1 to recruit endogenous bHLH factors that compensate the absence of Del in 

the activation of DFR promoter. 

The second transcriptional system is a conditional transactivator consisting of a 

constitutively-expressed glucocorticoid-responsive (GR) chimeric transcription factor (TF) 

next to an artificial promoter. The chimeric TF comprised a GR element fused to the Gal4 

activation domain and the LacI DNA binding domain (GB0157), which binds the lacI 

operator present in GB1349. In the absence of chemical inducer, the device shows low 

transcriptional activity when coupled to Luciferase/Renilla reporter (average 1.7 rpu at 

t=24h). In the presence of 5µM dexamethasone GB1349 is activated to levels up to 16.0 

rpu at t=24h (see Figure 10b).  

Once both modules were characterized, it was anticipated that, by connecting them, 

the DFR promoter would turn responsive to dexamethasone. This exercise wanted to 

simulate the “hacking” of an endogenous regulatory module (flavonoid biosynthesis), 

making it responsive to a new stimulus. The new circuit admits at least two possible 

configurations, as either Ros1 or Del TFs can be directly connected to the 

Dexamethasone module. However, attending to the transcriptional activity reported by 

Ros1 and Del modules separately, which showed that DFR is more responsive to Ros1, it 

could be easily anticipated that connecting GB0157 to Ros1 would result in a better 

inducibility factor (defined as the RTA ratio at t=24h with and without dexamethasone). 

To test this model, we constructed the new circuit in both configurations (Figure 10) and 

tested it in presence and absence of inducer. As expected, both circuits resulted 



Chapter 2 

 60 

dexamethasone-responsive devices, with the configuration that connected Ros1 to Dexa 

resulting in a higher inducibility factor (1,45 and 1,97 respectively). 

	

Figure 10. Connection of two transcriptional modules for conferring dexamethasone 
regulation to the DFR promoter. 

(a) Transcriptional activity of the DFR promoter by Ros1 and Del, either alone or in combination at 72h post-
infiltration (referred as 0) or 96 hours post-infiltration (referred as 24). (b) Transcriptional activity of the 
conditional transactivator GB0157 and the effect of its combination with Ros1 and Del turning the DFR 
promoter responsive to dexamethasone. A detailed time-course of the induction of the conditional 
transactivator is show on the graph on the left. All transcriptional activities are expressed as relative 
transcriptional units calculated normalizing relative transcriptional activities to GB0166. Error bars represent 
standard deviation of Luciferase/Renilla ratios determined on at least two independent leaves. I.R. are the 
induction ratios calculated by dividing values obtained in presence of dexamethasone by values obtained when 
dexamethasone was absent. The * indicate differences on the values significant in a T-Test with a p-value < 
0.05. 

	

 Discussion 3.

A new wave of innovative crop traits will be needed in an immediate future to respond 

with sustainable bio-production solutions to a rapidly changing environment (Ort et al., 

2015). Plant Synthetic Biology proposes the rational and systematic design of genetic 

systems (i.e. regulatory networks, biosynthetic pathways, etc) as a new breeding 

strategy for obtaining radically new traits, especially those that are plausibly beyond the 

repertoire offered by natural variation. Undoubtedly, applying rational design to crop 

breeding is not devoid of phenomenal hurdles. Expectably, the strong context 
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dependency of many genetic elements will make them inoperative for any technically 

feasible rationally-designed solution. Even in cases where rational designs could 

conceivably be applied, it is expectable that the first iteration of a synthetic biological 

system will not match the breeding objectives, and multiple iterations of the design-

build-test cycle will be needed to reach the desired trait. Moreover, defining even the 

simplest set of functional composition rules will face operational challenges, like the 

adoption of appropriate standards and the collection and reliable characterization of 

bioparts (Kelwick et al., 2014). These challenges are, however, worth addressing since 

the standard biological data is essential to improve the predictive capabilities of forward-

design in silico models. 

GB3.0 proposes a multigene design platform that connects DNA elements with 

biological data by means of both DNA assembly and experimental standards. This is to 

our knowledge the first attempt to create such an integrated platform for Plant Synthetic 

Biology. Previously, other initiatives as the BioBricks Foundation in the frame of the iGEM 

competition (Smolke, 2009), and the International Open Facility Advancing 

Biotechnology (BioFab) in a more-research-oriented scope (Cambray et al., 2011), have 

produced, characterized and validated large collections of standard biological parts 

including catalogues of promoters (Mutalik et al., 2013b), terminators (Cambray et al., 

2013), Ribosomal Binding Sites (Mutalik et al., 2013a), as well as small regulatory 

devices to support bioengineering mainly in E. coli and Saccharomyces cerevisiae. To 

manage and reuse parts and devices, the SBOL (Synthetic Biology Open Language) 

standard aims to facilitate the exchange of information and to communicate designs in 

SynBio (Bartley et al., 2015). SBOL is an extensible standard created to encode 

additional information beyond an annotated sequence as required by synthetic biology, 

including measurements of performance characteristics, experimental context 

information, computational models of behavior etc.  

The present particularities of Plant Biotechnology impose technical constrains that 

preclude the practical use of microbial-oriented catalogues as BioFab. In principle there 

is little chance for inter-kingdom exchange of bioparts due to differences in codon usage 

and to the lack of functional conservation in many regulatory elements (Angov, 2011). 

Besides, plant synthetic devices are very often delivered in the form of T-DNAs, and 

therefore genetic constructs need to be enclosed in Agrobacterium binary vectors. T-

DNAs are randomly integrated into the plant genome, leading to positional effects. Also 

plant biotechnologists rarely make use of elements as RBSs, 5´-UTRs and 3-UTRs in 

their repertoire, as those elements are usually incorporated to promoter and terminator 

regions without functional dissection of their specific contributions. All in all, it seems 

more operative for the plant community to start developing platforms and standards that 
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are specially adapted for Plants, as reflected by the PSP initiative. Fortunately, there is a 

growing number of plasmid collections for Plant SynBio in the Addgene repository 

covering hundreds of standard elements (Engler et al., 2014, Weber et al., 2011a, 

Mutalik et al., 2013a). However, the development of information managing tools for 

those collections, such as software tools, protocols for exchange of information, 

experimental standards or automatization, etc is to a large extend still lacking. GB3.0 is 

an example in this direction. A first advantage of using a closed assembly system is that 

gaps or scars between elements are perfectly defined, opening the way to proper and 

reliable functional description of individual elements. Traditionally, the gaps between key 

components are almost never reported in Plant Biotechnology, presumably because they 

are not considered crucial. Yet, synthetic biology relies on the premise that synthetic 

DNA can be engineered with base-level precision. Lack of proper boundaries definition 

affects reproducibility, limiting reusability (Peccoud et al., 2011).  

In its current form, GB3.0 provides a working solution that accommodates the actual 

needs of most Plant Biotechnologists, whose main hurdles come from the difficulties to 

assemble complex and combinatorial designs using available non-standard parts. In this 

sense GB3.0 is “cloning” oriented, meaning that does not make use of abstraction of 

function for the design of new devices. Instead, the syntactic category of each element is 

the actual driver of the new designs, as the usability of each phytobrick is largely 

conditioned by its flanking overhangs. This is in contrast with the general workflow 

proposed by SBOL, where physical constrains are not taken into account in the design 

phase (Galdzicki et al., 2014). It is expectable that progressive advancements in DNA 

synthesis will reduce physical assembly constrains in Plant Biotechnology as well, to such 

extend that they can be overlooked during the design phase. However this is not the 

case yet in the daily experience of most plant biotechnologists and therefore a design 

tool constrained by DNA-assembly is currently the most operative solution. This does not 

preclude, however, that Plant Synthetic Biologists tend to accommodate progressively to 

SBOL or similar standards to enhance compatibility with other design platforms. In this 

regard, there is a close match between the DNA elements defined in the Plant Standard 

and the elements proposed by SBOL that will facilitate future adaptations. File 

conversion tools between GenBank and SBOL have become recently available (Hillson et 

al., 2012), and it will be advisable to keep contact between both communities to ensure 

that Plant standards are developed in such way that confluence with general standards in 

Synthetic Biology is favoured. 

A main novelty in GB3.0 is that experimental data is automatically associated to the 

genetic elements involved in its generation, enriching functional descriptions. We 

propose the definition of standard experiments as the most straightforward way to 
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populate SynBio databases with functional descriptions. Initially, we defined five 

standard experiments in GB3.0, measuring transcriptional activity (SE_001, SE_002), 

recombinant protein production (SE_003), transformation efficiency (SE_004) or 

mutagenesis efficiency for CRISPR/Cas9 constructs (SE_005). This is not an exhaustive 

list but rather an attempt to accommodate to GB3.0 the main activities in our lab. Thus, 

we proposed Firefly/Renilla luminescence ratios (Fluc/Rluc) measured in agroinfiltrated 

N. benthamiana leaves as a general standard for transcriptional activity specifications. 

Agroinfiltration is a widely used, rapid and straightforward transient expression method 

amenable for medium and high throughput analysis (Yang et al., 2000, Kapila et al., 

1997). In this method, transgene expression takes place in differentiated leaf epidermal 

and parenchyma cells; however the high co-transformation efficiency facilitates the 

incorporation of trans-acting elements that simulate the molecular environment in other 

specialized tissues, therefore extending its applicability to a wide range of experimental 

setups. Absolute units for measurement of transcriptional and translational activities in 

Synthetic Biology have been proposed, as the number of polymerases per second (PoPs) 

or ribosomes per second (RiPs) (Canton et al., 2008); however in practical terms the use 

of relative units calculated with a constant reference, has turned to be more operative. 

We found that normalization of Fluc/Rluc ratios to a Nopaline synthase promoter-derived 

standard element resulted in a robust and reproducible method for estimation of the 

relative transcriptional activity in agroinfiltration experiments.  

An important concern when setting up SE_001 standard conditions was the number of 

T-DNAs that simultaneously enter a plant cell in a typical agroinfiltration experiment, as 

this could affect reproducibility and interpretation in one hand, but also the ability to 

reliably perform co-transformation with non-linked T-DNAs on the other hand. Therefore 

we carefully investigated the T-DNA co-transformation levels and its dependence of the 

concentration of Agrobacterium in the infiltration culture. Although the levels of co-

transformation in stable transgenics has been throughout investigated (Dafny-Yelin & 

Tzfira, 2007, Tzfira et al., 2004, De Buck et al., 2000), to our knowledge this question 

has not been convincingly addressed for the case of agroinfiltration. We followed a 

strategy similar to that described for estimation of MOI in viral infections and found that 

at low OD values the T-DNA copy number showed a strong dependence with 

Agrobacterium concentration, but this dependence sharply declined when OD was close 

to 0.1, corresponding to a MOT=7.4. We therefore set 0.1 as standard OD for 

agroinfiltration, although for certain analysis it would be advisable a lower MOT value. In 

the current work, we have not found evidence that T-DNA size could influence MOT (no 

bias has been observed in luciferase activity for larger constructs, data not shown). 

However the T-DNA constructs assayed so far are of average size range and therefore 

such dependence cannot be discarded for larger constructs. The characterization of 
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increasingly complex constructs will probably require a more comprehensive study of the 

dependence of MOT with T-DNA size. 

We also show that the GB3.0 database itself serves as quality control for the 

reproducibility of a given experimental standard, as GB3.0 keeps record of all the 

experiments conducted with the same phytobrick. Thus, we found high consistency and 

reproducibility in all nine experiments conducted with phytobrick GB0030 (35Spromoter) 

in our lab, despite having been conducted by different personnel over a time period of 

two and a half years. Notwithstanding this, refinements of SE_002 could be proposed to 

increase amenability to high throughput analysis as e.g. whole tissue measurements that 

skip tissue homogenization steps. In its present form GB3.0 is flexible and allows 

introduction of new types of experiments covering a wide range of needs and including 

stable transgenics. In the future, an effort should be made in our opinion to find 

common grounds for experimental comparisons e.g. defining specific genomic landing 

paths for each species, agreeing standard growth conditions, etc, so that gene 

constructs can be reliably characterized in a whole plant genome context. For the time 

being, the standards proposed here could serve as a first step for functional phytobrick 

characterization. In addition, we have defined also NS_000 to serve as repository to 

those experiments not fitting any current standard. Non-standard experiments provide 

specific information of each phytobrick, but cannot be used as basis for comparisons or 

for creating functional composition rules. 

To exercise genetic design in GB3.0, we constructed more than 150 level >1 elements 

(single TUs, gene modules), involving more than 50 level 0 phytobricks, and tested them 

in standard and/or non-standard conditions generating more than 80 experimental 

entries. As an example of use of GB3.0, we show here in more detail the composition of 

a small circuit that results from the connection of a MYB/bHLH regulatory module to a 

conditional activation module triggered by Dexamethasone. The Gal4 domain fused to a 

DNA binding domain has been previously employed as orthogonal transcriptional factor 

in plants, in enhancer trap strategies and for the spatial control of transgene expression; 

in addition, the fusion of Gal4 to the GR domain turns it into an efficient chemically 

inducible switch (see Moore et al. (2006) for a review). On the other hand, Rosea1 and 

Delila MYB/bHLH TFs are known to bind a WD40 factor forming quaternary activation 

complexes with DNA at the promoter regions of several enzymes of the anthocyanin 

biosynthesis pathway, including the dihydrofavonol-4-reductase (DFR) gene. In some 

tissues, like the tomato fruit, expression of downstream anthocyanin biosynthesis genes 

requires to a great extend the simultaneous presence of both Rosea 1 and Delila factors 

(Butelli et al., 2008), scoring close to a canonical AND gate with Ros1 and Del acting in 

series in the activation of DFR. In contrast, we show that in Nicotiana benthamiana, 
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Rosea1 and Delila function as an imperfect AND gate in the transcriptional activation of 

DFR promoter, with Ros1 having a stronger influence in DFR expression. Imperfect AND 

gate activation illustrates the problem of non-orthogonal systems and probably reflects 

the ability of Ros1 to recruit endogenous bHLH factors that compensate the absence of 

Del in the activation of DFR promoter. This lack of orthogonality is a very common 

situation in Plant SynBio, and it is not devoid of practical relevance e.g. for food crops as 

public opinion trends favour the use of intragenic elements rather than cross-kingdom 

elements for crop biotechnology. The activation of entire pathways by ectopic 

expression/repression of endogenous or homologous TFs has been shown a very 

successful strategy for metabolic engineering, including biofortification of food crops 

(Davuluri et al., 2005, Zhang et al., 2015, Butelli et al., 2008). Ectopic expression often 

results from overexpression of the TFs using constitutive promoters or, in a few 

examples, is made dependent of endogenously regulated factors as e.g. ripening 

(Davuluri et al., 2005), senescence (Ori et al., 1999), or tissue specific factors (Azuma et 

al., 2016, Paine et al., 2005, Houmard et al., 2007). A step forward in transcriptional 

control would involve connecting endogenous pathways (e.g. anthocyanin biosynthesis) 

with externally operable modules such as optogenetic or chemically inducible switches 

(Muller et al., 2014, Padidam, 2003, Moore et al., 2006, Kinkema et al., 2014). This 

would allow to externally operate the biochemical and/or physiological status of the 

plant, for instance anticipating biotic or abiotic threats or triggering the accumulation of 

target compounds immediately before harvesting. The constructs built here prototype 

this type of circuits by physically combining a chemical switch and a Ros/Del 

(endogenous) module in a single cloning step, and show that this results in a functional 

combination of both modules. Moreover we showed that, by attending to the standard 

descriptions of the different elements analysed separately, it was possible to anticipate 

the behavior of the combined system and to select the configuration that provides higher 

Dexamethasone induction rates to the DFR promoter, a first step towards implementing 

functional composition rules in plants.	

 Materials and methods 4.

4.1. Nicotiana benthamiana transient expression  

For transient expression, plasmids were transferred to Agrobacterium tumefaciens 

strain GV3101 by electroporation. N. benthamiana plants were grown for 5 to 6 weeks 

before agroinfiltration in a growing chamber with 24°C (light)/20°C (darkness) in a 16-

h-light/8-h-dark photoperiod. Agroinfiltration was carried out as previously described by 

Orzaez et al. (Orzaez et al., 2009). Briefly, overnight Agrobacterium cultures were 
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pelleted and resuspended in agroinfiltration solution (10mM MES, pH 5.6, 10mM MgCl2, 

and 200µM acetosyringone) to an optical density of 0.1 at 600nm. Bacterial suspensions 

were incubated for 2 hours at room temperature on a horizontal rolling mixer and they 

were mixed for experiments in which more than one GBelement was used. 

Agroinfiltrations were carried out through the abaxial surface of the three youngest 

leaves of each plant with a 1ml needle-free syringe. 

4.2. Luciferase/Renilla assays  

Samples of leaves coinfiltrated with GBdevices listed at Supplementary Table 3 for 

SE_001 and SE_002 were collected at 3dpi (SE_001) and 4dpi (SE_002). For the 

determination of the Luciferase/Renilla activity one disc per leaf (d=0.8cm, 

approximately 18-19mg) was excised. For SE_001 leaf discs were kept in plates with or 

without inductor and samples were frozen in liquid nitrogen at the standard timepoints. 

Inductions were performed with D1756-dexamethasone (Sigma Aldrich) diluted to the 

final concentrations listed on each experiment in 0.02% Tween-80. For SE_002 excised 

leaf discs were directly freeze in liquid nitrogen after excision. 

Leaf discs were homogenized and extracted with 150µl of ‘Passive Lysis Buffer’, 

followed by 15 minutes of centrifugation (14000 x g) at 4ºC. Then, the supernatant was 

diluted 2:3 in Passive Lysis Buffer resulting in the working plant extract. Fluc and Rluc 

activities were determined following the Dual-Glo® Luciferase Assay System (Promega) 

manufacturer’s protocol with minor modifications: 10µl of working plant extract, 40µl of 

LARII and 40µl of Stop&Glo Reagent were used. Measurements were made using a 

GloMax 96 Microplate Luminometer (Promega) with a 2-second delay and a 10-second 

measurement. Fluc/Rluc ratios were determined as the mean value of three samples 

coming from three independent agroinfiltrated leaves of the same plant and were 

normalized to the Fluc/Rluc ratio obtained for GB0166. 

4.3. Protoplasts isolation and MOT calculation 

N. benthamiana protoplasts were isolated from 5 days post-infiltrated leaves co-

infiltrated with two Agrobacterium strains carrying GB1287 and GB1288 at 1:1 

proportion at seven different OD600 (0.1, 0.05 and five 1:3 dilutions ranging from 0.05 

to 0.00021). Protoplast isolation was performed as previously described by Sang-Dong 

Yoo et al. (Yoo et al., 2007) with minor modifications. Vacuum infiltration of cut leaves in 

enzyme solution was performed for 10 instead of 30 minutes. After filtration, intact 

protoplasts were further purified from dead protoplast and remaining cellular debris by 

the sucrose flotation method on 20% (w/v) sucrose. After the washing steps protoplasts 
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were kept in WI solution (4 mM MES (pH 5.7) containing 0.5 M mannitol and 20 mM 

KCl). 

Expression of Yellow and/or the DsRed Fluorescent Proteins on the isolated 

protoplasts was detected with the photomultiplier of the LSM 780 (Zeiss) confocal 

microscope. Image processing was performed with ImageJ (Schneider et al., 2012) 

followed by manual counting of the no fluorescent (untransformed), yellow fluorescent, 

red fluorescent and yellow and red fluorescent (cotransformed) protoplasts. 

By assuming that T-DNA distribution over cells of infiltrated leaves occur randomly 

and independently for T-DNAs of both fluorescent proteins, it can be considered that the 

number of T-DNAs of each type entering a cell follows a Poisson distribution. With this 

consideration, we calculated the multiplicity of transformation (MOT) based on the 

frequency of cotransformed protoplasts for each tested OD600 (see Supplementary Table 

4) following the same approach that Gutiérrrez et al. used for MOI calculation (Gutierrez 

et al., 2010). At least 1000 protoplasts per OD600 were used for calculation.  

4.4. Software tools development 

The web site www.gbcloning.upv.es was implemented using Django, a Python web 

framework that supports rapid design and the development of Web-based applications 

(version 1.5; Django Software Foundation; http://djangoproject.com). The database 

management system PostgreSQL was chosen to host the schemas of the GBelements 

and the experiments databases and all software tools accessible on the web site were 

developed using Python. The software-package contains flexible modular blocks which 

are interconnected and can be classified in five main categories: (1) adaptation of raw 

DNA sequences to the GB standard, (2) creation of gene-cassettes from standard parts, 

(3) binary assembly of pre-made gene-cassettes, (4) generation of GBelement 

datasheets and (5) generation of experiment views. All tools run all functions behind the 

screen. For the cloning tools, the submitted data is directly passed by Python functions 

for sequence checking and for output generating by creating a GenBank file and a 

protocol to each assembly step which is sent back to web server for user download. For 

generation of experiment views, data submitted is passed by Python functions for 

plotting a graph with the quantitative values and for incorporating links to the 

experiments on datasheets of involved GBelements. The source code of all tools is 

available on the Github repository at https://github.com/pziarsolo/goldenbraid.	



Chapter 2 

 68 

4.5. Website functionality 

The gbcloning web site is organized in four different modules (Design, Collection, 

Experiments and Genome Engineering) as described on the Results section. The user-

action workflow between the different cloning tools for the design of either multigene 

constructs or constructs for genome engineering is explained in detailed on Chapter 1 

and Vazquez-Vilar et al. (2015) and on Chapter 3 and Vazquez-Vilar et al. (2016), 

respectively. Access and search to the Collection of GBelements is described at Chapter 

1 and Vazquez-Vilar et al. (2015) and also at Sarrion-Perdigones et al. (2013). On the 

‘Experiments’ section, standard and non-standard experimental information can be 

incorporated to the user-database (an user account is required) and associated to either 

user or public GBelements at https://gbcloning.upv.es/add/experiment/ following the 

guidelines specified on the same address. There are two options for users to access the 

experiments performed with a GBelement. First, on each GBelement datasheet a list of 

all public and user-associated experiments with links to them can be found. Second, 

experiments can be searched at https://gbcloning.upv.es/search/experiment/ following 

different criteria (experiment ID, keywords or words included on the experiment 

description, and GBelements used on the experiment). Additionally, for standard 

experiments the search can be filtered by the values of the quantitative outputs.
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 Introduction 1.

Since its discovery, the clustered regularly interspaced short palindromic repeats 

(CRISPR)-Cas immune bacterial system has rapidly become a powerful technology for 

genome editing in many organisms. This system is based on a guide RNA (gRNA) that 

directs the Streptococcus pyogenes Cas9 nuclease to its target site. The application of 

the RNA-guided Cas9 technology is being widely exploited by the scientific community in 

cell cultures (Ran et al., 2013), animals (Yang, 2015, Wang et al., 2013a) or plants 

(Bortesi & Fischer, 2015, Belhaj et al., 2015).  

On the plant field, RNA-guided genome engineering via Cas9 has been employed in 

diverse approaches, from single and/or multiple gene knock-outs (Shan et al., 2013, Gao 

et al., 2015, Fauser et al., 2014) to targeted insertions of donor sequences (Schiml et 

al., 2014) or even targeted transcriptional regulation through the fusion of 

transcriptional activation or repressor domains to an inactivated Cas9 (Piatek et al., 

2015). A remarkable feature of gRNA-Cas9 is that facilitates targeting multiple 

sequences simultaneously. While similar technologies such as the ZFNs (zinc finger 

nucleases) (Beerli & Barbas, 2002) or the TAL effectors (Bogdanove & Voytas, 2011) 

require recoding of a new protein for each target sequence, with the gRNA-Cas9 a 

change of 20 nts in the guide RNA is enough, paving the way for multiplex editing and 

design of complex regulatory circuits among other engineering possibilities (Nielsen & 

Voigt, 2014).  

The direct transfection of Cas9 and guide RNAs into plant protoplasts followed by 

plant regeneration from single-cell has been shown effective for genome editing in rice 

and tobacco, however the efficiency remained relatively low, and besides, whole plant 

regeneration from protoplasts is not currently feasible for many crop species (Eeckhaut 

et al., 2013). A successful alternative for plants is the use of Agrobacterium mediated T-

DNA transformation, followed by callus induction and organogenic plant regeneration (or 

floral dip transformation in the case of Arabidopsis). In this case, T-DNA-delivered gRNA-

Cas9, besides acting transiently during callus formation, can also integrate in the 

genome and continue its activity in somatic tissues (Bortesi & Fischer, 2015). To exploit 

the full potential of the T-DNA strategy it is important to expand the ability to combine 

different gRNAs together with Cas9 within a single T-DNA, as it has been demonstrated 

that all-in-one plasmid approaches significantly increase editing efficiency (Mikami et al., 

2015).  

Modular cloning methods are being increasingly adopted by the plant research 

community as they greatly facilitate the combinatorial assembly of pre-made DNA 
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elements into multigene constructs (Patron et al., 2015, Liu & Stewart, 2015). 

GoldenBraid is a modular cloning standard that makes use of the Type IIS restriction 

enzyme BsaI for the assembly of basic, so-called “level 0” DNA elements (promoters, 

coding regions, terminators, etc) into transcriptional units (TUs), and then incorporates a 

second enzyme, BsmBI, to build higher level structures using a double-loop iterative 

strategy (Sarrion-Perdigones et al., 2013). Level 0 parts are flanked by 4 nucleotides 

overhangs, the sequence of which determines the relative position of each part in the 

transcriptional unit. To be usable in GB cloning, all level 0 parts need to be previously 

adapted with the incorporation of flanking BsaI recognition sites, the addition of flanking 

4bp standard barcodes, and the removal of internal BsmBI and BsaI sites. The whole 

process of adaptation to the standard is often referred to as “domestication”. Once 

domesticated, GB parts can be efficiently combined to create large multigenic constructs 

within binary destination plasmids ready to be used in Agrobacterium-mediated plant 

transformation. A key feature of GB is that all constructs can be reused in new 

combinations following the same cloning scheme, fostering the exchange of genetic 

elements. Interestingly, GB part reusability enables the unequivocal association of 

physical parts with experimental information, as no further modifications (i.e. 

subcloning, re-assembly or PCR re-amplification) are required to incorporate a GB part 

into different genetic modules. The GB webpage (https://gbcloning.upv.es/) offers a set 

of online tools for in silico multigenic assemblies and a database for the collection and 

exchange of GB standard parts (Vazquez-Vilar et al., 2015). Although Type IIS cloning 

methods have been employed for multi-gene assemblies with a wide range of 

applications in several organisms (Duportet et al., 2014, Guo et al., 2015), the GB 

framework is specially designed for plants since the GB destination plasmids are two sets 

of binary vectors (one based on pGreen and a second one based on pCambia) and all the 

GB standard parts including promoters and terminators are suitable for plant 

biotechnology. 

The GB cloning strategy is especially suited for the construction of vectors 

incorporating Cas9 together with multiple guide RNAs in the same T-DNA. Here, we 

report the implementation of a GB-adapted gRNA-Cas9 toolbox for plants, which includes 

the domestication of gRNA/Cas9 elements, the definition of a CRISPR cloning workflow 

and incorporation of new online tools for building CRISPR-based genome engineering 

constructs in binary vectors.  
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 Results 2.

2.1. GB-adapted cloning strategy for CRISPR/Cas9 
plant constructs 

To facilitate the assembly of CRISPR/Cas9 constructs and the delivery of multiple 

guide RNAs in the same T-DNA, we designed the CRISPR cloning workflow depicted on 

Figure 11a. As a first step, twenty nucleotides sequences designed against a specific 

genomic target can be incorporated to the GoldenBraid scheme using the ‘GB CRISPR 

domesticator’ tool available at https://gbcloning.upv.es/do/crispr/. This tool generates a 

new target-specific GB element (D-Target /M-Target, syntax structure B3c-B4-B5c or 

B3c-B4-B5d), which can be used immediately or stored in the database for future 

assemblies. The D/M-Target comprises two partially complementary oligonucleotides 

yielding a double-stranded DNA fragment flanked by four nucleotides overhangs. In a 

next step, the D/M-Target is combined with a PolIII promoter (currently, Arabidopsis U6-

26 and U6-1 and rice U3 promoters are available in the GB collection) and with the 

scaffold RNA in a cyclic digestion/ligation Golden Gate reaction (Engler et al., 2009) to 

build the complete gRNA expression cassette. This step is assisted by the ‘CRISPR 

Assembler’ tool available at https://gbcloning.upv.es/tools/crisprsassembler.  

The conditions for gRNA assembly were optimized by checking three key parameters, 

namely primer concentration, primer dilution buffer and annealing conditions in a total of 

12 combinations. The resulting assemblies were then transformed into E.coli and the 

efficiency assessed by the number of colonies obtained (Figure 11b and c). Two colonies 

of each of the 12 assembly reactions were selected for restriction analysis resulting in a 

100% of positive clones (see Supplementary Figure 2a). Primer dilution was found the 

main factor affecting reaction efficiency, with best results obtained at low primer 

concentrations. Only minor effects were observed associated to buffer or denaturing 

condition (Figure 11b and c). Accordingly, recommended conditions for CRISPR assembly 

in multipartite GB reactions were set at 1µM primer concentration in water with a 30 

minutes annealing step performed at room temperature. 

Following the GB workflow, every gRNA expression cassette assembled in GB 

compatible vectors can be combined with each other and/or with a Cas9-encoding 

transcriptional unit (Figure 11a) with the ‘GB Binary Assembler’ web tool 

(https://gbcloning.upv.es/do/bipartite/). GB binary reactions were highly efficient as 

previously described Sarrion-Perdigones et al. (2011) and accurate since white colonies 

analyzed resulted in 100% correct assemblies in most cases (see Supplementary Figure 
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2b and Supplementary Table 7). The current GB-adapted gRNA-Cas9 toolbox 

incorporates seven different Cas9-encoding TUs which have been designed for gene 

editing, gene activation and gene repression projects. All Cas9 TUs described in this 

Chapter were created by combining only protein-coding GBparts, leaving constitutive 

plant expression elements invariant. The assembly of inducible and/or tissue-specific 

expression of Cas9 is also possible using other standard parts from the collection. 

	
Figure 11. Multiple guide RNAs assembly with GoldenBraid. 

(a) Software-assisted CRISPR cloning workflow. Targets are adapted to the GoldenBraid standard with the ‘GB-
CRISPR domesticator’. Then, these level 0 parts (D/M-Targets) are combined with other standard GBparts with 
the ‘GB-CRISPR assembler’ to create the guide RNA expression cassettes, which can be combined between 
them and/or with a Cas9 transcriptional unit with the ‘GB-binary assembler’. (b) Optimization of GB-CRISPR 
multipartite reactions. Forward and reverse primers were diluted to different concentrations with different 
solvents; they were mixed and twelve independent multipartite reactions were set up. After transformation into 
E. coli, the number of colonies was estimated. (c) Number of colonies obtained on the twelve independent 
guide RNA multipartite assembly reactions.  
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Niben101Scf04551Ctg021 corresponding to predicted cDNAs Niben101Scf04205g03008 

(XT1) and Niben101Scf04551g02001 (XT2) respectively. We decided to target the two of 

them using a specific guide RNA for each one. The 20-bp target sequences for each 

guide RNAs were designed with the CRIPSR-P online tool (Lei et al., 2014), imposing the 

requirement for a G at the 5’ end of the sequence and minimizing off-targeting. An extra 

criterion for selection was the presence of a restriction site overlapping the Cas9 

cleavage site to facilitate the detection of the mutations. The selected targets are 

depicted on Figure 12a. 

GB-based gene targeting constructs carrying human-optimized (h) (Mali et al., 2013) 

and plant-optimized (pco) (Li et al., 2013) Cas9 variants directed to the single target of 

XT2 were transferred to Agrobacterium and infiltrated into N. benthamiana leaves. To 

test the mutation efficiency, genomic DNA was extracted from leaves, the targeted 

region amplified by PCR and the presence of mutated fragments estimated based on the 

elimination of the internal SpeI restriction enzyme (RE) site. The mutation efficiency for 

the hCas9 was estimated as 11% based on the intensity of the undigested band (Figure 

12b Lanes 2 and 3) relative to the undigested DNA present on the negative control 

(Figure 12b Lane 1). For pcoCas9 mutation efficiency was below detection levels as it 

was not possible to visualize the undigested band on the agarose gel.  

To test the efficiency of simultaneous targeting, we next assembled both gRNAs 

targeting XT1 and XT2 together with the hCas9 TU in a single T-DNA and transiently 

expressed them in N. benthamiana leaves. hCas9-induced mutations were detected as 

above with the restriction enzyme site loss method using BsmBI for XT1 and SpeI for 

XT2 (Figure 12c). The gRNA-guided Cas9 activity resulted in part of the DNA being 

resistant to RE digestion (see undigested band in Lanes 2 and 4) that was not detected 

when only hCas9 was expressed (Lanes 1 and 3). To corroborate the presence of 

mutations on the undigested PCR products, the undigested amplicons were cloned and 

individual clones were sequenced. The most prevalent mutations observed for XT1 were 

deletions of less than 10 nucleotides, while for XT2 a 32% of the mutated clones had 

single nucleotide insertions (C or T) (Figure 12d). Mutation rates of 17% (XT1) and of 

14.5% (XT2) were observed for the new construct. Since 29% (XT1) and 32% (XT2) of 

the clones showed the wild type sequence, we included this correction factor to obtain a 

more accurate estimation of the mutation rate. As result, we obtained a mutation rate of 

12.1% for XT1 and a mutation rate of 9.9% for XT2, consistent with the 11% obtained 

for the same target when a single gRNA was used.  
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Figure 12. Targeted mutagenesis using the CRISPR/Cas9 system in transient expression 
in N.benthamiana. 

(a) Schematic representation of the structure of Niben101Scf04205Ctg025 (XT1) and 
Niben101Scf04551Ctg021 (XT2) (exons in grey, introns in white) with the sequences of the target sites. 
Diagnostic restriction sites are underlined and the PAM sequence is shown in bold. (b) Comparison of the 
mutation efficiency of hCas9 and pcoCas9 targeting the XT2. Red arrow shows SpeI resistant PCR fragments 
only visible on the gRNA and hCas9 combination. (c) PCR/RE assay to detect simultaneous targeted mutations 
on XT1 and XT2. Red arrows show BsmBI and SpeI resistant PCR fragments amplified from N.benthamiana 
genomic DNA. (d) Alignment of XT1 and XT2 sequences obtained from different clones of uncleaved bands (see 
Figure 12c). XT1 target site appears in blue and XT2 target site in green. Red letters and dashes indicate 
insertions and deletions respectively. 
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2.3. GB-adapted dCas9 variants modulate 
transcriptional activity in N. benthamiana transient 
assays 

The modularity of GoldenBraid assembly facilitates the design of Cas9 variants with 

novel functions as e.g. transcriptional activators, repressors, chromatin remodeling 

factors, etc, by incorporating additional coding modules as translational fusions to an 

inactive (dead) version of Cas9 (dCas9). To validate this option we built and tested a 

number of GB-based transcriptional regulators which were targeted to a Nopaline 

synthase promoter (pNOS) fused to a luciferase reporter. 

Making use of level 0 standard genetic parts, we assembled five different 

transcriptional units (TUs) expressing either the dCas9 (D10A H840A) alone or C-

terminus chimeric versions of it fused either to an activator (VP64 or EDLL) or a 

repressor (SRDX and BRD) (Supplementary Figure 3). These five chimeric transcriptional 

regulators were tested in combination with five gRNAs directed against different regions 

of pNOS on both sense and antisense strands (Figure 13a). Changes in the 

transcriptional activity in these constructs were estimated with the luciferase/renilla 

system using a reporter construct (REP) that included the firefly luciferase (Fluc) driven 

by the pNOS and the renilla luciferase (Rluc) driven by the 35S promoter as an internal 

reference. Transient co-transformations of REP with Cas9 and gRNA constructs were 

performed in order to test the ability of GB-built dCas9 chimeras to modulate 

transcription. 

Since previous studies reported that dCas9 itself could act as a transcriptional 

repressor (Bikard et al., 2013), we first tested the repressor activity of the non-chimeric 

dCas9 TU. All five gRNAs targeting pNOS induced variable repression rates depending on 

their position (Figure 13b). The Fluc/Rluc ratios decreased as the position of the gRNA 

gets closer to the Transcription Start Site (TSS) whereas no repression was detected 

neither for gRNA4 (positions -161 to -142) nor for gRNA5 (positions -211 to -192). Co-

expression of the two most effective gRNAs, gRNA 1 and 2, showed a nearly additive 

effect. However, the addition of a further gRNA, such as gRNA4, to one or both of them 

did not change the repression level.  

Next, the dCas9 fusions to the BRD and the SRDX repressor domains were tested in 

combination with gRNAs 3, 4 and 5, all three designed to bind upstream the TATA-box. 

Figure 13c shows that only gRNA4, the gRNA designed on the sense strand, was capable 

of producing a significant repression on the transcriptional activity. A slight decrease in 

the Fluc/Rluc ratio was observed when gRNA4 was combined with the two additional 
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gRNAs. The repression levels found with the dCas9:BRD and dCas9:SRDX were similar 

(Figure 13c).  

To determine whether the presence of the repressor domain modified the effect of the 

dCas9 itself, we compared the transcriptional activity obtained for the gRNAs 1, 2 and 4 

in presence of the dCas9 with the ones obtained with the dCas9:BRD (Figure 13d). While 

in the case of the gRNA4 only dCas9:BRD had an effect on the reduction of the 

transcriptional activity, for the gRNAs overlapping the TATA-box and the TSS, both 

dCas9 and dCas9:BRD achieved similar repression levels. 

	
Figure 13. Transcriptional repression of the nopaline synthase promoter (pNOS) with 
different variants of the dead Cas9. 

(a) Schematic representation of the gRNA target positions on the pNOS. The gRNAs were selected in both 
sense and antisense strands. In parenthesis the 5’ position of each gRNA according to the pNOS transcription 
start site. (b) Comparison of the repression rates mediated by the different gRNAs combinations targeting the 
pNOS in combination with the dCas9. (c) Repression rates of the dCas9:BRD and dCas9:SRDX in combination 
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with gRNAs targeting different positions upstream the pNOS TATA-box. (d) Influence of the presence of the 
BRD domain fused to the dCas9 on the repression levels induced by gRNAs 1, 2 and 4. All values were 
normalized to the Fluc/Rluc ratios of a reference sample set as 1. Bars represent average values of three 
samples ± standard deviations. 

 

Next, we decided to test whether the dCas9 fused to an activator domain could 

increase the transcriptional activity on the same reporter construct. The results showed 

that dCas9:VP64 and dCas9:EDLL raised the reporter levels in combination with gRNA4, 

while in combination with gRNA5 only a small induction rate was detected and no 

induction was observed with gRNA3, corroborating the functionality observed for the 

same gRNAs with dCas9:SRDX and dCas9:BRD (Figure 14a). Using both the dCas9:VP64 

and the dCas9:EDLL variants in combination with 3x multiplexed gRNAs (gRNA 3, 4 and 

5), the pNOS transcriptional activity was doubled. 

These results demonstrated that it is possible to modulate the transcriptional activity 

driven by the pNOS using one or more gRNAs in combination with different chimeric 

versions of the dCas9. The maximum induction rate, calculated with the values of the 

best reported repression and activation Fluc/Rluc ratios, was 6.5x (Figure 14b). 

	
Figure 14. Transcriptional activation and modulation of the nopaline synthase promoter 
(pNOS). 

(a) Fluc/Rluc ratios obtained with dCas9:VP64 and dCas9:EDLL in combination with gRNAs 3, 4 and 5. (b) 
Comparison of the Fluc/Rluc ratios obtained for gRNAs 3, 4 and 5 in combination with the different dCas9 
variants reported on this work. All values were normalized to the Fluc/Rluc ratios of the reference sample set 
as 1. Bars represent average values of three samples ± standard deviations. 
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2.4. Second-dimension multiplexing using 
GoldenBraid. 

To further increase the gRNA multiplexing capacity we decided to incorporate a 

polycistronic strategy to the GB pipeline. This strategy, which has been validated in rice 

(Xie et al., 2015), allows the simultaneous expression in a single transcript of multiple 

gRNAs, which are later processed by the endogenous tRNA ribonucleases P and Z to 

produce the individual gRNAs. To adapt the general GB cloning system to the 

polycistronic strategy we incorporated single tRNA-gRNA oligomers as level 0 GBparts, 

which are then multipartitely assembled on level 1 to create polycistronic tRNA-gRNAs 

(Figure 15a). To avoid using PCR reactions during the construction of each tRNA-gRNA 

oligomer, we designed new level -1 plasmids containing both the tRNA and the gRNA 

flanked by BsmBI restriction sites. The BsmBI assembly of level -1 plasmids with the D-

target primers heteroduplex results in level 0 GB-oligomers. In turn, these level 0 

elements are combined together with the level 0 PolIII promoter to create a level 1 

polycistronic tRNA-gRNA in a software-assisted step available at 

https://gbcloning.upv.es/do/multipartite/free/. We validated the assembly efficiency of 

the 2-D multiplexing schema by assembling a level 2 construct targeting simultaneously 

N. benthamiana fucosyl and xylosyltransferase genes. As the two gRNAs targeting XTs 

have been previously tested in this work, we used the same targets (Supplementary 

Table 6) for the assembly of a polycistronic tRNA-gRNA combining two GBoligomers. 

Since the number of genes encoding fucosyltransferases in the N. benthamiana genome 

is very high, we decided in this example to target only five of them using a combination 

of three gRNAs (Supplementary Table 6), one of them targeting three genes and the 

remaining two gRNAs targeting a single gene. After assembling firstly all five level 0 

oligomers and subsequently the two level 1 polycistronic structures, they were combined 

together in a GB binary reaction (Figure 15a) to generate a single binary plasmid 

containing all five gRNAs targeting a total of seven genes encoding fucosyl and 

xylosyltransferases. All the assembly steps resulted in 100% accuracy rates (at least 4 

white colonies analysed in each step) demonstrating the efficiency of the proposed 

scheme for 2D multiplexing (Figure 15b). The whole process took just nine working 

days, and in three extra days the Cas9 was added to the assembly. To validate the 

functionality of the polycistronic strategy in N. benthamiana, genomic DNA was extracted 

from leaves agroinfiltrated with the plasmid containing the five gRNAs together with the 

Cas9 and the targets XT1 and XT2 were evaluated with the PCR/RE site loss method. The 

mutation efficiency for XT1 was estimated as 6% based on the intensity of the 

undigested band (Figure 15c Lane 3) relative to the undigested DNA present on the 
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negative control (Figure 15c Lane 1). For XT2, observed mutation efficiency was 

estimated as 8% (Figure 15c Lane 6) relative to the undigested DNA present on the 

negative control (Figure 15c Lane 4). On the same experiment, the monocistronic gRNAs 

targeting XT1 and XT2 previously tested were included as positive control (Figure 15c 

Lane 2 for XT1 and Lane5 for XT2), resulting in a calculated mutation efficiency of 5,5% 

for XT1 and 7% for XT2. 

		

Figure 15. Second dimension Multiplexing with GoldenBraid. 

(a) Pipeline of the 2D multiplexing strategy. Targets are designed as level 0 structures and combined with 
standard level -1 parts to create individual oligomers that are combined in level 1 polycistronic tRNA-gRNA 
structures. The binary combination of two polycistrons incorporates a 2D multiplexing step on the CRISPR 
cloning workflow. (b) Restriction analysis of two clones of level 1 polycistronic structures targeting fucosyl 
(Lanes 1 and 2; EcoRI expected bands: 6345-796) and xylosyltransferases (Lanes 3 and 4; HindIII expected 
bands: 6345-623), two clones of a level 2 construct derived from their binary assembly (Lanes 5 and 6; BamHI 
expected bands: 6674-1401) and two clones of its assembly with the hCas9 (Lanes 7 and 8; BsmBI expected 
bands: 7215-6367). (c) Comparison of the simultaneous targeted mutations on XT1 and XT2 with 
monocistronic gRNAs and a polycistronic gRNA. Red arrows show BsmBI and SpeI resistant PCR fragments 
amplified from N.benthamiana genomic DNA. 

 

 Discussion  3.

The adoption of standard rules and modular design has promoted the expansion of 
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impact in genome engineering as well. Modular cloning methods based on TypeIIS 

restriction enzymes such as Golden Gate (Engler et al., 2009), MoClo (Weber et al., 

2011a) and GoldenBraid (Sarrion-Perdigones et al., 2011), greatly facilitate the 

construction of large multigene assemblies enabling the concurrent delivery of multiple 

pieces of genetic information into the cell. Moreover, Type IIS cloning systems are 

especially well suited for the definition of standard assembly rules. Very recently, a 

common DNA assembly syntax for TypeIIS cloning has been agreed by 26 different Plant 

laboratories and research groups worldwide, constituting one of the first examples of a 

Bioengineering Standard adopted by the Scientific Community (Patron et al., 2015). We 

have introduced the necessary modifications in GB to make the gRNA-Cas9 toolbox fully 

compliant with the new standard. 

The first step towards GB adaptation for gene targeted mutation consisted in the 

design of a GB-compatible assembly scheme that facilitates both gRNA multiplexing and 

Cas9 modification. We decided to build both gRNAs and Cas9 transcriptional units as 

level 1 structures to maximize their exchangeability while preserving the combinatorial 

potential. In the GB system, level 1 constructs grow only binarely, which poses a certain 

limitation in terms of cloning speed. Other systems growing multipartitely using Golden 

Gate assembly have been proposed for mammalian and plant systems, however this is 

at the cost of flexibility and reusability of the constructs (Sakuma et al., 2014, Ma et al., 

2015, Lowder et al., 2015). Conversely, level 1 GB constructs are exchangeable, offering 

the possibility to reuse efficient gRNA constructs in new editing or regulatory 

combinations. Furthermore, this initial decision proved to be most adequate with the 

incorporation of polycistronic tRNA-gRNA constructs at level 1, which provides a new 

combinatorial dimension for multiplexing, and makes possible to hierarchically combine 

gRNAs using different assembly levels. Hence, in our 2D editing example we grouped 

homologous functions (either xylosyl or fucosyltransferases) in level 1, and later 

combined them in level 2 in a binary assembly step. Similarly, hierarchical assembly 

approaches can be used to build increasingly complex gRNA-Cas9-based transcriptional 

regulatory circuits in few days. 	

The assembly and functional validation of several gRNA-Cas9 constructs provides 

evidence of the efficiency of the process and the functionality of the elements that were 

incorporated to the GB toolkit. GB is based on Golden Gate typeIIS cloning which is an 

extremely efficient multipartite assembly method when parts are conveniently cloned 

within an entry plasmid. Whether the same high efficiency is maintained when one of the 

parts is made of two partially overlapping 23-25 mer oligonucleotides encoding the 

target sequence remained to be tested. Counterintuitively, the efficiency of the reaction 

was shown to be significantly higher when low concentrations of oligonucleotides (nM 
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range) were employed in the reaction mix. Also, it is worth to notice that in the proposed 

GB gRNA building scheme, the only variable input specific for each new construct are the 

two 25 mer oligonucleotides; all the remaining building elements are invariant and 

stored in the GB collection, a feature that significantly reduces gene synthesis costs for 

building gRNA-Cas9 constructs for plants. 

The first functional characterization of the new GB targeted mutagenesis tools was the 

quantification of Cas9 nuclease activity in a N. benthamiana transient expression method 

(Nekrasov et al., 2013, Li et al., 2013). As shown, efficiencies up to 12% were observed 

using a human codon optimized Cas9 (hCas9) directed against two independent targets. 

Similar mutation rates were observed expressing the gRNAs as two monocistronic gRNAs 

or as a polycistronic tRNA-gRNA cassette. The variation on the mutation rate observed 

for the monocistronic gRNAs among experiments can be explained with the variability of 

the expression levels on N. benthamiana transient expression assays or with the 

unreliability of gel image analysis tools. In our hands hCas9 performed better than plant-

optimized pcoCas9 in N. benthamiana transient assays, although it remains to be seen if 

the same differences are observed in other experimental systems. The mutation rate 

observed here with the hCas9 is consistent with those described when hCas9 and gRNAs 

were assembled in the same T-DNA (Upadhyay et al., 2013) and much higher than the 

rates obtained by Upadhyay et al. (2013) and Nekrasov et al. (2013) when the same 

were co-delivered in different plasmids by in trans co-transformation. The reported 

efficiency for the plant-optimized pcoCas9 when co-expressed with the gRNA on the 

same vector was substantially lower (4.8%) (Li et al., 2013). Therefore it is possible that 

our detection system based on the presence of an undigested band was not sensitive 

enough to detect this mutation rate.  

The ability of GB-adapted gRNA/Cas9 elements to conduct RNA-guided transcriptional 

regulation was assessed by using the pNOS fused to luciferase as a reporter system. We 

observed that, by directing a nuclease-inactivated Cas9 to promoter regions around the 

transcription origin of the reporter gene, expression levels were severely reduced. These 

results were in line with previous reports showing an intrinsic repressor activity of a 

dCas9 without further modifications (Piatek et al., 2015, Bikard et al., 2013); however in 

our experimental conditions dCas9 intrinsic repression was almost completely abolished 

when paired to gRNAs targeting distal regions upstream of the -100 position. In the 

same upstream regions, however, the translational fusion of dCas9 with specific 

transcription modulating protein domains efficiently conducted the downregulation (BRD, 

SRDX) or upregulation (VP64, EDLL) of the reporter activity respectively. It was also 

observed that, by targeting several gRNAs towards the same promoter, the 

activation/repression effect was increased, highlighting the convenience of multiplex 
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targeting to achieve efficient transcriptional regulation. Altogether, the range of 

transcriptional activities that we were able to modulate using current GB gRNA-Cas9 

tools was relatively modest, approximately seven times from the strongest repressor to 

the strongest activator. Further optimization of the system (e.g. improved fusion linkers, 

optimization of fusion sites, etc.) will be necessary to increase this efficiency. 

Nevertheless it should be noticed that, given that in the N. benthamiana agroinfiltration 

system several T-DNA copies of the reporter gene are co-delivered simultaneously in 

each cell there is probably a high demand for dCas9 fusions to achieve substantial 

activation/repression. In future experiments the quantification of the effect of dCas9 

fusions on single copy genes stably integrated in the plant genome will be investigated. 

Very recently, new gRNA-Cas9 toolkits for targeted mutagenesis or transcriptional 

regulation have been reported including animal (Senis et al., 2014, Port et al., 2014) and 

plant-dedicated (Lowder et al., 2015, Xing et al., 2014, Ma et al., 2015) systems, 

although none of them involved a standardized strategy. Interestingly, the toolbox 

reported by Lowder et al. incorporates gRNA-Cas9 elements for targeted mutagenesis 

and transcriptional regulation using a combination of type IIs and gateway 

recombination for multiplex assembly. In comparison, the GB toolbox showed here 

present a number of distinctive features. First, the GB toolbox includes a number of 

software tools that generate standardised protocols in each gRNA-Cas9 assembly step. 

The implementation of assembly software tools not only serves to facilitate construct-

making for non-trained users, but most importantly, it turns GB into a self-contained, 

fully traceable assembly system, where all elements generated with GB software tools, 

now including also gRNA/Cas9 elements, are perfectly catalogued and their genealogy 

documented. Second, the modularity of GB facilitates combinatorial arrangements as 

e.g. between pre-set gRNA arrays and different Cas9 versions and enables the exchange 

of pre-made combinations. Finally, the GB cloning loop enables endless assembly of both 

monocistronic and polycistronic tRNA-gRNA expression cassettes, enhancing the 

multiplexing capacity of the system. 

 Conclusions 4.

A modular gRNA-Cas9 toolbox conforming the GoldenBraid standard for Plant 

Synthetic Biology was developed and functionally validated. The GB-gRNA/Cas9 toolbox, 

comprising an adapted cloning pipeline, domesticated gRNA/Cas9 elements and a 

dedicated software tool, was shown to facilitate all-in-one-T-DNA cloning and gRNA 

multiplexing. The GB-adapted gRNA/Cas9 elements combined among them and/or with 

other GB elements were shown effective in targeting reporter genes for mutagenesis, 
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transcriptional activation and transcriptional repression in N.benthamiana transient 

assays. The GB adaptation enhances CRISPRs/Cas9 technology with traceability, 

exchangeability and improved combinatorial and multiplexing capacity. 

 Methods 5.

5.1. GBparts construction 

GBparts used in this work were created following the domestication strategy described 

in (Sarrion-Perdigones et al., 2013). For parts GB0575, GB1001 and GB1079, PCR 

amplifications with the primers obtained at https://gbcloning.upv.es/do/domestication/ 

were performed using the Phusion High-Fidelity DNA polymerase (Thermo Scientific). For 

level 0 parts GB0273, GB0645, GB1175, GB1185, GB1186, GB1187 and for level -1 

parts GB1205, GB1206, GB1207 double-stranded DNA was synthesized using IDT 

gBlocks® Gene Fragments. GB1041 was amplified from GB0575 to incorporate the D10A 

and H840A mutations. For level 0 parts, 40ng of the PCR products or gBlocks® were 

cloned into the pUPD with a BsmBI restriction-ligation reaction. Level -1 parts were 

cloned into the pVD1 (GB0101) with a BsaI restriction-ligation reaction following the 

same protocol. A list of the level -1 and level 0 parts is provided in the Supplementary 

Table 7; their nucleotide sequences can be searched at 

https://gbcloning.upv.es/search/features/ with their corresponding ID numbers. All level 

-1 and level 0 GB parts were validated by restriction enzyme (RE) analysis and 

confirmed by sequencing. 

5.2. Guide RNA assembly on level 0 and level 1 

Assembly optimization reactions were performed as follows: primers gRNA_XT2_F/ 

gRNA_XT2_R were resuspended in water and STE buffer (10 mM Tris pH 8.0, 50 mM 

NaCl, 1 mM EDTA) to final concentrations of 100, 10 and 1 µM. Equal volumes of forward 

and reverse primers were mixed. The mixture was split into two different tubes and one 

of them was incubated at 94ºC for 2 minutes prior to a 30 minutes incubation at room 

temperature while the other was directly incubated at room temperature for 30 minutes. 

The BsaI restriction-ligation reactions were set up in 10µl with 1µl of primers mix, 75ng 

of GB1001 (U626 promoter), 75ng of GB0645 (scaffold RNA) and 75ng of pDGB3α1 

destination vector. One microliter of the reaction was transformed into E. coli TOP10 

electrocompetent cells and the number of white colonies growing on agar plates counted.  

The selected conditions for the gRNA assemblies were dilution in water, incubation at 

room temperature for 30 minutes and set the restriction-ligation reaction with a final 
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primer concentration of 0.1µM. For gRNA assemblies on level 1, two complementary 

primers designed at www.gbcloning.upv.es/do/crispr/ and listed on Supplementary Table 

6, were included in a BsaI restriction-ligation reaction following the selected conditions. 

For the assembly of guide RNAs on level 0, the primers listed on Supplementary Table 6 

were included in a BsmBI restriction-ligation reaction following the selected conditions 

together with the pUPD2 and 75ng of the corresponding level -1 tRNA-scaffold plasmid 

depending on the desired position of each target on the level 1 assembly. All level 1 

gRNA constructs were validated by RE-analysis, analyzed by sequencing and confirmed 

correct. 

5.3. Cloning in α and Ω-level destination vectors 

Multipartite BsaI restriction-ligation reactions from level 0 parts and binary BsaI or 

BsmBI restriction-ligation reactions were performed as described in Sarrion-Perdigones 

et al. (2013) to obtain all the level≥1 assemblies. A list with all the TUs and modules 

used in this work is provided on the Supplementary Table 7. All level≥1 were validated 

by restriction enzyme (RE) analysis. Furthermore, partial sequencing was carried out to 

check part´s boundaries. The sequences of all level≥1 constructs can be found entering 

their IDs (displayed at Supplementary Table 7) at 

https://gbcloning.upv.es/search/features/. 

5.4. Nicotiana benthamiana agroinfiltration 

For transient expression, plasmids were transferred to Agrobacterium tumefaciens 

strain GV3101 by electroporation. N. benthamiana plants were grown for 5 to 6 weeks 

before agroinfiltration in a growing chamber compliant with European legislation. 

Growing conditions were 24°C (light)/20°C (darkness) with a 16-h-light/8-h-dark 

photoperiod. Agroinfiltration was carried out with overnight-grown bacterial cultures. The 

cultures were pelleted and resuspended on agroinfiltration solution (10mM MES, pH 5.6, 

10mM MgCl2, and 200µM acetosyringone) to an optical density of 0.2 at 600nm. After 

incubation for 2 hours at room temperature on a horizontal rolling mixer, the bacterial 

suspensions were mixed in equal volumes. The silencing suppressor P19 was included in 

all the assays; in the same T-DNA for the transcriptional regulation experiments and co-

delivered in an independent T-DNA for the targeted mutagenesis assays. Agroinfiltrations 

were carried out through the abaxial surface of the three youngest leaves of each plant 

with a 1ml needle-free syringe. 
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5.5. Genomic DNA extraction and PCR/ Restriction 
enzyme assay 

Samples for genomic DNA extraction were collected from 5 days post infiltrated 

leaves. For genomic DNA extraction, 50mg of tissue powder coming from a pool of three 

leaves were mixed with in 500µl of DNA extraction buffer (200mM TrisHCl-pH 7.5, 

250mM NaCl, 25mM EDTA, 0.5% SDS). The plant extract was mixed gently and it was 

spin at 14000 x g for 3 minutes. The supernatant was transferred to a new tube and an 

equal volume of isopropanol was added for DNA precipitation. The supernatant was 

removed after centrifugation (5min at 14000 x g) and the DNA was washed twice with 

70% ethanol. The pellet was dried for half an hour and it was dissolved with 100µl of 

elution buffer (10mM TrisHCl-pH8, 1mM EDTA).  

DNA amplicons covering the XT1 and XT2 target sites were obtained by PCR of 

genomic DNA using the Phusion High-Fidelity DNA polymerase (Thermo Scientific) and 

two pairs of gene specific primers: XT1_F/XT1_R for XT1 and XT2_F/XT2 _R for XT2 

(Supplementary Table 5). The resulting PCR products were purified with the QIAquick 

PCR purification kit (QIAGEN) following the manufacturer’s protocol and restriction 

reactions were set up with 500ng of purified DNA and the corresponding restriction 

enzyme; BsmBI (Fermentas) for XT1 and SpeI (Fermentas) for XT2. Band intensities 

were estimated using the ‘Benchling Gels’ (https://benchling.com) tool. 

5.6. Gel band purification and BsaI-cloning 

PCR products resistant to BsmBI and SpeI digestion were purified from a 1% agarose 

gel with the QIAEX II Gel Extraction Kit following the manufacturer’s protocol. For 

sequence analysis, the purified PCR products were subsequently amplified with 

XT12BsaI_F/XT12BsaI_R primers (Supplementary Table 5) to incorporate BsaI sites for 

improving cloning efficiency. Finally, they were cloned into the pDGB3α1 with a BsaI 

restriction-ligation reaction and individual clones were sequenced. 

5.7. Luciferase/Renilla activity determination 

Samples of leaves coinfiltrated with the REP (GB1116), different activator/repressor 

TUs (GB1172 and GB1188 to GB1191) and the independent or combined gRNAs 

targeting the pNOS were collected at 4 days post infiltration. For the determination of 

the luciferase/renilla activity one disc per leaf (d=0.8cm, approximately 18-19mg) was 

excised, homogenized and extracted with 150µl of ‘Passive Lysis Buffer’, followed by 15 

minutes of centrifugation (14000 x g) at 4ºC. Then, the supernatant was diluted 2:3 in 
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Passive Lysis Buffer resulting in the working plant extract. Fluc and Rluc activities were 

determined following the Dual-Glo® Luciferase Assay System (Promega) manufacturer’s 

protocol with minor modifications: 10µl of working plant extract, 40µl of LARII and 40µl 

of Stop&Glo Reagent were used. Measurements were made using a GloMax 96 

Microplate Luminometer (Promega) with a 2-second delay and a 10-second 

measurement. Fluc/Rluc ratios were determined as the mean value of three samples 

coming from three independent agroinfiltrated leaves of the same plant and were 

normalized to the Fluc/Rluc ratio obtained for a reference sample including the REP 

(GB1116) co-infiltrated with an unrelated gRNA (GB1221) and the corresponding 

activator/repressor TU. 
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 Introduction 1.

Cisgenesis and intragenesis were born as alternatives to ease public opposition to 

transgenic crops restricting the transfer of foreign DNA to a sexual compatibility group 

(Holme et al., 2013, Rommens, 2004, Rommens et al., 2007). In both strategies, DNA 

from the same or cross-related species is used for engineering crops with new agronomic 

characters. While cisgenesis involves the transfer of genes with their own regulatory 

regions (Schouten et al., 2006), intragenics aims to create new combinations of genetic 

elements (i.e. coding regions, promoters and other regulatory regions). Advances in DNA 

assembly technologies are enhancing the application of intragenics for generating 

complex traits in plants. With classical cloning strategies, the combinatorial potential of 

genetic elements was limited and time-consuming, preventing the generation intragenic 

constructs. However, modular methods give the flexibility required for creating new 

combinations of genetic elements from standard parts. Moreover, some of those 

methods such as GoldenBraid (Sarrion-Perdigones et al., 2011) also offer standardized 

strategies for stacking several genes in the same T-DNA.  

To avoid the introduction of foreign DNA in intragenic crops, new transformation 

protocols resulting in plants without bacterial selection markers have been developed. 

These strategies include co-transformation with an antibiotic selection marker followed 

by segregation or site-specific recombination-mediated marker deletion (Darbani et al., 

2007). However, the incorporation of intragenic selection markers in the same T-DNA 

where the gene of interest is contained would avoid high labor requirements of marker-

removal techniques. Some selection markers derived from plants and conferring 

resistance to herbicides were developed in the last years including the use of mutated 

versions of the Petunia hybrida 5-enolpyruvylshikimate-3- phosphate synthase, the 

Arabidopsis thaliana acetolactate synthase and tryptophan synthase beta or the tobacco 

anthranilate synthase (Sundar & Sakthivel, 2008). The selection marker based on 

mutated forms of the acetolactate synthase gene (ALS) is one of the best established. 

ALS catalyzes the first step of the branched-chain amino acids biosynthesis pathway 

(Binder, 2010). Different amino acid substitutions on the ALS were reported to confer 

tolerance to different ALS-inhibiting herbicides, sulfonylureas, imidazolinones and 

sulfonanilides (Zhou et al., 2007). While other mutations cause resistance against 

imidazolinone, the Pro-197 mutation (in reference to AtALS) results in sulphonylureas 

resistance (Haughn et al., 1988). Pro-197 is located within the ALS substrate access 

channel and is important for herbicide binding, thus resulting in the impediment of the 

access of the substrate to the catalytic site when the herbicide is present (Zhou et al., 

2007). Selection markers based on a mutated ALS were developed for some crops such 
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as apple (Yao et al., 2013) or tobacco (Haughn et al., 1988), but still unavailable for 

tomato transformation. Moreover, although some plant-based selection markers are 

already available, to our knowledge all of them use heterologous promoters such as the 

CaMV35s promoter (Yao et al., 2013) for driving gene expression. However, a full 

intragenic approach requires not only plant-CDS markers, but also plant regulatory 

regions. The availability of RNA sequencing data for most relevant crops makes possible 

the identification of regulatory regions driving strong and constitutive transcription levels 

that could replace heterologous promoters and terminators.  

Intragenesis can be used in fruits to confer biofortified phenotypes, and several tools 

that might be useful for modifying fleshy fruits have been described (Molesini et al., 

2012). Tomato is one of the most relevant crops in the world and their fruits have been 

engineer in many occasions to enrich their quality and nutritional and health value 

(Raiola et al., 2014). Flavonoids are a subclass of phenylpropanoids with confirmed 

health-promoting properties as result of their antioxidant activity. Based on it, it was 

proposed their role in prevention of heart coronary diseases or colon cancer (Martin et 

al., 2013). Tomato fruits have only small amounts of flavonoids which are mainly located 

in the peel (Raiola et al., 2014). The main flavonoids in tomato are naringenin chalcone 

and some flavonols including kaempferol and quercetin. Two different approaches have 

been followed in the past to increase the level of flavonoids in tomato fruits (Schijlen et 

al., 2004, Bovy et al., 2007). The first of them consisted in the expression of different 

biosynthetic enzymes, which led to a modest increment on the flavonoid quantity (Muir 

et al., 2001, Niggeweg et al., 2004). The expression of regulatory genes that activate 

the expression of several enzymes of the pathway was reported to be more effective, 

leading to the accumulation of different flavonoid compounds such as anthocyanins, 

flavonols or both, depending on the specific combinations of transcriptional factors 

employed (Luo et al., 2008, Bovy et al., 2002, Zhang et al., 2015). In particular, 

overexpression of Arabidopsis MYB12 (AtMYB12), a master regulator of the 

phenylpropanoid biosynthetic pathway, in tomato fruit, led to a dramatic increase in 

flavonol levels in fruits, as well as to the overaccumulation of caffeoyl quinic acids (Luo 

et al., 2008). The Solanum lycopersicum MYB12 homologous gene SlMYB12 binds the 

same promoter regions as its orthologous Arabidopsis counterpart (Zhang et al., 2015) 

and controls the accumulation of flavonoids in tomato peel (Ballester et al., 2010) 

suggesting a similar role in the flavonoid biosynthesis regulation. 

In this chapter we report the generation of a mutated version of the Solanum 

lycopersicum acetolactate synthase (mSlALS) to be used as an intragenic selection 

marker for tomato transformation. As proof of principle, we combined the acetolactate 

synthase selection marker with a transcriptional unit that overexpresses SlMYB12 with 
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fruit-specific regulatory regions obtaining intragenic tomato fruit with increased levels of 

flavonols. 

 Results 2.

2.1. Assembly of an intragenic selection marker for 
tomato transformation with GoldenBraid 

We decided to clone and mutate the S.lycopersicum ALS (mSlALS) as earlier 

described for tobacco and apple (Yao et al., 2013). The mutation performed was a 

change proline to serine at amino acid 186 (position 197 in reference to Arabidopsis 

thaliana ALS) which had been described to confer the highest resistance to chlorsulfuron 

to the apple ALS (Figure 16a). Following the GoldenBraid standard domestication 

procedure, we generated the Level 0 part GB0816, consisting on the mutated SlALS 

(mSlALS). The mutant conversion of the conserved proline residue to serine was 

confirmed by sequencing (Figure 16a).  

 

To create a completely intragenic selection marker, GB0816 was multipartite 

assembled with tomato regulatory regions. A search of highly expressed genes on 

tomato leaves was performed using the Tomato Functional Genomics Database 

(http://ted.bti.cornell.edu/). The top fifty highly expressed genes were further 

categorized on the basis of their expression levels in different tissues and the three ones 

showing both high expression and broad tissue distribution (Solyc01g099770, 

Solyc06g007510 and Solyc09g010800) were selected, and their regulatory regions were 

isolated and domesticated using the GoldenBraid procedure to create a minilibrary of 

regulatory ‘phytobricks’ conforming the Plant Standard Syntax. The relative 

transcriptional activity conferred by each promoter element was tested transiently in N. 

benthamiana following a standardized procedure (SE_001) as described in Chapter 2. 

Among the different assayed promoters, GBpart GB0080, corresponding to the 

metallothionein-like protein type 2B (Solyc09g010800) promoter, in combination with 

GB0142, the terminator region of the same gene was shown to confer highest relative 

expression levels, 6.94±0.95 RPUs (Sarrion-Perdigones et al., 2013). Based on this data 

we assembled the mSlALS with the Solyc09g010800 promoter and terminator in a 

multipartite reaction obtaining the TU of the intragenic selection marker (Figure 16b). 

 

Next, the efficiency of tomato transformation procedure using the new selection 

marker was estimated using a reporter construct comprising a red fluorescent protein 

DsRed under the control of the standard CaMV35s promoter (GB0030) and the Nos 
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terminator (GB0037) elements available on the GBcollection at the moment this work 

was carried out. Making use of the modularity of GoldenBraid and the reusability of the 

GBelements, the two-gene reporter construct was assembled with a single binary 

reaction (Figure 16c).  

 

	
Figure 16. Intragenic selection marker assemblies with GoldenBraid. 

(a) mSlALS sequence compared with the wtSlALS sequence: the Pro residue at position 186 (197 in reference 
to the AtALS) was changed to Ser to create the mutant version mSlALS confirmed by sequencing. (b) 
Multipartite assembly of the Level 0 parts GB0080_PMtb, GB0816_mSlALS and GB0142_TMtb for the 
construction of the transcriptional unit pEGBα1R_TMtb::mSlALS::PMtb in a α-level reverse destination vector 
(GB0818). (c) Schema of a binary assembly between TUs pEGB1α1R_TMtb::mSlALS::PMtb and 
pEGB1α2_35s::DsRed::Tnos in the Ω-level vector pDGB1Ω1 to create the reporter module 
pEGB1Ω1_TMtb::mSlALS:.TMtb-35s::DsRed::Tnos (GB0829). 
 

2.2. Determination of the optimal chlorsulfuron dose 
for tomato transformation 

For the determination of the optimal chlorsulfuron (CLS) dose for tomato 

transformation we first tested the ability of shoot regeneration of untransformed 

cotyledon explants at different CLS concentrations. Shoot regeneration was unaffected at 

0.5 and 1 µg L-1 CLS, slightly reduced at 3 µg L-1, highly reduced at 5 µg L-1 and resulted 

in death of explants at 10 µg L-1 (Figure 17). 
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Figure 17. Untransformed explants kept for 5 weeks on induction medium with different 
chlorsulfuron concentrations. 

 

Based on the tolerance results, explants infected with Agrobacterium carrying the 

construct GB0829 were transferred to medium containing CLS at 5, 7.5, 10, 15 and 20 

µg L-1 for shoot regeneration. The same concentrations of CLS were maintained on the 

elongation and on the rooting media. Transformed explants were counted based on their 

DsRed fluorescence (Wenck et al., 2003). While concentrations below 10 µg L-1 in the 

shoot induction medium resulted in the regeneration of several untransformed plants, at 

higher concentrations the number of regenerated plants showed a severe decrease. The 

higher number of DsRed positive plants was obtained with 10 µg L-1 of CLS, resulting in a 

transformation efficiency of 6.7% (Table 3). Altogether, our results indicated that 10 µg 

L-1 of CLS is the most suitable concentration for tomato transformation with the GB0818 

selection marker. 

CLS 0 µg L
-1 CLS 0.5 µg L

-1 CLS 1 µg L
-1 

CLS 3 µg L
-1 CLS 5 µg L

-1 CLS 10 µg L
-1 
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No. 
Explants 

CLS concentration 
at induction 

medium 
 (µg L-1) 

DsRed+ 
plants 

No. % 

40 0 0 0.0 

60 5 1 1.7 

60 7.5 1 1.7 

178 10 12 6.7 

135 15 2 1.5 

141 20 2 1.4 
	

Table 3. CLS resistant plants expressing DsRed. 

 

2.3. Effects of SlMyb12 overexpression following an 
intragenic approach on tomato phenylpropanoids 

AtMYB12 has been reported as a transcription factor capable of activating flavonol 

biosynthesis in Arabidopsis (Mehrtens et al., 2005), tobacco and tomato (Luo et al., 

2008). To study whether an intragenic construct for SlMYB12 overexpression in tomato 

fruit could have the same effect, SlMYB12 was multipartite assembled with GB0914 and 

GB0144 derived from the E8 5’ and 3’ regulatory regions and the module 

TMtb::MSlALS::PMtb-E8::SlMYB12::TE8 (hereafter referred to as mSlALS-SlMYB12 or 

GB0830) was generated in a binary GoldenBraid reaction similar to the one performed to 

assemble the reporter construct (Figure 16c). Tomato transformation with mSlALS-

SlMYB12 was performed with the optimal concentrations of CLS determined with the 

reporter construct and described above. With these conditions eleven independent 

herbicide-resistant plants rooted in vitro were obtained from 200 explants (5.5% 

transformation efficiency), which agrees with the transformation efficiency previously 

estimated with the reporter construct. 

Further confirmation of the intragenic status was obtained by genotyping herbicide-

resistant plants by PCR using specific primers listed on Supplementary Table 8 for the 

MYB12 transcriptional unit (Figure 18a). Confirmed intragenic plants were transferred to 

soil and grown to maturity. At the moment of preparing this chapter, four independent 

intragenic plants had produced ripen fruits. From them, two lines (lines 1A and 10) 

showed an orange color despite being fully ripen, a phenotype previously described for 

AtMYB12 by Luo et al. (Luo et al., 2008). In contrast, lines 2 and 9 showed a red color 

slightly darker than wild type (Figure 18b). To obtain preliminary data of flavonoid 

composition, samples from lines 1A and 2, representing each of the observed fruit color 

phenotypes were collected for further examination. To investigate which metabolites 
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were differentially accumulated in ripe fruits, peel and flesh samples of five fruits of each 

line together with a control wild type were separately analyzed by LC-ESI(+/-)-MS and 

the most relevant flavonoids were identified and quantified (see Table 4). The peel of 

both intragenic and control lines contained naringenin chalcone as the most abundant 

flavonoid detected, but this compound was 5-fold and 3.5-fold most abundant in wild 

type peel when compared to line 1A and line 2 respectively. Naringenin chalcone is 

always present in the peel and its content is highly variable between fruit samples, a 

variability that could partially explain this discrepancy. No drastic differences were found 

for the remaining flavonoids identified in the peel. A similar amount of flavonoids in the 

peel of transformed and control lines was expected since the ethylene-inducible E8 

promoter drives gene expression in the flesh of ripe fruits (Kneissl & Deikman, 1996). In 

contrast, severe differences were observed in a number of compounds identified in the 

flesh samples. For some specific flavonol compounds as quercetin and kaempferol and 

their glycoside derivatives, over-accumulation levels above 100 fold in comparison with 

the control line were observed. Significant over-accumulations were found also for 

naringenin chalcone and its glucosides. The highest difference between intragenic lines 

1A and 2 was observed in the naringenin chalcone glycoside content, which levels are 8-

fold higher in line 1A than in line 2, a variation that correlated with the different color 

phenotypes observed in the fruits of these two lines. However, levels of other flavonoid 

glycosides such as quercetin-hexose-deoxyhexose-pentose, kaempferol-hexose-

deoxyhexose-pentose and kaempferol-diglucoside are more than 2-fold higher in line 2 

than in line 1A. As Luo et al. reported modifications on caffeoyl-quinic acids (CQAs) 

levels when AtMYB12 was expressed in tomato fruits (Luo et al., 2008), we decided to 

investigate whether this content was also modified in the mSlALS-SlMYB12 lines. On the 

peel we found that amounts of CQAs were similar to the control on both intragenic lines. 

In the flesh, we observed a modest 3-fold enrichment of chlorogenic acid and dicaffeoyl 

quinic acid for line 2, while for line 1A no substantial modifications on CQAs levels were 

detected. 
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Figure 18. Phenotype of mSlALS-SlMYB12 tomato lines. 

(a) Genotyping of 12 independent lines with specific primers covering the end of the mSlALS and the TMtb. (b) 
Tomato plants var. Moneymaker of mSlALS-SlMYB12 lines 1A (left) and 2 (right).	
 

 

 

Peel  Flesh 

 

Line 1A Line 2  Line 1A Line 2 

4-caffeoyl-quinic-acid 0.66 ± 0.08 0.61 ± 0.04  0.72 ± 0.11 3.30 ± 0.65 

Dicaffeoylquinic-acid 0.56 ± 0.04 0.69 ± 0.23  0.37 ± 0.02 3.39 ± 0.87 

Hydroxylated naringenin chalcone 2.30 ± 0.42 2.84 ± 0.70  57.98 ± 4.78 35.93 ± 8.30 

Naringenin-chalcone 0.20 ± 0.03 0.29 ± 0.02  6.84 ± 0.13 3.40 ± 0.70 

Naringenin-chalcone-dihexose 1.18 ± 0.20 2.26 ± 0.45  267.67 ± 64.92 172.81 ± 45.67 

Naringenin-chalcone-glucoside 0.88 ± 0.13 1.28 ± 0.42  44.33 ± 11.42 5.84 ± 0.27 

Naringenin-chalcone-hexose-I 0.59 ± 0.09 0.97 ± 0.28  58.30 ± 15.02 26.29 ± 8.76 

Naringenin-chalcone-hexose-II 1.78 ± 0.45 2.57 ± 0.58  628.78 ± 104.16 212.15 ± 69.93 

Naringenin-dihexose-I 0.59 ± 0.23 2.40 ± 0.36  0.76 ± 0.22 2.62 ± 0.39 

Naringenin-hexose 1.78 ± 0.45 2.57 ± 0.58  567.32 ± 173.29 213.70 ± 70.44 

Kaempferol-diglucoside 0.63 ± 0.10 1.72 ± 0.29  7.89 ± 2.00 17.47 ± 5.08 

Kaempferol-dihexose 0.32 ± 0.05 1.11 ± 0.15  6.21 ± 0.76 9.08 ± 0.95 

Kaempferol-dihexose-deoxyhexose 4.28 ± 0.68 7.13 ± 1.64  884.61 ± 255.30 1293.97 ± 291.59 

Kaempferol-glucose-rhamnose 0.83 ± 0.10 2.48 ± 0.16  149.86 ± 28.03 244.58 ± 54.67 

Kaempferol glucosyl-glucoside rhamnoside 4.98 ± 0.75 6.47 ± 1.30  690.93 ± 189.57 1186.32 ± 330.89 

Kaempferol-rutinoside 0.79 ± 0.04 1.95 ± 0.46  663.98 ± 237.49 726.85 ± 52.84 

Quercetin deoxyhexose-hexose-deoxyhexose 11.68 ± 1.52 23.93 ± 7.89  1730.45 ± 420.65 2648.28 ± 457.90 

Quercetin-hexose 1.24 ± 0.36 1.29 ± 0.28  687.86 ± 158.51 103.31 ± 13.87 

Rutin 0.32 ± 0.05 1.11 ± 0.15  6.21 ± 0.76 9.08 ± 0.94 

 

Table 4. Relative CQAs and flavonoids content of mSlALS-SlMYB12 tomato lines 1A and 
2. 

Metabolites were quantified based on the amount of internal standards and data were normalized by setting 
the control line (non-transformed wild-type Moneymaker) as one. All data are presented with their standard 
deviations. In red and green, metabolites over- and down-accumulated respectively on the mSlALS-SlMYB12 
line in reference to wild type (T-Test with a p-value < 0.05).  
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 Discussion 3.

The exponential decrease of genome sequencing costs is expanding the number of 

well-defined components arising from natural diversity that might be useful for plant 

genetic engineering. The search of new genetic elements within Solanum species 

provided the resources required to carry out intragenic approaches in tomato. Currently, 

intragenic/cisgenic crops are regulated as transgenics in most countries since regulation 

is process-based and the assessment requires, not only the evaluation of the new traits 

of the plant, but also the consideration of the process by which it was created (Russell & 

Sparrow, 2008). Currently only Canada and US have a product-based regulatory system, 

which allows a less strict control of intragenic/cisgenic plants compared to transgenics 

(Hou et al., 2014, Schaart et al., 2015).  

Here, we showed how modular cloning could enhance the application of intragenesis 

as a new plant breeding technique in tomato by providing (1) a standard collection of 

coding sequences and regulatory elements from Solanum lycopersicum and (2) a well-

designed strategy to expand the combinatorial possibilities of those elements, facilitating 

the assembly of multigenic constructs as those required for metabolic engineering. Thus, 

modularity and traceability are features exemplified in this work that speed up research 

and make the ready-to-transform constructs more reliable in terms of functionality.  

On this chapter we reported the development of an ALS-based selection marker for 

tomato transformation. To our knowledge, the combination of a mutated ALS with 

regulatory regions of the same plant species had not been previously reported. Using 

GoldenBraid, the tomato regulatory regions were easily assembled with the mSlALS, and 

subsequently with the intragenic TU containing SlMyb12, illustrating the combinatorial 

capacity of the system. The 186 Pro>Ala conversion (197 in reference to AtALS) of SlALS 

was shown to confer resistance to chlorsulfuron, as previously demonstrated for AtALS in 

tobacco (Haughn et al., 1988) and apple ALS in tobacco and apple (Yao et al., 2013). 

The development of the ALS-based selection marker provides not only an intragenic 

marker for tomato transformation as was shown here, but also a useful alternative for 

pyramiding new genes in previously transformed tomato plants.  

The transformation efficiencies of 5.5% shown here are far below those obtained with 

the use of the well established nptII antibiotic selection marker, (above 50% tested in a 

standard experiment SE_003 with equivalent transformation vectors, data not shown), 

but are high enough to be considered for routine transformations if final intragenic lines 

need to be generated, particularly if the intragenesis status were to confer a commercial 

advantage to the resulting product. Nevertheless, further optimization of the 
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transformation protocol would be advisable to reach higher transformation efficiencies. 

Several optimization strategies could be envisioned, for instance, to increase the 

expression levels of the herbicide resistance gene. In this regard, it has been reported 

that expression of the tomato SlMT1 gene, whose regulatory regions were used to create 

the intragenic marker, can be induced in root tips with zinc sulfate (Giritch et al., 1998). 

Addition of this compound to the media during tomato transformation could increase 

resistance to chlorsulfuron and subsequently enhance the transformation efficiency. 

As proof of concept, we decided to generate intragenic tomato lines with enhanced 

flavonoid content, making use of the developed ALS-based selection marker. We aimed 

to induce the flavonoid biosynthetic pathway on tomato fruit by expressing SlMYB12 with 

fruit-specific E8 regulatory regions. At the moment of elaborating the results of this 

Chapter, only four T1 intragenic lines yielded mature fruits, and therefore the results 

presented here can only be considered as preliminary. However, both the trend as the 

magnitude of the changes observed in the metabolic profile of the analyzed fruits points 

toward a clear effect of the intragenic construct in the over-accumulation of specific 

compounds of the flavonol biosynthesis pathway in the fruit flesh, in line with previous 

results reported with transgenic lines overexpressing orthologous transcription factors 

(Luo et al., 2008). The two intragenic lines overexpressing SlMYB12 analyzed so far 

showed a drastic increase of naringenin, kaempferol and quercetin glycosides in the flesh 

in reference to wild type. The same differences were not observed in the peel, although 

this is not fully unexpected as the ethylene-inducible E8 promoter drives gene 

expression mainly in the flesh of ripe fruits. All results should be confirmed on T2 lines. 

Also, the total accumulation of antioxidant flavonoids in flesh and peel need to be 

carefully estimated to confirm that the intragenic strategy pursued here yields fruits that 

are substantially enriched in its antioxidant levels. In this respect, the data obtained so 

far indicates an important reduction of the content of naringening chalcone in the peel of 

intragenic tomatoes, which could result from the augmented consumption of precursors 

in the flesh. Although the flesh/peel weight relation is likely to compensate any reduction 

of antioxidant in the peel, quantitative data needs to be carefully evaluated in T2 to 

evaluate the real biofortification gains of this strategy.  

In conclusion, by designing, building and testing mSlALS-SlMYB12 intragenic tomato 

plants here we illustrate how the elements and principles of Synthetic Biology, i.e. 

standard DNA parts, assembly rules and experimental results, can be used to generate 

applied plant biotechnology products. The characterization of the ALS-based selection 

marker adds a new device to the tomato-engineering toolbox that can be used for the 

generation of intragenic lines as well as for gene pyramiding in previously transformed 
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plants. Moreover, the combination of mSlALS with SlMYB12 intragenic construct seems 

to produce tomatoes with increased level of anti-oxidant flavonols. 

 Materials and methods 4.

4.1. Plant transformation vectors construction 

SlALS gene (SGN-U572742) was amplified from Solanum lycopersicum cv. 

Moneymaker genomic DNA. Three nucleotide changes were introduced on the ALS coding 

sequence, two synonymous mutations to remove one internal BsaI and one internal 

BsmBI restriction sites and a mutation that leads the Ala>Pro amino acid change at 

position 186. To introduce the mutations on the SlALS and create level 0 parts GB0816, 

GB0914 and GB0144 we followed the GB domestication standard procedure (Sarrion-

Perdigones et al., 2013) with the primers depicted at Supplementary Table 8. GB0080 

and GB0142 (Sarrion-Perdigones et al., 2013) and GB0075 (Sarrion-Perdigones et al., 

2014) had been adapted to the GB standard in previous works. Level 0 parts making the 

selection marker transcriptional unit (GB0080, GB0816 and GB0142) were assembled in 

the pDGB1α1R GBvector (https://gbcloning.upv.es/feature/pDGB1_alpha1R/) with a 

Golden Gate reaction to create the level 1 transcriptional unit GB0818. With two 

additional Golden Gate reactions transcriptional units 35s::DsRed::tNos and 

E8::SlMyb12::TE8 were assembled in pDGB1α2 vectors. Finally, the selection marker 

was combined in two different binary reactions with each of the α2 TUs in the pDGB3Ω1 

vector generating level>1 elements GB0829 and GB0830.  

4.2. Tomato transformation 

GB0829 and GB830 were transferred to Agrobacterium tumefaciens LBA4404 strain 

for stable tomato transformation. Tomato (var. MoneyMaker) transformation was carried 

out as described by Ellul et al. (2003) with minor modifications. Briefly, cotyledons of 10 

days tomato plants were cut and explants were submerged in the Agrobacterium culture 

for half an hour. After that they were transferred to coculture medium and keep in the 

dark 48 hours. Then explants were transferred to the organogenic medium with different 

doses of chlorsulfuron (N11461 - Chlorosulfuron from Sigma-Aldrich). Chlorsulfuron was 

resuspended in a small volume of KOH 1M and diluted to the desired final concentration 

with distilled water. Individual shoots were excised and transferred to elongation 

medium prior to being transferred to the rooting medium for root regeneration.  
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4.3. LC-ESI(+/-)-MS analysis of tomato fruit 
phenylpropanoids 

For phenylpropanoid extraction 10 mg of ground freeze-dried ripe fruit pericarp and 

peel powder were extracted with 0.75 mL cold 75% (v/v) methanol, 0.1% (v/v) formic 

acid, spiked with 10 µg/ml formononetin. Samples were vortexed for 30’’, and shacked 

for 15’ at 15 Hz using a Mixer Mill 300 (Qiagen) and kept at RT for 5’ (twice). After 

centrifugation for 15’ at 20,000 g at 4°C, 0.6 mL of supernatant were removed and 

transfer to HPLC tubes. For each genotype, 5 fruits and at least two independent 

extractions were performed. Separation was carried out using an Ultimate 3000 HPLC 

coupled to a Q-EXACTIVE mass spectrometer (ThermoFisher) equipped with a C18 Luna 

reverse-phase column (150 x 2.0 mm, 3 µm; Phenomenex, Macclesfield, UK) and a 

gradient system as follows: 95%A:5%B for one minute, followed by a linear gradient to 

25%A:75%B over 40 minutes. LC conditions were kept for 2 more minutes, before going 

back to the initial LC conditions in 18 minutes. Ten µl of each sample were injected and a 

flow of 0.2 mL was carried out during the whole LC runs. Detection was performed 

continuously from 230 to 800 nm with an online Ultimate 3000 photodiode array 

detector (PDA, Thermo Fischer Scientific, Waltham, MA). All solvents used were LC-MS 

grade quality (CHROMASOLV® from Sigma-Aldrich). The Exactive Plus Orbitrap mass 

spectrometer was equipped with a heated electrospray probe (H-ESI). ESI and MS 

parameters were as follows: spray voltage −5.0 kV, sheath gas and auxiliary nitrogen 

pressures 30 and 10 arbitrary units, respectively; capillary and heater temperatures 

were set at, respectively 250 and 150 ºC, while tube lens voltage was 50 V. Data were 

acquired in profile mode. Identification was performed through comparison of 

chromatographic and spectral properties of authentic standards and reference spectra, 

and on the basis of the m/z accurate masses, as reported on Pubchem database 

(http://pubchem.ncbi.nlm.nih.gov/) for monoisotopic masses identification, or on 

Metabolomics Fiehn Lab Mass Spectrometry Adduct Calculator 

(http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics/MS-Adduct-Calculator/) in case of 

adduct ion detection. Metabolites were relatively quantified on the basis of the internal 

standard amounts. 
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Synthetic Biology aims to create biological systems through a systematic design. 

Towards this objective, Synthetic Biology adopted one of the fundamental principles of 

engineering, the Design-Build-Test cycle traditionally applied to the development of new 

products (Kelwick et al., 2014). This cycle can perfectly describe the iterative process 

followed in the design of a new biological circuit (Figure 19). The first step consist in the 

planning of the structure and components of the new circuit (DESIGN), and it is followed 

by the assembly of its components (BUILD) and finally by the analysis of its behavior 

(TEST). To ensure an iterative design on this cycle some considerations should be 

addressed, being the standardization the most relevant. Most importantly, 

standardization should reach all levels in the process, including (1) physical parts 

structure and assembly methodology, (2) experimental data acquisition and (3) display 

of functional specifications.  

 

	
Figure 19. Iterative design in Synthetic Biology.  

The Design-Build-Test cycle is one of the engineering principles adopted by SynBio and it describes the process 
of designing a biological system. After designing, DNA synthesis and Modular Cloning enable the building of 
genetic devices that are tested with a standard characterization process. After testing, the abstraction and 
systematic capture of retrieved data ensures the iteration of the cycle by providing the information required for 
a new Design step. 
 

In this thesis we provide new tools for the assembly of genetic devices for plant 

biotechnology, and propose new strategies for the systematic acquisition and integration 

of experimental data within the DBT cycle, especially oriented to Plant Synthetic Biology. 

Here we will discuss the significance of the development of the integrated gbcloning 

web-platform described in Chapters 1 and 2 as well as its future perspectives. 

Furthermore, we will discuss how the work exposed in Chapters 3 and 4 have expanded 

the GoldenBraid toolbox with the adaptation of the gRNA/Cas9 tools to the GoldenBraid 

standard and the development of an intragenic selection marker for tomato 

transformation.  
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 Facilitating DNA assemblies with software-tools 1.
(BUILD) 

Recent advances in DNA assembly technologies have conducted to the standardization 

of physical DNA composition rules (Hillson, 2011). In Type IIS cloning, a DNA assembly 

standard defines the prefix and suffix of each part or composite part and establishes 

standard assembly rules (Casini et al., 2015). Biobricks, the assembly standard 

introduced by Tom Knight in 2003, constituted the first successful standard for Synthetic 

Biology (Shetty et al., 2008). However, it has several limitations as it implies only binary 

assembly steps, slowing down the process. Moreover, it is not suitable for plant 

transformation since most of the available vectors are only for bacteria transformation. 

In recent years other methods specially dedicated to plants have appeared. Among 

them, type IIS based methods such as MoClo and GoldenBraid are extensively being 

used for stacking several genes in a single T-DNA (Polturak et al., 2015, Marillonnet & 

Werner, 2015).  

 

Chapter 1 shows how an assembly standard with very simple assembly rules such as 

GoldenBraid facilitates the development of a database and a group of software tools that 

assist the design of new multigene constructs from standard parts. With the GB software 

tools users can smoothly create multigenic assemblies from raw DNA sequences getting 

a detailed lab protocol for each assembly step. The performance of the gbcloning web-

tools was illustrated in Chapter 1 with the step-by-step assembly of a three-gene 

construct for metabolic engineering. Since the launch of GB2.0 and the creation of the 

gbcloning website the number of users has grown up very quickly. We know that most of 

them decided to start using GoldenBraid instead of an alternative assembly strategy 

because of the software tools. The feedback we get from users is being really helpful for 

the website improvement. Their insights, concerns and questions helped to improve the 

website content and therefore the overall user experience. Together with GB users 

community we have made gbcloning a useful site for Plant Synthetic biologists, although 

it still requires some improvements in terms of likeability and aesthetics. 

The gbcloning site also hosts the GBrepository, a collection that includes the most 

popular elements used in plant biotechnology. Full potential of modular methods is 

reached when parts are easily exchangeable and thanks to the GBrepository standard 

parts can be shared, speeding up the assembly of new devices. On the last three years 

we distributed around seventy starter kits (comprising destination GBvectors and some 

basic phytobricks) and we received requests for sixty additional phytobricks. These 

numbers show that GBusers are taking profit from parts already adapted to the GB 

standard in our lab for their own assemblies. To fully exploit the potential of standard 
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parts, the plant synthetic biology community should address the development of a 

common repository of physical DNA elements in which users can deposit their own parts. 

While gbcloning can be employed for the exchange of sequence information, our lab is 

not prepared to receive and store physical DNA parts. For this reason, we are starting to 

move our GBcollection to Addgene, a nonprofit global plasmid repository. Next step 

would be to encourage GB users to act in the same way to enlarge the number of 

publicly available GBparts. This should be done in parallel with the publication by the 

gbcloning administrator of the GBpart sequence, making it in this way accessible to other 

users in the community. 

 

The potential of modular strategies relies not only on the facility to share standard 

parts among users, but also on the number of users. That is the reason why GoldenBraid 

and MoClo developers has recently reached a consensus in the four nucleotide overhangs 

that define each part in the transcriptional unit making GB and GG level 0 parts 

compatible in terms of grammar (Patron et al., 2015). Full compatibility between both 

systems can be accomplished with two extra features incorporated to the 

GBdomesticator. The first of them is the incorporation of a new universal entry plasmid 

with chloramphenicol resistance instead of ampicillin which makes possible the assembly 

of GB level 0 parts in MoClo level 1 entry plasmids. A second feature was the 

incorporation to the GBdomesticator tool the choice to domesticate level 0 parts not only 

to the GB enzymes (BsaI and BsmBI), but also to MoClo enzymes (BpiI). MoClo 

compatibility or incompatibility is depicted in level 0 part datasheet information. We hope 

these changes will enlarge the collection of domesticated level 0 parts allowing their 

exchange between MoClo and GoldenBraid communities. 

 

We created a special section in GB webpage devoted to building devices for genome 

engineering, as we understand that these new tools will be an integral part of Plant 

Synthetic Biology in the near future. gRNA/Cas systems have multiple applications in 

crop breeding, and they are becoming especially attractive under the expectation that 

deregulation of crops bred with genome editing techniques in general, and with 

CRISPR/Cas9 in particular, could be reached under less stringent conditions (Jones, 

2015), or even bypass regulation (Luo et al., 2015). The gRNA/Cas9 technology, as a 

targeted mutagenesis tool, can be applied to several breeding goals, as for improving 

yield potential, increasing the concentrations of some secondary metabolites, extending 

the life of fruits or enhancing plant pest and disease resistance (Xiong et al., 2015). 

Moreover, as targeted transcriptional regulators, modified gRNA/Cas9 can be used for 

hacking endogenous gene expression, an interesting new tool in the plant toolbox with 
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multiple potential applications. In Chapter 3 we described the adaptation to GoldenBraid 

of the gRNA-Cas9 tools both for targeted gene editing and targeted gene regulation. 

We designed two alternative strategies for the assembly of guideRNAs with GoldenBraid, 

either as level 1 parts enhancing combinatorial possibilities or as level 0 parts following a 

polycistronic strategy. The second strategy reduces the combinatorial alternatives while 

enhances the potential for multiplexing gRNAs. Validation of both assembly strategies 

give users the choice of selecting one or another depending on their interests. 

Adaptation of the software tools described in Chapter 1 allowed the incorporation of level 

1 gRNA-cassettes as part of multigenic assemblies with GoldenBraid. The generation of 

software tools assisting the assembly of polycistronic gRNA-cassettes (2-D multiplexing) 

should be considered in the future to make possible that any assembly performed in the 

lab could be simulated in the gbcloning site. 

 

Functionality of gRNA-Cas9 GBelements was verified following two of the standard 

experiments described in Chapter 2, obtaining mutation efficiencies with our constructs 

of up to 12% with transient expression in N.benthamiana and a maximum 

induction/repression ratio of seven fold from the strongest activator to the strongest 

repressor. Despite results showed on Chapter 3 cannot be considered actually an 

example of genome editing, it is true that GB provide the tools for several genome 

engineering applications in plants such as conferring resistance to plant virus diseases 

(Ali et al., 2015, Baltes et al., 2015, Ji et al., 2015).  

 Standardizing genetic part characterization in 2.
plants (TEST) 

A main goal of synthetic biologists is to develop a platform for the automated design 

of devices with a desired function (Rodrigo et al., 2012). On the design step of the DBT 

cycle, the behavior of a new biological device has to be predicted based on the functional 

specifications of its individual components (Kelwick et al., 2014). For the formulation of 

functional composition rules a modeling approach is required, and the creation of 

working models is heavily dependent on the quantity and quality of experimental data. 

Therefore making reliable working models relies on the ability to first obtain and then 

store functional data in a standard manner. Useful information can only be obtained by 

testing genetic parts following standard procedures. One of the aims of Chapter 2 is to 

propose standard procedures for part characterization in plants and provide functional 

specifications to the elements stored in the GBrepository described in Chapter 1.  
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The ‘Registry of Standard Parts’ (http://parts.igem.org) has provided some part 

characterization data for 10 years. However, there is no a consensus on how parts 

should be characterized and most of them have a vague characterization. We proposed 

five types of standard experiments in plants with different degrees of definition on their 

standard conditions. This is not a definitive not even an optimized list. With this selection 

we wanted to test the viability of experimental standardization, carefully choosing those 

situations that serve to characterize most of our in-house phytobricks, with special 

attention to transcriptional activity measurements. We also tried to reach a compromise 

between standardization and usability, knowing that the more flexible the experimental 

conditions are, the wider the range of elements that can be assayed using a single 

standard, but less comparable the specifications will be, and therefore less useful the 

standard will be for creating working models for quantitative design.  

 

Most GBelements, including promoters, terminators, transcription factors and other 

genetic regulators can be characterized with the same standard measurement in the 

same standard experiment. To date, some measurement standards have been proposed 

for promoter characterization (Pasotti et al., 2012). Polymerase operations per second 

(PoPS) and ribosomes per second (RIPS) are abstract measurements whose major 

disadvantages are that they cannot be directly measured and that they do not capture 

the modifications at the post-translational level (Kelwick et al., 2014). An alternative 

measurement standard is the relative promoter units (RPU), which can be measured 

directly and it is less prone to variation than other measurements across different 

groups, equipment or slightly different protocols (Kelly et al., 2009). However, it 

requires a consensus on the choice of the promoter reference. Our proposal is to settle 

promoter units relative to the nopaline synthase promoter (PNos) as the standard 

measurement for plant part characterization. Verification of this standard measurement 

was done following a standard experiment in which we, as testers, specified a set of 

restrictive operating conditions. We postulated luciferase as reporter gene for data 

acquisition and the use of a second luminiscent protein as internal reference to decrease 

possible sources of variation. Several standard experiments performed with the 35s 

promoter resulted always in measurements of 11±1.5 rpu (relative to PNos) validating 

the measurement technique.  

 

However, other GBelements such as gRNA/Cas9 constructs for targeted genome 

mutagenesis cannot be characterized with RPUs. For this reason we defined ad hoc 

parameters such as the ‘percentage of overall mutation efficiency’ in order to 

characterize the efficiency of each guide RNA on each target site. This measurement is 

less general than RPUs, but valid for extracting conclusions when experiments are 



General Discussion 

 110 

performed following the defined conditions. Data generated in any experiment can be 

useful for researchers in validating the functionality of a part or in providing relevant 

information for a subsequent design.  

 

The gbcloning database was expanded to store data coming from experiments 

performed with GBelements. This will help not only to characterize genetic parts, but 

also to keep experimental information organized. As mentioned, the five standard 

experiments that we defined cover the range of experiments we usually perform on the 

laboratory. However, other labs may be interested in incorporating to gbcloning the 

results of other types of experiments more suitable to their parts´ characterization. 

Therefore we decided to keep the option of incorporating information obtained in non-

standard experiments. Additionally, the set of standard experiments can be expanded to 

incorporate new ones if and when required.  

 

To our knowledge this is the first proposal towards the establishment of the rules for 

part characterization in Plant Synthetic Biology. Whether these or similar standards are 

incorporated by the Plant SynBio community remains to be seen, but the exercise of 

proposing and testing the practical value of certain experimental conditions is a 

prerequisite worth to be explored.  

 Datasheets as the way to summarize DNA 3.
assembly experimental info (DESIGN) 

 After testing, abstraction principles are applied to model the behavior of any 

device, leading to redesign adjustments of a previous design or to a new design. The 

definition of conditions for testing genetic parts is required but not sufficient to move to 

the design step of the DBT cycle; first an intermediate step of information organization is 

required. Some proposals of file structures that can capture sequence and experimental 

data have been outlined for bacteria (Canton et al., 2008, Lee et al., 2011). Useful 

datasheets should include vector and assembly standard information, chassis, 

experimental methodology and experimental data for predictive modeling (Kelwick et al., 

2014).  

 

In Chapter 2 we adapted the datasheet fields proposed by Canton et al. (Canton et 

al., 2008) to plant requirements. This allowed the formulation of the GBdatasheets, 

which summarize the most relevant assembly and experimental information and include 

links to all the data generated with a given phytobrick. The use of symbols associated 

with each level 0 category, a feature based on the SBOL visual standard (Quinn et al., 
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2015), together with the traceability offered by the GBtools, makes possible the 

automatic generation of a graphical display for each GBelement. This traceability also 

permits to automatically link each datasheet to all the experimental data involving not 

only the full GBelement, but all its standard components. In the future will be advisable 

the adaptation of the GBdatasheet to more general Synthetic Biology, as the XML 

standard. SBOL XML format files are required for interoperation with emerging Synthetic 

Biology software tools for gene circuit design such as GenoCAD (Cai et al., 2010). Since 

all the datasheet information is stored in the GBdatabase, it is expected that the 

conversion to other output formats will be possible without great effort.  

 Final Remarks 4.

The practical implementation of this thesis involved the design and building of 

countless genetic devices using the GoldenBraid standard. Although most of them were 

created for transient expression experiments, we wanted to provide also a practical 

example of the application of cloning standards to plant breeding. To this goal, we 

designed, built and experimentally tested an ‘all-tomato’ genetic device comprising an 

intragenic selectable marker linked to an activator of flavonol biosynthesis. Despite 

presenting only preliminary T1 results, and although it does not strictly adhere to SB 

engineering rules in all aspects, we decided to include this example in this Thesis as it 

illustrates the essence of PSB, successfully completing a full Design-Build and Test cycle. 

First, although the design of the device was not the result of a predictive but rather of 

an ‘intuitive’ modeling exercise, we indeed used available gene expression data obtained 

with standard experiments SE_001 for the selection of appropriated regulatory 

sequences directing ALS expression. Moreover, the selection of phytobricks Myb12, ALS, 

and fruit-specific E8 promoter and terminator was based on non-standard but reliable 

data generated elsewhere. Only plant standard, reusable phytobricks were used for 

building this device, conforming to the Standard Plant Syntax. Consequently we are 

fully confident that the phytobricks involved in the design will function equally reliably 

when reused to create any new device. In other words, the functional characterization of 

our intragenic device serves as a functional specification (e.g. quality assurance) for 

each of its individual components. Finally, the intragenic device was stably transferred to 

the plant genome and its performance was functionally tested. Transformation efficiency 

conferred by the ALS selectable marker was tested using a predefined standard 

(SE_003). This enables comparisons with other selectable markers employed in the 

same context (tomato transformation using pDGB3 plasmid series). Although it is not 

possible to establish experimental standards covering all possible metabolic engineering 

designs, quantitative characterization of the resulting plants involving secondary 
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metabolite profiles was still possible using a non-standard questionnaire. Eventually, a 

new experimental setup could be established and adopted if comparisons among similar 

devices with high reliability had to be conducted in the frame of a dedicated project. In 

this standardization context, the results obtained with the characterization of T1 

flavonol-rich intragenic tomatoes could be easily used to refine the design, therefore 

entering a new DBT cycle. Alternatively, new accelerated tests could be carried out in a 

relevant experimental environment (e.g. Myb12 transient transactivation of target 

tomato promoters of the flavonoid pathway tested in N. benthamiana), so that the 

resulting specifications could serve to feed new designs with quantitative data.  

 

We expect that the work presented in this Thesis will contribute to fuel the engine 

that keeps the Design-Build-Test wheel moving for the advance of Plant Biotechnology. 
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C1. The GB2.0 web resource was first created, comprising a database of DNA elements 

and a package of software tools. GB2.0 enables in silico assembly of standard biological 

parts (Phytobricks) for Plant Synthetic Biology using the GoldenBraid cloning format. The 

resources generated within GB2.0 were made publicly available and hosted at 

www.gbcloning.upv.es.  

C2. A new improved version of the GB resource (GB3.0) was created next, conforming to 

the new Standard Plant Syntax. The GB3.0 database was adapted to host experimental 

data generated by transformation of GB standard biological parts into the plant chassis. 

To ensure operability, a number of experiment types were defined and proposed as 

standards for the physical characterization of phytobricks. 

C3. The GB3.0 software automatically generates physical and functional quantitative 

specifications describing each phytobrick, which are collected and displayed as 

datasheets. GB datasheets are proposed as basic elements for creating functional 

composition rules in Plant Synthetic Biology. 

C4. Using GB3.0 tools, a simplified Ros1/Del transcriptional regulator prototype for 

flavonoid biosynthesis was conferred dexamethasone responsiveness by physically 

connecting it to a dexamethasone-dependant conditional transactivator. The new 

transcriptional device showed a qualitative behavior that could have been anticipated 

from the standard specifications displayed at the datasheets of its basic components. 

C5. All elements required for the use of the CRISPR/Cas9 technology in plants were 

adapted to the GB standard. Transient expression assays conducted in N. benthamiana 

following GB standard experiments proved the functionality of the generated devices for 

gene editing, gene activation and gene repression. To enable in silico multigene 

assemblies of sgRNA-Cas9 devices, the GB3.0 resource was updated to support sgRNA-

cassette assemblies. 

C6. An intragenic tomato selection marker based on a mutant Acetolactate Synthase 

gene was designed, built and assembled to an intragenic construct directing the 

ripening-dependant activation of flavonol biosynthesis in fruit following GB3.0 standard 

procedures. The resulting all-tomato intragenic T1 plant lines showed phenotypically 

distinctive tomatoes that, according to preliminary analysis, accumulate high levels of 

anti-oxidant flavonols, illustrating the application of GB3.0 to advanced Plant Breeding. 

 

 



 

 

  



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

9 | Supplementary Figures 

 



 

 

 
 



Supplementary Figures 

 119 

 
 

 

 

Supplementary Figure 1. GB3.0 domestication tools workflow. 

The Phylogenetic Search Tool offers sequence retrieval of the best hits with minimal internal restriction sites 
from a Blast search in a coding sequences database. Upon sequence election, it offers conection with the 
GBDomesticator. The GB Domesticator provides the list of the PCR products and GB oligos required for part 
domestication while the Synthetic Strategy Tool provides directly the synthetic product to be ordered. The GB 
Domesticator and the Synthetic Strategy Tool offer in this new version the possibility of domesticating intron 
containing genomic sequences when the introns are written in lowercase in the input file. They also offer the 
choice to domesticate the sequences not only for BsaI and BsmBI but also for BpiI and/or BtgZI. All 
domestication tools generate a GenBank file with the level 0 part cloned into the pUPD2. 
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Supplementary Figure 2. Cloning efficiency of representative Level≥1 GBelements. 

(a) Restriction analysis of 24 plasmids obtained from randomly selected colonies to test the accuracy of gRNA 
assemblies under different conditions (HindIII expected bands: 6345-374). (b) Restriction analysis of GB 
binary reactions combining gRNAs with each other and/or with the Cas9-encoding TU. All tested plasmids 
resulted in the expected restriction patterns. GB1198 BamHI expected bands: (6674-728); GB1202 EcoRI 
expected bands: (6345-1242); GB1107 EcoRV expected bands: (6674-4620-1236-194); GB1064 EcoRV 
expected bands: (6674-5117-1236); GB1108 EcoRI expected bands: (6987-6345-828). 
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Supplementary Figure 3. Schema of the architecture of the dead Cas9 transcriptional 
units tested on the repression and activation experiments. 
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Supplementary Table 1. Experimental conditions. 
 
  

Experiment 
type 

 

Mandatory experimental  
conditions 

Recommended 
experimental 

conditions 

Quantitative 
output 

SE_001 
Promoter 

strength tested 
in discs 

- Plant species: N.benthamiana. 
- Chassis: Agroinfiltrated leaves of 5-6 weeks 

old N.benthamiana plants. 
- Constructs: tested constructs must include 

the Luc gene as reporter (GB0096) and the 
35s:Renilla:Tnos transcriptional unit in cis. 
The silencing supressor P19 must be 
coinfiltrated either in cis or in trans. 

- Sampling: collect discs (0.8 cm in dimater) at 
3 days post infiltration.  

- Analysis: keep the discs on plates 
with/without chemical inductor and take 
samples at different times. 

- Data normalization: normalize the data with 
the values obtained for GB1116 in the same 
experimental conditions. 

- Plant growth 
conditions: 
24ºC/20ºC 16h light 
/ 8h darkness.  

- Sampling: collect 
replicas from 3 
independent 
agroinfiltrated leaves. 

- Analysis: use the 
Dual-Glo© Luciferase 
Assay System 
(Promega) for the 
luminiscence assay. 

- RTA at 0h. 
- RTA at 4h. 
- RTA at 8h. 
- RTA at 12h. 
- RTA at 18h. 
- RTA at 24h. 
- RTA at 36h. 
- RTA at 48h. 
All relative 
transcriptional 
activities (RTA) 
have to be 
expressed in rpu 
(relative 
promoter units 
to GB1116). 

SE_002 
Promoter 

strength tested 
in leaves 

- Plant species: N.benthamiana. 
- Chassis: Agroinfiltrated leaves of 5-6 weeks 

old N.benthamiana plants. 
- Constructs: tested constructs must include 

the Luc gene as reporter (GB0096) and the 
35s:Renilla:Tnos transcriptional unit in cis. 
The silencing supressor P19 must be 
coinfiltrated either in cis or in trans. 

- Sampling: collect discs (0.8 cm in dimater) at 
4 days post infiltration for analysis.  

- Data normalization: normalize the data with 
the values obtained for GB1116 in the same 
experimental conditions. 

- Plant growth 
conditions: 
24ºC/20ºC 16h light 
/ 8h darkness.  

- Sampling: collect 
replicas from 3 
independent 
agroinfiltrated leaves. 

- Analysis: use the 
Dual-Glo© Luciferase 
Assay System 
(Promega) for the 
luminiscence assay. 

- RTA (in rpu) 
Relative 
transcriptional 
activity (RTA) 
has to be 
expressed in rpu 
(relative 
promoter units 
to GB1116). 
 

SE_003 
Transformation 

efficiency 
 

- Analysis: calculate the transformation 
efficiency by dividing the number of obtained 
transgenic plants by the number of inoculated 
explants. 

Not defined - % 
transformants 

SE_004 
Recombinant 

protein 
production 

 

- Plant species: N.benthamiana. 
- Chassis: Agroinfiltrated leaves of 6-7 weeks 

old N.benthamiana plants. 
- Sampling and analysis: extract your protein, 

purify it and determine the amount of 
recombinant protein relative to the total 
amount of protein or weight of plant tissue.  

- Plant growth 
conditions: 
24ºC/20ºC 16h light 
/ 8h darkness.  
 

- µg/gDW (dry 
weight) 

- µg/gFW 
(fresh 
weight) 

- %TSP (total 
soluble 
protein) 

SE_005 
CRISPR target 

efficiency 
 

- Constructs: tested constructs must include a 
Cas gene together with at least one single 
guideRNA (sgRNA). 

- Analysis: determine the efficiency calculating 
the percentage of mutated genomic DNA (for 
transient expression) or the number of plants 
with mutations in reference to the total 
number of transgenic plants (for stable 
transformation).  

Not defined 
- Overall 
mutations 
efficiency (%) 

NS_000 
Non-standard 
experiment 

 

Not defined Not defined Not defined 
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Supplementary Table 2. Non-exhaustive list of GBexperiments.  

*All listed experiments can be consulted at https://gbcloning.upv.es/search/experiment/ by introducing the 
‘Experiment IDs’. Extra experiments can be searched on the same link by using different search criteria.	

Title Short description Experiment 
type 

GB 
elements 

Experiment 
IDs 

Dexamethasone 
dose-response  

Study of the inducibility factor of a 
genetic element inducible by 
dexamethasone at different 
dexamethasone concentrations. 

SE_001 GB0162 

GB_EXP_3F, 
GB_EXP_40, 
GB_EXP_41, 
GB_EXP_42, 
GB_EXP_43, 
GB_EXP_45, 
GB_EXP_47, 
GB_EXP_49, 
GB_EXP_4A, 
GB_EXP_4B 

Dexamethasone 
time-course 

 

Determination of the induction profile of 
a genetic element inducible by 
dexamethasone. 
 

SE_001 GB1254 GB_EXP_7A, 
GB_EXP_7B 

Estradiol dose-
response 

Study of the inducibility factor of a 
genetic element inducible by estradiol 
with different β-estradiol concentrations 

SE_001 GB1132 

GB_EXP_36, 
GB_EXP_37, 
GB_EXP_38, 
GB_EXP_3A, 
GB_EXP_3B, 
GB_EXP_3C, 
GB_EXP_3D, 
GB_EXP_3E 

Transactivation 
with a synthetic 
transcription factor 
time-course 

 

Determination of the levels of activation 
of a regulated promoter with either the 
constitutive or self-regulated expression 
of a synthetic transcription factor 
 

SE_001 

GB1118, 
GB1121, 
GB1122, 
GB1124 

GB_EXP_1A, 
GB_EXP_17, 
GB_EXP_18, 
GB_EXP_19 

Regulated 
transactivation of 
the SlDFR promoter 
time-course 

Determination of the transcriptional 
activity induced by the Solanum 
lycopersicum DFR promoter when it is 
coexpressed with a MYB and a bHLH 
transcription factors (Rosea1 and Delila) 
either constitutively expressed or 
regulated. 

SE_001 

GB1160, 
GB0129, 
GB1156, 
GB1157 

GB_EXP_87, 
GB_EXP_90, 
GB_EXP_8C, 
GB_EXP_8D, 
GB_EXP_8E, 
GB_EXP_8F 

Expression of the 
35s constitutive 
promoter 

 

Determination of the transcriptional 
activity induced by the 35s promoter 
over different experiments to test the 
stability of its expression and the 
reproducibility of the employed 
experimental method 
 

SE_001 GB0164 

GB_EXP_2D, 
GB_EXP_2E, 
GB_EXP_2F, 
GB_EXP_33, 
GB_EXP_26 

Expression of the 
35s constitutive 
promoter 

Determination of the transcriptional 
activity induced by the 35s promoter 
over different experiments to test the 
stability of its expression and the 
reproducibility of the employed 
experimental method 

SE_001 GB1119 
GB_EXP_34, 
GB_EXP_35, 
GB_EXP_16 

Transactivation 
induced by the TEV 
protease 

 

Test of the ability of the TEV protease 
constitutively expressed to reléase a 
synthetic transcription factor from a 
transmembrane protein. 
 

SE_002 GB0588 
GB0594 

GB_EXP_24 
GB_EXP_25 

Protein-protein 
interaction 
determined with 
the split-TEV 
system 

 

Test of the interaction of two proteins 
fused to the N-term and C-term 
domains of the TEV protease by 
measuring expression from a promoter 
that is activated by a synthetic 
transcription factor released from a 
transmembrane protein upon 
reconstitution of the TEV protease. 
 

SE_002 GB0592 
GB0593 

GB_EXP_22, 
GB_EXP_23 
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Supplementary Table 2 (continuation). Non-exhaustive list of GBexperiments.  

	

	

	

Title Short description Experiment 
type 

GB 
elements 

Experiment 
IDs 

Transactivation of two 
DFR promoters with 
plant transcription 
factors 

 

Determination of the transcriptional 
activity induced by the Solanum 
lycopersicum and the Antirrhinum 
majus DFR promoters when they are 
coexpressed with two MYB 
transcription factors (Rosea1 and 
Ant1) either alone or in combination 
with two bHLH transcription factors 
(Delila and Jaf13). 
 

SE_002 

GB1160, 
GB1161, 
GB0125, 
GB0126, 
GB0127, 
GB0128, 
GB0129, 
GB0130 

GB_EXP_4D, 
GB_EXP_51, 
GB_EXP_54, 
GB_EXP_55, 
GB_EXP_57, 
GB_EXP_58, 
GB_EXP_59, 
GB_EXP_5B, 
GB_EXP_5C, 
GB_EXP_5D, 
GB_EXP_5E, 
GB_EXP_60, 
GB_EXP_61, 
GB_EXP_62 
 

Transcriptional 
activation using the 
CRISPR/Cas9 
technology 
 

T 
 

Comparison of the transcriptional 
activation of the nopaline synthase 
promoter by targeting to it the dCas9 
fused to the EDLL or to the VP64 
activation domains with different 
sgRNAs either alone or combined.	

SE_002 

GB1116, 
GB1189, 
GB1190, 
GB1221, 
GB1192, 
GB1197, 
GB1195, 
GB1220 

GB_EXP_A3, 
GB_EXP_A5, 
GB_EXP_A6, 
GB_EXP_A7, 
GB_EXP_A8, 
GB_EXP_A9, 
GB_EXP_AB, 
GB_EXP_AF, 
GB_EXP_B0, 
GB_EXP_B1 

Transcriptional 
repression using the 
CRISPR/Cas9 
technology 
 

Transcriptional repression of the 
nopaline synthase promoter by 
targeting to it the dCas9 fused to the 
BRD or to the SRDX repressor 
domains with with different sgRNAs 
either alone or combined. 

SE_002 

GB1116, 
GB1188, 
GB1172, 
GB1221, 
GB1192, 
GB1197, 
GB1195, 
GB1220 

GB_EXP_B2, 
GB_EXP_B3, 
GB_EXP_B4, 
GB_EXP_B5, 
GB_EXP_B6, 
GB_EXP_B8, 
GB_EXP_B9, 
GB_EXP_BA, 
GB_EXP_BB, 
GB_EXP_BC 

Tomato 
transformation with a  
intragenic selection 
marker 

Determination of the transformation 
efficiency obtained using a mutated 
version of the tomato acetolactate 
synthase as selection marker. 

SE_003 GB0830 GB_EXP_BD 

Recombinant 
antibody production 
 

Comparison of the expression levels of 
three monoclonal antibody formats 
against the human tumor necrosis 
factor. 

SE_004 
GB_UA_BD1, 
GB_UA_C27, 
GB_UA_C29 

GB_EXP_95, 
GB_EXP_98, 
GB_EXP_99 

Gene editing with the 
CRISPR/Cas9 
technology 

Mutagenesis efficiency of the Cas9 in 
combination with two sgRNAs 
targeting each of them a different 
locus of the N.benthamiana 
xylosyltransferase gene. 

SE_005 GB0639, 
GB1108 

GB_EXP_83, 
GB_EXP_85, 
GB_EXP_86 

Anthocyanins 
production 

Quantification of anthocyanins 
produced in transient expression by 
the expression of two MYB 
transcription factors (Rosea1 and 
Ant1) either alone or in combination 
with two bHLH transcription factors 
(Delila and Jaf13). 

NS_000 

GB0125, 
GB0126, 
GB0127, 
GB0128, 
GB0129, 
GB0130 

GB_EXP_BF, 
GB_EXP_C0, 
GB_EXP_C1, 
GB_EXP_C2, 
GB_EXP_C3, 
GB_EXP_C4 
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Supplementary Table 3. List of GBelements tested under experimental conditions 
described in Chapter 2. 

*Datasheets of all listed GBelements can be consulted at https://gbcloning.upv.es/search/features/ by 
introducing their GB IDs.	

	

Protein-protein interaction 

GB0592 Device for testing the interaction of Ros1 and SOC1 using the Split TEV system 

GB0593 Device for testing the interaction of FUL and SOC1 using the Split TEV system 

Reporter devices for transcriptional regulation studies 

GB1160 
Reporter device including a transcriptional unit for the expression of the Luciferase 
gene driven by the Solanum lycopersicum DFR promoter  

GB1161 
Reporter device including a transcriptional unit for the expression of the Luciferase 
gene driven by the Antirrhinum majus DFR promoter 

GB0178 

Reporter device including a transcriptional unit for the expression of the Luciferase 
gene driven by a synthetic promoter including the LacI operon and the minimal 
35s promoter 

GB1130 
Transcriptional unit for the expression of the Luciferase gene driven by a synthetic 
promoter including the LexA operon and the minimal 35s promoter 

GB1116 
Reporter device including a transcriptional unit for the expression of the Luciferase 
gene driven by the nopaline synthase promoter 

Constitutive transcriptional regulation 

GB1120 
Transcriptional unit for the constitutive expression of a synthetic transcription 
factor conformed by the LacI DNA binding domain and the Gal4 activation domain 

GB0129 
Module for the constitutive expression of the MYB transcription factor Rosea1 and 
the bHLH transcription factor Delila 

GB0130 
Module for the constitutive expression of the MYB transcription factor Ant1 and the 
bHLH transcription factor Jaf13 

GB1189 

Transcriptional unit for the constitutive expression of the dCas9 fused to the VP64 
activation domain. In combination with any module expressing one or more sgRNA 
targeting a promoter (i.e. GB1202) can activate expression from it. 

GB1188 

Transcriptional unit for the constitutive expression of the dCas9 fused to the SRDX 
repressor domain. In combination with any module expressing one or more sgRNA 
targeting a promoter (i.e. GB1202) can repress expression from it. 

Conditional transcriptional regulation 

GB1111 
Transcriptional unit for the regulated expression of a synthetic transcription factor 
conformed by the LacI DNA binding domain and the Gal4 activation domain 

GB1156 

Module for the conditional expression of the MYB transcription factor Rosea1 and 
the constitutive expression of the bHLH transcription factor Delila including a 
synthetic transcription factor responsive to dexamethasone constitutively 
expressed. 

GB1157 

Module for the conditional expression of the bHLH transcription factor Delila and 
the constitutive expression of the MYB transcription factor Rosea1 including a 
synthetic transcription factor responsive to dexamethasone constitutively 
expressed. 

GB0157 

Transcriptional unit for the constitutive expression of a synthetic transcription 
factor conformed by the GR glucocorticoid receptor domain fused to the LacI DNA 
binding domain and the Gal4 activation domain 

GB1129 

Transcriptional unit for the constitutive expression of a synthetic transcription 
factor conformed by the ER estradiol receptor domain fused to the LexA DNA 
binding domain and the Gal4 activation domain 
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Metabolic engineering 

GB0830 

Device for tomato transformation expressing the S.lycopersicum MYB12 under the 
E8 fruit promoter. MYB12 is a master regulator of the flavonoids biosynthetic 
pathway. 

GB0130 

Device for overproduction of anthocyanins in transient expression in 
N.benthamiana leaves comprising the S.lycopersicum MYB and bHLH transcription 
factors Ant1 and Jaf13. 

CRISPR/Cas9 based gene editing 

GB1108 
Device including two monocistroninc sgRNAs targeting each of them one locus of 
the N.benthamiana xylosyltransferase gene and the constitutively expressed Cas9. 

GB1222 

Device including two polycistroninc sgRNAs, one with two targets for the two genes 
of the N.benthamiana xylosyltransferase and the second one with three sgRNAs 
targeting five N.benthamiana fucosyltransferase genes. It also includes the TU for 
the constitutive expression of the Cas9. 

Recombinant antibody production 

GB_UA_BD1 

Transcriptional unit for the constitutive expression of the human scFv-Fcgamma1 
antibody format against the human TNF-alpha. 

GB_UA_C27 

Transcriptional unit for the constitutive expression of a monoclonal antibody with 
the gamma1 heavy chain and the lambda light chain against the human TNF-
alpha. 

GB_UA_C29 
Transcriptional unit for the constitutive expression of a monoclonal antibody with 
the gamma1 heavy chain and the kappa light chain against the human TNF-alpha. 
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Supplementary Table 4. Frequencies of plants cells untransformed and transformed 
with two different T-DNA upon agroinfiltration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

OD 
Frequency of 

untransformed 
protoplasts 

Frequency of 
cotransformed 

protoplasts 

Calculated 
MOT 

0,0002058 0,887 0,006 0,027 

0,000617 0,598 0,065 0,265 

0,00185 0,281 0,213 0,890 

0,0055 0,053 0,652 3,190 

0,0167 0,033 0,675 3,360 

0,05 0,004 0,834 4,950 

0,1 0,000 0,945 7,400 



Supplementary Tables 

 131 

Supplementary Table 5. Primers used for the amplification of the N.benthamiana 
xylosyltransferases XT1 (Niben101Scf04205Ctg025) and XT2 
(Niben101Scf04551Ctg021) regions. 

	

XT1_F 5´-AACCACTTTTCCTCGTCGGAAA-3’ 

XT1_R 5´-TAACTATTCAACTAAAGCTTCAAACAG-3’ 

XT2_F 5’-AACCACTTTTCCTTGTCGGAAA-3’ 

XT2_R 5’-GGAATGAAATTAACCACTTCAGG-3’ 

XT12BsaI_F 5’-GCGGGTCTCAGGAGCCCTAATGTTGCTTGGAGATC-3’ 

XT12BsaI_R 5´-GCGGGTCTCAAGCGCCGTCTAAGGTTCAATTTGAGTAGC-3’ 
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Supplementary Table 6. List of  forward and reverse primers used to construct the 
targets. 

gRNA XT1_F 5´-ATTGAAAACACCGTCTTCGGAGA-3’ 

gRNA XT1_R 5´-AAACTCTCCGAAGACGGTGTTTT-3’ 

gRNA XT2_F 5´-ATTGAAAATTGGGAAAAAACTAG-3’ 

gRNA XT2_R 5´-AAACCTAGTTTTTTCCCAATTTT-3’ 

gRNA1 pNOS_F 5’-ATTGAGACTCTAATTGGATACCG-3’ 

gRNA1 pNOS_R 5’-AAACCGGTATCCAATTAGAGTCT-3’ 

gRNA2 pNOS_F 5’-ATTGACGTTCCATAAATTCCCCT-3’ 

gRNA2 pNOS_R 5’-AAACAGGGGAATTTATGGAACGT-3’ 

gRNA3 pNOS_F 5’-ATTGACTTTTGAACGCGCAATAA-3’ 

gRNA3 pNOS_R 5’-AAACTTATTGCGCGTTCAAAAGT-3’ 

gRNA4 pNOS_F 5’-ATTGCCACTGAGCCGCGGGTTTC-3’ 

gRNA4 pNOS_R 5’-AAACGAAACCCGCGGCTCAGTGG-3’ 

gRNA5 pNOS_F 5’-ATTGGGACAAGCCGTTTTACGTT-3’ 

gRNA5 pNOS_R 5’-AAACAACGTAAAACGGCTTGTCC-3’ 

gRNA FT5447tRNA_F* 5’-GTGCACCCAAAAGAAATGGTCCAAT-3’ 

gRNA FT5447tRNA_R* 5’-AAACATTGGACCATTTCTTTTGGGT-3’ 

gRNA FT1272tRNA_F* 5’-GTGCACCAATAAGCAATGGCGCAAT-3’ 

gRNA FT1272tRNA_R* 5’-AAACATTGCGCCATTGCTTATTGGt-3’ 

gRNA FT2631tRNA_F* 5’-GTGCACCGATAAACAATGGCGCAAT-3’ 

gRNA FT2631tRNA_R* 5’-AAACATTGCGCCATTGTTTATCGGT-3’ 

gRNA XT4205tRNA_F* 5’-GTGCAGAAAACACCGTCTTCGGAGA-3’ 

gRNA XT4205tRNA_R* 5’-AAACTCTCCGAAGACGGTGTTTTCT-3’ 

gRNA XT4551tRNA_F* 5’-GTGCAGAAAATTGGGAAAAAACTAG-3’ 

gRNA XT4551tRNA_R* 5’-AAACCTAGTTTTTTCCCAATTTTCT-3’ 
	

*Primers used on the assembly of GBoligomers on level 0. 
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Supplementary Table 7. List of GBelements generated in Chapter 3. 

Level -1 GBparts 

GBdatabase ID Name 

GB1205 tRNA-gRNA position [D1_2] 

GB1206 tRNA-gRNA position [2_n-1] 

GB1207 tRNA-gRNA position [n] 

GB1208 tRNA-gRNA position [D1_n-1] 

GB1209 tRNA-gRNA position [M1_2] 

GB1210 tRNA-gRNA position [M1_n-1] 

Level 0 GBparts 

GBdatabase ID Name Category 
GB0273 ppcoCas9 B3-B4-B5 

GB0575 phCas9 B3-B4-B5 

GB0645 psgRNA B6b-C1 

GB1001 pAtU6-26 A1-A2-A3-B1-B2c 

GB1041 pdCas9 B3-B4-B5 

GB1079 pdCas9 B3-B4 

GB1175 pNLS-BRD B5 

GB1184 pOsU3 A1-A2-A3-B1-B2d 

GB1185 pNLS-SRDX B5 

GB1186 p3xNLS-VP64 B5 

GB1187 p3xNLS-EDLL B5 

GB1204 pAtU6-1 A1-A2-A3-B1-B2c 

GB1211 ptRNA-target5447_5494_17626FT-
gRNA[D1_2] 

Other 

GB1212 ptRNA-target1272FT-gRNA[2_n-1] Other 

GB1213 ptRNA-target2631FT-gRNA[n] Other 

GB1214 ptRNA-target4205XT-gRNA[D1_n-
1] 

Other 

GB1215 ptRNA-target4551XT-gRNA[n] Other 

Level 1 GB TUs 

GBdatabase ID Name % 
accuracy* 

GB0639 pEGB2α2 35s:hCas9:tNOS 100% 

GB0576 pEGB3α2 35s:pcoCas9:tNOS 50% 

GB1104 pEGB3α1 U626:gRNAXT4551:sgRNA 100% 

GB1105 pEGB3α2 U626:gRNAXT4205:sgRNA 100% 
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GB1172 pEGB3α2 35s:hCas9:BRD:tNOS 100% 

GB1177 pEGB3α1 U626:gRNA1pNOS:sgRNA 100% 

GB1178 pEGB3α2 U626:gRNA1pNOS:sgRNA 100% 

GB1179 pEGB3α1 U626:gRNA2pNOS:sgRNA 100% 

GB1180 pEGB3α1 U626:gRNA4pNOS:sgRNA 100% 

GB1188 pEGB3α2 35s:hCas9:SRDX:tNOS 100% 

GB1189 pEGB3α2 35s:hCas9:VP64:tNOS 100% 

GB1190 pEGB3α2 35s:hCas9:EDLL:tNOS 100% 

GB1191 pEGB3α2 35s:dCas9:tNOS 100% 

GB1192 pEGB3α1 U626:gRNA3pNOS:sgRNA 100% 

GB1193 pEGB3α1 U626:gRNA5pNOS:sgRNA 100% 

GB1194 pEGB3α2 U626:gRNA3pNOS:sgRNA 100% 

GB1195 pEGB3α2 U626:gRNA5pNOS:sgRNA 100% 

GB1196 pEGB3α2 U626:gRNA2pNOS:sgRNA 75% 

GB1197 pEGB3α2 U626:gRNA4pNOS:sgRNA 100% 

GB1221 pEGB3α1 U626:gRNA1pDFR:sgRNA 100% 

Level >1 GB Modules 

GBdatabase ID Name  

GB1064 
pEGB3Ω2 U6-26:target4551XT:sgRNA-
35s:pcoCas9:tNOS 

75% 

GB1106 
pEGB3Ω1 tNOS:nptII:pNOS-
U626:target4205XT:sgRNA 

100% 

GB1107 
pEGB3Ω2 U6-26:target4551XT:sgRNA-
35s:hCas9:tNOS 

100% 

GB1108 

pEGB 3α1 tNOS:nptII:pNOS-
U626:target4205XT:sgRNA-
U626:target4551XT:sgRNA-
35s:hCas9:tNOS 

100% 

GB1116 
pEGB3α1 pNOS:Luciferase:tNOS-SF-
35S:Renilla:tNOS-35S:P19:tNOS-SF 

100% 

GB1198 
pEGB3Ω1 U626:gRNA1pNOS:sgRNA-
U626:gRNA2pNOS:sgRNA 

100% 

GB1199 
pEGB3Ω1 U626:gRNA1pNOS:sgRNA-
U626:gRNA4pNOS:sgRNA 

100% 

GB1200 
pEGB3Ω1 U626:gRNA2pNOS:sgRNA-
U626:gRNA4pNOS:sgRNA 

100% 

GB1201 pEGB3Ω2 U626:gRNA4pNOS:sgRNA-SF 100% 

GB1202 
pEGB3α1 U626:gRNA1pNOS:sgRNA-
U626:gRNA2pNOS:sgRNA-
U626:gRNA4pNOS:sgRNA 

100% 

GB1216 
pEGB3α1 U626:tRNA-target1FT-
gRNA:tRNA-target2FT:gRNA:tRNA-

100% 
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target3FT-gRNA 

GB1217 
pEGB3α2 U626:tRNA-target1XT-
gRNA:tRNA-target2XT:gRNA 

100% 

GB1218 
pEGB3Ω1 U626:tRNA-
gRNA(x3withFTtargets)-U626:tRNA-
gRNA(x2withXTtargets) 

100% 

GB1219 
pEGB3Ω1 U626:gRNA3pNOS:sgRNA-
U626:gRNA5pNOS:sgRNA 

100% 

GB1220 
pEGB3α1 U626:gRNA3pNOS:sgRNA-
U626:gRNA5pNOS:sgRNA-
U626:gRNA4pNOS:sgRNA 

100% 

GB1222 
pEGB3α1 U626:tRNA-
gRNA(x3withFTtargets)-U626:tRNA-
gRNA(x2withXTtargets)-35s:hCas9:tNOS 

100% 

	
	
* Cloning accuracy expressed as the % of colonies showing the correct restriction pattern 
(number of colonies assayed 2-4).  
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Supplementary Table 8. Primers used on the domestication of GB0816 (mALS), GB0914 
(E8 promoter) and GB0144 (E8 terminator).  

M13MAY01ALS1aOF GCGCCGTCTCACTCGAATGGCGGCTGCTGCCTCACC 

M13MAY02ALS1aOR GCGCCGTCTCATGACACTTGACCTGTAATAGCAACAATCGG 

M13MAY03ALS1bOF GCGCCGTCTCAGTCAAGGAGGATGATTGGTAC 

M13MAY04ALS1bOR GCGCCGTCTCAGCCTCAGCTCCTCACTTGATTG 

M13MAY05ALS2OF GCGCCGTCTCAAGGCGATTTGTGGAGCTTACAGG 

M13MAY06ALS2OR GCGCCGTCTCACCTCCCAACAGCCGCACCTAT 

M13MAY07ALS3OF GCGCCGTCTCAGAGGCCGGGTGAGATTGTGG 

M13MAY08ALS3OR GCGCCGTCTCACTCGAAGCTCAATAGGAACATCTCCCGTCGCC 

M13OCT01_PE8F1 GCGCCGTCTCACTCGGGAGTCCCTAATGATATTGTTCATG 

M13OCT02_PE8R1 GCGCCGTCTCACTCGCATTCTTCTTTTGCACTGTGAATGATTAG 

M12MAY03TermE8F1 GCGCCGTCTCGCTCGGCTTGAATAAGAATAATAATG 

M12MAY04TermE8R1 GCGCCGTCTCGCTCGAGCGCGTAAATTAGATAAGGAAAAC 

M12ENE24TmtbR1 GCGCCGTCTCGCTCGAGCGTCGCAAAAACTATATGCTCTC 

	

* Primers M13MAY07ALS3OF and M12ENE24TmtbR1 were used for genotyping transformed 
plants.	
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