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Abstract 

Non-oxidative methane aromatization is an attractive direct route for producing higher 

hydrocarbons, highly selective to benzene despite the low conversions due to thermodynamic 

limitations, and Mo/H-ZSM-5, the first catalyst proposed for this reaction, is still considered as 

one of the most adequate. The major problem of this process is the severe catalyst 

deactivation due to the rapid buildup of carbonaceous deposits on the catalysts. 

Here we present an effective regeneration procedure that extends the life of Mo/zeolite 

based catalysts by combining reaction periods of 1.5 h with 0.5 h regeneration steps in a 

continuous cyclic mode and methane activation after each regeneration stage. Benzene 

productivity obtained with Mo/ZSM-5 is shown to be almost constant for increasing TOS 

ranges when applying this new cyclic protocol, and threefold values are achieved for an 18 h 

on stream period by limiting the reaction steps to the first 1.5 h of maximum benzene 

selectivity (97 vs. 33 g benzene/kg cat·h) as compared to a conventional single run. 

 

 

Key words: methane aromatization, zeolites, Mo/zeolites, deactivation, reaction-regeneration 

cycles, catalyst life extension  

mailto:cmsanche@itq.upv.es


2 

1. Introduction 

Methane, the main component of natural gas, is an interesting source of chemicals and clean 

liquid fuels, and a promising alternative raw material to oil1-3. Although conventionally used 

for electrical power generation and heating, its conversion into higher value products has 

gained importance along the last decades. On the one hand, the potential reserves of natural 

gas are larger than the oil reserves, especially if shale gas is considered4-5, and its composition 

is very little dependent on the source, and on the other, methane has a high hydrogen to 

carbon (H/C) ratio. There are different Gas to Liquid (GTL) technologies available to convert 

this methane by means of indirect or direct processes6. At present, all commercially viable 

processes for methane conversion belong to the group of the so-called indirect routes, where 

methane is transformed into the more reactive synthesis gas mixture (CO+H2, also named as 

syngas). After this first step, syngas can be later converted into hydrocarbons or higher 

alcohols by means of the Fischer-Tropsch synthesis1, 2, 7, 8, into light olefins or gasoline 

through methanol as an intermediate1, or into DME in a single stage2. The other alternative is 

the direct conversion of methane into heavier hydrocarbons by means of oxidative or non-

oxidative routes1, 2, 7, 8. The use of oxygen for the direct conversion of methane is beneficial 

as it will increase the reaction rate by shifting the thermodynamic equilibrium. However, 

kinetically it will limit the yields to the desired primary products that are much more reactive 

than methane under the experimental conditions used, and will be further converted into 

combustion products. This has prevented the commercial application of the oxidative 

methane conversion processes so far1, 8. The second direct route for methane conversion is 

its aromatization under non-oxidative conditions (MDA)9-11. Despite the thermodynamic 

limitations, this process is highly selective to hydrocarbons. The final product composition will 

depend on the catalyst and on the experimental conditions, and recently conversion of 

methane to ethylene and aromatics has been reported with selectivity above 99% and no 

coke formation on lattice-confined single iron sites in a silica matrix12. H2 is formed as a 

valuable by-product, and its selective removal from the reaction medium may improve the 

process by shifting the equilibrium controlled reaction. Moreover, the use of the adequate 

shape-selective catalyst under optimized process conditions may maximize the selectivity to 

aromatics10, 11. 



3 

The first description of non-oxidative dehydroaromatization of methane in a down-flow fixed 

bed reactor and in the presence of a bifunctional catalyst was published in the early 1990’s14. 

Since then, Mo containing zeolites are still considered as the best catalysts among those 

described for MDA. Regarding the possible zeolites, the most adequate are those with 

structures containing pores of dimensions close to the dynamic diameter of benzene, the 

desired product9. Thus, ZSM-511, 15, 16 and MCM-2211, 17-21 have been thoroughly studied, 

although other zeolite structures presenting 10-ring channels , such as IM-522, 23 or TNU-924, 

have also been recently described for this process. Regarding the reaction mechanism and the 

active sites involved, it is widely accepted that methane is first activated on the Mo sites and 

the reaction intermediates formed will further oligomerize, cyclate and dehydrogenate on the 

Brønsted acid sites. 

Catalyst deactivation is one of the main drawbacks of the MDA process10, 17. Deactivation is 

mainly due the formation and deposition of carbonaceous products, largely favored at the 

high reaction temperatures required for methane activation25-27. Moreover, coke formation, 

mainly on the Brønsted acid sites (BAS) located at the external surface, is widely accepted as 

the main contributor to catalyst deactivation28, although some authors also relate the loss of 

activity to partial sublimation of Mo-oxide phases29, 30 or transformation of the active phase31. 

In two recent papers, Zhang et al32, 33 have suggested that although polycondensation of 

aromatics will be the main contribution to coking of the external surface in the first stages of 

the reaction, oligomerization and/or cracking of ethene, the main product at longer TOS when 

benzene formation is significantly reduced, will be responsible for the increasing coke 

formation rate. 

Several approaches can be found in the literature to extend the MDA catalyst life. On the one 

hand different reactors have been proposed, such as fluidized bed reactors with two 

differentiated zones in the bed for oxidizing and reducing the catalyst34 or for combining 

reaction tests with regeneration steps35, riser reactors combined with a regeneration zone36-

40, where the catalyst is moved from the reaction zone to the regeneration unit, or pressure 

swing reactors. On the other hand, it has been described that catalyst stability can be 

enhanced by adding low amounts of CO/CO2 to the methane feed due to efficient inhibition of 

coking41. Regarding effective catalyst regeneration processes, the addition of small amounts 

of NO has been shown to promote coke removal, allowing lower regeneration 
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temperatures42. The use of hydrogen regeneration cycles has also been described37, 38. A 

recent paper evidences the reversible character of isolated Mo oxide nanostructures 

conversion into carbide Mo nanoparticles, and full recovery of initial Mo species and catalytic 

activity by regeneration with gas-phase oxygen under proper conditions 43. 

In this paper, we present an effective protocol to extend the catalyst life by combination of 

short reaction-regeneration steps. We present the approaches followed to design this cyclic 

procedure and we show that restoring the molybdenum-oxo-carbides after each regeneration 

step and before reaching the reaction conditions is key in order to maximize benzene yield. 

 

2. Experimental 

2.1. Catalyst preparation 

The parent zeolites used in this work were synthesized following the procedures described in 

the literature, except for zeolite ZSM-5, which is a commercial sample supplied by TRICAT Inc. 

in its ammonic form (TZP-302A, Si/Al = 10). 

MCM-22 zeolite44 with Si/Al = 15 was prepared and converted to its acid form as described by 

Corma et al.45, 46 employing hexamethyleneimine (HM) as organic structure-directing agent 

(OSDA). The molar composition of the synthesis gel was 0.5 HM : 44.9 H2O : 0.18 Na : 0.31 OH 

: 0.033 Al2O3 : 1 SiO2. The crystallization was carried out in a stainless steel Teflon-lined 

autoclave at 423K, under agitation (60 rpm) and autogenous pressure for 7 days. After this 

time, the solid was recovered by filtration, washed repeatedly with deionized water, and dried 

overnight at 373K, followed by calcination in air at 853K for 3 h to remove the occluded 

organic SDA in the inner pores. The zeolitic material was refluxed in 2.0 M NH4Cl solution to 

exchange the Na+ by NH4+ and finally calcined 773K for 3 h. This procedure was repeated twice 

in order to obtain the sample in its acid form. 

TNU-9 zeolite was synthesized under hydrothermal conditions following the procedure 

reported by Hong et al.47 1,4-Dibromobutane (1,4-DBB, 99% Aldrich) and 1-methylpyrrolidine 

(1-MP, 90.7% Aldrich) are used as OSDAs, and the molar gel composition was fixed to 4.5 (1,4-

DBB) : 13.5 (1-MP) : 11 Na2O : 0.5 Al2O3: 30 SiO2: 1200 H2O. The gel was introduced in stainless 

steel Teflon-lined autoclaves and heated at 433K, under agitation (60 rpm) and autogenous 

pressure for 8 days. After this period, the solid products were recovered by filtration, washed 
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repeatedly with deionized water, and dried overnight at 373K, followed by calcination in air at 

823K for 3 h to remove the OSDAs. The calcined sample was refluxed in 1.0 M NH4Cl solution, 

at 353K for 6h, washed thoroughly with deionized water until chloride free, and then calcined 

at 773K for 3 h in order to obtain the acid zeolite. 

IM-5 zeolite was synthesized following the procedure described by Benazzi et al.48 employing 

1,5-dimethyl-pyridinium bromide (DPB) as OSDA, and the synthesis gel has the following 

molar composition: 60 SiO2 : 1.5 Al2O3 : 17 Na2O : 6 NaBr : 10 DPB : 2400 H2O. The gel was 

crystallized in a stainless steel Teflon-lined autoclave at 433K under agitation (60 rpm) and 

autogenous pressure for 10 days. After this period, the solid products were recovered by 

filtration, washed repeatedly with deionized water, and dried overnight at 373K, followed by 

calcination in air at 853K for 3 h to remove the OSDA. The acid zeolite was obtained by ion 

exchange in a 2.0 M NH4Cl solution at 353K for 2 hours, washed with deionized water until 

chloride free and followed by calcination at 773K for 3 h. 

The molybdenum containing catalysts with a metal loading of 6 wt% were prepared by 

incipient wetness impregnation of the zeolite with an aqueous solution of ammonium 

heptamolybdate tetrahydrate (AHM, Merck). After the impregnation, the catalyst was dried at 

373K overnight and calcinated in air at 773K for 3 h. 

 

2.2. Characterization techniques 

Fresh samples were characterized by X-ray power diffraction (XRD) recorded in a Philips X’Pert 

diffractometer equipped with a graphite monochromator, operating at 40 kV and 45 mA, and 

using nickel-filtered CuKα radiation (λ = 0.1542 nm). 

The chemical composition of the catalysts was analysed in a 715-ES ICP-Optical Emission 

spectrometer, after dissolution of the solids in a HNO3/HF solution.  

Textural properties were determined from the nitrogen adsorption isotherm, measured at 

77K on a Micrometrics ASAP 2010 volumetric adsorption analyser. Surface area and micropore 

volume values were obtained by applying the BET equation49 and from de t-plot graph50 

respectively. 

The acidic properties were studied by FT-IR spectroscopy using pyridine as the probe 

molecule. Pyridine adsorption–desorption experiments were carried out on self-supported 
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wafers (10 mg/cm) of samples activated at 673K and 10−2 Pa for 2 h. After wafer activation, 

the base spectrum was recorded, and pyridine vapour (6.5×102 Pa) was admitted into the 

vacuum IR cell and adsorbed onto the zeolite. Desorption was performed under vacuum over 

three consecutive 1 h periods of heating at 523, 623, and 673K, each followed by an IR 

measurement at room temperature. All the spectra were scaled according to the sample 

weight. The amount of Brønsted and Lewis acid sites was determined from the intensities of 

the bands at ca. 1545 and 1450 cm−1, respectively, using the molar extinction coefficients 

given by Emeis51. 

The morphology and the topology of the Mo/zeolites were examined by scanning electron 

microscopy (SEM) with a JEOL 6300 microscope operating at 20 kW, and working with two 

different detectors, a secondary electron (SE) detector to examine the morphology of the 

zeolite crystals, and a backscatter electron (BSE) detector in order to study the dispersion of 

the molybdenum species on the surface of the zeolites. 

Hydrogen temperature-programmed reduction (H2-TPR) was performed in a Micromeritics 

Autochem 2910. The sample (100 mg) was pretreated in argon flow at room temperature for 

30 min, then the gas was switched to the reduction mixture (10 wt.% H2 in Ar) with a flow rate 

of 50 ml/min, and temperature was increased to 1373K at a heating rate of 10K/min. The H2 

consumption was followed by a thermal conductivity detector (TCD). No sublimation of 

molybdenum species was observed during the H2-TPR experiments, in agreement with 

previous descriptions52. 

The temperature programmed oxidation analysis (TPO) was used to determine the required 

temperature to start the coke removal. First the coked catalyst (ca. 100 mg) was pre-treated 

in helium flow (30 ml/min) for 30 min at 373K to remove absorbed water. After cooling to 

room temperature a synthetic air flow (100 ml/min) was stabilized, and the temperature was 

increased with a heating rate of 10K/min to 813K and maintained for two hours, finally the 

temperature was raised to 1073K at the same heating rate. The TPO experiment was carried 

out in a Micrometrics Autochem 2920 analyzer comprising a TCD and coupled to a OmniStar 

quadrupole mass spectrometer (Balzers Instruments) to monitor the evolution of the species 

CO (m/e = 28), H2O (m/e = 18) and CO2 (m/e = 44). 

Thermogravimetric and derivative thermogravimetric (TG-DTG) analysis were performed in a 

Netzch SAT409 EP coupled to a thermobalance, charging 1-5 mg of sample and increasing 
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temperature form ambient to 1073K under air flow (35 ml/min) with a heating rate of 

10K/min.  

A EUROEA elemental analyzer (Eurovector) was used in order to determine the carbon 

content of the used catalysts, before and after being regenerated. 

 

2.3. Methane dehydroaromatization experiments 

Dehydroaromatization of methane was performed in a continuous down-flow fixed-bed 

reactor, at atmospheric pressure, 973K and a contact time of 16 g cat·h/mol CH4, adjusted to a 

catalyst weight of 0.5 g. The zeolite based catalyst was diluted with silicon carbide (SiC) to a 

constant bed volume of 2.8 cm3. The reactor outlet stream is analysed online by means of a 

gas chromatograph (Bruker GC-450) provided with two independent channels and three 

detectors. The permanent gases (N2 as internal standard, H2, CO, CO2) and CH4 are analysed in 

a first channel equipped with a TCD and three columns, a Hayesep N (0.5 m length), Hayesep 

Q (1.5 m) and a 13X molecular sieve (1.2 m length). In a second channel the C1-C4 

hydrocarbons were first separated from the aromatics in a CP-Wax capillary column (1.0 m 

length and 0.32 mm inner diameter). The gases were separated in a CP-Porabond Q (25 m 

length and 0.32 mm inner diameter) and detected in a FID, whereas the aromatics were 

separated in a second CP-Wax (5.0 m length and 0.32 mm inner diameter) connected to a 

second FID. This specific configuration allows on-line determination of the reactor outlet 

composition during the catalytic reaction and also along the catalyst regeneration step. Yields 

and selectivities to the different products are given on a carbon basis. The amount of 

carbonaceous deposits on the catalyst was calculated as the difference between the carbon at 

the inlet and at the outlet of the reactor as determined from the on-line GC analyses, by co-

feeding N2 (20 mol.%) as internal standard. The specific cyclic reaction-regeneration 

procedures employed (flows, heating rates and time periods) will be detailed in the 

corresponding sections of the present paper. 

In this reaction system, we also carried out an experiment in order to determine the methane 

consumption during the activation ramp. Thus, 0.5 g of Mo/ZSM-5 catalyst were charged into 

the reactor and diluted with CSi to a total bed volume of 2.8 cm3. The methane:N2 mixture 

(CH4:N2 = 80:20 in vol.%) was fed to the system with a flow of 15 ml/min, and the reactor was 
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heated from room temperature to 973K at a rate of 1K/min. The methane consumption was 

followed by online gas chromatography of the reactor outlet stream. 

 

3. Results and discussions 

This section has been divided in three different parts. Initially a reference Mo/ZSM-5 is 

described and tested under conventional MDA reaction conditions. In a second part, a 

regenerability study is presented for this Mo/ZSM-5 catalyst. Thus, regeneration of the 

completely deactivated catalyst has been attempted first by in-situ calcination with air in 

order to determine the stability of the catalyst towards several cycles of this non-optimized 

reaction-regeneration protocol. Minimum time and temperatures required for complete coke 

removal by combustion in air and for carburation of MoO3 to form the active sites have been 

determined by means of different characterization techniques, and this information has been 

used to design and optimize a cyclic reaction-regeneration protocol that effectively 

regenerates the catalyst and increases the productivity of the process by keeping high 

selectivity to benzene. Finally, this new reaction-regeneration procedure is applied to other 

medium pore zeolites which have been shown to be active and selective for the MDA reaction 

in a third section. 

 

3.1. MDA on a reference Mo/ZSM-5 under conventional reaction conditions 

Catalyst preparation and characterization  

A commercial ZSM-5 zeolite impregnated with 6 wt.% Mo has been studied in the first place 

and used as a reference catalyst for this work. The parent zeolite has a Si/Al ratio of 10 and an 

average crystal size around 900 nm as previously reported53 . Its textural properties are given 

in Table 1, together with those corresponding to the Mo-loaded sample. Molybdenum 

incorporation produces a decrease of the BET surface and the micropore surface and volume 

in comparison with the parent sample. This fact is mainly attributed to partial blocking of the 

micropores by the supported MoO3 particles and to the migration of the Mo species into the 

channels during the calcination by decomposition of the ammonium heptamolybdate (AHM) 

used as molybdenum precursor54-58. The driving force of this molybdenum migration inside of 
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the microporous structure has been related to the presence of Brønsted acid sites, since the 

MoO3 reacts stoichiometrically 1:1 with H+ atoms at exchange sites to form (MoO2(OH))+ 

species54, 59, which are the precursors to the active MoC sites required for catalytic C-H bond 

activation43. 

Structural integrity of the zeolite is preserved after metal impregnation and diffraction peaks 

related to the presence of MoO3 are not detected, indicating a high dispersion degree of the 

Mo species on the zeolite surface55, 57 according to the XRD patterns (see Figure S1-A in 

Supplementary material) and the SEM images obtained with a backscatter electron (BSE) 

detector (Figure S2-A1,A2). 

The Brønsted and Lewis acid site density and strength distribution of the ZSM-5 sample, 

without and with Mo, is shown in Table 2. It can be seen that impregnation with Mo results an 

important loss of Brønsted acid sites. This decrease can be related to pore blocking by MoO3 

crystals and the consequent inability of pyridine to access and interact with the acid proton, 

but also to the interaction of these protons with isolated Mo species. It is important to remark 

that, despite the decrease in the number of Brønsted acid sites, the proportion of stronger 

sites, able to retain pyridine at 673K, is in the same range before and after Mo incorporation. 

 

Catalytic behavior under conventional MDA reaction conditions 

Methane conversion does not only results in the formation of C2+ hydrocarbons, but it also 

includes the production of carbonaceous species on the catalyst surface, which are MoCxOy 

species formed during the first stage of catalyst activation, and the formation of coke during 

the second stage of the reaction, when methane activation and aromatization take place. The 

amount of methane contributing to the formation of these species on the catalyst can be 

estimated by means of the carbon balance as the difference of the total methane conversion 

and the total yield to hydrocarbons determined at the reactor outlet. At this point it is 

important to remark that, unless otherwise specified, in this work the catalyst activation is 

carried out by increasing temperature in the presence of the methane containing feedstock 

(CH4:N2 = 80:20 in vol.%), so it will be at least partially carburated when the reaction 

temperature is reached. According to TG-DTA measurements and elemental analysis (EA), the 

Mo/ZSM-5 catalyst activated with the feed mixture contains 0.8 and 1.1 wt% of carbonaceous 
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species, respectively, when it reaches the reaction temperature after being activated in the 

methane feed. During this activation step no hydrocarbons are detected at the reactor outlet 

stream by on-line gas chromatography at T<973K, so we can assume that the methane 

consumed has formed the active Mo-oxo-carbide species, and that when starting the MDA 

reaction, the feedstock finds the catalyst in a carburated form. 

In this section we present the catalytic results obtained with the reference Mo/ZSM-5 catalyst 

under conventional dehydroaromatization conditions (T = 973K, m/F = 16 gcat·h/mol CH4). 

Methane conversion, total hydrocarbon yield and the estimated yield to coke versus time on 

stream (TOS) are shown in Figure 1. The initial methane conversion obtained, around 13%, is 

close to the equilibrium conversion determined by means of Aspen Hysys® v.8.0 for a 

temperature of 973K using the Gibbs free energy minimization approach, and in good 

agreement with the values given in the literature10, 60. The catalyst suffers a severe 

deactivation with TOS due to the rapid buildup of carbonaceous deposits on the catalysts as 

previously described52, 61, 62, and conversion after 5 hours on stream is already below 6.0%. 

¡Error! No se encuentra el origen de la referencia.B shows the variation of selectivity within 

the reactor outlet stream to the two main hydrocarbon groups obtained: aliphatics (C2 and C3, 

mainly ethylene) and aromatics (benzene, naphthalene and others in lower proportion such as 

toluene), which are clearly affected by the catalyst deactivation degree. ¡Error! No se 

encuentra el origen de la referencia.C shows the evolution of selectivity to the main HC 

products versus time on stream (TOS). Thus, although aromatics (mainly benzene, but also 

naphthalene) are the main products during the first two hours, their high selectivity decreases 

after this initial period, whereas selectivity to aliphatics (mainly ethylene) increases reaching 

values above 60% after 18 hours TOS. Within the aromatics fraction, benzene is the most 

desired product because of its multiple applications whereas naphthalene is considered an 

unwanted byproduct63. It is important to note that the aromatics selectivity loss at short TOS 

is due to a decrease in naphthalene selectivity, while benzene selectivity is increased or 

remained constant during the first hours TOS. This reduction in the selectivity to the bulkier 

naphthalene has been ascribed to deactivation of the external Brønsted acid sites, and to the 

reduction of the effective zeolite pore diameters due to coking64. 

 

3.2. Regenerability of Mo/ZSM-5 catalyst for MDA 
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Reference reaction/regeneration cyclic procedure 

Calcination in air at temperatures generally above 773K is a well-known regeneration 

procedure when the catalyst is deactivated by the formation of coke65, 66. Thus, in a first 

attempt, a deactivated MDA catalyst, used for 6 hours TOS under the same conditions as 

those presented in Figure 1, has been regenerated by “in-situ” calcination in an air flow of 100 

ml/min, at 813K for six hours and then cooled down to room temperature. Complete coke 

removal by means of this procedure was confirmed by thermogravimetric and elemental 

analysis. Before performing a second reaction test, the catalyst was activated under a 15 

ml/min flow of the feed mixture as detailed in the experimental section, purged for 30 min 

under N2 flow once the reaction temperature of 973K was reached, and the catalytic test was 

repeated. The overall methane conversion, the total yield to hydrocarbon products (HC) and 

the estimated coke yield versus TOS for these two reactions are shown ¡Error! No se 

encuentra el origen de la referencia.A-C. The plots show the results obtained for the 

consecutive reaction cycles as a function of the actual time on stream (TOS). The time 

corresponding to the catalyst cooling, and to the regeneration and re-activation steps has 

been left out of the plot for simplicity. A continuous line indicates the evolution of conversion 

during the consecutive reaction cycles, and from one cycle to the next. It can be seen that the 

total yield to HC products obtained in the 2nd reaction is higher than the one obtained with 

the fresh catalyst. Encouraged by the good results obtained we carried out five additional 

regeneration-reaction cycles and results are also presented in Figure 2. Although methane 

conversion decreases and the differences from one test to the next increase with the number 

of cycles, the overall yield to hydrocarbons increases for the first three reaction tests. 

The evolution of the products’ selectivity vs. TOS along the different cycles of reaction plus 

regeneration is given in ¡Error! No se encuentra el origen de la referencia.A-B, where the 

hydrocarbon products have been grouped into aliphatics and aromatics, respectively. The 

selectivity to both groups is maintained for the first three reaction-regeneration cycles, but 

after the third cycle, and despite the similar initial values, the selectivity to aliphatics is 

increased while the selectivity to aromatics is decreased with TOS in a similar proportion, 

being this effect more accused with the number of cycles. ¡Error! No se encuentra el origen 

de la referencia.C and -D show the selectivity to benzene and naphthalene versus TOS 

respectively. There it can be seen that the loss of aromatics selectivity observed in ¡Error! No 
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se encuentra el origen de la referencia.B is mainly due to a decrease of the selectivity to 

naphthalene, since the benzene selectivity is slightly increased or remains almost constant. 

Moreover, benzene selectivity is improved not only for all the cycles as compared to the first 

one during the first two hours TOS -reaction stage known as the induction period21 - but also 

along the whole reaction time for the first two consecutive cycles, reaching values of 70wt% 

on a carbon basis. At longer TOS (≥ 2h) the selectivity to benzene decreases, and the 

selectivity loss is greater as the number of cycles increases. 

 

Optimization of the reaction/regeneration protocol 

What we can learn from the results presented in the former section is that although the 

Mo/ZSM-5 catalyst suffers an important deactivation since the very early stages of the 

dehydroaromatization reaction, a high selectivity to the desired benzene is maintained during 

the first two hours on stream, giving a maximum yield to benzene. Thus, an interesting 

approach would be to regenerate the catalyst after short times on stream, limited to the 

induction period (TOS < 2h) described previously. In this way benzene yield may be 

maximized, and build-up of large carbonaceous deposits will be minimized, facilitating coke 

removal by means of shorter regeneration times. 

As pointed out at the beginning of this section, several tests have been performed with the 

aim of establishing a suitable reaction-regeneration protocol. First, a temperature-

programmed oxidation (TPO) was carried out on a deactivated Mo/ZSM-5 catalyst to estimate 

the minimum time and temperature required to remove the formed coke. The conditions for 

complete coke removal will depend on the amount and type of coke, and this, in turn will 

depend on catalyst composition and on MDA experimental parameters67-69. Here, we have 

limited our study to a single set of reaction conditions, and only TOS will be varied and will 

have an effect on the coking. Thus, the deactivated catalyst studied here was recovered after 

being used for 18 h TOS under our MDA reaction conditions, the most severe coking 

conditions employed in our reaction setup. The TPO test reproduced our conventional 

regeneration conditions (see the experimental section for more details). By monitoring CO 

and CO2 (species m/e = 28 and 44, respectively) in the outlet stream vs. temperature it was 

determined that coke removal started at 723K, and that after twenty minutes all the 

carbonaceous deposits were burned off (see ¡Error! No se encuentra el origen de la 
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referencia.A). The TPO results were confirmed by performing an in-situ regeneration in the 

fixed bed reactor after a conventional 6 hours run MDA reaction, and determining the 

composition of the reactor outlet stream by on-line gas chromatography. In good agreement 

with the TPO results, it was seen that coke was completely removed by treating the 

deactivated catalyst for no more than twenty minutes at 813K under air flow. 

On the other hand, a temperature-programmed reduction in the presence of the methane 

containing feed (CH4-TPR, methane mass flow of 8.1 mg/min reproducing catalyst activation 

conditions, see the experimental section for more details) was performed on the fresh 

Mo/ZSM-5 catalyst to estimate the temperature at which methane starts to be consumed. 

This would correspond to the minimum reduction temperature at which MoO3 would start to 

be converted into the active molybdenum carbide species. Methane consumption has been 

represented as a function of temperature in ¡Error! No se encuentra el origen de la 

referencia.B, where it is shown to begin at temperatures around 813K. Moreover, no 

hydrocarbon production was observed during this activation step, so it is assumed that all the 

methane consumed is contributing to the formation of the active carbides43. 

In the former section, the catalyst was cooled down to room temperature after each 

regeneration step, and therefore, activation of the catalyst in the methane containing feed 

flow was started at room temperature. However, the process would gain in efficiency if the 

catalyst could be activated starting from the regeneration temperature (813K), instead of 

cooling it down to room temperature and heating it up again. Therefore, in order to rule out 

any possible effect related to the treatment of the catalyst in the methane flow from room 

temperature to the regeneration temperature we carried out an additional experiment. Here, 

the temperature of the catalyst was raised up to 813K under N2 flow, and then the nitrogen 

was switched to the CH4:N2 mixture until reaching the reaction temperature. No significant 

differences were observed when comparing activity results or selectivity to aliphatics, 

aromatics, benzene or naphthalene on both tests (see Figure S3 in Supplementary material). 

In view of these results, our proposed protocol of short reaction plus short regeneration steps 

is the following: the first step is the initial catalyst carburation, heating from room 

temperature to 973K with a heating rate of 10K/min in a gas mixture flow of methane (80 

vol.%) and nitrogen (20 vol.%) in order to start the formation of the molybdenum carbides. 

When the reaction temperature is achieved, the catalyst is purged with N2 for 15 min, and 
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then the CH4:N2 flow is fed using the same composition employed before for carrying out the 

MDA reaction (80:20 vol.%). After 1.5 h of reaction, the catalyst is cooled in nitrogen flow 

down to the regeneration temperature. Coke removal is carried out at 813K for 30 min under 

oxygen (21 or 10 vol.% of O2 in N2) with a total gas flow of 100 ml/min. Thermogravimetric 

(TG) and elemental analysis (EA) were performed at this point to verify that the carbonaceous 

deposits of the catalyst were completely removed. After the regeneration step the catalyst is 

purged with nitrogen for 15 min at 813K, followed by re-carburation of the catalyst in the 

CH4:N2 mixture for 10 min at 813K. Finally, the sample is heated to 973K in the feed mixture 

with a heating rate of 10K/min to start a new cycle. 

In order to determine if the catalyst re-carburation step makes a difference, we have applied 

the same procedure but leaving out the re-carburation step and heating the catalyst from the 

regeneration temperature to the reaction temperature under nitrogen flow on our reference 

Mo/ZSM-5 catalyst. A diagram showing a single cycle of our protocol, with and without the re-

carburation step, is shown in Figure 5. 

The results obtained using the 1.5h reaction-0.5h regeneration protocol regenerating in 10 

and 21 vol.% of O2, activating in methane, and the same procedure regenerating in 10 vol.% 

O2, but in this case activating the catalyst in N2 are shown in Figures 6 and 7. The single 

conventional 18 h TOS experiment is included for comparison purposes.  

Figure 6A shows the methane conversion obtained for the consecutive reaction cycles as a 

function of the actual time on stream (TOS). The time corresponding to the catalyst cooling, 

and to the regeneration and re-activation steps has been left out of the plot for simplicity. A 

dotted line indicates the evolution of conversion during the consecutive reaction cycles, and 

from one cycle to the next. Thus, an initial methane conversion close to 13.0% is obtained, 

and activity decreases sharply with TOS down to ≈ 8.0%, in line with the results obtained for 

the conventional MDA run. After the regeneration and re-activation conversion is recovered 

and even increased as compared to that of the fresh catalyst, and deactivation rate is similar 

to that of the first cycle. As the number of cycles increases, the initial methane conversion 

gets lower, and deactivation rate increases slightly. Regarding the product yields, Figure 6B 

shows the evolution of the total HC yield along the different cycles, considering only the time 

the catalyst is on stream for the MDA reaction. Despite the decrease of the initial HC yield as 

the number of cycles increases, the values obtained are far above those corresponding to the 
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conventional MDA run. It can also be seen that the estimated yield to coke at the beginning of 

each of the cycles is mainly constant (Figure 6C). 

Although the regeneration procedure proposed recovers most of the initial catalyst activity 

after each cycle, independently of the O2 content in the regeneration stream, and of the 

composition of the activation stream –pure N2 or CH4:N2 mixture-, there are some differences 

among the experiments compared. When the sample is activated in the methane feed flow 

the conversion levels achieved are higher than when it is activated in an inert flow. The total 

yield to HC is also higher when the catalyst is carbureted during the activation, whereas the 

estimated coke yield is similar in both cases, indicating larger coke selectivity when the 

catalyst has to be re-carburated after reaching the reaction temperature. Thus, activating in 

methane results in a more efficient conversion of the feed into the desired HC during the 

reaction step. Regarding the effect of the oxygen concentration during regeneration, the 

initial conversion levels achieved when decreasing O2 partial pressure are lower as compared 

to the higher O2 concentration, but this is mainly due to a lower coke yield when O2 

proportion is reduced during the intermediate regeneration steps, and the production of 

hydrocarbons is comparable in both cases. Thus, a lower O2 concentration in the regeneration 

stream seems to preserve in a larger extend the distribution of the active molybdenum 

species.  

The selectivity to aliphatics (A) and aromatics (B) is shown in Figure 7. It can be seen that 

although the former increases with TOS along each of the cycles, the proportion of aliphatics 

is kept reasonably low along the total process, whereas the selectivity to aromatics is 

maintained in the range of 85-95 wt%. Again, activation of the catalyst in the feed stream 

results in an improved catalytic behavior, with lower selectivity to aliphatics and higher 

production of aromatics. Regarding the aromatic’s distribution, the catalyst activated in 

nitrogen is slightly more selective to benzene and less to naphthalene. This could be due to a 

lower Brønsted acid site density, as will be discussed later. The oxygen concentration during 

regeneration has no significant effect on the product distribution. 

The results presented in Figure 6 and Figure 7 show that is possible to extend the life of the 

catalyst with the described reaction-regeneration cyclic procedure, as the overall conversion 

of methane, the total yield to hydrocarbon products’ (HC) and, most important, the selectivity 

to aromatics -especially to benzene-are maintained for a longer time. At this point we have 
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estimated a benzene productivity (g benzene/kg cat·h) for different periods on stream, 

performed in a single run and in 12 consecutive cycles of our 1.5 h reaction-0.5 h regeneration 

protocol. The productivities obtained are given in Table 3. It can be seen that productivities 

obtained with the two procedures are not so different when a short 6h period is considered. 

However, due to the drastic deactivation of the catalyst at long reaction times, when the 

period of TOS considered is increased to 12 and 18 h, the productivity obtained with a single 

run decreases significantly, whereas almost constant productivity is obtained when applying 

the new cyclic protocol presented in this work. For the longest period considered, of 18 h TOS, 

benzene productivity obtained with the optimized cyclic reaction-regeneration procedure 

triplicates the one of the conventional 18 h MDA experiment (97 vs 33 g benzene/kg cat·h, 

respectively). 

Regarding the need for an intermediate re-carburation, we have shown that when N2 is used 

instead of methane during the catalyst activation step and the catalyst is not re-carburated 

during the activation, the total methane conversion is lower, the deactivation effect is more 

accused, and the selectivity to aromatics is lower (see Figure 6 and 7). This behavior can be 

attributed to the fact that during the regeneration not only coke is removed, but also the oxo-

carbides responsible for methane activation are lost. Thus, after regeneration the active 

carbide species will have to be formed again. When the catalyst is activated in N2, the carbides 

will start to be formed at 973K, once the catalyst has reached the reaction temperature and 

the methane feed is introduced in the system. Thus, at some point the dehydroaromatization 

of methane will be competing with the formation of the active species on the catalysts. On the 

other hand, if the catalyst is activated in the presence of a methane containing flow, the 

active species start to be formed at a lower temperature, and when the catalyst reaches the 

reaction temperature most of the molybdenum species will be already reduced and in its 

active oxocarbide form. 

 

Characterization of spent catalysts 

First of all, it is important to remark that the used catalysts after the different reaction-

regeneration procedures present the same Mo content as the corresponding fresh catalyst, 

indicating that the molybdenum species have not sublimated during our experimental 

conditions (see the chemical composition in Table 1). On the other hand, complete coke 
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removal on the different regenerated catalysts was confirmed before performing the rest of 

characterization. Regarding the textural and acidic properties, all the catalysts, after being 

used under the different reaction-regeneration procedures, present a decrease in BET surface, 

micropore surface and volume, and a lower total number of Brønsted acid sites in comparison 

with the fresh catalyst (see Table 2). However, the loss of microporosity is lower for the short 

reaction-regeneration protocol when the catalyst is activated in methane instead of N2, and 

its Brønsted acidity is higher. When compared to the long reaction-regeneration cycles, the 

new protocol proposed preserves the zeolite structure in a larger extend (higher BET and 

micropore surface area) but Brønsted acidity is higher for the former (Table 2), and also the 

proportion of stronger Brønsted acid sites, able to retain pyridine at 673K. A possible 

explanation could be a better dispersion of the Mo-species (lower agglomeration degree), and 

therefore a higher interaction with the Brønsted sites (leaving less H+ available) when the 

short reaction-regeneration procedure is employed. In fact, this is in good agreement with 

recent studies on the effect of regeneration time with O2, that show how longer regeneration 

times do restore the Mo oxide nanostructures, but forces them to migrate from Al framework 

sites to Si anchoring sites on the external surface of the zeolite43. This would restore the 

Brønsted acid site corresponding to the framework Al. Moreover, the formation of less coke 

and of a coke less refractory in nature could also result in lower local temperature spots due 

to the exothermic combustion reaction, and thus, to a better structure preservation when 

using the optimized cyclic reaction-regeneration procedure. 

Regarding the effect of O2 concentration during the regeneration step, it has a clear effect on 

the physico-chemical and acidic properties of the spent catalyst (see Tables 1 and 2), and a 

decrease in O2 content from 21 to 10 vol.% results in a final catalyst with higher BET, higher 

micropore surface and higher total Brønsted acidity, probably due to the less severe coke 

combustion conditions. Moreover, the proportion of strong Brønsted acid site, given by the 

ratio B673/B523 in Table 2, increases when lowering the O2 concentration in the regeneration 

stream to values close to those of the fresh catalyst. 

The main differences among the catalysts used under different reaction-regeneration 

conditions have been found to be related to the nature and the reducibility of their 

molybdenum species, as determined by H2-TPR experiments. According to the literature61, 62, 

70 four regions are detected based on the Mo reduction temperature: (I) 473-650K related to 
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the partial reduction of amorphous polymeric molybdate species, (II) 650-875K ascribed to the 

reduction of MoO3 to MoO2, (III) 875-1173K assigned to the reduction of MoO2 to Mo0, and 

finally the region (IV) >1173K related to the reducibility of the [Mo2O3]+2 species occluded 

inside of the zeolitic channels, and therefore more difficult to be converted. Figure 8 shows 

the H2-TPR profiles corresponding to Mo/ZSM-5 before and after being used on six cycles of 

6h reaction plus 6h regeneration and after the 1.5 h reaction-0.5 h regeneration protocol 

employing 10 vol.% of O2 in the regeneration step. The fresh Mo/ZSM-5 presents a typical H2-

TPR profile, with peaks in all the regions previously described. However, the used Mo/ZSM-5 

after six cycles (6 h reaction + 6 h regeneration) only shows one peak in the region of the 

conversion of MoO3 to MoO2, and the profile has been shifted to higher temperatures 

indicating that the Mo species are more difficult to be reduced. On the other hand, the H2-TPR 

profile of the used catalyst after short reaction-regeneration protocol is more similar to that 

of the fresh catalyst, indicating a larger preservation of both, the nature and the reducibility of 

the Mo species present, when using our optimised protocol. 

 

3.3. Application of the optimized reaction/regeneration protocol to other medium pore 

zeolites  

In view of the interesting results obtained in the former section, we decided to apply our 

optimized 1.5 h reaction-0.5 h regeneration protocol to other medium pore zeolites which 

have been described for the MDA reaction, such as Mo/MCM-22, Mo/TNU-9 and Mo/IM-511, 

17-24. The procedure employed in this section is the one using a 10 vol.% of oxygen in nitrogen 

during the regeneration step and re-carburating the catalyst after the regeneration, the 

procedure that was found to be less detrimental regarding the catalysts’ properties (highest 

micropore structure and Brønsted acid site preservation). 

 

Catalyst preparation and characterization  

The parent zeolites compared in this section present a Si/Al molar ratio close to 10 and crystal 

sizes in the submicron range (see SEM images presented in Figure S1). The three samples have 

been impregnated with molybdenum (6 wt%) by incipient wetness, following the same 

procedure used for preparation of the Mo/ZSM-5 catalyst studied previously. Their chemical 
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composition is shown in Table 4, where it can be seen that the Mo/Al ratio is in all cases close 

to 0.5. This value has been described as optimum to balance the methane activation and the 

aromatization reactions, giving conversion of the ethylene formed close to-equilibrium levels 

on the remaining Brønsted acid sites54. 

As in the case of Mo/ZSM-5, the molybdenum incorporation does not affect the crystallinity of 

the zeolitic structure and the metallic phase is homogeneously dispersed for all of catalysts, 

since diffraction peaks related to the presence of MoO3 were not detected (see XRD patterns 

presented in Figure S2), and SEM images obtained with a backscatter electron (BSE) detector 

do not show the presence of large spots corresponding to MoO3 agglomerates (see Figure S1). 

However, the molybdenum loading results in a decrease of the BET surface, the micropore 

surface and volume, and the total number of Brønsted acid sites as compared to the parent 

sample. This fact can be related to the partial blocking of the micropores by the supported 

MoO3 particles, and to the migration of Mo species into the zeolite channels during the 

calcination, as described previously for Mo/ZSM-5 (see Table 4 and Table 5). Unlike the case of 

Mo/ZSM-5, when Mo was impregnated on IM-5, TNU-9 and MCM-22, not only the total 

amount of Brønsted acid sites was reduced, but also the proportion of the stronger ones. 

 

Catalytic results applied to Mo/IM-5, Mo/TNU-9 and Mo/MCM-22 

The results obtained using the new reaction-regeneration cycles, regenerating in a 10 vol.%  

oxygen in nitrogen stream, and re-carburating the catalyst before reaction are shown in Figure 

9 for catalysts Mo/IM-5, Mo/TNU-9 and Mo/MCM-22, respectively, and compared with 

Mo/ZSM-5 tested under the same conditions. With the aim of simplifying the figure, only the 

first point of each cycle is plotted vs. TOS. In this way, activity and selectivity results obtained 

for the four catalysts can be directly compared. However, the full plots, including the 

complete cycles as well as the conventional single run for each of the catalysts are given as 

Figures S4-S6 in the supporting information, where it can be seen that, as in the case of 

Mo/ZSM-5, the cyclic reaction-regeneration protocol effectively improves the process by 

increasing the yield to aromatics, especially benzene, and by extending the life of the 

Mo/zeolite, as compared to a conventional single run of at least 12 h TOS. 

Mo/IM-5 shows some deactivation degree, with initial methane conversion being reduced 

after each cycle, and its behavior is comparable to that of the reference catalyst Mo/ZSM-5 
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(see Figure 9 and S4). Its yield to HC is fairly constant, and initial benzene selectivity is 

improved when increasing the number of cycles. Mo/TNU-9 shows a very good performance, 

with activity being completely recovered after each cycle, with constant initial HC yield, and 

with a high benzene selectivity that increases after each reaction-regeneration cycle (see 

Figures 9 and S5). 

Finally, the results obtained with Mo/MCM-22, also compared in Figure 9, show a very good 

recovery of the initial methane conversion after each cycle. This catalyst is known to be more 

stable towards deactivation21 than Mo/ZSM-5, and benzene selectivity is maintained around 

80% for almost 5 hours TOS during the single run (see Figure S6). Thus, the cyclic reaction-

regeneration protocol optimized for Mo/ZSM-5 could be improved for Mo/MCM-22 by 

increasing the time of the reaction step. This would increase the overall benzene production. 

 

Characterization of spent catalysts  

Table 4 compares the physico-chemical and acidic properties of the parent zeolites, the fresh 

Mo-containing catalysts and the spent samples. It can be seen that Mo/TNU-9 presents the 

largest micropore volume after Mo loading, not only before, but also after being used in the 

MDA reaction. This can be due to a better Mo distribution, probably closer to the external 

surface or in the pore mouths. It is possible that the specific microporous structure, the very 

small crystallite size of the parent zeolite, and perhaps the Al distribution within the crystals 

will be responsible for the highly interesting catalytic behaviour of Mo/TNU-9 for methane 

hydroaromatization by means of this new reaction-regeneration cyclic protocol. The effect of 

the zeolite structure is, however, out of the scope of the present work, and will be thoroughly 

covered in a future paper. Regarding the Brønsted acid site density, presented in Table 5, 

when we compare the values corresponding to the fresh catalysts and to those used for the 

cyclic reaction-regeneration procedure, the number of acid sites is preserved in a larger 

extend in the cases on Mo/TNU-9 and Mo/IM-5 than on Mo/MCM-22 or on the reference 

Mo/ZSM-5. Again, the structure and/or Al distribution can be playing an important role. 

Regarding the strength distribution of the Brønsted acid sites, in all cases we observe a good 

preservation of the proportion of the strongest sites among the total Brønsted acid site 

density (see Table 5), as we also observed for Mo/ZSM-5. So we can conclude that the new 
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cyclic protocol does not affect the acid strength distribution of the regenerated catalyst as 

compared to the fresh Mo/zeolite. 

 

4. Conclusions 

An effective procedure has been proposed to extend the life of a conventional Mo/ZSM-5 

catalyst for methane dehydroaromatization by a short reaction-regeneration cyclic operation. 

The method, optimized for a Mo/ZSM-5 catalyst, combines 1.5 h reaction periods with 0.5 h 

regeneration steps in a continuous cyclic mode, which allow maximizing the benzene yield 

(the most desired product) for longer times in comparison with a conventional single run 

experiment. After each regeneration stage the catalysts were purged with nitrogen and re-

carburated by increasing temperature in the methane containing feed mixture. This step was 

seen to play an important role in the effectiveness of the cyclic reaction-regeneration 

procedure. With this optimized cyclic operation protocol, it has been possible to increase the 

benzene productivity obtained on a Mo/ZSM-5 catalyst during 18 h on stream from 33 g 

benzene/kg cat·h for a single 18 h run to 97 g benzene/kg cat·h when performing the reaction 

for 12 cycles of 1.5 h TOS. 

The protocol has proved to be efficient not only for Mo/ZSM-5, but also for other promising 

medium pore zeolites for MDA reaction, such as Mo/MCM-22, Mo/TNU-9 and Mo/IM-5. 

Among the catalysts compared, Mo/TNU-9 shows an outstanding behavior, with constant 

initial activity for each new cycle, constant initial HC yield, and a high benzene selectivity (≈ 

85% average) that increases not only with TOS, but also after each reaction-regeneration 

cycle. Moreover, the effectiveness of the procedure could be improved by optimizing the 

length of the regeneration and/or the reaction steps for the different catalysts. 
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Figure caption 

Figure 1. (A) Methane conversion ( ), total yield to hydrocarbon products ( ) and 

estimated yield to coke ( ) versus TOS; (B) Selectivity to aromatics ( )and aliphatics ( ), 

and (C) Selectivity to ethylene ( ), ethane ( ), benzene ( ), toluene ( ) and naphthalene    

( ) versus TOS 

Figure 2. Methane conversion (A), total yield to HC products (B), and estimated yield to coke 

(C), versus TOS for six consecutive 6 h reaction – 6 h regeneration cycles. 

Figure 3. Selectivity to aliphatics (A), aromatics (B), benzene (C) and naphthalene (D) versus 

TOS for six consecutive 6 h reaction – 6 h regeneration cycles.  

Figure 4. Thermal conditions required for removal (A) and formation (B) of carbon species 

on coked and fresh Mo/ZSM-5, respectively. 

Figure 5. Diagram of the short reaction-regeneration cyclic protocol with (A) and without re-

carburation step (B). 

Figure 6. Methane conversion (A), total yield to HC products (B), and estimated yield to coke 

(C), for the short reaction-regeneration cyclic protocol, regenerating under 21vol% oxygen    

( ) or 10vol% oxygen ( ) in nitrogen, and without the re-carburation step after the 

regeneration under 10vol% O2 in nitrogen ( ) compared to a single 18 h TOS MDA reaction (

) 

Figure 7. Selectivity to aliphatics (A), aromatics (B), benzene (C) and naphthalene (D)  for the 

short reaction-regeneration cyclic protocol, regenerating under 21vol% oxygen ( ) or 

10vol% oxygen ( ) in nitrogen, and without the re-carburation step after the regeneration 

under 10vol% O2 in nitrogen ( ) compared to a single 18 h TOS MDA reaction ( ) 

Figure 8. H2-TPR profiles corresponding to Mo/ZSM-5 before and after being used on 

different reaction-regeneration procedures. 

Figure 9. Methane conversion (A), total yield to HC (B), estimated yield to coke (C) for the 

short reaction-regeneration cyclic protocol, regenerating 10vol% oxygen, over Mo/ZSM-5 (

), Mo/IM-5 ( ), Mo/TNU-9 ( ) and Mo/MCM-22 ( ). 
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Figure 1.  
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Figure 2.  
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Figure 3.  
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Figure 4.  
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Figure 5.  
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Figure 6.  
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Figure 7.  
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Figure 8.   
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Figure 9.  
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Table 1. Chemical composition and textural properties of Mo/ZSM-5 before and after being 

used as catalysts for MDA. 

Sample 
ICP   S BET 

(m2/g) 

S micro 

(m2/g) 

V micro 

(cm3/g) Si/Al Mo/Al wt% Mo   

ZSM-5  10.0 --- ---  368 355 0.169 
Mo/ZSM-5 

- Fresh 10.2 0.46 5.7  270 257 0.124 
- After 6 cycles of 6 h react. + 

6 h cal. 8.3 0.49 6.3  228 208 0.103 

- After short react-reg. 
cycles(21 vol.% O2) 9.6 0.49 6.3  232 213 0.104 

- After short react-reg. 
cycles(10 vol.% O2) 9.1 0.52 6.7  253 227 0.113 

- After short react-reg. cycles 
without carburation 9.3 0.42 5.7  226 204 0.102 
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Table 2. Acidic properties of Mo/ZSM-5 before and after being used as catalysts for MDA. 

Sample Brønsted Acidity (mmol Py/g)  Lewis Acidity (mmol Py/g) 

T=523K T=623K T=673K B673/B523   T=523K T=623K T=673K 

ZSM-5  0.564 0.368 0.241 0.43  0.007 0.000 0.000 
Mo/ZSM-5 

- Fresh 0.213 0.121 0.107 0.50  0.023 0.014 0.003 
- After 6 cycles of 6 h react. + 
6 h cal. 0.080 0.039 0.020 0.25  0.029 0.015 0.005 

- After short react-reg. 
cycles(21 vol.% O2) 0.046 0.030 0.009 0.19  0.011 0.013 0.002 

- After short react-reg. 
cycles(10 vol.% O2) 0.060 0.044 0.024 0.40  0.028 0.033 0.022 

- After short react-reg. cycles 
without carburation 0.037 0.017 0.006 0.17  0.019 0.014 0.011 
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Table 3. Benzene productivity (g benzene/kg cat·h) obtained with different reaction protocols 

and different TOS periods on Mo/ZSM-5 

Reaction time on stream (TOS) 6.0 12.0 18.0 

Single conventional run 72.6 48.9 33.8 

1,5 h Reaction-0,5 h Regeneration 112.8 108.6 96.7 
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Table 4. Chemical composition and textural properties of Mo/IM-5, Mo/TNU-9 and 

Mo/MCM-22 before and after being used as catalysts for MDA. 

Sample 
ICP   S BET 

(m2/g) 

S micro 

(m2/g) 

V micro 

(cm3/g) Si/Al Mo/Al wt% Mo   

IM-5 12.7 --- ---  339 323 0.158 
Mo/IM-5 

- Fresh 12.4 0.6 6.2  300 285 0.140 
- After short react-reg. cycles 10.5 0.6 6.3  239 225 0.110 

TNU-9  13.5 --- ---  394 379 0.186 
Mo/TNU-9 

- Fresh 12.4 0.6 6.3  300 285 0.140 
- After short react-reg. cycles 11.8 0.6 6.1  279 263 0.129 

MCM-22  9.5 --- ---  495 402 0.197 
Mo/MCM-22 

- Fresh 9.3 0.5 5.8  374 300 0.143 
- After short react-reg. cycles 8.8 0.4 6.1  295 218 0.106 
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Table 5. Acidic properties of Mo/IM-5, Mo/TNU-9 and Mo/MCM-22 before and after 

being used as catalysts for MDA 

Sample Brønsted Acidity (mmol Py/g)   Lewis Acidity (mmol Py/g) 

T=523K T=623K T=673K B673/B523   T=523K T=623K T=673K 

IM-5 0.338 0.254 0.135 0.40  0.064 0.055 0.041 
Mo/IM-5 

- Fresh 0.113 0.097 0.038 0.34  0.026 0.029 0.022 
- After short react-reg. cycles 0.103 0.057 0.034 0.33  0.036 0.023 0.021 

TNU-9  0.347 0.253 0.189 0.55  0.056 0.053 0.053 
Mo/TNU-9 

- Fresh 0.112 0.064 0.034 0.31  0.031 0.021 0.011 
- After short react-reg. cycles 0.099 0.044 0.030 0.31  0.028 0.013 0.007 

MCM-22  0.180 0.140 0.103 0.57  0.030 0.042 0.054 
Mo/MCM-22 

- Fresh 0.108 0.079 0.030 0.28  0.046 0.044 0.037 
- After short react-reg. cycles 0.064 0.024 0.015 0.24  0.026 0.016 0.006 

 

 

 


