Document downloaded from:

http://hdl.handle.net/10251/68853

This paper must be cited as:

Vaca Puga, A.; Teixidor, F.; Kivekas, R.; Sillanpaa, R.; Viñas, C. (2006). A solvent-free regioselective iodination route of ortho-carboranes. Dalton Transactions. (41):4884-4885. doi:10.1039/b612465h.

The final publication is available at http://dx.doi.org/10.1039/b612465h

Copyright Royal Society of Chemistry

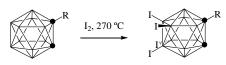
Additional Information

50

COMMUNICATION

A solvent-free regioselective iodination route of ortho-carboranes

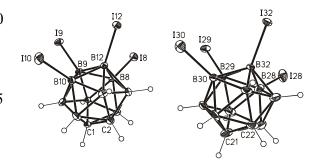
Albert Vaca,^{a,b} Francesc Teixidor,^a Raikko Kivekäs,^c Reijo Sillanpää^d and Clara Viñas^{a,*}


Receipt/Acceptance Data [DO NOT ALTER/DELETE THIS TEXT] Publication data [DO NOT ALTER/DELETE THIS TEXT] 5 DOI: 10.1039/b000000x [DO NOT ALTER/DELETE THIS TEXT]

Tetraiodo-ortho-carborane based X-ray contrast agents can be readily produced in a high yield, fast, clean, regioselective fashion by a solvent-free reaction of ortho-carboranes with iodine in sealed tubes.

- 10 The quest for more efficient and environmentally friendly transformations is nowadays essential for the sustainability of chemical synthesis in the 21st century.¹ In this line, an excellent solution is the replacement of volatile organic solvents for alternative reaction media, mainly supercritical fluids, ionic liquids,
- 15 water or absence of a solvent.² The latter option is the best known of them, widely employed in petrochemical industry with remarkable waste minimization.² Despite such advantages, only recent advances in solventless solid-state reactions are showing the 20 successful results in organic and organometallic synthesis.³
- Highly iodinated molecular species receive great interest in medical applications⁴ and materials science. Highly iodinated ortho-carboranes with metal-based X-ray contrast agents,5 are
- 25 purposes. They represent a great increase in iodine percentage by weight compared to the iodinated organic compounds used in Xray contrast agents. Clean and effective synthetic methods are still the critical issue for the consideration of highly iodinated orthocarboranes as promising candidates for X-ray diagnosis.⁶
- 30 ortho-Carborane, 1,2-C2B10H12, and its derivatives, have been typically iodinated under electrophilic conditions, requiring the use of Lewis or Brönsted acid catalysts. Thus, three methods have been developed for the transformation of B-H vertices to B-I ones: i) elemental iodine in the presence of alumninum trichloride⁷ or a 75
- 35 mixture of acetic, nitric and sulfuric acids to yield diiodinated compounds,⁸ ii) iodine monochloride and triflic acid to transfrom eight B-I vertices^{6a} and recently, iii) a sequential combination of nucleophilic and electrophilic reactions to generate the highest boron iodinated ortho-carboranes: 3,4,5,7,8,9,10,11,12-I9-closo- 80
- 40 1,2-C₂B₁₀H₃ and 3,4,5,6,7,8,9,10,11,12-I₁₀-1,2-*closo*-C₂B₁₀H₂.⁹ Their extremely high iodine content (around 90%), should make them of interest to build new high performance X-ray contrast agents, but complications in the synthetic route are still a problem. This work aims at establishing new competitive preparations of 85

45 polyiodinated ortho-carboranes in the absence of any solvent. Our


strategy aims at exploring the reactivity of ortho-carboranes with I2 under thermal treatment in sealed tubes, but in the absence of any strong acid, in order to attain cleaner and more practical pathways for neutral molecular inorganic X-ray contrast agents.

55 Scheme 1 General tetraiodination of 1-R-1,2-closo-C₂B₁₀H₁₁ by reaction with iodine in sealed tubes. For R = H, t = 4 h. For R = Me or Ph, t = 3.5 h.

Regioselectively tetraiodinated ortho-carborane 8,9,10,12-I4-1,2closo-C2B10H8 (1) was easily obtained in a solvent-less reaction just ability to selectively produce high value substances, providing 60 by heating $1,2-closo-C_{2B_{10}H_{12}}$ with four equivalents of I₂ at 270±2 °C for 24 hours in a sealed tube. After the reaction is complete, the Pyrex tube is opened and gaseous IH is immediately evaporated leaving a solid. The crude product contained ca. 25% of 8,9,12-I3-1,2-closo-C₂B₁₀H₉ and 75% of 8,9,10,12-I₄-1,2-closo-C₂B₁₀H₈, called to be a new generation of advanced radiopaques for clinical 65 based on ¹H{¹¹B} NMR spectroscopy. Longer reaction times did not improve substantially this result. Experiments with higher iodine ratio were indeed much quicker and more selective; heating 1,2-closo-C₂B₁₀H₁₂, now with ten equivalents of I₂ at 270±2 °C for 4 hours in a sealed tube produced a solid containing ca. 93% of 70 8,9,10,12-I4-1,2-closo-C2B10H8, 2% of 8,9,12-I3-1,2-closo-C2B10H9

and 4% of higher iodinated ortho-carboranes. Almost all of the excess iodine, 95%, could be effectively recovered from the mixture by sublimation under reduced pressure as a crystalline solid, avoiding its quenching with sodium metabisulfite and allowing further re-utilisation. The residual solid was recrystallized from 1:1 ethanol/water, giving pure **1** in a high yield. The ${}^{11}B{}^{1}H{}$ -NMR shows a pattern 2:2:4:2 in which the resonances at higher and lower field do not split in the ¹¹B-NMR

90

Fig. 1. Perspective view of the asymmetric unit of 1 with 30% ellipsoids. Selected bond lengths (Å): C(1)-C(2) 1.599(10), C(21) - C(22) 1.611(12), B-I 2.139(10) - 2.164(8) Å.

a I.C.M.A.B. (C.S.I.C.), Campus U.A.B., 08193 Bellaterra, Spain. Fax: 34 3580 5729; Tel: 34 3580 1853; E-mail: clara@icmab.es

^b Albert Vaca is enrolled in the PhD program of the UAB.

^c Department of Chemistry, P.O. Box 55, University of Helsinki, FIN-00014 Helsinky, Finland

^d Department of Chemicstry, University of Jyväskylä, FIN-40351 Jyväskylä, Finland

[†] Electronic Supplementary Information (ESI) available: [Synthesis and characterization of 1-5.]. See http://dx.doi.org/10.1039/b000000x/

- confirming that four boron atoms have one *exocluster* iodine. The 95 ¹H NMR spectrum of 1 reveals a singlet at 5.57 ppm. assigned to the two C-bonded H atoms, *ca*. 2 ppm. to high frequency relative to that in 1,2-*closo*-C₂B₁₀H₁₂, suggesting greater protonic character for these H atoms in the tetraiodo species. To confirm the structure155 of 1, colourless crystals were grown by the slow evaporation of a
- 100 hexane/dichloromethane solution and a single-crystal X-ray diffraction analysis¹⁰ (Figure 1) was undertaken.

The synthesis of **1** had been reported in low yield by using chlorinated solvents and long workup procedures.^{6b,11} Therefore the **1**60 As a conclusion, our targeted synthesis and processing of tetraiodinated *ortho*-carboranes with a solvent-free, high yield, fast, clean and regioselective method has been achieved. Additionally,

- To prove the versatility of the method, C-alkyl- and Caryl- substituted *ortho*-carboranes were iodinated under similar conditions. Slightly shorter reaction times were needed for the 165 same degree of substitution. After heating 1-R-1,2-closo-
- 110 $C_{2B_{10}H_{11}}$ (R = Me, Ph) with I₂ at 270±2 °C for 3.5 hours in a sealed tube, the corresponding 1-R-8,9,10,12-I₄-1,2-*closo*- $C_{2B_{10}H_7}$ (R = Me, 2; Ph, 3) derivatives were selectively produced in high yields (>75%). It is noteworthy that in the iodination of 1-Ph-1,2-*closo*- $C_{2B_{10}H_{11}}$, only B-H vertices from the cluster have170
- 115 been activated, and in no case C-I substitution in the aromatic ring has been observed. These data have been obtained by ¹H or ¹³C{¹H} NMR spectroscopy. To unambiguously prove such reactivity, good crystals of 3 were grown by slow evaporation of 175 a hexane/dichloromethane solution and X-ray analysis was

120 undertaken (Figure 2).¹²

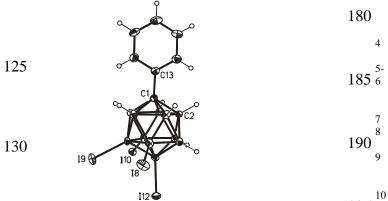


Fig. 2. Perspective view of 3 with 30% ellipsoids. Selected bond lengths 195 135 (Å): C(1)-C(2) 1.659(9), C(1) – C(13) 1.501(9), B-I 2.147(7) – 2.155(7) Å.

The C-disubstituted counterparts, $1,2-R_2-1,2-closo-C_2B_{10}H_{10}$ (R = Me, Ph) were iodinated in a parallel way and the crude products obtained were analysed by ESI-MS. The $1,2-Ph_2-1,2-closo-12$

- 140 $C_{2}B_{10}H_{10}$ achieved tetraiodination rather selectively after 3.5 hours too, whereas the 1,2-Me₂-1,2-*closo*-C₂B₁₀H₁₀ showed to be more susceptible to electrophilic substitution and only 2.5 hours²⁰⁵ were enough for completion of the reaction. It agrees with the theoretical¹³ and experimental results¹⁴ reported by Lipscomb that
- 145 electron donating methyl groups bonded to the C_{cluster} atoms cause a rather uniform increase in electron density on the B atoms²¹⁰ while keeping inalterable the sequence of substitution.

Once the feasibility of the method to selectively produce tetraiodinated *ortho*-carboranes has been proven, further 150 experiments regarding temperature have been done to tune the

degree of substitution. Increasing the temperature, and even the reaction time to several days, did not produce satisfactory results in terms of selectivity, as mixtures of highly iodinated *ortho*-carboranes were always generated. Nevertheless, by limiting the

- 5 temperature to 170 ± 2 °C, a reagents mixture of 1,2-*closo*-C₂B₁₀H₁₂ and I₂ in 1:10 ratio produced after 4 hours in the oven a crude product containing 9,12-I₂-1,2-*closo*-C₂B₁₀H₁₀ (85%), 8,9-I₂-1,2-*closo*-C₂B₁₀H₁₀ (13%) and 8,9,12-I₃-1,2-*closo*-C₂B₁₀H₉ (2%), based on ¹H and ¹H{¹¹B} NMR spectroscopy.
- O As a conclusion, our targeted synthesis and processing of tetraiodinated *ortho*-carboranes with a solvent-free, high yield, fast, clean and regioselective method has been achieved. Additionally, the procedure does not require any futher solvent-based workup and excess of iodine is recovered and re-utilized. Work is now 5 underway to study the reported iodinated compounds as X-ray contrast agents on methyl methacrylate poymerization for bone cements and as building blocks for supramolecular chemistry.

Notes and references

- (a) R. Noyori, *Chem. Commun.*, 2005, 1807. (b) M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez and J. C. Palacios, *Angew. Chem. Int. Ed.*, 2006, **45**, 3904. (c) M. Jansen and J. C. Schön, *Angew. Chem. Int. Ed.*, 2006, **45**, 3406.
- 2 R. D. Rogers and K. R. Seddon, Science, 2003, 302, 792.
- 3 (a) G. Kaupp *Top. Curr. Chem.*, 2005, **254**, 95. (b) K. Tanaka and F. Toda, *Chem. Rev.*, 2000, **100**, 1025. (c) G. W. V. Cave, C. L. Raston and J. L. Scott, *Chem. Commun.*, 2001, 2159. (d) G. Rothenberg, A. P. Downie, C. L. Raston and J. L. Scott, *J. Am. Chem. Soc.*, 2001, **123**, 8701. (e) V. P. Balema, J. W. Wiench, M. Pruski and V. K. Pecharsky, *Chem. Commun.*, 2002, 1606. (f) V. P. Balema, J. W. Wiench, M. Pruski and V. K. Pecharsky, *J. Amer. Chem. Soc.*, 2002, **124**, 6244.
- 4 Ell P. J.; Gambhir, S. In Nuclear Medicine in Clinical Diagnosis and Treatment, 3rd edition Elsevier 2004.
- 5- S.-B. Yu and A. D. Watson, Chem. Rev., 1999, 99, 2353.
- 5 6 (a) R. R. Srivastava, D. K. Hamlin and D. S. Wilbur, J. Org. Chem., 1996, 61, 9041; (b) PCT Int. Appl., WO9526353, 1995. Eur. Pat. Appl., EP0700918, 1996.
 - 7 J. Li, C. F. Logan and M. Jones, Jr., Inorg. Chem., 1991, 30, 4866.
- 8 A. S. Batsanov, M. A. Fox, J. A. K. Howard, A. K. Hughes, A. L. Johnson and S. J. Martindale, *Acta Cryst.*, 2003, C59, 074.
- 9 (a) G. Barberà, F. Teixidor, C. Viñas, R. Sillanpää and R. Kivekäs, *Eur. J. Inorg. Chem.*, 2003, 1511; (b) G. Barberà, F. Teixidor, C. Viñas, R. Sillanpää and R. Kivekäs, *Inorg. Chem.*, 2006, 45, 3496.
- 10 Crystal data. 1: $C_2H_8B_{10}I_4$, M = 647.78, monoclinic, space group $P2_{1/c}$ (no. 14), a = 15.0422(5), b = 14.8814(5), c = 14.3581(5) Å, $\beta = 110.378(2)^\circ$, U = 3012.90(18) Å³, Z = 8, $D_c = 2.856$ g cm⁻³, μ (Mo-K α) = 8.235 mm⁻¹, T = 173 K. F(000) = 2256. 18481 reflections measured, 6563 unique ($R_{int} = 0.0581$). $R1(F_o) = 0.0417$ [$wR2(F_o^2) = 0.0855$] with a goodness-of-fit of 1.049.
- 11 L. I. Zakharkin, V. I. Stanko and A. I. Klimova, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 1966, **11**, 1946.
- 12 Crystal data. **3**: $C_8H_{12}B_{10}I_4$, M = 723.88, monoclinic, space group $P_{21/n}$ (no. 14), a = 10.0569(4), b = 15.2555(5), c = 13.0206(5) Å, $\beta = 99.686(2)^\circ$, U = 1969.18(13) Å³, Z = 4, $D_c = 2.442$ g cm⁻³, μ (Mo-K α) = 6.314 mm⁻¹, T = 173 K, F(000) = 1288. 11228 reflections measured, 4181 unique ($R_{int} = 0.0432$). $R1(F_o) = 0.0390$ [$wR2(F_o^2) = 0.0744$] with a goodness-of-fit of 1.053.
- (a) M. D. Newton, F. P. Boer and W. N. Lipscomb, J. Am. Chem. Soc., 1966, 88, 2353. (b). F. P. Boer, J. A. Potenza and W. N. Lipscomb, Inorg. Chem., 1966, 5, 1301.
- 14 J. A. Potenza and W. N. Lipscomb, Inorg. Chem., 1966, 5, 1483.