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Abstract

Manufacturing systems involve a huge number of combinatorial problems that must be optimized in an efficient way. One of
these problems is related to task scheduling problems. These problems are NP-hard, so most of the complete techniques are
not able to obtain an optimal solution in an efficient way. Furthermore, most of real manufacturing problems are dynamic,
so the main objective is not only to obtain an optimized solution in terms of makespan, tardiness, etc, but also to obtain
a solution able to absorb minor incidences/disruptions presented in any daily process. Most of these industries are also
focused on improving the energy-efficiency of their industrial processes. In this paper, we propose a knowledge-based
model to analyze previous incidences occurred in the machines with the aim of modeling the problem to obtain robust
and energy aware solutions. The resultant model (called dual model) will protect the more dynamic and disrupted tasks
by assigning buffer times. These buffers will be used to absorb incidences during execution and to reduce the machine
rate to minimize energy consumption. This model is solved by a memetic algorithm (GA*+LS) which combines a genetic
algorithm (GA) with a local search (LS) to obtain robust and energy-aware solutions able to absorb further disruptions. The
proposed dual model has been proven to be efficient in terms of energy consumption, robustness and stability in different
and well-known benchmarks.

Keywords
Scheduling Problem, Energy Efficiency, Robustness, Dual Model.

1. Introduction

Nowadays, many companies and enterprises are focused on improving their benefits to be more competitive in their
manufacturing processes. However, there exist other objectives beyond the benefits, such as robustness, sustainability, etc.
Manufacturing processes have a huge impact on the environment. Some of them such as chemical, food, refining, paint
or metal industries are highly energy consuming and presents a high risk of producing an important amount of waste or
pollution. For example, during 2000, about 60% of the $700 million energy expenditures in 37 U.S. automotive assembly
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plants are spent in painting processes [1]. In such a context, a 5% reduction in energy consumption may result in a saving
of more than half million dollars per year for each plant. Industrial processes are also known to be the major sources of
greenhouse gas (GHG) emissions. Statistics has shown that the GHG emitted from the usage of energy sources such as
electricity, coal, oil and gas during manufacturing accounts for more than 37% even 50% of the world total GHG [2].

Therefore, the enterprises have started to take steps to reduce GHG emission from their products and services under the
mounting pressure stemming from the implementation of the Kyoto protocol and Copenhagen protocol. Industrial sector
has a lot influence is the environmental impacts, because it represents the sector where more energy is used. The energy
consumed in the world in 2011 was 524 quadrillion BTU and the energy used by the industrial amounts to 51% [3]. So
reducing consumption in this sector directly affects the total consumption. Nevertheless, it is still difficult for enterprises
to consider renewable sources application and emissions reduction when making manufacturing and operation decisions,
especially on the production planning and scheduling problems [4].

During the last few years, many works have been carried out to optimize energy consumption in manufacturing processes
based on the machine level and the product level [5]. Besides, from the manufacturing system-level perspective, optimizing
the objectives of production scheduling is a feasible and efficient approach for manufacturing companies to decrease energy
consumption without any machine or product redesign. Recently, interesting efforts have been performed to investigate
production-scheduling problems that take into account energy efficiency.

May et al. [6] addressed a multi-objective scheduling model related to energy consumption and makespan in a job-shop
system and obtained a series of different Pareto front solutions based on a green genetic algorithm. Escamilla et al. [7]
developed a genetic algorithm to minimize energy consumption and makespan in an extended version of the job-shop
scheduling problem where each machine can work at different rates. Jiang et al. [8] built a multi-objective optimization
model involving makespan, processing cost, processing quality and energy consumption for a flexible job-shop scheduling
problem and designed a modified on-dominant sorting genetic algorithm to solve it. Liu et al. [9] established a scheduling
model that minimized the total non-processing electricity consumption and total weighted tardiness for the job shop problem.
This problem was solved by using a non-dominant sorting genetic algorithm.

In the literature on dynamic scheduling problems, predictive-reactive scheduling strategies have been widely used in
manufacturing systems, where schedules are revised in response to dynamic factors [10]. Most of them only consider
efficiency of the schedule like makespan. However, reducing energy consumption in production scheduling considering
dynamic factors has been rather limited. Pach et al. [11] proposed a reactive scheduling model based on potential fields
in flexible manufacturing systems, which considered three indicators: makespan, energy consumption and the number of
resource switches in a dynamic context. Kum et. al [12] proposed a dynamic shop floor re-scheduling approach inspired
by a neuroendocrine regulation mechanism.

The job-shop scheduling problem (JSP) represents a problem in which some tasks are assigned to machines with a
specific processing time. We work with an extension of JSP where each machine can work at different rates, so each
machine has different available processing times and energy consumptions. Thus, if a machine works at higher rate, it
consumes more energy but the processing time is reduced. Energy-efficiency is a critical parameter to take into account, but
also other parameters such as robustness can give to the schedule profitability, safety or simplicity to avoid rescheduling,
so robustness and energy-efficiency can be considered in many real life manufacturing problems.

2. Problem Description

Many industrial processes can be represented as a job-shop scheduling problem where machines can work at different
speeds/rates (JSMS). This problem consists of a set of n jobs {J1, . . . , Jn} and a set of m machines {R1, . . . , Rm}. Each
job Ji consists of a sequence of vi tasks (θi1, . . . , θivi). Each task θil has a single machine requirement Rθil and a start time
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stθil to be determined. Each machine can work at different rates, so different processing times and energy consumptions
can be applied to each task.

A feasible schedule is composed of a complete assignment of starting times to tasks that satisfies the following
constraints:

1. The tasks of each job are sequentially scheduled.
2. Each machine can process at most one task at any time.
3. No preemption is allowed.

The aim of the JSMS problems is to find a feasible schedule that minimizes makespan and energy consumption
meanwhile maximizes the robustness of the schedule.

This problem represents an extension of the standard job-shop scheduling problem (J ||Cmax [13]). The association
between duration and energy have been created so the JSMS problem can be denoted as J(Speed)||Cmax, Energy. For
each task, three different speeds have been defined to the involve machine. Each speed of the machine has associated
a duration and an energy consumption. When the working speed of a machine increases, the energy consumption also
increases, but the duration of the involved task decreases.

3. Robustness and stability

Robustness can be related with many real world problems. In industry, robustness can be profitable, because if a perturbation
appears in the schedule, it can remains valid so it’s not necessary to reschedule and therefore to interrupt the production
process. We consider that a system is robust, if it is able to maintain its functionality even though some incidences can
appear. In scheduling problems a solution is robust if it’s able to absorb some disruptions without the delay of further tasks.

In real world problem is very common to leave some gaps/buffers between consecutive tasks of the schedule. Sometimes
new gaps appear to satisfy precedence constraints. In JSMS problem, there is the possibility to change the speed of the
machines, so increasing the speed of a machine can be enough to recover the incidences (energy-efficiency buffer).

In JSMS problem, a solution (S) is robust if given an incidence (I), it only affects to one task, and it is able to be
absorbed. In this case, the incidence can be absorbed by an existing gap or the machine that executes this task can increase
the speed to absorb the incidence. Moreover a gap and an energy-efficiency buffer can be joined to absorb incidences. If
there isn’t any buffer or it is smaller than the incidence size, the delay of a task is propagated to other tasks, so the solution
is not considered robust. Thus, the robustness of a solution can be modelled as:

• RS,I = 1 iff only the affected task is modified by I . Thus a gap/buffer assigned to this task can absorb the incidence
or the machine can increase its speed to absorb the incidence.

• RS,I = 0 iff more tasks are affected by I . This means that the buffer assigned to this task cannot absorb the incidence
and it is propagated to the rest of the schedule.

Thus, a robust solution is a solution that maintains its feasibility over the whole set of expected incidences. If a solution
is not robust against a perturbation, it can be considered stable if it is able to remain valid against incidences with only few
changes [14]. Thus, stability is an interest parameter for rescheduling in order to recover the original solution by means of
modifying the value of only a few tasks.

Thus, we consider a solution S is s − stable if there is a solution S′, such that ||S′ − S|| < s, where ||.|| is some
n-dimensional norm defined in the solution space to evaluate the difference between S and S′ [15]. So in our case, the
difference between S and S′ can be the number of tasks that have to be changed to maintain feasibility.
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4. Memetic Algorithm (GA*+LS)

In this section we present a memetic algorithm which combines a genetic algorithm (GA) with a local search (LS). Genetic
Algorithms are adaptive methods which may be used to solve optimization problems [16]. They are based on the genetic
process of biological organisms. Over many generations, natural populations evolve according to the principle of natural
selection. At each generation, every new individual (chromosome) corresponds to a solution, that is, a schedule for the
given JSMS instance. Before a GA can be run, a suitable encoding (representation) of the problem must be devised. The
essence of a GA is to encode a set of parameters (known as genes) and to join them together to form a string of values
(chromosome). A fitness function is also required, which assigns a figure of merit to each encoded solution. The fitness
of an individual depends on its chromosome and is evaluated by the fitness function. During the run, parents must be
selected for reproduction and recombined to generate offspring. Parents are randomly selected from the population, using a
scheme which favours fitter individuals. Having selected two parents, their chromosomes are combined, typically by using
crossover and mutation mechanisms to generate better offspring, so they represent better solutions. The process is iterated
until a stopping criteria is satisfied.

4.1. Chromosome encoding and decoding

In genetic algorithms, each candidate represents a solution in the solution space. The first step to construct a GA is to
define an appropriate genetic representation (coding). Table 1 shows an example of the processing time and the energy
consumption of a JSMS composed of 3 jobs, 3 machines and 3 tasks per job. A chromosome is a permutation of the set
of tasks that represents a tentative ordering to schedule them. The sequence (2 1 1 3 2 3 1 2 3) is a valid chromosome for
this example, where each number of the sequence represents the job of the task. The first number "2" represents the first
task of the job 2 and it will be executed as soon as possible following the problem constraints. As it was shown in [17],
this encoding has a number of interesting properties for the classic job-shop scheduling problem. However, in the JSMS
problem, the machine speed of each operation has to be represented. Thus, it is added a value to each task in order to
represent the speed of the machine that processes this task. For instance, a valid chromosome could be (2 1 1 2 1 3 3 3 2 2 3
2 1 2 2 3 3 3) for the former example [7]. The speed of each task is showed with underline numbers. When the chromosome
representation is decoded, each task starts as soon as possible following the precedence and machine constraints. With the
machine speed representation, it can be calculated the processing time of each task and the energy consumption of the
machine. The decoding result is shown in figure 5.

4.2. Initial population and Fitness

Each gene represents one task of the problem. The position of each task determines its dispatch order in this genome/solution.
The initial chromosomes are obtained following some dispatching rules or by random permutation. We employ six common
dispatching rules: SPT (Shortest Processing Time), LPT (longest Processing Time), JML (Job with More Load), JMT (Job
with More Tasks), MML (Machine with More Load) and MMT (Machine with More Tasks). We also employ a random
rule, which select a job randomly from the remaining jobs. The dispatching rule SPT assigns high priority to short tasks,
LPT assigns high priority to long tasks, JML assigns high priority to tasks which job has more load, JMT assigns high
priority to tasks which job has more tasks, MML assigns high priority to tasks whose machine has more load and MMT
assigns high priority to tasks whose machine has more tasks. To create each genome, each dispatching rule can be randomly
selected with a probability of 10% and random rule with a probability of 40%. Thus, it obtains variety and diversity in the
initial population in order to obtain good solutions. Each dispatching rule assigns a priority to each task. This priority can
be based on attributes of the jobs, the machines or tasks. The machine speed for each gene is generated depending on the
value of λ. For λ values lower than 0.6 the machine speed value is set to 1, if λ is higher than 0.6 the machine speed value
is set to values 2 or 3.
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In a single objective optimization, there is a single optimal solution. However, in multiobjective optimization there is
not only an optimal solution and a set of optimal solutions can be identified. This set of optimal solutions composes the
Pareto front. Diverse techniques have been developed to solve multiple objective optimization problems. One of the most
well-known methods for solving multiple objective optimization problems is the Normalized Weighted Additive Utility
Function (NWAUF), where multiple objectives are normalized and added to form a utility function. NWAUF has been
implemented in wide range of MOO applications due to its simplicity and natural ability to identify efficient solutions. Let
fi be the ith objective function value. Then, the NWAUF is defined as:

Uj = w1f
′
1 + w2f

′
2 + ...+ wkf

′
k (1)

wherew1, w2, ..., wk are weights of importance and f ′
1, f

′
2, ..., f

′
k are normalized values of f1, f2, ..., fk . By normalizing

different objectives, all objectives are evaluated in the same scale. Weights show decision maker’s preference for each
objective where,

∑k
i=1 wi = 1 and 0 ≤ wi ≤ 1 for i = 1, ..., k. Using this utility function, the multiple objective

optimizations can now be solved as a single objective optimization problem.
The definition of fitness function is just the reciprocal of the objective function value. The objective is to find a solution

that minimizes the multi-objective makespan and energy consumption. Following NWAUF rules, the fitness function (2) is
created, where the weights assigned to both variables are given by the λ value. Since the values of energy consumption and
makespan are not proportional, it is necessary to normalize both measures. Makespan is divided by MaxMakespan which
is the maximum makespan value in a GA execution when λ is equal to 0. MaxEnergy is the sum of the energy needed to
execute all tasks at top speed.

F =

(
λ ∗ Makespan

MaxMakespan
+ (1− λ) ∗ SumEnergy

MaxEnergy

)
∗ 100 (2)

4.3. Crossover operator

For chromosome mating, the GA uses the Job-based Order Crossover (JOX) described in [18]. Given two parents, JOX
selects a random subset of jobs and copies their genes to the offspring in the same positions as they are in the first parent.
Then the remaining genes are taken from the second parent so as they maintain their relative ordering. To clarify how JOX
works, let us consider the following two parents in Figure 1 for the example presented in section 6.

Fig. 1. Result of crossover operator between two parents

If the selected subset of jobs from the first parent just includes the job 2 (dark genes of parent 1 in Figure 1), the
generated offspring is showed at the end of Figure 1.

Hence, operator JOX maintains for each machine a subsequence of operations in the same order as they are in Parent1
and the remaining in the same order as they are in Parent2.

The remaining elements of GA are rather conventional. To create a new generation, all chromosomes from the current
one are organized into couples which are mated two offsprings in accordance with the crossover probability.
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4.4. Mutation operator

Two offspring generated with crossover operation can also be mutated in accordance the mutation probability. Two position
of chromosome child are randomly chosen (position "a" and position "b"), where "a" must be lower than "b". Values
between "a" and "b" are randomly shuffled. Furthermore, in each gene, machine speed values are randomly changed.
Finally, tournament replacement among every couple of parents and their offspring is carried out to obtain the next
generation.

4.5. Local Search

Conventional GAs can produce good results. However, significant improvements can be obtained by hybridization with
other methods. For example hybridization of a GA and a local search algorithm can produce better results because local
search algorithms move from solution to solution in the search space by applying local changes. This is possible only if a
neighbourhood relation is defined on the search space. Local search (LS) is implemented by defining a neighbourhood of
each point in the search space as the set of chromosomes reachable by a given transformation rule. Then, a chromosome is
replaced by the selected neighbour that satisfies the acceptance criterion. We propose a neighbourhood structure based on
the concepts of critical path and critical block [19], [20] and [21]. A critical block is a maximal subsequence of operations
of a critical path requiring the same machine. Mattfeld defined the neighbourhood structure N1 for JSP [22]. It considers
a set of moves called "interchange near the borderline of blocks on a single critical path", what means swapping pairs of
operations only at the beginning or at the end of a critical block.

Following the idea of neighbourhood structure N1 and the concepts of critical path and critical block, we have defined
energy-efficiency neighbourhood structure (NEE) where each task in the critical path is analysed to check if the next tasks
of the same machine are consecutive and involved in the critical path. If this condition is met, a new neighbour is created
swapping both tasks and the machine speed is increased if its fitness is not worsened. Furthermore, when a task is not in a
critical path, its speed is decreased to create a new neighbour. LS is only carried out if the runtime is bigger than the 80%
of the given time-out.

5. A Model for obtaining robust and energy-aware solutions

In this section, we propose a knowledge-based model to obtain robust and energy-aware solutions for the problem job-shop
scheduling problem with machines working at different speeds (JSMS).

Ti

Mx

1
2

3

Ti

Mx

Ti

Mx

Ti

Mx

Ti

Mx

Ti

Mx

Ti

Mx

3

2

1

Original Task

Processing time according to machine speed

Fig. 2. Processing time of a task in a machine working at different rates
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Most scheduling problems involved in industrial processes are dynamic by nature. These dynamic problems are faced
with incidences which generate delays in tasks. In some cases the original solution is recovered in a given time but in
other cases the incidence is propagated in cascade so the original solution cannot be valid or recovered. Buffering is used
in industrial processes to compensate for variations in the schedule. Changes in supply and demand would be an example
of these variations. Think of buffering as a means to ensure that schedule continue running smoothly despite unforeseen
factors, such as machine breakdowns, coming into play. Thus, buffers in industrial processes are usually inserted to keep
operations running smoothly. However, the inclusion of buffer in scheduling processes has advantages and disadvantages.
The most important advantage of using buffering in scheduling are, when done correctly, it’s implementation tends to be
more robust so thus to increase production efficiency, reduce overall costs and keep operations running smoothly. However,
when done incorrectly, the opposite can be true. For example, if a schedule keeps too much buffer time between all tasks,
the makespan increases up to remain the obtained solution not feasible in terms of profitability. To maintain an optimal
balance, many operators tend to gravitate toward using industrial process strategies in which they use the least amount of
buffering necessary to ensure their projected rates.

Ti

Mx

Historical 

disruption 

Ti

Mx

Ti

Mx

1
2

3

1
2

3
2

Original Task Model Dual Task Model Dual Task Solution

Ti

Mx
2

Original Task Solution

Dual Model Transformation

Disruption Analysis

Solving Process

GA*+LS
Rebuilt Solution

Fig. 3. Dual transformation of a scheduling task

In this section, we transform the original scheduling model into a dual scheduling model in which some selected tasks
are accomplished of a buffer time according to previous problem knowledge. The size of each buffer time assigned to a
task is in accordance to the average duration of the previous disruptions generated in this task.

Figure 2 shows the different rates a machine can work for an assigned task Ti: green colour (speed 1) means that
the machine works at lowest rate (lowest energy consumption), so the processing time is highest; yellow colour (speed 2)
means that the machine works at regular rate, so the processing time is regular; red colour (speed 3) means that the machine
works at highest rate (highest energy consumption), so the processing time is lowest. Thus, the processing time of a task is
dependent of the rate the assigned machine works. However, once the scheduling problem is solved and during execution,
if an incidence occurs in task Ti, the assigned machine could increase its rate (if it was planned to work at speed 1 or 2) in
order to absorb this incidence. Thus, the time interval between a given processing time of task Ti and the lowest processing
time of task Ti can be considered as an energy-efficient buffer.

The dual scheduling model is aimed to insert additional buffer times to more dynamic tasks. To this end, the historical
data are analysed to determine which tasks must be protected by a buffer time. Due the above advantages and disadvantages
of the inclusion of buffer times, only the most dynamic tasks will be selected. Figure 3 shows the dual transformation of a
dynamic task Ti. The dual transformation is composed of the following steps:

1. The original task model is composed of the number of tasks within the job (Ti), the assigned machine (Mx) and the
different ways this machine can work (see figure 2).
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2. (Modeling) If the task Ti is selected among the most dynamic ones, a dual task model (Ti′) is generated for this original
task Ti. Thus, three buffer times are generated to task Ti′ according to the three processing times that machine (Mx)
can execute this dual task. Figure 4 shows possible combinations of three buffer times according to the size of the
historical buffer time of original task Ti. Algorithm 1 shows how to calculate the actual buffer time assigned to each
dual task. As can be seen in Figure 4, the historical buffer time is completely assigned to the dual task if it is executed
at highest speed (diff3). Depending of the processing time of the dual task for regular and lowest speed, the buffer time
is calculated according to Algorithm 1. It can be observed in Figure 4, the three different cases: (a) the processing time
at highest speed plus the historical buffer time is higher than the processing time at regular and lowest speed. In this
case, all processing times are complemented with a buffer time in such a way that the sum of processing times and
the assigned buffer time is equal in the three different speeds of the machine. The solver will be committed to select
the green one (lowest speed) in order to minimize energy consumption. In Figure 4 (b), it can be observed that the
processing time at highest speed plus the historical buffer time is higher than the processing time at regular but not at
lowest speed. In this case only a buffer time is assigned to dual tasks with highest and regular speeds. In case (c) the
processing time at highest speed plus the historical buffer time is lower than the processing time at regular and lowest
speed. In this case only a buffer time is assigned to dual tasks with highest speed.

Algorithm 1: CalculateBufferTimes(Input (Tasks,BuffTime), Output (Tasks,BuffersTimes))

Begin
for (i=0;i<Ntasks;i++) do

if (isDynamic(Tasks[i])) then
if (BuffTime+Tasks[i].durSpeed3>Tasks[i].durSpeed2) then

diff2=BuffTime+Tasks[i].durSpeed3-Tasks[i].durSpeed2;
end if
if (BuffTime+Tasks[i].durSpeed3>Tasks[i].durSpeed1) then

diff1=BuffTime+Tasks[i].durSpeed3-Tasks[i].durSpeed1;
end if
diff3=BuffTime;
BuffersTimes[i]=[diff1,diff2,diff3];

end if
end for
End

3. (Solving) Once the dual tasks (Ti′) are generated, they are grouped with the rest of the original tasks (Tj) to generate
the dual scheduling model. Our GA*+LS will be applied to obtain a Pareto front of the dual scheduling according to
the parameter to be optimized: makespan and energy consumption. To this end, a convex combination between both
parameters by a λ ∈ [0, 1] value determined the Pareto front. Formula 2 shows the bi-criteria objective. Both parameters
are normalized to balance the weight of both when λ gets values around 0,5. In both cases each parameter is divided
by a maximum value.

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

3

2

1

diff3diff3

diff2diff2

diff1diff1

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

3

2

1

diff3diff3

diff

2

diff

2

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

Ti’

Mx

3

2

1

diff3diff3

Historical 

Buffer Time

(diff3)

(a) (b) (c)

Fig. 4. Three different cases for the buffer time assignment.



9

It must be taken into account that any solver could be applied to the dual model. The selected solver is aimed to assign
for each task, its start time, the processing time and the speed that the machine executes each task. Furthermore the
makespan and the energy consumption can be determined by the solver.

4. (Rebuilt) Once the obtained solutions are generated for the dual scheduling model, they are rebuilt to obtain solutions
of the original scheduling model (see Figure 3). Thus, the robustness can be measured by decoupling the buffer times
and the energy-efficiency buffers generated in the schedule. This rebuilt task is formally presented in Algorithm 2.
Sometimes buffers can be generated close to a buffer time assigned in the dual model. So if the sum of both is higher
than the maximum duration of the historical incidence, the speed of the assigned machine can be reduced (if possible)
to get a more energy-aware solution with the same degree of robustness.

Algorithm 2: RebuiltSolution(Input (Buffers,Solution), Output (Solution))

Begin
for (i=0;i<NBuff;i++) do

task=Buff[i].idtask;
speed=Solution[task].speed;
switch (speed)
case 1:

buff= Buff[i].1;
break;

case 2:
buff= Buff[i].2;
break;

case 3:
buff= Buff[i].3;
break;

end switch
if (buff>0) then

Solution[task].endtime-=buff;
Solution[task].time-=buff;

end if
end for
End

6. Example

In this section, a small example is shown to analyse and clarify the proposed model. Table 1 shows the processing time
and the energy consumption for each rate/speed that each machine can work. The JSMS is composed of 3 jobs, 3 machines
and 3 tasks per job. It must be taken into account that when the speed increases the energy consumption also increases but
the processing time decreases. For this example, 60 incidences were randomly generated. Table 2 shows the distribution
of incidences among the most dynamic tasks (Column NIncidences). Only the more dynamic ones are selected to generate
a dual model (the 3 tasks with more incidences: Job1-Task1, Job1-Task2 and Job3-Task1 presented in Table 2).

The historical buffer time will be calculated according to the historical disruptions. In this above set of 60 incidences,
the average size of the disruption was 2. Thus, algorithm 1 is executed to each selected dynamic task. The input of the
algorithm is composed of the selected task and the average size of disruptions. Finally, the dual task model is obtained.
This dual task model is composed of the original tasks and their corresponding processing time, and the dual tasks with
the original processing times plus the obtained buffer times shown in table 2.

For example, Job1-Task1’ is a dual dynamic task with a buffer time assignment of type (b) according to Figure 4:

• Buffer time at lowest speed is 0: The processing time of the original task at highest speed plus the historical buffer
time is not bigger than the processing time at lowest speed.
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Table 1. Example: Processing Time and Energy Used

Speed 1 Speed 2 Speed 3
Tasks Proc. Time Energy Proc. Time Energy Proc. Time Energy
Job1 Task1 11 5 9 6 8 7
Job1 Task2 10 4 9 6 7 7
Job1 Task3 9 4 8 5 5 6
Job2 Task1 8 3 7 4 6 5
Job2 Task2 7 3 6 4 4 5
Job2 Task3 8 4 7 5 5 7
Job3 Task1 6 2 5 3 4 4
Job3 Task2 7 3 6 4 4 5
Job3 Task3 6 2 5 3 3 4

Table 2. Buffer Times for most dynamic tasks

Buffer Times
Tasks NIncidences Speed 1 Speed 2 Speed 3

Job1-Task1’ 9 0 1 2
Job1-Task2’ 10 0 0 2
Job3-Task1’ 11 0 1 2

• Buffer time at regular speed is 1: The processing time of the original task at highest speed plus the historical buffer
time is 1 unit bigger than the processing time at regular speed.

• Buffer time at highest speed is 2: The processing time of the original task is increased with the historical buffer time
(2 units).

Thus, the processing time of the dual tasks are updated by adding the calculated buffer times of Table 2. Then, the
resultant dual model can be solved. Once the solution has been obtained, the dual tasks must rebuild to obtain the original
processing times and their corresponding buffers.

Figure 5 shows the solution (Gantt chart) for the original example and the corresponding solution of the dual model.
The assigned values of the processing time for the selected speed are shown in bold in table 1. The buffer times are shown
in grey blocks. The gaps are represented in black blocks. By comparing both solutions it can be observed that the energy
consumption is the same and the makespan in the original model is 27 meanwhile in the dual model is 29. However, the
solution obtained by the dual model is more robust due to the fact that almost all tasks (except job2-Task3) are able to
absorb incidences up to 2 time units.

7. Evaluation

In this section, an evaluation of the proposed dual model is carried out to analyse and compare against the original model
for finding robust and energy-aware solutions. As it has been pointed out, a Memetic algorithm (GA*+LS) which combines
a genetic algorithm (GA) with a local search (LS) to solve the JSMS is applied. Furthermore, a comparative study was
carried out by changing the value of buffer times to demonstrate that, as the buffer time increases, the robustness and
energy-efficiency also increase but the makespan worsens. Otherwise, stability is considered and solutions are analysed to
know how incidences can be absorb with the robustness and stable concepts.
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Table 3. Data information of Agnetis and Watson instances.

Instances Ntasks Nincidences NdynamicTasks
3_5_10 15 100 5

5_10_50 30 200 10
7_10_100 30 200 10
3_20_50 60 400 20
3_25_100 75 500 25
3_30_200 90 600 30
Watson50 1000 7000 400
Watson100 2000 14000 800
Watson200 4000 28000 1600

7.1. Analysis of Parameters

To carry out an extensive evaluation, two well-known benchmarks were used: Agnetis benchmarks [23] and Watson
benchmarks [24]. In both cases, the instances were classified by the number of jobs (j), the number of machines (m), the
number of tasks per job (vmax) and the maximum processing times (p). In all Agnetis instances the number of jobs was 3
and the instances were represented as m_vmax_p .

Agnetis instances are classified in two big groups small and large:

• Small: j = 3; m = 3, 5, 7; vmax = 5, 7, 10; p = [1, 10], [1, 50], [1, 100]
• Large: j = 3; m = 3; vmax = 20, 25, 30; p = [1, 50], [1, 100], [1, 200]

Watson instances the number of jobs (j) changes in all case but m, vmax and p remain equal:

• j = 50, 100, 200; m = 20; vmax = 20; p = [1, 100]

To simulate a historical background of the incidences for the Agnetis and Watson instances, a set of incidences were
randomly assigned to tasks. To this end, the number of incidences was always proportional to the total number of tasks.
Table 3 shows the analysed instances, the number of tasks, the number of simulated incidences and the number of selected
dynamic tasks for the dual model. There must be a proportional relationship among the number of tasks, the number of
simulated incidences and the number of selected dynamic tasks. The number of incidences must be significantly higher in
order to classify and discriminate the more dynamic tasks. The number of dynamic tasks is also related to the number of
tasks. A high number of dynamic tasks will generate a high degree of robustness but a worse makespan. As it was pointed
out before, there must be equilibrium between the number of buffers and the optimality in terms of makespan.

For each type of problem, 10 instances were evaluated, so the average results are shown in next tables. Original instances
were extended as explained in [7]. New instances and more information can be found in the research group webpage1.

7.2. Comparative study

In this section, it is compared the behaviour of the dual model against the original model. To this end, both models
were executed over the same solver (GA*+LS) to analyse the performance of both models in terms of makespan, energy
consumption and robustness. The incidences were randomly generated and assigned to tasks following the relation of
table 3. Once an incidence is assigned to a task, the duration is randomly generated between 1 and 20% of the maximum
processing time of this instance. Thus, for instances where processing time was 50, the incidences were assigned a duration
between 1 and 10. Tables 4 show the results for the Agnetis instances 3_5_10 and 3_25_100 and for Watson100 instances.

1 http://gps.webs.upv.es/jobshop/
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Table 4. Comparative study between Dual Model and Original Model with average duration of the incidences

3_5_10 Dual Model (AvgInc)+ GA*+LS Original Model + GA*+LS Comparative
λ Mk Energy F %Rob Mk Energy F %Rob Diff %Rob
0 66 84.4 55.37616 98.8 65.8 84.4 55.37616 97.6 1.2

0.1 65.4 84.5 55.67521 98.8 65.2 84.5 55.65811 98.1 0.7
0.2 64.6 84.7 55.90445 98.8 64.4 84.7 55.87027 98.2 0.6
0.3 63.3 85.3 56.02253 98 63.2 85.2 55.94217 97.1 0.9
0.4 60.2 87.8 55.86224 94 59.7 88.1 55.78161 92.5 1.5
0.5 55.8 92.5 54.97107 88 54 94.2 54.72392 83.8 4.2
0.6 52.4 98.2 53.50526 81.1 48.6 104 52.98928 71.1 10
0.7 49.2 106 51.25795 75.3 45.2 112.1 50.02799 61.2 14.1
0.8 46.1 117.8 48.10526 68.7 42.2 123.6 46.16438 51.2 17.5
0.9 45.6 122.7 44.35071 68.5 41 133.6 41.46373 38.6 29.9
1 45.5 152 40.23035 65.9 41 152 36.30501 29.6 36.3

3_25_100 Dual Model (AvgInc)+ GA*+LS Original Model + GA*+LS Comparative
λ Mk Energy F %Rob Mk Energy F %Rob Diff %Rob
0 2908.7 3827.1 53.35316 99.80 2894.2 3827.1 53.35316 91.80 8.00

0.1 2791.6 3827.7 53.79550 98.30 2782.3 3827.6 53.77443 91.58 6.72
0.2 2750.4 3840.5 54.19934 97.26 2753 3839 54.19750 91.76 5.50
0.3 2642.1 3899.8 54.44719 95.32 2632.7 3903.4 54.41884 90.14 5.18
0.4 2529.1 3993 54.33040 93.26 2516.7 4005.1 54.32539 89.74 3.52
0.5 2380.1 4182.5 53.76294 86.22 2334.2 4216.7 53.53502 83.00 3.22
0.6 2147.6 4573.4 52.17626 76.04 2129.6 4543.6 51.77883 75.20 0.84
0.7 2022 4906.1 49.80327 69.20 1919.4 5123.7 49.25210 61.44 7.76
0.8 1899.9 5451.8 46.67197 59.72 1806.2 5671.6 45.72355 50.04 9.68
0.9 1839.2 5943.9 42.53255 53.64 1725.9 6261.1 40.84004 36.72 16.92
1 1816.6 6948.4 37.57725 48.18 1692.5 7084.6 34.99826 25.74 22.44

Watson100 Dual Model (AvgInc)+ GA*+LS Original Model + GA*+LS Comparative
λ Mk Energy F %Rob Mk Energy F %Rob Diff %Rob
0 12324.9 105478.1 53.06175 100.00 12354.7 105478.1 53.06175 93.74 6.26

0.1 12080.4 105480.1 55.88896 100.00 12047 105478.1 55.86523 93.46 6.54
0.2 12037.6 105509.6 58.66911 99.98 12024.9 105502.8 58.64981 93.43 6.55
0.3 12015.3 105699.9 61.48584 99.85 11979.6 105806.4 61.45107 93.37 6.47
0.4 11868.3 106408.8 64.07627 99.49 11813.5 106537.2 63.96736 93.11 6.38
0.5 11619.4 108681.5 66.44313 97.97 11557 109370.6 66.4093 91.63 6.34
0.6 9013.5 141328.7 64.84557 75.91 8692.1 146631.3 64.61636 72.36 3.55
0.7 8873.8 144645 63.64502 73.70 8537.6 150891.8 63.00417 69.19 4.51
0.8 8739 147060.5 61.85831 71.63 8421.7 153772 60.82655 66.21 5.42
0.9 8706.2 148108.1 60.20297 70.71 8419.4 153626.4 58.73666 67.41 3.30
1 7932.1 195038.4 53.39947 45.23 7306.7 190808.3 49.18773 23.68 21.55
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Table 5. Comparative between dual model with MaxInc and dual model with AvgInc

7_10_100 Dual Model (MaxInc) + GA*+LS Dual Model (AvgInc)+ GA*+LS Comparative
λ Mk Energy F %Rob Mk Energy F %Rob Diff %Rob
0 1008.9 1571.4 53.36161 97.80 1006.6 1571.4 53.36161 97.30 0.50

0.1 1002.9 1572.5 54.11091 97.65 1000.6 1572.5 54.09746 97.15 0.50
0.2 991 1576.4 54.79191 96.85 988.5 1576.4 54.76258 96.60 0.25
0.3 933 1610.1 55.20634 94.40 928.9 1611.2 55.14574 93.25 1.15
0.4 901.5 1641 55.26405 92.10 894.4 1642.3 55.12247 89.55 2.55
0.5 868.4 1687.1 54.92773 88.05 853.7 1703.4 54.75819 85.00 3.05
0.6 812.6 1817.3 54.16006 81.55 801 1823.1 53.85088 77.70 3.85
0.7 764.5 1983.5 52.59537 71.35 744.4 2006 51.98095 66.95 4.40
0.8 720.8 2203.5 49.88613 63.00 683.1 2314.9 48.83531 53.15 9.85
0.9 709.6 2323.9 46.56537 62.00 673.1 2420.3 44.89425 49.25 12.75
1 705.9 2935.1 42.72285 62.20 671.3 2935.1 40.62202 40.50 21.70

Watson50 Dual Model (MaxInc) + GA*+LS Dual Model (AvgInc)+ GA*+LS Comparative
λ Mk Energy F %Rob Mk Energy F %Rob Diff %Rob
0 7252.9 53631.5 53.40844 100.00 7253.7 53631.5 53.40844 100.00 0.00

0.1 7035.8 53631.5 55.53904 100.00 7019.8 53637.3 55.52724 99.99 0.01
0.2 6994.7 53694.2 57.63237 99.97 6985.5 53675.8 57.59795 99.91 0.05
0.3 6960 53754.4 59.64355 99.86 6910.7 53877.4 59.57130 99.71 0.15
0.4 6886.9 54071.2 61.55995 99.67 6821 54422.1 61.49003 98.95 0.72
0.5 6749 54848.6 63.14064 98.76 6690.5 55244.8 63.02893 97.97 0.79
0.6 5711.4 65252.4 62.38081 88.64 5411 68906.6 61.92607 80.55 8.08
0.7 5459.9 68755.2 61.12227 85.20 5185.6 72321.3 60.14895 75.37 9.83
0.8 5363.4 70593.5 59.62423 83.45 5078.9 74153.8 57.91645 72.34 11.11
0.9 5302.5 71753.7 57.82274 82.05 5030.8 75624.5 55.61081 70.41 11.64
1 4945.9 95791.2 52.52671 70.55 4633.3 98728.8 49.20303 47.29 23.26

In all cases, the experiments were made over 10 different instances, so the values of the tables show average results. The
values of robustness were also an average over the all incidences, so they are shown as a percentage.

Table 4 shows the makespan, energy consumption, F value and robustness of both models for different lambda values
(see equation 2). Thus, the Pareto front can be obtained for the multiobjective problem (makespan vs. energy consumption).
It must be taken into account that λ = 0 means that only energy consumption is taken into account so makespan is not
considered, meanwhile λ = 1 means that only makespan is considered. In all analysed cases, it can be observed that
makespan was always lower for the original model than the dual model. This is due to the fact that buffer times were
inserted in the dual model to increase robustness, so the makespan was increased. For instance, the results for 3_5_10 in
table 4, for λ = 1 (only makespan is taken into account) the average makespan for the original model was 41 meanwhile
the average makespan for the dual model was 45.5. In contrast the value of robustness for the original model was 29.6%
and the robustness for the dual model was 65.9%. So, with this instance, it is shown that losing 4.5 units of makespan,
the robustness was increased 36.3%. Something similar happens when only energy consumption was taken into account.
However, the energy consumption was lower for the dual model than for the original model in most instances, mainly for
λ > 0.5. This is because the generated buffers during the solving process plus the previously assigned buffer times allowed
machines to decrease their speed in the rebuilt phase.

In general, the solutions obtained by applying the dual model had a worse F value, but on other hand the solutions were
more robust. Furthermore, it can be observed in the last column (Diff %Rob), that as the lambda increased the difference
in robustness increased in a significant way. So, with the application of our dual model, it can be concluded that:

• When only makespan was optimized, makespan was worsened but the robustness was improved.
• When only the energy consumption was optimized, the robustness was improved without lose optimality.
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Table 6. Study of stability

3_25_100 Dual Model (AvgInc)+ GA*+LS
λ % Rob % S1 % S2 % Total Stability
0 99.80 0.20 0.00 100.00

0.1 98.30 0.80 0.74 99.84
0.2 97.26 1.38 0.88 99.52
0.3 95.32 1.48 2.06 98.86
0.4 93.26 1.68 3.06 98.00
0.5 86.22 3.34 4.70 94.26
0.6 76.04 4.70 6.74 87.48
0.7 69.20 5.46 6.42 81.08
0.8 59.72 5.22 5.40 70.34
0.9 53.64 5.60 4.40 63.64
1 48.18 9.24 6.64 64.06

Watson50 Dual Model (AvgInc)+ GA*+LS
λ % Rob % S1 % S2 % Total Stability
0 100.00 0.00 0.00 100.00

0.1 99.99 0.01 0.00 100.00
0.2 99.91 0.07 0.00 99.98
0.3 99.71 0.17 0.05 99.93
0.4 98.95 0.52 0.15 99.62
0.5 97.97 1.09 0.23 99.29
0.6 80.55 8.31 2.34 91.20
0.7 75.37 9.93 2.55 87.85
0.8 72.34 10.57 2.66 85.57
0.9 70.41 10.72 2.66 83.78
1 47.29 17.02 4.42 68.73

• When both variables were optimized, makespan was worse but energy consumption had a different behaviour, but
robustness was improved.

Table 5 shows the results of Agnetis instances 7_10_100 and Watson50 instances to analyse the behaviour of the dual
model over the size of the buffer times. To this end, two different buffer time sizes were analysed: buffer times with the
maximum duration size of the incidences (MaxInc) and buffer times with the average size of all incidences (AvgInc). This
table represents the behaviour of all instances analysed in Table 3 and all instances showed a similar behaviour.

The dual model with MaxInc had an F value higher than the dual model with AvgInc. However, the robustness value
was always higher in the dual model with MaxInc. This is because, as the buffer time of the MaxInc was always bigger
than AvgInc, the makespan value was also higher and thus the F value. For example for λ = 1 in table 5-7_10_100, it can
be seen that the difference between both makespan was 34.6 but the difference between robustness was 21.70%.

Finally, the stability was analysed for the dual model in both Agnetis and Watson instances. As it was pointed out in
section 3, stability is the ability of a solution to recover with only a few changes. Thus, given an incidence in a task Ti,
0-stable is equivalent to robustness, so no further tasks will be affected, meanwhile 1-stable and 2-stable require to change
the start time of 1 (Tj) and 2 tasks (Tk, Tp), respectively.

Table 6 shows the percentage of robustness or 0-stability (%Rob), 1-stability (%S1) and 2-stability (%S2), and the
percentage of total stability (%Total Stability) obtained by summing up the three previous parameters for Agnetis instances
3_25_100 and Watson50 instances. The rest of instances presented in Table 3 maintained similar behaviours. It can be
observed that robustness or 0-stability (%Rob) had a higher value than 1-stability (%S1) and 2-stability (%S2). This is
due to the fact that, the dual model was designed to add buffer times to more dynamic tasks. Thus, given an incidence, the
algorithm tried to absorb it by increasing the speed of the machine or by using the assigned buffer time. If the incidence was
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not able to be absorbed, it was checked whether the incidence could be absorbed by the next task of the same machine or by
the next task of the same job. If the incidence can be absorbed by changing only one task (from the same machine or the same
job), it is considered a 1-stable solution. However, if both tasks have to be modified, it is considered a 2-stable solution. For
both Agnetis and Watson instances, the percentage of total stability was close to 100% for lambda values lower than 0.5. For
example, when λ = 0, all incidences were absorbed with 0, 1 or 2 changes in the original solutions, achieving a 100% of
total stability in both instances. Furthermore, as lambda values increased (the makespan was minimized), the percentage of
robustness decreased and more incidences were not able to be absorbed. However, the 1-stability and 2-stability increased
to absorb some of the incidences that were not directly absorbed by the dual model. For instance, in Watson50 instances,
for λ = 1 percentage of total stability increased a 21.44% with respect to robustness (47.29%), achieving a total percentage
of stability of 68.73%.

8. Conclusion

Industrial processes involve a large number of task scheduling problems. Job-shop scheduling problems where machines
can work at different rates/speeds represent a large number of combinatorial problems in industrial processes. In this paper,
a dual model is proposed to relate optimality criteria with energy consumption and robustness/stability. This model is
committed to protect dynamic tasks against further incidences in order to obtain robust and energy-aware solutions. The
proposed dual model has been evaluated with a memetic algorithm (GA*+LS) to compare the behaviour against the original
model. The result shows that the proposed dual model was able to obtain more robust solutions in all instances and more
energy efficient solutions in most of them. This is due to the fact that the assigned buffer times to some tasks are used to
protect them against incidences. Furthermore, if during execution, there is no incidence, the involved machine can use this
buffer to work at lower speed, so the energy consumption can be also reduced. The combination of robustness and stability
gives the proposal an added value because although an incidence cannot be directly absorbed by the disrupted task, it can
be repaired by involving only a small number of tasks. Thus the original solution can be recovered in order to maintain
feasible the rest of the obtained schedule.
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