Table of contents

Summary	 7
Riassunto	 9
Resumen	 11
Resum	 13
Aim of the study	 15
Structure of the thesis	 17
Table of contents	 21
Chapter 1. Introduction	
1.1 Overview of the energy framework	 27
1.2 Agricultural residues as a resource	 30
1.3 Biomass conversion technologies	 36
1.3.1 Thermo-chemical conversion reactions	 37
1.3.2 Physico-chemical conversion processes	 40
1.4 Motivation and main objectives	 42
References in this chapter	 43
Chapter 2. Spouted Bed Technologies	
2.1 Types of gasifiers	 47
2.2 Spouted Bed Reactors	 50
2.2.1 Properties of Spouted Bed Reactors	 54
2.2.2 Segregation phenomena	 56
2.2.3 Additional devices	 57
2.2.4 State of the art in gasification reactions within SBR	 58
2.3 Modelling activity	 59
2.3.1 Computational Fluid Dynamic modelling (CFD)	 60
2.3.1.1 Eulerian-Eulerian approach	 60
2.3.1.2 Eulerian-Lagrangian approach	 65
2.3.2 Thermodynamic equilibrium models	 66
2.3.2.1 Stoichiometric approach	 66
2.3.2.2 Non stoichiometric approach: minimisation of	 68

Gibbs free energy	
2.3.2.3 Quasi-Equilibrium Temperatures approach	 68
References in this chapter	 70
Chapter 3. Biomass and its characterisation	
I Summary	 77
3.1 Physical characterisation of biomass	 78
3.1.1 Density	 78
3.1.2 Shape and dimension of samples	 79
3.1.3 Influence of the moisture content of the samples	 81
3.2 Chemical characterisation of biomass	 82
3.2.1 Composition of biomass	 82
3.2.2 Ultimate analysis	 85
3.2.3 Proximate analysis	 86
3.2.4 Calorific value	 88
3.3 Thermal characterisation of biomass	 91
3.3.1 Fundamentals of the TGA	 91
3.3.2 Equipment	 93
3.3.3 Analysis of the TGA experimental results	 94
3.3.4 Kinetic analysis methodology	 95
3.3.4.1 Obtaining of the Activation Energy	 96
3.3.4.2 Obtaining of the mechanism and order of reaction	 99
3.3.4.3 Obtaining of the pre-exponential factor:	 101
independence of the heating rate	
3.4 Main results	 102
References in this chapter	 104
Chapter 4. Characterisation of Spouted Bed Reactors	
I Summary	 129
4.1 Fluid dynamic characterisation of the SBR	 130
4.1.1 Experimental set-up	 131
4.1.2 Experimental procedure	 134
4.2 Studies of segregation	 141
4.3 CFD modelling	 144

4.4 Main results	 148
References in this chapter	 149
Chapter 5. Reactions of gasification in a SBR	
I Summary	 189
5.1 Generalities on gasification reactions	 191
5.1.1 Reactions of gasification	 191
5.1.2 Important parameters in gasification reactions	 194
5.2 Experimental studies on a SBR	 198
5.2.1 Description of the pilot unit and experimental procedure	 198
5.2.2 Preliminary experimental tests	 200
5.3 Modelling activities	 202
5.3.1 Description of the models	 202
5.3.2 Description of the methodology	 204
5.4 Main results	 207
References in this chapter	 208
Chapter 6. Extraction of silica	
I Summary	 249
6.1 Chemical extraction of silica from ashes	 250
6.1.1 Preparation of rice straw ash	 250
6.1.2 Extraction of silica from rice straw ash	 253
6.2 Characterisation of silica	 257
6.2.1 Fundamentals of EDS	 257
6.2.2 Results	 258
6.3 Preliminary adsorption tests	 261
6.3.1 Description of methodology	 261
6.3.2 Experimental results	 262
6.4 Main results	 264
References in this chapter	 265
Chapter 7. Conclusions	
7.1 Conclusions	 269
7.2 Future research lines	 274
	 -, .

7.3 Other benefits of the thesis	 275
Glossaries	
List of Tables	 i
List of Figures	 ii
Abbreviations	 iii
Main symbology	 iv

Gracias. Grazie. Thank you. Gràcies