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Abstract 

When teaching CUDA in laboratories, an important issue is the economic cost of GPUs, which may 
prevent some universities from building large enough labs to teach CUDA. In this paper we propose 
an efficient solution to build CUDA labs reducing the number of GPUs. It is based on the use of the 
rCUDA (remote CUDA) middleware, which enables programs being executed in a computer to 
concurrently use GPUs located in remote servers. To study the viability of our proposal, we first 
characterize the use of GPUs in this kind of labs with statistics taken from real users, and then present 
results of sharing GPUs in a real teaching lab. The experiments validate the feasibility of our proposal, 
showing an overhead under 5% with respect to having a GPU at each of the students’ computers. 
These results clearly improve alternative approaches, such as logging into remote GPU servers, which 
presents an overhead about 30%. 
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1 INTRODUCTION 

The remarkable increment in the use of Graphics Processing Units (GPUs) experienced during the 
last years has deeply changed the way in which high performance computing is addressed. In this 
regard, many supercomputers and data centers currently make use of these accelerators in order to 
reduce the execution time of their workloads. 

The pervasive use of GPUs in current computing facilities makes necessary that their architecture and 
programming are included in modern Computer Engineering and Computer Science (CECS) curricula, 
so that students receive the proper training for their later job career. Thus, in the same way as parallel 
computing has been traditionally taught in CECS schools, now it is necessary to introduce theoretical 
lectures and lab sessions aimed to provide students the required knowledge about these accelerators. 

An important concern about introducing GPU contents in the mentioned curricula is that there are 
currently two main trends to program GPUs: OpenCL [1], which is an open standard, and CUDA [2], 
the parallel computing architecture proposed by NVIDIA –the largest GPU manufacturer. 
Nevertheless, although OpenCL is an open standard and CUDA is proprietary by NVIDIA, the latter is 
currently the most used one in the professional field, also achieving higher performance. These 
reasons may influence the decision of professors for teaching CUDA instead of OpenCL. 

Regarding the lab sessions that should be included in any course about CUDA, an important issue is 
the economic cost of GPUs, which may prevent some universities from building large enough labs to 
teach CUDA, so that the learning experience of students is satisfactory, thus improving their training 
and qualifying them for the best job opportunities, what later translates into a higher recognition of the 
university that trained them. Regarding the economic cost of a CUDA lab, the straightforward 
approach would be to install a CUDA GPU in each of the computers of the lab, what may not be 
affordable in terms of the economic cost of this approach. A cheaper approach would be to request 
students to log into a remote server containing a GPU. However, although this option is noticeably 
cheaper than the previous one, it may result in a poor learning experience due to the saturation that 
the remote server would experience because of several reasons, like all the graphical sessions started 
by students in order to use visual programming environments, the high CPU utilization when compiling 
and executing the test programs in the server, etc. 

In this work we propose an efficient solution to build CUDA labs, which is based on the use of the 
rCUDA (remote CUDA) middleware [3, 4]. This framework enables programs being executed in a 
computer to concurrently use GPUs located in remote servers. Therefore, students would be able to 



simultaneously share one remote GPU from their local computers in the lab without having to log into 
the remote server, thus avoiding the server saturation mentioned before at the same time that the cost 
of the lab is still noticeably reduced. 

The rest of the paper is organized as follows. In Section 2 we present in more detail rCUDA. In 
Section 3 we characterize the use of GPUs in this kind of labs with statistics taken from real users. 
Section 4 explains the reasons for sharing GPUs in CUDA teaching laboratories and presents several 
ways for doing so. In Section 5 we present some experiments sharing GPUs in a real teaching lab, 
taking into account the results of the previous characterization. Finally, Section 6 summarizes the 
main conclusions of our work. 

2 rCUDA: REMOTE CUDA 

During the last years, GPUs have become widely used to accelerate applications from areas as 
diverse as data analysis [5], chemical physics [6], image analysis [7], finance [8], algebra [9], 
computational fluid dynamics [10], etc. As mentioned before, there are currently two main trends to 
program GPUs: OpenCL, which is an open standard, and CUDA, the parallel computing architecture 
proposed by NVIDIA. Given that the latter is currently the most used one in the professional field, in 
this paper we will focus on CUDA. 

CUDA is an extension of the well-known C programming language. In order to better understand how 
it works, we show next a simple CUDA program. As we can see, it is very similar to a regular C 
program. The main difference is that some parts of this program will be executed in the GPU (i.e. the 
code labelled as “GPU code”): 

 

 

 

rCUDA (remote CUDA) is a middleware which enables programs being executed in a computer to use 
GPUs located in remote servers. Continuing the example program above, when using CUDA the GPU 
code will be executed in a local GPU attached to the computer, while the rest of the program will run in 
the computer CPU, as usual. On the other hand, when using rCUDA, the non-GPU code will run also 
in the computer CPU. However, the GPU code will be executed in a remote GPU which is not 
attached to the computer, but located in a different computer. For doing so, rCUDA utilizes the 

#include <stdio.h>  

const int N = 8;  

 

// Function which will be executed in the GPU 

 __global__  

void my_gpu_function(int *a, int *b)  

{ 

  b[threadIdx.x] = a[threadIdx.x] * 2; 

} 

  

int main() 

{ 

  int a[N] = {0, 1, 2, 3, 4, 5, 6, 7}; 

  int *ad, *bd; 

  const int isize = N*sizeof(int); 

 

  // Allocate GPU memory  

  cudaMalloc( (void**)&ad, isize );  

 

  // Copy data to GPU memory 

  cudaMemcpy( ad, a, isize, cudaMemcpyHostToDevice );  

 

  // Run function in the GPU 

  my_gpu_function<<<1, N>>>(ad, bd); 

 

  // Copy results from GPU memory 

  cudaMemcpy( b, bd, isize, cudaMemcpyDeviceToHost );  

 

  // Free GPU memory 

  cudaFree( ad ); 

  cudaFree( bd ); 

 

  return 0; 

} 

 

GPU code 



network between both computers to transparently transfer and run the GPU code in the remote GPU 
computer. The user is not aware that the GPU code of his/her program is running in a remote GPU. 
rCUDA manages everything and, from the point of view of the end user, it is as if he/she were using 
regular CUDA with a local GPU, instead of rCUDA with a remote GPU. For the sake of clarity, the 
differences between CUDA and rCUDA explained here are also graphically illustrated in Fig. 1. 

 

(a) CUDA (b) rCUDA (remote CUDA) 

  

 

Fig. 1. Graphical illustration of a CUDA application using (a) CUDA or (b) rCUDA. 

 

The last version of rCUDA is freely available at www.rcuda.net, supports CUDA 6.5 Runtime API [2] 
and Driver API [11]. It also offers support for some routines of the most common CUDA Libraries, such 
as cuBLAS [12], cuFFT [13], cuRAND [14] and cuSPARSE [15]. Furthermore, the rCUDA middleware 
is distributed at no cost, thus allowing an inexpensive introduction of this technology into CUDA 
teaching laboratories. 

3 CHARACTERIZING CUDA TEACHING LABORATORIES 

In this section we characterize the use of GPUs in a CUDA teaching laboratory with statistics taken 
from a real scenario. The experiments were done in a laboratory composed of 20 computers, as 
shown in Fig. 2. 

 

 

 

Fig. 2. CUDA teaching laboratory composed of 20 computers, each one with a CUDA GPU. 

 

The metrics used for characterizing the utilization of the GPUs were: 

 Number of compilations: compiling a program does not require the use of the GPU 

 Number of executions: executing a program requires the use of the GPU 

 

Fig. 3 presents the results of this experiment. The figure shows the number of compilations and the 
number of executions in a CUDA teaching laboratory composed of 20 computers, similar to the one 

http://www.rcuda.net/


depicted in Fig. 2. The session was 90 minutes long and the measurements show the number of 
compilations/executions grouped in intervals of 5 minutes. 

 

 

Fig. 3. Number of compilations and number of executions in a CUDA teaching laboratory of 20 
students using 20 different computers. The course was 90 minutes long and the measurements show 

the number of compilations/executions grouped in intervals of 5 minutes. 

 

As we can see, at the beginning of the session the number of compilations and executions is very low. 
The reason is that students are usually reading the exercises to be done. As the session progresses, 
the number of compilations and executions increase, as expected. Finally, at the end of the session it 
decreases again, because some of the students have already finished the exercises. 

The conclusion that we can extract from this experiment is that the average number of executions for 
each 5 minute interval is approximately 5. Therefore, we could say that a maximum of 5 GPUs are, in 
theory, required at any given time. We will refer to this result in next sections. 

4 SHARING GPUs IN CUDA TEACHING LABORATORIES 

4.1.1 Why sharing GPUs 

The main reason for sharing GPUs in CUDA teaching laboratories is the cost of CUDA GPUs. In this 
manner, installing CUDA GPUs in all the computers of a laboratory may not be affordable in terms of 
the economic cost of this approach. For instance, the cost of a laboratory as the one shown in Fig. 2. 
could be similar to the one presented in Table I. 

 

Table I. Cost of a laboratory composed of 20 computers with GPUs. 

Component Cost 

Intel Core I3-3220 3,30GHz with 4GB RAM 20 x 300€ 

NVIDIA GeForce GTX 780 Ti [16] 20 x 600€ 

TOTAL 18,000€ 

  



 

Table II. Cost of a laboratory composed of 20 computers and 1 GPU server. 

 

4.1.2 How sharing GPUs 

There are mainly two ways [17] of sharing a GPU among the computers of a CUDA teaching 
laboratory: 

 Logging into a remote GPU server (see Fig. 4). This approach consists in requesting students 
to log into a remote server containing a GPU. However, although this option noticeably 
reduces the cost of installing one GPU in each computer, it may result in a poor learning 
experience due to the saturation that the remote server would experience because of several 
reasons [17], like all the graphical sessions started by students in order to use visual 
programming environments, the high CPU utilization when compiling and executing the test 
programs in the server, etc. 

 Using the rCUDA middleware (see Fig. 5). This framework enables programs being executed 
in a computer to concurrently use GPUs located in remote servers. Therefore, students would 
be able to simultaneously share one remote GPU from their local computers in the lab without 
having to log into the remote server, thus avoiding the server saturation mentioned before at 
the same time that the cost of the lab is still noticeably reduced. Notice that rCUDA is 
completely compatible with CUDA, so that is not necessary to modify CUDA programs and 
therefore students will only learn CUDA without having to bother with rCUDA, which would be 
transparent to them. 

The cost of a laboratory using both approaches could be similar to the one presented in Table II. 

 

 

 

 

Fig. 4. CUDA teaching laboratory composed of regular computers and one server with a CUDA GPU. 
All the students log into the remote server, and compile and run their applications there. 

 

Component Cost 

Intel Core i3-3220 3.30GHz with 4GB RAM 20 x 300€ 

Intel Core i7-4790 3.6Ghz with 32GB RAM 1 x 1000€ 

NVIDIA GeForce GTX 780 Ti [16] 1 x 600€ 

TOTAL 7.600€ 

  



 

 

 

Fig. 5. CUDA teaching laboratory composed of regular computers and one server with a CUDA GPU. 

5 EXPERIMENTS 

In this section we compare the performance of five common applications which are usually used in 
CUDA teaching laboratories. All of them were extracted from the NVIDIA CUDA Samples [18]: 

 deviceQuery: it is a simple program which only queries the properties of the GPU (compute 
capability, memory, number of cores…). It can be very useful to choose the most powerful 
GPU in systems with multiple available GPUs. 

 clock: this sample shows how to use the clock function in order to measure the performance of 
a given function running in the GPU. Moreover, it shows the terminology used for running 
functions in the GPU. These functions are referred to as kernels in the CUDA jargon. 

 vectorAdd: a program which implements an element by element vector addition. Apart from 
showing a kernel with functionality, it also introduces CUDA error checking. 

 template: it is a simple template which can be later used by the students as starting point to 
create new CUDA programs. 

 cppIntegration: this program shows how to introduce CUDA in a C++ existing application. 

 

The performance of the applications previosly detailed is measured in three different scenarios: 

 Using CUDA: the scenario is the one shown in Fig. 2, a laboratory composed of 20 computers 
with GPUs. The specifications of the computers are the ones presented in Table I. 

 Logging into a remote GPU server: the scenario is the one shown in Fig. 4, a laboratory 
composed of 20 computers and 1 GPU server. The specifications of the computers are the 
ones presented in Table II. 

 Using rCUDA: the scenario is the one shown in Fig. 5, a laboratory composed of 20 computers 
and 1 GPU server. The specifications of the computers are the ones presented in Table II. 

 

Fig. 6 shows the results of this performance comparison. Regarding the scenario using CUDA, we 
measure the application execution time in one computer (i.e. one user) and we then use this result as 
the baseline performance. The reason for using only one computer is that in this scenario (see Fig. 2) 
all the computers have its own GPU, therefore the fact that other students in other computers are 
running applications does not influence the results in this computer. 

In previous sections we have characterized the use of GPUs in a CUDA teaching laboratory and we 
have concluded that a maximum of 5 GPUs are simultaneously used at any given time in a laboratory 
composed of 20 computers. For this reason, in the scenarios sharing resources we just consider 5 
concurrent users. This is the case of the scenario in which the students log into a remote GPU server 



(see Fig. 4), and also the case of the scenario in which the students share the GPU of a remote server 
using rCUDA (see Fig. 5). 

Regarding the scenario in which the students log into a remote GPU server, results in Fig. 6 show the 
average execution time of concurrently running the same application by 5 different students, who have 
previously logged into the GPU server from 5 differents computers. Notice that this average execution 
time is normalized to the baseline time previously commented. 

With respect to the scenario in which the students share the GPU of a remote server using rCUDA, 
results in Fig. 6 present the average execution time of concurrently running the same application by 5 
different students, who run the application in their own computers but, thanks to rCUDA, use the GPU 
at the remote server for executing the GPU parts of the applications. Notice again that this average 
execution time is normalized to the baseline time previously commented. 

As it can be seen in Fig. 6, the overhead of the scenario using rCUDA with respect to the one using 
CUDA is under 5%, while the scenario in which the students log into a remote GPU server introduces, 
in general, an overhead about 30%. The only exception is the deviceQuery application, in this case 
logging into a remote GPU server adds hardly any overhead. The reason for this behaviour lies in the 
fact that this application is the only one of the applications under analysis which does not compute 
anything in the GPU (i.e., it does not run any kernel in the GPU). Given that CUDA applications are 
expected to make computations in the GPU, this will not be the common case. Therefore, the 
experiments presented in this section show that using rCUDA in teaching laboratories is a feasible 
option. rCUDA clearly improves the performance of logging into a remote GPU server, whereas the 
laboratory cost is not incremented. 

 

 

Fig. 6. Performance comparison of several CUDA applications running in three different scenarios: (1) 
a laboratory with one GPU in each computer, (2) a laboratory in which all the students log into one 

GPU server, and (3) a laboratory with one GPU shared among the students using rCUDA. 

 

6 CONCLUSIONS 

When teaching CUDA in laboratories, an important issue is the economic cost of GPUs, which may 
prevent some universities from building large enough labs to teach CUDA. In this work we have 
proposed an efficient solution to build CUDA labs reducing the number of GPUs. It is based on the use 
of the rCUDA (remote CUDA) middleware, which enables programs being executed in a computer to 
concurrently use GPUs located in remote servers. Therefore, students are able to simultaneously 
share one remote GPU from their local computers in the lab without having to log into the remote 
server, thus avoiding the saturation of the server at the same time that the cost of the lab is still 
noticeably reduced. 



To study the viability of our proposal, we have first characterized the use of GPUs in this kind of labs 
with statistics taken from real users. Then, we have presented the results of sharing GPUs in a real 
teaching lab, taking into account the results from the previous laboratory characterization. 

The results presented validate the feasibility of our proposal. With respect to CUDA, our solution using 
rCUDA shows an overhead under 5%. These results clearly improve alternative approaches, such as 
logging into remote GPU servers, which presents an overhead about 30% in our experiments. 
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