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Abstract 

 

Access to safe drinkable water is a basic human right and an international development 

goal. AQUAPOT international project, created by Chemical and Nuclear Engineering 

Department of the Polytechnic University of Valencia, has been focused on research 

and development of low-cost and effective water treatment technologies based on 

membrane technology able to be used in developing countries. After several years of 

intensive laboratory and field research, Aquapot’s UF plants have been settled in 

different locations of Ecuador (province of Azuay) and Mozambique (province of 

Maputo). 

At present, most of the installed plants work successfully, producing drinking water 

suitable for human consumption and even for industrial use. However, installation of 

the designed UF-drinking water treatment facilities has shown that cleaning standard 

protocol of ultrafiltration membranes is not effective. This fact could affect 

microbiological quality and volume of the pure water produced and also life of the 

membrane and the UF-plant.  

In order to develop optimized cleaning protocols based on the use of common and 

accessible chemicals, Aquapot started an applied research studying several cleaning 

methods. Previous studies have been focussed in applying different types of cleaning: 

chemical cleaning (by means of static tests and dynamic tests) and physico-chemical 

cleaning (combining chemical reagents with the hydrodynamic action of air bubbles). 

This work describes the experimental procedure performed in static-dynamic cleaning 

test which combine soaking with dynamic circulation of cleaning solutions. Sodium 

hypochlorite and Hydrogen Peroxide at 25 ºC performed the best results, recovering 

permeate flux from 10 to 12 times respectively compared with fouled membranes. Main 

results obtained for the different chemical solutions tested at 25 and 40 ºC were also 

compared with previous chemical (static and dynamic test) and physico-chemical 

cleanning. Results showed that the tested cleaning protocol improves the effectiveness 

of the cleaning and recovers UF membrane performance even until 30 times, when 

sequence of cleaning is Sodium hypochlorite followed by hydrogen peroxide. 
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1. Introduction 

 
In recent years, application of pressure-driven membrane processes as ultrafiltration 

(UF) have expanded as an alternative promising technology to obtain drinking water for 

human consumption [1]. Despite the strong potential of membranes, one of the common 

problems encountered in applications is membrane fouling.  

 

Fouling is a process resulting in loss of performance of a membrane due to deposition of 

suspended or dissolved substances on its external surface, at its pore openings or within 

its pores [2]. Inorganics, biological foulants, suspended solids, colloids, metal oxides, 

and organics are main species in the feed that contribute fouling of membrane [3]. The 

main consequences of fouling are: flux decline, permeate quality deterioration and 

energy consumption increase.  

 

The main mechanisms of membrane fouling are the following [4]: 

 Adsorption, due to chemical affinity or interaction between solutes and 

membrane material. This can happen at membrane surface or inside the pores. 

 Pore blockage, when solutes go inside membrane pores. 

 Gel formation, as a consequence of molecule accumulation at the film layer of 

the membrane. This is very typical in solutions containing proteins. 

 Biofouling, cause by bacterial adhesion and growth at membrane surface, 

besides the production of extracellular polysaccharides (EPS) by some genera of 

bacteria, which in fact are the substance responsible for the biofilm (Baker & 

Dudley, 1998). 

 

There are many factors contributing to fouling including surface properties (chemistry, 

morphology, etc.), hydrodynamic conditions, ionic strength and solute concentration 

[5].  

 

Until now, main research has been focussed on the study of flux decline behaviour, 

understanding of fouling mechanisms, prediction of fouling as well as the 

characterization of fouling agents. These tools have been considered primordial to 

understand fouling phenomenon and its prevention, developing modified membrane 

materials [6] and better pretreatments [7]. Studies about cleaning, specially in UF and 

MF have been considered secondary, even it is critical to plant operation [8].  

 

1.1 Membrane cleaning 

 

Membrane cleaning is an essential step in maintaining the permeability and selectivity 

of a membrane process. Cleaning can be defined as a process where material is relieved 

of a substance which is not an integral part of the membrane material [9]. Nowadays, 

cleaning techniques for membranes restoration could be broadly categorized into four 

types: physical, chemical, physico-chemical and biochemical methods, even the three 

first are the most common.  

 

1.1.1 Physical cleaning 

 

Physical cleaning methods use mechanical forces to dislodge and remove foulants from 

the membrane surface. Physical methods include sponge ball cleaning, hydraulic 

cleaning (forward, reverse flushing and backwashing), air flushing (also called air 
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sparging, air scouring or air bubbling), vibration, and CO2 back permeation [10-11]. 

Non-conventional physical cleaning methods are the application of ultrasonic [12-14], 

electrical fields [15] and magnetic fields [16-17] with different results. Hydraulic 

cleaning methods are often adopted in UF for drinking water treatment [18].  

 

1.1.2 Chemical cleaning 

 

Chemical cleaning is the most common membrane cleaning method, especially in UF 

membranes. In this type of cleaning, the choice of the cleaning agent is critical. The 

optimal selection of the cleaning agent depends mainly on membrane material and type 

of foulant.  

 

Chemical cleaning depends purely on chemical interactions to remove foulants from 

membrane surface. Chemical reactions involved in cleaning include hydrolysis, 

peptization, saponification, solubilization, dispersion and chelation [19]. There are five 

categories of chemical cleaning agents: alkaline solutions, acids, acid or alkaline metal 

chelating agents, surfactants, and enzymes [8]. Chemical agents react with deposits, 

scales, corrosion products, and other foulants. The chemical should loose and dissolve 

the foulants, keep the foulant in dispersion, avoid new fouling, as well as maintain 

membrane properties [20].  

 

A cleaning cycle generally includes several stages: product removal, rinsing with water, 

cleaning in one or more steps, and rinsing with water. In order to obtain a good cleaning 

effect, cross-flow velocity should be higher and the pressure lower than those used 

during normal operation [21]. 

 

Other important aspects concerning chemical cleaning are temperature, chemical 

concentration, pH, pressure and flow, and time [22-19]. Some studies suggest that there 

is an optimal temperature for chemical cleaning [23]. Usually, increasing temperature 

(always below recommended membrane maximum temperature) increases cleaning 

efficiency, cross-flow velocity seems to have no effect on cleaning results, whereas 

increasing trans-membrane pressure may even decrease cleaning efficiency. Zero 

transmembrane pressure is recommended for maximum efficiency in deposit removal 

[23]. With regard to the time required for cleaning it varies according to the foulant and 

the cleaning process. 

 

1.1.3 Physico-chemical cleaning methods 

 

The physico-chemical cleaning methods use physical cleaning methods with the 

addition of chemical agents to enhance cleaning effectiveness. Very few works have 

researched on simultaneous combination of physical and chemical methods for 

membrane cleaning by using air bubbles between modes of filtration [24-26].  

 

Actually, not also cleaning is important to prevent fouling, several operating parameters 

on fouling including flux, concentrate velocity, backwash frequency, and 

transmembrane pressure have to be chosen depending on the water quality to insure a 

long term operations of the membrane. 
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1.2 Cleaning strategies under the scope of the Aquapot project 

 

Membrane systems are attractive to obtain drinking water since they provide an absolute 

barrier for pathogens and remove turbidity, thus increasing the palatability of the water. 

The costs of membrane have decreased rapidly during the last decades and therefore 

membrane systems have also become within reach for application in low-cost 

applications [27].  

 

Lack of chemical cleaning agents, its high cost or application of not optimized cleaning 

protocols are the main reasons that explain permeate flux decline and main 

disadvantages that limits the feasibility of this technology in water treatment processes, 

specially in rural areas of developing countries [28].  

 

Aware that the fouling and cleaning are even more critical in remote areas, the Aquapot 

project has been investigating since 2004 cleaning strategies for recovering permeate 

flow in spiral-wound UF membranes installed in rural areas of Ecuador and 

Mozambique [29-31]. FTIR, SEM and EDX analysis done to the UF membrane proved 

that the membrane surface was covered with a compact gel layer formed by organic 

substances and inorganic elements such as Mg, Al, Ca, Si or Fe coming from the 

surface water that caused irreversible fouling [32]. 

 

Cleaning research strategy was defined considering physical, chemical (static and dy-

namic test) and physico-chemical techniques including the study of the influence of 

temperature, chemical concentration, pH, pressure, flow and time over membrane 

cleaning [22]. Chemicals were chosen according to the membrane manufacturer’s 

recommendations, bibliography consulted [9,18,33] and also considering its 

affordability, low cost and world-wide extension. 

 

In static test [33], best chemicals were sodium hypochlorite (25 ºC) , hydrogen peroxide 

(25 ºC) and a commercial solution called Auxiclean B.13 at 40ºC (alkaline solution with 

complexing agents) from Auxicolor S.A. Evaluation of this effectivity was done 

through cualitative methods.  

 

Dynamic test [32] performed after static test, revealed that best cleaning solutions were 

Sodium hypochlorite at 25 ºC, Hydrogen Peroxide at 25 and 40 ºC and Auxiclean B. 13 

at 25 and 40 ºC after 2 hour cleaning.  

 

Physico-chemical dynamic test [24] performed studied the cleaning of UF membranes 

by the application of air in combination with different chemical solutions, with the 

objective of testing both hydraulic and chemical actions simultaneously in spiral wound 

membranes. The experimental results were compared to those obtained with chemical 

solutions without air bubbles, and showed a significant improvement in the cleaning 

effectiveness when using air bubbles with chemical solutions, also when comparing the 

results with the ones obtained with air sparging without chemical agents. 

 

The present paper studies the effect of cleaning strategies in flux recovery performing 

static-dynamic tests over a previously fouled UF membrane and its comparison with the 

previously tested cleaning conditions. Chemicals used in these tests, are those which 

obtained the best partial results in static [33], dynamic [32] and physico-chemical 

dynamic [24] test.  
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2. Materials and Methods 

 

2.1 Feed water characteristics and pilot plant 

 

Feed water characteristics and fouling characterization were described in previous 

studies [25, 31-33] as well as the pilot plant used.  

 

2.2 Cleaning procedure in static-dynamic tests 

 

1) Water permeability before cleaning 

 

Membranes were tested to determine the initial water permeability with deionised water 

at a transmembrane pressure of 0.2 MPa. All the samples were taken from the same 

spiral wound UF module, from different positions in the module representing the whole 

membrane area. Four membrane samples were tested at the same time. Permeate flow of 

each sample was measured every 15 minutes during 1 hour. Each experiment was done 

three times. Average permeate flux was then calculated for each membrane and defined 

as J0 (L/m
2
·h). Water permeability was done at 25 ºC or 40 ºC depending on the 

cleaning temperature used for each solution as a reference. 

 

2) Membrane cleaning with chemical solutions  

 

The chemicals and temperature conditions tested in the experiments (Table 1) were 

chosen as a consequence of the results obtained in the previous static tests [33], 

dynamic [32] and dynamic test using bubbles [24]. 

Table 1. Chemical solutions used in the cleaning experiments 

Solution 
Concentration 

pH Temperature 

(ºC) 

“Auxiclean B.13”(*) 2 % (w/v) 11 40 

Sodium hypochlorite (NaClO)(**) 100 ppm 11 25-40 

Hydrogen peroxide (H2O2)(**) 0,5 % (v/v) 7.7 25 

H2O (included as control) --- 5.8 25-40 

(*) Supplier Auxicolor S.A.     (**) Supplier PANREAC Spain  

 

Cleaning time was 8 hours. Each hour, chemical solution was recycled back for 15 

minutes (dynamic cleaning) at a transmembrane pressure of 0.2 MPa and with a feed 

flow of 160 L/h.  After this, membranes remained soaked in the chemical solution for 

45 minutes (static cleaning). Due to total cleaning time is 8 hours, total dynamic 

cleaning time (15 minutes each hour during 8 hours) equals the time of 2 hours of 

dynamic cleaning used in previous dynamic test [32]. Temperature remained constant 

during the experiment due to a temperature control unit installed. 

  

3)  Water permeability after cleaning    

 

After the chemical cleaning, water permeability with deionised water was again 

determined (named J1 (L/m
2
·h)) in order to compare it with the initial value and to 
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calculate the degree of flux restoration after cleaning. Conditions for the test were the 

same as the previously described for “Water permeability before cleaning”. 

 

The ratio of the pure water flux after chemical cleaning (J1) to the flux before chemical 

cleaning (J0) is used to express the degree of flux restoration (Equation 1): 

Degree of flux restoration = 
0

1

J

J
 (Eq. 1) 

 

This experimental procedure was carried out twice for each solution. Cleaning 

conditions shown would not cause damage on the membrane since the concentrations 

examined in this study were within the ranges recommended by the membrane’s 

manufacturer. After each experiment, cleaned membranes were replaced for new fouled 

samples. 

 

2.2 Optimization of the results 

 

After analizing the results obtained following this methodology, the same steps were 

followed for the best solutions in a long-term test, increasing cleaning time from 8 to 16 

hours. In the first 8 hours static-dynamic test was followed using one chemical solution, 

and the last 8 hours static-dynamic conditions were performed for the other chemical 

solution. In order to verify the influence that cleaning sequence has over degree of flux 

restoration, variations in cleaning sequence were also performed. 

 

3. Results and Discussion 

 

3.1 Permeate flux analysis before and after cleaning 
 

Effectiveness of cleaning procedure in removing fouling and recovering membrane 

performance was determined by comparing permeate fluxes before and after chemical 

cleaning. Figures 1 and 2 show the experimental results obtained when cleaning 

membrane samples at 25ºC.  

 

 
Figure 1. Flux permeate before and after cleaning under static-dynamic conditions at 

25 ºC 
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It can be observed that the values of permeate flux during the cleaning stage were quite 

similar for all the tested solutions (Hydrogen Peroxide and Sodium Hypochlorite), but it 

seems that Hydrogen Peroxide gets better final values of flux (500 L/m
2
h), while the 

values obtained with deionised water are the lower ones. 
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Figure 2. Flux permeate before and after cleaning under static-dynamic conditions at 
40 ºC 

At 40ºC, results obtained for Hydrogen peroxide are similar that those obtained for 25 

ºC, reaching high values of flux permeate (400 L/m
2
h). For commercial solution 

“Auxiclean B.13”, the effect  is not  as sharp as in the case of hydrogen peroxide. 

 

The effect of the hydrodynamic regime (static-dynamic) seems not to affect the 

membranes when a cleaning chemical is not used. For the case of distilled water, no 

improved effect for flux permeate is observed at this temperature. 
 

3.2 Analysis of the degree of flux recovery 
 

Figure 3 and 4 show the degree of flux restoration (J1/J0) of the fouled membranes in 

terms of pure water flux by chemical cleaning with a single reagent. 

 

According to the results presented in Figure 3, at a temperature of 25ºC, the best 

chemical solution is the hydrogen peroxide which shows a degree of flux restoration 

above 12.9. Sodium hypochlorite shows also very good flux restoration values of 10.8 

on average; while distilled water showed values  of flux restoration very low, around 

1.05. 
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Figure 3. Degree of flux restoration in the static-dynamic tests at 25ºC 
 

At a temperature of 40ºC, as it is shown in Figure 4, the best chemical solution was also 

hydrogen peroxide with a degree of flux restoration of 9.1. On the other hand, 

commercial solution “Auxiclean B.13” showed poor values of permeate flux recovery, 

with values of 1.4. Sodium hypochlorite was not tested at this temperature because only 

the best solutions defined in previous experiments [33] have been selected for these 

experiments. Lastly, distilled water did not show any permeability recovery, with values 

of permeate flux before cleaning very similar to those after cleaning. 
 

 
Figure 4. Degree of flux restoration in the static-dynamic tests at 40ºC 

 

3.3 Comparison of static-dynamic test with different cleaning methods 
 

In order to study the effect of static-dynamic conditions in cleaning efficiency, results of 

this type of cleaning are compared with the ones obtained in chemical cleaning tests 

(dynamic) [32] and physico-chemical cleaning test (dynamic using air bubbles)[24] 

performed previously. 
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In Figure 5, it can be seen that for hydrogen peroxide and for sodium hypochlorite, 

application of static-dynamic strategies improves the degree of flux restoration. For 

hydrogen peroxide flux is increased 12 times compared with dynamic and dynamic test 

using air bubbles. For sodium hypochlorite the combination of soaking and recirculation 

of chemical solution increases in 10 times de degree of flux restoration compared with 

dynamic test and in 5 times compared with dynamic test using air bubbles. No 

significant effects were observed for distillated water regardless of the type of cleaning 

method used. 
 

 
Figure 5. Effect of static-dynamic strategies in membrane cleaning at 25 ºC 
 

In Figure 6, it is shown the comparison for the best solutions used at 40 ºC. For 

hydrogen peroxide, the results are similar to those obtained at 25 ºC. There is a clear 

benefit in the use of static-dynamic strategies, compared with dynamic and dynamic 

using air bubbles methodologies. Degree of flux restoration observed for hydrogen 

peroxide is increased 9 times compared with dynamic assays and 4.5 times compared 

with dynamic test using air bubbles. However, the value obtained (9.1) is lower than the 

one obtained at 25 ºC (12.9). It seems that the increase of temperature could reduce the 

effectiveness of the oxidant solution. This effect is also observed for the alkaline 

commercial solution “Auxiclean B.13” in spite of being the temperature recommended 

by the manufacturer. In this case, the trial duration time can have diminished the 

effectiveness of the cleaning solution. 
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Figure 6. Effect of static-dynamic strategies in membrane cleaning at 40 ºC 
 
 

3.4 Combination of diferent solutions 
 

Due to cleaning sequence application is known to affect the degree of permeability recovery 

[34], different cleaning sequences were tested for the solutions that performed the best results in 
the degree of flux recovery with a single reagent. Duration of the test was increased to the 

double, just to assure that both solutions remain the same time in contact with the fouled 

membrane. Solutions selected were hydrogen peroxide and sodium hypochlorite. The degree of 
flux recovery reached for this solutions were the highest values (12.9 and 10.8 respectively). 

 

 
Figure 7. Effect of cleaning agent sequence 

 
As it can be seen in Figure 7, for the sequence of sodium hypochlorite-hydrogen peroxide, the 

total degree of flux restoration (29.9) seems to have an additive effect compared with the single 
reagents (10.8 and 12.9 respectively).  

However, the opposite sequence hydrogen peroxide followed by sodium hypochlorite does not 

show any significant effect. The degree of flux restoration for this sequence remains equal to the 

one obtained for the single reagent (in this case Hydrogen peroxide). 
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Therefore, it seems that the oxidative properties of hypochlorite may be more 

significant than the hydrolysis catalysing effect of the peroxide [35] when used in a 

combined sequence. This could be explained due to a better removal of organics 

through oxidation of aromatic humic susbtances at elevated pH levels [35] as a 

consequence of the action of the sodium hypochlorite, followed by the oxidation effect 

of the hydrogen peroxide. This effect, not observed before for the combination of these 

two oxidants by previous authors, has been reported for alkaline and oxidant agents 

sequence, specially where organics foulants dominate [35-38]. In our case, the sodium 

hypochlorite provides alkaline and oxidation effect while hydrogen peroxide 

strengthens the oxidant effect. This effect is also improved by the static-dynamic 

hydrodynamic effect that helps the diffusion of the cleaning reagents from the 

membrane surface [39]. 
 

4. Conclusions 
 

The static-dynamic cleaning strategy improves the results of cleaning obtained for 

dynamic and air bubbles dynamic test.  

 

Soaking time combined with the hydrodynamic effect promoted by the recirculation of 

the cleaning reagent helps the diffusion of the chemicals on the membrane surface. 

 

The use of oxidants as Sodium Hypochlorite and Hydrogen Peroxide removes 

effectively the drinking water foulants of UF membranes.  

 

The combined sequence Sodium Hypochlorite and Hydrogen Peroxide, helps to oxidate 

and degrade NOM due to the oxidant and hydrolytic effect of the Sodium Hypochlorite 

and its high pH. Opposite sequence did not improved the results obtained for Hydrogen 

Peroxide alone. 
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