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Abstract: 

Traditionally, supply chain planning problems consider variables with uncertainty associated with 

uncontrolled factors. These factors have been normally modelled by complex methodologies where the 

seeking solution process often presents high scale of difficulty. This work presents the fuzzy set theory as 

a tool to model uncertainty in supply chain planning problems and proposes the particle swarm 

optimization (PSO) metaheuristics technique combined with a backward calculation as a solution method. 

The aim of this combination is to present a simple effective method to model uncertainty, while good 

quality solutions are obtained with metaheuristics due to its capacity to find them with satisfactory 

computational performance in complex problems, in a relatively short time period. 

Keywords: Metaheuristics, particle swarm optimization, backward calculation, fuzzy sets, master 

planning, supply chain. 

1 Introduction 

 

Supply chain planning problems often involve variables or parameters affected by uncertainty conditions 

due to uncontrolled factors. This uncertainty is seen, for example, in demand conditions, production 

times, replenishment or distribution, types of customers, planned income and costs, among others. 

Traditionally, presence of uncertainty in such models has been considered by applying techniques like 

stochastic programming or simulation. Such methodologies entail the drawback of requiring considerable 

amounts of data or historic records of the variables affected by uncertainty to be able to establish 

probability distributions that describe their performance, which is not often feasible. Thus, what tends to 

happen is that uncertainty is not often modeled satisfactorily and realistically. 

 

Furthermore, these mathematical problems have the peculiarity of depending on the scope and size of the 

supply chain, especially its characteristics, that they model, which can reach considerable solution 

complexity levels that make it difficult to find solutions of good quality or with poorly efficient 

computational performance. Thus highly complex solution models tend to be difficult to solve by 

conventional optimization mechanisms such as Simplex or differential optimization algorithms, used to 

seek optimum solutions, and developed in languages such as C++ or Java, among others.  

 

Along these lines, this paper continues previous research on the centralized master planning of multi-

item, multi-supplier, multi-facility, multi-type and multi-level distribution centers ceramic supply chains. 

This problem was originally considered in a deterministic environment by Alemany et al. (2010), through 

a mixed integer linear programming model, and subsequent modeling under uncertainty by applying the 
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fuzzy set theory by Peidro et al. (2012) resulting in the FMOLP (fuzzy multi objective linear 

programming) model. These models belong to the capacitated lot sizing and loading problem (CLSLP) 

with backlogging and setup carry-over category. Karimi et al. (2003) stated that there has been little 

literature regarding the above kind of CLSLP problems and since these problems are NP-hard, fast and 

efficient heuristics are required. For the purpose of contributing to this under-researched topic, the 

particle swarm optimization (PSO) metaheuristics technique has been selected to solve the FMOLP. 

 

The PSO method was first introduced by Kennedy and Eberhart (1995). PSO is a bio-inspired algorithm 

based on artificial life (A-life) in general, and on bird flocking, fish schooling, and swarming theory in 

particular. It is also related, however, to evolutionary computation, and has ties to both genetic algorithms 

and evolutionary programming. Several examples exist in the literature that show that PSO is an efficient 

method to search for better solutions for hard problems. PSO has been proved to be an efficient method 

for many global optimization problems and in some cases it does not suffer the difficulties encountered by 

other evolutionary computation techniques (Kennedy and Eberhart, 1995). However, as it is typical with 

all the evolutionary algorithms, the PSO does not guarantee to get an optimal solution for a problem. 

Therefore, it is a good option for problems where obtaining an optimal solution is very difficult like in the 

problem presented in this paper. 

 

In the field of supply chain, PSO has been applied in a different ways. Most of the papers encountered in 

the literature about the application of PSO in supply chain planning, are related to inventory management. 

Sadeghi et al. (2013, 2014) proposed a multi-vendor multi-retailer single-warehouse vendor managed 

inventory (VMI) policy formulated into an integer nonlinear programming model, the meta-heuristic 

algorithm of PSO is presented to find an approximate optimum solution of the problem. Sue-Ann et al. 

(2012) focused on the operational issues of a two-echelon single-vendor-multiple-buyers supply chain 

under VMI mode of operation. The operational parameters considered are sales quantity and sales price 

that determine the channel profit of the supply chain. The model is solved applying PSO and a hybrid of 

genetic algorithm and artificial immune system (GA-AIS). Taleizadeh et al. (2010) considered a single 

vendor-single buyer inventory problem in which the demand is stochastic and the lead time is assumed to 

vary linearly with respect to the lot size. Taleizadeh et al. (2012) expanded their previous work to a multi-

product multi-chance constraint joint single-vendor multi-buyers inventory problem. Finally in Taleizadeh 

et al. (2013) a chance-constraint supply chain problem with stochastic demand and fuzzy delay time is 

proposed. All the models are shown to be integer nonlinear programming type and in order to solve them 

a PSO approach is used jointly with other techniques like genetic algorithm (GA) and artificial bee 

colony. Wong et al. (2009) proposed a replenishment decision support system based on response surface 

methodology (RSM) and modified traveling particle swarm optimization (TPSO). This paper solved a 

two stage stochastic dynamic lot sizing problem with two phased transportation cost under a VMI. The 

solution quality using modified TPSO was tested and compared with that of the Solver tool in Excel and 3 

lot sizing decision rules. In Mousavi et al. (2014) a seasonal multi-product multi-period inventory control 

problem is modeled. The objective is to find the optimal number of boxes of the products in different 

periods to minimize the total inventory cost (including ordering, holding, shortage, and purchasing costs). 

Since the integer nonlinear model of the problem is hard to solve using exact methods, a PSO algorithm is 

proposed to find a near-optimal solution and is compared with the application of a GA. Park and Kyung 

(2014) proposed a method to optimize both the total cost and order fill rates in a supply chain using the 

PSO method. Yang and Lin (2010) provided a serial multi-echelon integrated just-in-time (JIT) model 

based on uncertain delivery lead time and quality unreliability considerations. They applied PSO as a 

method to result an improved solution solving a mixed nonlinear integer problem. Yaghin et al. (2013) 

considered pricing, marketing and lot-sizing decisions simultaneously, presented a fuzzy non-linear 

multiobjective model that maximizes the profit and return on inventory investment under multiple time 

varying demand classes. A hybrid PSO is adopted in order to solve the model. Jiang and Wu (2013) 

presented a novel approach to solve the conflict between setup frequency and production quantity in an 

inventory replenishment method based on the theory of constraints supply chain replenishment system 

(TOC-SCRS) by using PSO and genetic algorithms 

Others papers are related to supply chain network design. Bachlaus et al. (2008) attempted to design a 

multi-echelon supply chain network considering agility as a key design criterion. A novel algorithm 

entitled hybrid taguchi-particle swarm optimization (HTPSO) was proposed to solve the model. Bashiri 

and Tabrizi (2010) discussed the application of the theory of constraints into the problem of locating a 

new distribution center among a producer and a set of existing retailers with random demand. The 

nonlinear resulting model is solved by a PSO algorithm. Che and Cui (2011) proposed a heuristic-based 

approach, called GP-TBM, based on a hybrid of the GA and a PSO algorithm by introducing the balance 
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modulating (BM) mechanism to solving the mathematical model to find the optimal supply chain network 

pattern. 

 

Some papers proposed models for reverse supply chain planning. Che et al. (2012) developed an 

optimization mathematical model solved with PSO in comparison with GA for a reverse supply chain 

network that contains forward and reverse logistical plans in the multi-echelon system. Che et al. (2014) 

expanded the model considering fuzzy defect ratio, and fuzzy transport loss ratio. Kannan et al. (2009) 

designed an integrated forward logistics multi-echelon distribution inventory supply chain model and 

closed loop multi-echelon distribution inventory supply chain model for the built-to-order environment 

using GA and PSO. The proposed model is validated in a tire manufacturer and in a plastic goods 

manufacturer. Chiang et al. (2014) designed a cross-stage reverse logistics course for defective products 

so that damaged products generated in downstream partners can be directly returned to upstream partners 

throughout the stages of a supply chain for rework and maintenance. Different variations of PSO 

algorithms are compared with a GA. 

 

A few works focused on the Vehicle Routing Problems and other variations. See for example Pei et al. 

(2014), Marinakis et al. (2013 and 2010) and Vahdani et al. (2012). There are few papers in this area 

because there are other metaheuristics more convenient for this type of problem, such as tabu search 

among others. 

 

There are some papers associated to partner selection in a supply chain. Zhao et al. (2005) proposed a 

hybrid algorithm based on PSO and simulated annealing and its applications for partner selection in 

virtual enterprise and supply chain management. Xu and Yan (2011) focused on the vendor selection 

problem (VSP) for material supply in large-scale water conservancy and hydropower construction 

projects, they used PSO to solve this problem in a fuzzy environment. Prasanna proposed a hybrid 

optimization and simulation approach to design the supply chain sourcing strategy. In the optimization 

approach, a multiobjective binary particle swarm algorithm is developed for minimizing the total cost and 

maximizing the supplier delivery reliability. Selected scenarios from the optimization results are modeled 

using Witness simulation software to evaluate the robustness of sourcing strategies.  

Several papers proposed models for the production-distribution problem in a supply chain. Che et al. 

(2012) and Che et al. (2014) developed a decision methodology for the production and distribution 

planning of a multi-echelon unbalanced supply chain taking into account such four criteria as cost, 

quality, delivery and supplier relationship management and considering quantity discount and capacity 

constraints. The models are solved with PSO and with a methodology based on the analytic network 

process and turbo particle swarm optimization (TPSO). Jolai et al. (2011) proposed a multiobjective fuzzy 

goal programming approach with imprecise aspiration levels for integrated production-distribution in a 

supply chain network to consist of a manufacturer, with multiple plants, products, distribution centers, 

retailers and customers. PSO algorithm is compared with GA and with a hybrid genetic algorithm. 

Cárdenas-Barrón and Treviño-Garza (2014) presented a mathematical model for optimizing a three 

echelon supply chain network. Their model is an integer linear programming model and in order to solve 

it, they developed five algorithms; four of them are based on a PSO method and the other is a GA. Liu et 

al. (2012) attempted to realize a distribution network optimization in a supply chain using grey systems 

theory for uncertain demand. They proposed a hybrid PSO to resolve it.  

 

Finally, others applications based on PSO are in the literature. Gao et al. (2011) established two bi-level 

programming models for pricing problems with the buyer and the vendor in a supply chain designated as 

the leader and the follower, respectively. A PSO based algorithm is developed to solve problems defined 

by these bi-level pricing models. Duran and Perez (2013) presented a model for the Joint Replenishment 

Problem in a system operating with quantity discounts. As many other works, proposed the definition and 

the solution of the optimization model using techniques based on the PSO and GA. Huang et al. (2013) 

studied the coordination of risk management in fashion and textiles supply chain organized as a virtual 

enterprise (VE). The aim is to find proper decision mechanisms that can improve the overall performance 

of risk management for the whole VE as well as each member. The optimization models developed are 

solved with PSO. Noroozi et al. (2013) proposed a model for the flow shop scheduling problem in a 

manufacturing supply chain where a group of jobs can be processed on a machine simultaneously. This 

typical NP-hard problem are solved according three computational intelligence algorithms including a 

hybrid genetic algorithm, a hybrid simulated annealing and an improved discrete PSO algorithm. 

 

According to the literature, most of the analyzed papers use modified versions of the PSO algorithm in 

order to solve non-linear or integer linear programming models (both single objective and 
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multiobjective). Only a few papers address uncertainty in a supply chain with PSO. Some papers adopting 

stochastic techniques (Taleizadeh et al. 2013, 2012, 2010; Wong et al. 2009; Yang and Lin, 2010; Bashiri 

and Tabrizi, 2010) and other apply fuzzy set theory in reverse supply chain management (Che et al. 2014), 

pricing and lot-sizing (Yaghin et al. 2013), vendor selection (Xu and Yan 2011) and integrated production-

distribution planning (Jolai et al. 2010). 

 

The combination of fuzzy supply chain models and PSO as a solution method is quite recent and the 

literature review shows that up to our knowledge there is no research that simultaneously deals with 

supply chain master planning, fuzzy sets theory and PSO applied to a real case. Jolai et al. (2010) 

proposed an integrated production-distribution problem where fuzzy set theory is used to define the 

imprecise aspiration levels of goals and not to represent the uncertainty of the model data. Moreover they 

applied his proposal in a case study. 

 

Therefore, the objectives and contributions of this research are the following:  

 

 To prove the convenience of fuzzy set theory approach and the modified S-curve to model 

conflicting objectives exist and leads to uncertainty. The hypothesis to be tested and checked is 

that the fuzzy model (alpha>0) should provide better results than the deterministic one 

(alpha=1).   

 To solve the FMOLP model for supply chain planning using the PSO metaheuristics. The only 

PSO metaheuristics application was proved not to be suitable for managing the accomplishment 

of all constraints. Therefore, we designed a novel method combining the PSO with a backward 

calculation, doubled as hybrid PSO-B method. The proposed method provides good quality 

solutions in a reduced computational time.  

 

The rest of the paper is arranged as follows: Section 2 briefly describes the supply chain configuration 

from the ceramics sector under consideration. Next, Section 3 refers to the deterministic model and 

presents the methodology proposed for modeling under uncertainty using the Fuzzy Set Theory, where the 

incorporation of the method of Torabi and Hassini (2008) is stressed and used to establish an auxiliary 

simple objective model from an original multi objective fuzzy model. The evaluation of the fuzzy 

objectives have been made by the application of the modified S-curve transfer function of Vasant et al. 

(2002). Section 4 presents the solution proposal using a metaheuristics technique (PSO) and provides 

details about the solution-seeking methodology and the mutation process. In order to avoid the PSO to 

provide unfeasible solutions, section 5 describes the hybrid PSO-B calculation method proposed. Section 

6 presents the main results obtained along with the experimental analysis. Finally, in section 7 the 

research conclusions and future research lines are exposed.  

2 Description of the ceramics sector supply chain  

 

The real application of a supply chain initially proposed by Alemany et al. (2010) is taken as the model 

basis (see Figure 1). 

 A multi-plant, multi-line, multi-product and multi-period model. Three distribution levels with 

multiple distribution centers, logistic centers and shops. 

 Replenishment, production and distribution are considered (from the physical perspective). It is 

assumed that the flow possibilities between the nodes of the various stages, regardless of them 

being the parts, components, raw materials (RMs), and finished goods or articles (FGs) that 

circulate through these nodes, have been previously contemplated.  

 Subcontracting of finished goods can be partial or total (generally products with low added 

value).  

 FGs are grouped into families. Not all the production lines are capable of processing all the 

product families; however, the product families that can be processed on each line are known.  

 Production within a minimum number of consecutive time periods must be carried out, provided 

that a production line is ready for a specific product. 

 

[Insert Figure 1 about here] 
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3 Fuzzy mathematical model 

 

The intention of this section is to solve the supply chain capacitated lot sizing and loading problem 

(Özdamar and Birbil, 1998), with the model objectives, such as fuzzy variables and solve it by using the 

PSO metaheuristics. The original NP hard model proposed by Alemany et al. (2010) was transformed into 

a FMOLP model with fuzzy objectives in Peidro et al. (2012).Therefore, this research work completely 

adopts this fuzzy model, which is named FMOLP. Readers can consult further details of this model in 

Peidro et al. (2012). 

 

The methodology proposed by Peidro et al. (2012) is also taken as a basis, where an approach is defined 

to transform a FMOLP into an equivalent auxiliary crisp mathematical programming model. This 

approach adopts linear membership functions to represent all the fuzzy objective functions together with 

the fuzzy programming solution method of Torabi and Hassini (2008). According to Torabi and Hassini 

(2008), a multi-objective model could be transformed into a single-objective model as follows: 

 

𝑀𝑎𝑥 𝜆(𝑥) = 𝛾𝜆0 + (1 − 𝛾)∑𝜃𝑘𝜇𝑧𝑘(𝑥)

𝑘

 

𝑠. 𝑡 𝜆0 ≤ 𝜇𝑧𝑘(𝑥)   𝑘 = 1,… . . , 𝑛 

𝑥 ∈ 𝑓(𝑥) 

𝜆0, 𝛾 ∈ [0,1]  

                                                                                                                        (1) 

Where 𝜇𝑧𝑘and 𝜆0 =  𝑚𝑖𝑛{𝜇𝑧𝑘(𝑥)} denote the degree of satisfaction of the kth objective function and the 

minimumdegree of satisfaction of the objectives, respectively. Moreover, 𝜃𝑘 and 𝛾indicate the relative 

importance of the kthobjective function and the compensation coefficient, respectively. The 𝜃𝑘parameters 

are determined by the DMbased on his/her preferences so that ∑ 𝜃𝑘𝑘 = 1, 𝜃𝑘 > 0.Compensation 

coefficients determine whether the solution obtained is balanced; in other words, if it gives the same 

importance to all the objectives, or if it is unbalanced; that is, prioritizes those objectives whose 𝜃𝑘 weight 

is greater. Any parameter 𝛾 values close to 1 provide more balanced solutions; otherwise, values close to 

zero generate solutions with better results for those objectives whose weight is greater. It is the DM’s task 

to determine which type of solutions they wish to obtain when applying the present solution 

methodology. 

The interactive solution procedure adopted from Peidro et al. (2012) is summarized as follows: 

 

Step 1: Formulate the original FMOLP model. 

Step 2: Specify the corresponding membership functions for all the fuzzy objectives (upper and lower 

limits). 

Step 3: Determine the corresponding relative importance of the objective functions (𝜃𝑘) and the 

compensation coefficient (𝛾). 

Step 4: Transform the original FMOLP problem into an equivalent single-objective MILP form by using 

the Torabi and Hassini fuzzy programming method. 

Step 5: Solve the proposed auxiliary crisp single-objective model. 

Step 6: If the DM is satisfied with this current efficient compromise solution, then stop. Otherwise, go 

back to Step 2 and provide another efficient solution by changing the controllable parameters value 

(𝜃𝑘and 𝛾). 

 

The only difference between the process described and applied by Peidro et al. (2012) is the fact that they 

use the linear membership function to describe value 𝜇𝑧𝑘(𝑥) for each model objective. Since the 

comparison made in Peidro and Vasant (2011) suggest that the linear membership function can become 

restrictive in some kind of supply chain problems, it could be better to prove a membership function that 

is not restrictive as the linear one but flexible enough to describe the vagueness in the fuzzy objectives. 

Based on that finding, we use the S-curve membership function (Vasant et al. 2002), which is described 

below (Figure 2): 

 

[Insert Figure 2 about here] 
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𝜇𝑧𝑘(𝑥) =

{
 
 

 
 

1 𝑥 < 𝑥𝑎

0.999 𝑥 = 𝑥𝑎
𝐵

1+𝐶𝑒𝛼𝑥
𝑥𝑎 < 𝑥 < 𝑥𝑏

0.001 𝑥 = 𝑥𝑏

0 𝑥 > 𝑥𝑎

     (2) 

            

The S-curve membership function is a particular case of a logistic function with specific B, C and 

αvalues. These values must be described in a heuristic-experimental manner by the decision maker (DM). 

In this case, the values have been experimentally defined in similar cases with values of B=1, 

C=0.001001001 and α = 13.813. In Equation 2, α determines the degrees of membership of the fuzzy 

variable in the membership function μ(x). This value is higher than zero and it represents a measure of the 

degree of volatility of the study variable; in other words, high α values imply that the fuzzy variable 

presents increased uncertainty (thus, the solution begins to lose quality the higher this value becomes), 

whereas if α takes a value of 0, the tendency of the variable is deterministic. As mentioned earlier, this 

value must be defined experimentally based on trial and error. We adopt the original values of B and C 

and estimate values of α that proves experimentally to be better than the proposed with smaller values. 

Decreasing the alpha sequentially from 13.813 by trial and error, we find a value that has a good 

performance in the point α = 1.93, then we decide to maintain this value in the experiments. In order to 

investigate what happens in an intermediate regions between 1.93 and 0, we prove as well the scenario α 

= 0.5. 

Since Peidro et al. (2012) have experimented with the value 𝛾 and they have found good results with 

𝛾=0.1, we fix this parameter and just vary the alpha value. Meanwhile, the values of the parameter 𝜃𝑘 

have been defined in 0.3-0.3-0.4 for the objectives z1, z2 and z3 respectively, based on DM preferences. 

 

The objectives of the FMOLP model include maximization and minimization. Thus, the modified 

membership function must take two distinct forms depending on each case. Equation 3 corresponds to the 

modified S-curve function, adjusted with its x axis for maximization. Equation 4 corresponds to the 

modified membership function for minimization. 

 

𝜇(𝑧𝑘) =

{
 
 

 
 

1 𝑧 > 𝑧𝑢
0.999 𝑧 = 𝑧𝑢

𝐵

1+𝐶𝑒
𝛼
𝑧𝑢−𝑧
𝑧𝑢−𝑧𝑙

𝑧𝑙 < 𝑧 < 𝑧𝑢

0.001 𝑧 = 𝑧𝑙
0 𝑧 < 𝑧𝑙

     (3)  𝜇(𝑧𝑘) =

{
 
 

 
 

1 𝑧 < 𝑧𝑙
0.999 𝑧 = 𝑧𝑙

𝐵

1+𝐶𝑒
𝛼
𝑧−𝑧𝑙
𝑧𝑢−𝑧𝑙

𝑧𝑙 < 𝑧 < 𝑧𝑢

0.001 𝑧 = 𝑧𝑢
0 𝑧 > 𝑧𝑢

    (4) 

    

 

In this case, value z corresponds to the result of each fuzzy objective depending on whether it is 

minimization or maximization. The values zl and zu correspond with the minimum and maximum values 

that the objective z can take. 

 

 

4 Fuzzy model solution using the Particle Swarm Optimization metaheuristic. 

 

Since each possible solution must be evaluated according to the value of the results in the fuzzy 

objectives through membership functions, and the auxiliary simple objective model of Torabi and Hassini 

must be solved with these values, and once again, the application of conventional solvers becomes 

complex in the iterative process because, among other reasons, the S-curve function evaluation is not easy 

to model linearly. Another factor that goes against conventional solvers is the problem scale in question, 

classified as NP Hard, with which complexity, solution time and computational inefficiency can 

exponentially grow. In line with this, the use of a metaheuristics technique is proposed to obtain good 

quality solutions in relatively short solution times. The combination of metaheuristics with the fuzzy set 

theory in the supply chain modeling problems, is a research field that is relatively poorly developed as it 

was shown in previous literature analysis. In particular, we can see how the most applied types, which 

have obtained the best results, are population-based heuristic ones and, among them, genetic algorithms 

are found in particular. Based on this fact, we decide to use a metaheuristics based on population that has 

achieved good performance in the convergence process according with the literature and that has been 

little used in combination with fuzzy set theory in supply chain large scale planning problems in order to 

bring something new to this area. PSO was chosen as the solution method. 
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4.1 Particle Swarm Optimization 

 

According to Luke (2009), PSO is a method inspired by the interactions of the individuals in a swarm. It 

does not model after evolution as such, but from a set of interacting individuals, which simulates the 

swarm’s real performance. This method optimizes a problem iteratively in an attempt to improve a 

candidate solution for a given quality or performance measure. Naturally, as it is a population-based 

heuristic method, it begins with a set of solutions which function as the initial baseline population, known 

in this method as the swarm. Solutions are known as particles. The procedure consists in moving the 

particle across the space of the solution by exploring those sectors where neighboring particles perform 

better in the problem solution. Exploring is done in accordance with mathematical formulae that indicate 

the direction and velocity of the search in the solution space. 

 

Unlike other population-based methods, PSO does not re-sample populations to produce new ones; there 

is no selection of any kind. Instead, it maintains the population static, whose members improve in terms 

of the response to new discoveries about the space. Essentially, the method is a form of directed mutation 

and it generally operates in spaces of real values, which reveals a special usefulness for the FMOLP 

model solution. 

 

4.1.1 Solution-seeking process 

 

In the PSO solution procedure, a solution is defined as a vector that contains all the decision variables 

values. Those values are then used in the problem evaluation in order to find the objective function and 

the constraints evaluations. This vector in our case is composed by real numbers, defined in determined 

limits based on the nature and possibilities of each decision variable.  Solution vector is known as �⃗�. 

 

In the iterative process, candidate solutions mutate toward the better solutions discovered by the direction 

and velocity patterns of exploring. Particles never die (no selection exists). Each particle’s movement is 

influenced by its best known local position (“best”), and by the best known position of all the particle 

population (“gbest”). Accordingly, the whole swarm of particles is expected to move iteratively toward 

the sector of the space that provides the best solutions. One particle is composed of two parts: 

 

 The particle’s location in space �⃗� = {𝑥1, 𝑥2, … . , 𝑥𝑛}. This is the equivalent in evolution 

algorithms to a chromosome or genome individual. 

 

 Particle velocity �⃗� = {𝑣1, 𝑣2, … . , 𝑣𝑛}. This is the velocity and direction in which the particle is 

traveling in each iteration. 

 

Each particle begins in a random location and with a random velocity vector. A follow-up must also be 

done of:  

 

 The best known location �⃗�∗ that �⃗� has discovered. 

 The best known location �⃗�+ that some �⃗� informants have discovered. In some PSO algorithm 

versions, particles are assigned to “network neighbors" who can inform them about the best 

known locations. Nowadays, �⃗� informants are small groups of particles selected randomly in 

each iteration �⃗� is always one of its own informants. 

 The best known location �⃗�! that has been discovered by any particle. 

 

The following operations are done in each iteration: 

1. Evaluating each particle’s performance and updating the best known locations whenever 

necessary. 

2. Determining the mutation mechanism. For each particle �⃗�, its velocity vector �⃗� is updated by 

aggregating, to a certain extent, one vector that moves in direction �⃗�∗, one vector that moves in 

direction �⃗�! and another vector that moves in direction �⃗�!. These vectors increase due to 

uncertainty and randomness noise. 

3. Mutating each particle by moving it along its velocity vector. 

 

The PSO algorithm takes the form displayed in Figure 3. 

 

[Insert Figure 3 about here] 
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4.1.2 Mutation 

 

For the FMOLP model, a mutation operator is required that confers flexibility to the process for real 

numbers. In order to better handle the resolution process, the binary variables are computed by 

programming them into the source code depending on the real variables results. Thus we need just a real 

operator in the mutation process into the PSO algorithm. The mutation operators used in the present study 

are based on the approach by Srinivas and Deb (1994). 

 

The polynomial mutation operates by selection some position �⃗�. This position is selected with some 

probability p. The number inside the selected position can vary randomly either partially or completely, 

thus the mutation can imply the change in the complete value of the position of just in some of its 

decimals. Figure 4 shows an example. 

 

[Insert Figure 4 about here] 

 

5 The Hybrid PSO - Backward solution method (PSO-B) 

 

Often, the size of the problem can make the resolution space so large, causing that metaheuristics cannot 

find feasible solutions to all the constraints of the model. In our case for example, the PSO can go easily 

to an infeasible minimum or maximum in the solution space for the balance constraints defined at the 

different supply chain nodes (equations (17), (24) to (33) of Peidro et al (2012)) due to its huge range of 

possibilities. To overcome this drawback in large scale supply chain optimization problems, a method that 

combines the generation lead by the PSO of values for some decision and auxiliary variables 

(independent) of the problem, that are later used to calculate the value of some other variables 

(dependent) is proposed. These last dependent variables are calculated by means of the cited equations 

beginning from the shops to the productive plants in a backward manner. For this reason this procedure is 

doubled as hybrid PSO-backward solution method.  

To apply this method, some auxiliary decision variables that mainly consist of weights belonging to the 

[0, 1] interval have been defined. These weights represent the portion of the input quantity of a 

destination node that is provided by an origin node. To better understand this concept, assume that a 

destination node j is supplied by three origin nodes i (i1, i2, i3) as it is shown in Figure 5.  Therefore, if 

the global output quantity of a destination node is known (e.g. 1000 units) and a value between [0, 1] is 

given to each of the weights for each origin node (wi1, wi2, wi3) in such a manner that all them sum up to 

one, it is possible to derive the output quantities of each origin node to the destination one by making the 

corresponding product. Therefore, our calculation method consists of first estimating the value of the 

global output from a destination node (1000 for our example) and based on it, calculate the input supplied 

by each origin node based on its assigned weights (wi). This procedure begins at the shop nodes defining 

the amount of each FG sold in each shop and based on these quantities and the assigned weights to each 

node, derives the quantity provided by upstream nodes in a backward manner.  

[Insert Figure 5 about here] 

Finally, to ensure that the constraints of safety stock of RMs at plants (constraint (5) of Peidro et al. 

(2012)) and FGs at warehouses (constraint (22) of Peidro et al. (2012)) are respected, the auxiliary 

variables EINAiat, EINCcpt, representing the inventory in excess as regards the safety stock are defined.  

Therefore, the original variables INAia and INCcpt can be calculated as INAiat=EINAiat+ssaia and INCcpt= 

EINCcpt+ssccp.  

In Figure 6, the hybrid PSO-B solution method is represented. As it can be seen, the variables calculated 

by the PSO method are: the original decision variables DIFTKiwt, DIFAiat, CSCibat, and the auxiliary ones 

WCTTKiqwt, WCTCLiaqt, WCTAipat, WMPilpt, EINAiat, EINCcpt. Then, the original decision variables 

VETKiwt, VEAiat, MPFflpt, Xilpt, Yflpt, ZIilpt, ZFflpt, and CTPcrpt are calculated by means the own equations of 

the fuzzy model of Peidro et al. (2012); variables INAiat, and INCcpt are calculated as shown before from 

the PSO variables EINAiat, and EINCcpt, respectively and CTTKiqwt, CTCLiaqt, CTAipat, MPilpt variables are 

calculated based on the weight auxiliary variables WCTTKiqwt, WCTCLiaqt, WCTAipat, WMPilpt.  

 

[Insert Figure 6 about here] 
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6 Experimental Analysis. 

 

The FMOLP model has been programmed in Java and integrated with the JMetal metaheuristics 

programming framework of Durillo and Nebro (2011). For further details of this metaheuristics 

programming framework, readers are referred to Durillo and Nebro (2011). It is worth stressing that the 

PSO algorithm within the jMetal framework has used mainly for unconditional optimization problems, 

and for those problems in which averaging constraints has been solved, mainly by genetic algorithms. In 

this case, applying PSO to a problem of this kind is novel enough for this example to set a precedent. 

Experiments have been ran on a computer with an Intel® Core™2 Duo CPU T6670 @ 2.20GHz × 2 

processor, with 3GB RAM and in a Linux Ubuntu 14 LTS environment. The input data proposed by 

Peidro et al (2012) is used to solve the FMOLP model through the hybrid PSO-B solution method with 

the only exception that we do not consider the minimum lot size and the family setup time. The evaluated 

alpha values, as it was described earlier, are α=0, α=0.5 and α=1.93. We use the alpha 0 scenario in order 

to compare the other two scenarios against it. Making α = 0 is the same to compare fuzzy scenario versus 

deterministic conditions. The best 𝛾 value to prioritize fuzzy objectives with a greater weight is 0.1 

(Peidro et al. 2012). These experiments should lead to determinate at first the computation efficiency of 

the PSO-B method in large scale problems. Then we aim to prove the convenience of applying fuzzy set 

theory in this kind of problem versus just consider the deterministic scenario in terms of the objective 

function values. 

 

The limits set for fuzzy objectives are the same used by Peidro et al. ( 2012): 

 

 z1 (Total profit): between 200000 and 370000 

 z2 (Backorder/Delayed demand): between 0 and 5920 

 z3 (Idle time in the system): between 0 and 620 

 

Finally, the jMetal framework in its PSO algorithm does not itself consider the constraints are fulfilled 

because the algorithm is used mainly to solve unconditioned models. The methodology to integrate a 

constraint fulfillment parameter into the PSO algorithm is to use a penalization factor. In experimental 

terms, it is verified that the best method to penalize the objective function in our case is to consider a 

constraint fulfillment factor; in this case, the objective function is penalized by subtracting an exponential 

accumulated percentage of constraints that breach the rule, as shown below: 

 

𝑀𝑎𝑥 𝜆(𝑥) = (𝛾𝜆0 + (1 − 𝛾)∑𝜃𝑘𝜇𝑧𝑘
𝑘

) ∗ 𝑒
(50∗(

𝑆𝑅

𝑇𝑅
−1))

             (7) 

 

Where the SR (surplus constraints) factor refers to the quantity of constraints that are breached, whereas 

the TR factor refers to all the evaluated constraints. The factor 50 in the exponential is just a very big 

number that guarantees that the objective function is strongly penalized as the breached constraints go up. 

The penalty factor goes to 1as the breached constraints lower. Table 1 summarizes the main results and 

the comparison among each alpha scenario evaluated: 

 

[Insert Table 1 about here] 

 

The execution was made by setting a total size of 250 to the initial swarm population. It has been 

considered a total of 1000 iterations; then the execution time reported is the exact time in which PSO 

finds the best solution through the mutation process. Then, it can be seen how the convergence process is 

very fast. The rest of the iterations the mutation process searches for better solutions, but if it does not 

find some new, it maintains that considered as the Gbest of the mutation process. 

 

The results of the membership function for the alpha 0 scenario do not appear in table 1 because it is the 

deterministic scenario. The resolution of the alpha 0 scenario is the same to take the original model of 

Alemany et al. (2010) and solve it without considering minimum lot size and family setups. 

 

It can be observed how the objective function value is very close to 1 in each of the fuzzy cases, being 

both of them better than deterministic case. When each objective is separately analyzed, it can be 

highlighted that, judging by the global objective function, the alpha 0.5 scenario is better because it is the 

scenario with best results in the backorder quantity generated and the total idle time. Meanwhile, the 

scenario with alpha 1.93 is the best if the judging is based on the total benefit generated. The final 
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selection between these two possibilities depends on the preferences of decision-maker taking into 

account the risk level of each one and the final preference of each of the three objectives. In general 

terms, we can conclude that both of them achieve very good results in the objective function, and we find 

out how our method is capable to handle with the uncertainty generated by conflictive objectives and how 

our proposed calculation method PSO-B achieves very good results in terms of computational efficiency.  

 

PSO-B method and the fuzzy set theory have proven at first that both fuzzy scenarios outperforms the 

deterministic one, mainly in the total backorder generated and the total benefit. But, the main findings are 

that fuzzy approach is able to handle the available inventories and production capacity in a better way 

than the deterministic conditions, what supports the hypothesis that fuzzy set theory can improve the 

general performance in supply chain problems that are affected for some uncertainty in the objectives or 

where it exists a conflictive situation among objectives like minimize the production cost but at the same 

time to minimize the idle time of the production lines what is our case. Meanwhile, our second main 

finding is how the computational efficiency proves that the method PSO-B permits the handling of a large 

scale problem combined with the fuzzy set theory without sacrifice a considerable quantity of additional 

execution time. In fact, it can be notice how the execution time of each one of the three scenarios in the 

experiments is very little. This means that the backward calculation is able to strongly reduce the 

resolution complexity in a problem like this. 

7 Conclusions 

 

This paper continues the work of Peidro et al. (2012) that proposes a FMOLP to solve the master planning 

problem for the replenishment–production–distribution of ceramic supply chains for the purpose of 

maximizing the total gross margin, minimizing backorder quantities, and minimizing the idle production 

time in multi-supplier, multi-plant, multi-type, multi-level distribution centers with a multi-item and 

multi-period logistic environment.  

 

In this paper, the convenience of applying the fuzzy set theory where conflicting objectives exist, has 

been proved. In presence of conflictive objectives, where a good result in one can imply a worse result in 

the other, it is suggested the application of fuzzy set theory in order to better handle the uncertainty 

generated by this conflict. The modified S-curve membership function (Peidro and Vasant, 2011) works 

very well in the description of fuzzy objectives in this kind of supply chain optimization problems.  

 

The FMOLP model belongs to the CLSLP with backlogging and setup carry-over from which little 

literature can be found (Karimi et al. 2003). Since these problems are NP-hard, fast and efficient 

heuristics are required. Metaheuristics can be used to solve this kind of problems because their main 

importance is to find good solutions to a very hard problem in an execution time relatively short. In this 

paper we propose the PSO metaheuristics to efficiently solve the problem. Up to our knowledge there are 

not papers dealing simultaneously with supply chain planning, fuzzy and PSO. The only PSO application 

to solve this kind of problem often leads to unfeasible solutions where some constraints related to 

material balance equations at supply chain nodes and the relationship among binary and continuous 

variables representing setups are violated. For this reason, we have proposed a good performing 

procedure called backward calculation that consist in finding feasible solutions beginning from values 

(provided by the PSO) of the decision variables implied at the most downstream supply chain nodes 

(shops in our case) and following the calculation in a backward direction through the supply chain 

upstream nodes.  

 

The combination of the PSO with backward calculation, doubled as hybrid PSO-B, has proved a very 

good performance in the resolution and convergence process. We have found good solutions in a very 

short execution time. The hybrid PSO-B method has been applied to solve the deterministic and 

uncertainty version of the FMOLP model. Results are better when considering uncertainty, proving that 

the fuzzy approach is able to handle resources capacity and inventory better than the deterministic one. 

This proves the convenience of the application of fuzzy set theory what was exactly one of our objectives. 

Furthermore the hybrid PSO-B method has been shown to be able to handle large size problems in a 

fuzzy environment in a reduced computational time.  

 

Finally among possible future research lines, evaluating other bio inspired metaheuristics techniques can 

be considered, such as ant colonies or genetic algorithms, to determine whether performance in such 

problems outperforms PSO. Furthermore, the proposed method can be applied to models that include 

technologically fuzzy constraints and coefficients. 
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Figure 1 Supply chain distribution for the practical case applied (Alemany et al.  2010) 

 

 

Figure 2 S-curve membership function (Vasant et al. 2002) 

 

 
 

Figure 3 Structure of PSO (Luke, 2009) 
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Figure 4 Polynomial mutation 

 

 

 

 

 

Figure 5 Backward calculation 
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Figure 6 Hybrid PSO-B method global overview 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PSO variables Calculated variables 

Backorder quantity in a
shop (DIFTKiwt)

Amount of FG sold in shop 
(VETKiwt)

Weight of product comming
from each logistic center to
shop (WCTTKiqwt)

Amount  of FG transported
from logistics centre to shop 
(CTTKiqwt)

Weight of product comming
from each warehouse to each
logistic center (WCTCLiaqt)

Amount of FG transported
from warehouse a to logistics 
centre (CTCLiaqt)

Backorder quantity of FG in
warehouse (DIFAiat)

Amount of FG sold in 
warehouse (VEAiat)

Amount of FG subcontracted
to supplier for warehouse
(CSCibat)

Inventory of FG in 
warehouse (INAiat)

Amount of FG inventory
exceeding ssa (EINAiat )

Amount of FG to be 
transported
from production plant to
warehouse (CTAipat)

Weight of product comming
from each plant to each
warehouse (WCTAipat)

Amount of FG manufactured
on production line  of 
production
plant (MPilpt)

Weight of product produced in
each production line belonging
to each plant (WMPilpt )

Inventory of the RM at plant 
(INCcpt )

Amount of RM to be purchased
and transported from supplier 
to plant (CTPcrpt )

Amount of RM inventory
exceeding ssc (EINCcpt)

Binary variable  indicating if a FG is 
produced (Xilpt) and a setup of that 
FG occurs (ZIilpt ) 
Binary variable  indicating if a 
family is produced (Yflpt) and a 
setup of that family occurs (ZFflpt) 
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Table 1 Objective function results and computational efficiency 

 

Objective results 

Objectives α = 0 
α = 0.5 α = 1.93 

PSO-B 
% dif vs alpha 0 

scenario 
PSO-B 

% dif vs alpha 0 

scenario 

Obj. (Z1): Total benefit 458,715.5 463,000.9 0.9% 471,169.4 2.7% 

Obj. (Z2): Backorder 5,076.3 4,327.5 -14.8% 4,708.4 -7.2% 

Obj. (Z3): Idle time 510.1 492.0 -3.5% 521.4 2.2% 

µ(Z1)   1.0 
 

1.0   

µ(Z2)   0.998 
 

0.996   

µ(Z3)   0.998 
 

0.995   

Objective function   0.999   0.998   

Computational efficiency 

Real variables PSO-B 1,476.0 1,476.0 0.0% 1,476.0 0.0% 

Total constraints 2,832.0 2,832.0 0.0% 2,832.0 0.0% 

Execution time(s) 5.30 5.10 -2.1% 6.10 16.0% 

 

 

 

 

 

 

 

 


